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1. Introduction

What is the technology of conflict? Accounts of military practice inform us that both sides to a

combat should most plausibly experience increasing marginal returns from additional resources as

long as the opponent’s troops are more numerous, yet declining marginal returns once the oppo-

nent’s troops are outnumbered.1 However, the most popular contest model, in which the probabil-

ity of winning depends on the ratio of forces deployed, does not possess this property.2 To resolve

this issue, Hirshleifer (1989) proposed a contest technology for which the likelihood of winning

depends (logistically) on the difference of forces. Moreover, he showed that the resulting model

admits pure-strategy equilibria that may be interpreted as (i) peace and (ii) one-sided submission.

Despite the canonical nature of Hirshleifer’s model, reflected also in its axiomatic characteriza-

tion in Skaperdas’(1996) widely received article, the game-theoretic analysis of difference-form

contests has remained incomplete up to the present day.3

This paper offers a comprehensive analysis of the difference-form contest with heterogeneous

valuations and a smooth distribution of noise. We start by showing that there is always a unique

Nash equilibrium. Building on this observation, we examine the types of equilibria feasible in the

model. In addition to the pure-strategy equilibria identified in prior work, we find semi-mixed

and mixed-strategy equilibria that we refer to as (iii) insurgency and (iv) war, respectively. Next,

we state the precise conditions under which each of these types of equilibria obtains. This is

the basis for studying the comparative statics of the model and, more specifically, the transitions

between different types of equilibria. The framework can be used to discuss how the nature of

conflict (rather than its likelihood or intensity) may change in response to exogenous parameter

shifts, an area in which existing theory apparently had little to say.4

To obtain the equilibrium characterization, we assume that the density of the noise distribution

is a proper Pólya frequency function (of infinite order). As we show, the logistic distribution

satisfies this assumption, just as the normal distribution, and numerous other smooth distributions

of noise. Pólya frequency functions exhibit a very useful variation-diminishing property under the

operation of convolution. Below, we exploit this property to derive an upper bound on the number

of local optima of the equilibrium payoff function.5 More specifically, we show that the number

1E.g., von Clausewitz (1832, Sec. 4.9) wrote that “the more the battle tends toward a complete reversal of the
balance, the more sensitive is the effect of each partial success on it.”

2A formal discussion of this point can be found in the extensions section.
3The related literature is discussed at the end of this section.
4Cf., e.g, the surveys by Bueno de Mesquita (2006), Jackson and Morelli (2011), or Kimbrough et al. (2020).

Yared (2010, pp. 1921-1922) still complained that “no formal framework exists for investigating the transitional
dynamics between war and peace.”

5The variation-diminishing property relates to the heat equation in thermodynamics. To get the idea, think of
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of equilibrium pure best responses cannot exceed the cardinality of the support of the opponent’s

equilibrium strategy by more than one. We also show that an analogous relationship holds if

attention is restricted to positive bids. Complementing these observations with the elementary

result that the zero bid is necessarily a pure best response for the weaker contestant, the system of

equations characterizing a party’s equilibrium bid distribution is seen to admit a unique solution.

Especially the insurgency equilibrium exhibits some structure that we found worthwhile explor-

ing. As a matter of fact, there has been a growing interest in this type of conflict and appropriate

measures of counterinsurgency (e.g., Desai and Eckstein, 1990; Fearon and Laitin, 2003, pp. 79-82;

Connable and Libicki, 2010; Central Intelligence Agency, 2012). In our framework, insurgency

means that the stronger party chooses a deterministic positive resource commitment, while the

weaker party randomizes between a submissive zero bid and occasional aggressive overbidding.

Thus, in the insurgency case, the dominant party is not suffi ciently strong to entirely subdue the

weaker party. We study in particular how insurgency may transform into war. It turns out that,

in response to a gradual decline in her valuation, the dominating power may face strategic chal-

lenges in the form of profitable deviations. We formally distinguish three types of such challenges,

illustrate the conditions under which these may occur, and offer some intuitive discussion.

Several extensions are considered. First, we investigate if it is feasible for unsophisticated

contestants to learn the randomized equilibrium. Here, we focus on the case of discrete-time

fictitious play with continuous strategy spaces, and arrive at a clear-cut positive result. Second,

we revisit Che and Gale’s (2000) analysis of the difference-form contest with uniform noise, and

derive an analogous equilibrium characterization under their assumptions. Our comparison sheds

additional light on their model, but also helps to see the commonalities and differences vis-à-vis

the Hirshleifer model. Third, we consider the limit case as noise vanishes, so that the contest

approaches the all-pay auction. Fourth and finally, we discuss contest technologies that have been

proposed as alternatives to the difference-form.

Schelling (1960) pioneered the game-theoretic analysis of conflict. Within the more recent

literature, two general approaches may be distinguished. First, war has been explained as a con-

sequence of a bargaining failure. Possible reasons include incomplete information (Fearon, 1995),

limited commitment (Powell 2006; Yared, 2010), biased leadership (Jackson and Morelli, 2007),

and strategic risk (Chassang and Padró i Miquel, 2010), for instance. A second strand of liter-

ature, sometimes associated with the term guns vs. butter, has studied incentives for channeling

existing resources into conflict rather than into more effi cient uses (Skaperdas, 1992; Powell, 1993;

a hot iron bar that has some given distribution of temperature. As time progresses, the number of peaks in that
distribution will decline.
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Hirshleifer, 1995; Acemoglu et al., 2012; Caselli et al., 2015). Even though we do not model such

alternative uses explicitly, our approach is closer in spirit to the second strand of literature in

that we assume that negotiations are either not feasible or have failed in a definite way.

Difference-form contests have been studied from a game-theoretic perspective for some time.6

As mentioned above, Hirshleifer (1989) characterized pure-strategy Nash equilibria for the logistic

specification. However, he also noted that an equilibrium in pure strategies need not exist, and

that the focus on pure strategies prohibits the analysis of military conflicts in which more than

one player is active. Even though he proved existence of mixed-strategy equilibria, and speculated

about their nature, he left the analysis of randomized strategies for future work.7 In a follow-up

study on difference-form contests, Baik (1998) allowed for a wider class of distributions of noise

(e.g., normal) but likewise restricted attention to pure-strategy equilibria. The key paper on

mixed-strategy Nash equilibria in contests of the difference form is Che and Gale (2000). Assuming

uniform noise, they constructed two classes of equilibria with finite support. However, they did

not characterize equilibria for smooth distributions of noise.8 Ewerhart (2017) and Feng and Lu

(2017) characterized the semi-mixed equilibrium in Tullock contests. This type of equilibrium

corresponds to the insurgency case studied below. However, the techniques employed in those

papers cannot be used to study contests of the difference form. Ewerhart and Sun (2018, 2020)

and Levine and Mattozzi (2021) observed that mixed-strategy equilibria in contests with analytic

payoffs have finite support. The use of higher-order Pólya frequency functions in the analysis of

non-cooperative games had been restricted so far to the class of games in which payoffs depend on

the difference of strategies only (Karlin, 1957). Because of the cost term, however, difference-form

contests do not in general possess this property. The present paper contributes to this strand of

literature by studying the equilibrium set of a flexible class of difference-form contests with a

smooth distribution of noise.9

The rest of this paper is structured as follows. Section 2 contains preliminaries. The equilib-

rium analysis is presented in Section 3. Section 4 elaborates on transitions between equilibria.

Section 5 deals with counterinsurgency. Extensions are discussed in Section 6. Section 7 concludes.

All proofs have been relegated to an Appendix.

6The incentive perspective has been taken by Lazear and Rosen (1981), in particular. Nalebuff and Stiglitz
(1983, Appendix) discussed the mixed-strategy equilibrium in difference-form contests with zero noise.

7“The actual solutions involve [...] mixed strategies on one or both sides, but the specifics of these solutions are
not of immediate concern to us.”(Hirshleifer, 1989, p. 110)

8Che and Gale (2000, p. 27) wrote that “it is a daunting task to characterize mixed-strategy equilibria for
asymmetric bidders and a completely general success function.”

9A number of papers (Alcalde and Dahm, 2007; Hwang, 2012; Beviá and Corchón, 2015) have proposed modi-
fications of the difference-form contest with reference to the fact that it does not respond well to changes in scale.
We offer some discussion in Section 6.
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2. Preliminaries

This section introduces the model and discusses its basic properties.

2.1 Set-up and notation

Two parties (or contestants) i ∈ {1, 2} are close to military conflict. Each party i ∈ {1, 2} deploys
resources xi ≥ 0. Party i’s valuation for winning the conflict is denoted by Vi > 0.10 We will

assume that party i’s payoff is given as

Πi(xi, xj) = G(αixi − αjxj)Vi − cixi, (1)

where G = G(ξ) is the distribution function of the (implicit) noise term, αi > 0 is i’s combat

effi ciency (or ability), ci > 0 is i’s marginal cost, and j ∈ {1, 2}, j 6= i, is i’s opponent. The

thereby specified noncooperative game will be referred to as the difference-form contest with

noise distribution G.

Whenever convenient, we will focus on the normalized contest where c1 = c2 = α1 = α2 = 1.

This can actually be done without loss of generality, because solving the normalized model suffi ces

to characterize the equilibrium in the general case.11

Assumption 1. G is twice differentiable; its first derivative g = G′ satisfies g′ > 0 on (−∞, 0)

and g′ < 0 on (0,∞); moreover, g(−ξ) = g(ξ) for any ξ > 0.

Thus, the distribution of noise is assumed to admit a differentiable, strictly unimodal, and sym-

metric density g.12 Our main example will be Hirshleifer’s (1989) logistic specification

Glogistic(ξ) =
1

1 + exp(−ηξ) , (2)

where η > 0 is the scale parameter. An alternative specification assumes that the distribution of

noise is normal. Thus, in this case, G is given by

Gnormal(ξ) =
1√
2πσ

∫ ξ

−∞
exp(− ζ2

2σ2
)dζ, (3)

with σ > 0 denoting the standard deviation. Further examples of smooth distributions satisfying

our assumptions are provided in the Appendix.13

10Fearon (1995) argued that destruction renders war always ex-post ineffi cient. This position has, however, been
disputed on the grounds that leaders might enjoy the benefits of war but not pay the costs (Chiozza and Goemans,
2004; Bueno de Mesquita, 2006). Acemoglu (2003) explains why the Coase Theorem has limited applicability in
politics and social conflict.
11To see this, multiply party i’s payoff (1) by αi/ci, and assume that party i chooses xi ≡ αixi instead of xi, for

i ∈ {1, 2}. Then, the resulting game is a normalized contest.
12As will be discussed, smoothness and strict unimodality cannot be dropped without losing at least some of our

conclusions. In contrast, the symmetry assumption is made for expositional reasons and could be relaxed.
13The case of uniform noise considered by Che and Gale (2000) will be discussed in Section 6.
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2.2 Equilibria in pure strategies

The economics of the difference-form model is largely driven by the properties of the pure-strategy

best response. These properties depend on whether a party’s valuation is below or above the

threshold level 1/g(0). If, say, party j’s valuation Vj is weakly below the threshold, then j’s payoff

function is globally strictly declining, so that bidding zero is a strictly dominant strategy. In the

more interesting case where party j’s valuation is strictly above the threshold, however, the best

response looks as illustrated in Figure 1. Starting from the monopoly bid xDj , it is monotonically

increasing with slope one, until the opponent’s resource commitment reaches the close-out bid x#
i

(not to be confused with the before-mentioned threshold for j’s valuation), whereupon the best

response discontinuously drops to zero. Thus, the bid level xDj > 0 is party j’s best response to a

zero bid, and x#
i > xDj the highest bid level of party i for which party j has a positive pure best

response.

Figure 1. Pure-strategy best response in the case Vj > 1/g(0).

In a pure-strategy Nash equilibrium (PSNE), parties’best response functions intersect. An analysis

based on Figure 1 shows that, in any PNSE, at most one party is active, i.e., makes a positive

resource commitment.

Lemma 1. (Hirshleifer, 1989; Baik, 1998) Suppose that Assumption 1 is satisfied. Then,

the following holds true:

(i) If max{V1, V2} ≤ 1/g(0), then both players remaining inactive is a PSNE (“peace”);

(ii) if either Vi > 1/g(0) and Vj ≤ 1/g(0), or Vi is suffi ciently large given Vj > 1/g(0), then there

is a PSNE in which only party i is active (“one-sided submission”);

(iii) there are no other PSNE.

Thus, if a PSNE exists, it is unique, and necessarily of one of the two types described above. In

case (i), both parties have a limited interest in winning the conflict in relation to the randomness
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of the contest. In case (ii), the weaker party remains inactive either because her valuation is very

low, in which case the zero bid is strictly dominant, or because the stronger party’s valuation is

so large that its monopoly bid effectively excludes the weaker party from the contest. In general,

however, a PSNE need not exist because of the discontinuity of the best response.

2.3 Equilibria in randomized strategies

We, therefore, assume that a contestant may choose to randomize, e.g., to catch the opponent

off guard. A mixed strategy for party i is a probability measure µi on (the Borel subsets of)

the interval Xi = [0, Vi].14 The set of mixed strategies for player i is denoted by Mi. By a

mixed-strategy Nash equilibrium (MSNE), we mean a pair µ∗ = (µ∗1, µ
∗
2) ∈M1 ×M2 such that

Π∗i ≡ E[Πi(xi, xj)|µ∗i , µ∗j ] ≥ E[Πi(xi, xj)|µi, µ∗j ] (4)

for all µi ∈ Mi, where E[ .|µi, µj ] denotes the expectation given probability distributions µi and
µj .15 An equilibrium in mixed strategies exists under general conditions.

Lemma 2. Suppose that G is continuous. Then, a MSNE µ∗ = (µ∗1, µ
∗
2) exists.

3. Equilibrium analysis

This section is crucial for all what follows. After introducing our main assumption, we will

present the equilibrium characterization, then discuss the insurgency equilibrium as an example,

and finally outline the proof of the characterization result.

3.1 An assumption on the distribution of noise

The following definition goes back to Schoenberg (1947).

Definition 1. A measurable function ϕ is a Pólya frequency function (of infinite order)

if the following two conditions hold true:

(i) 0 <
∫∞
−∞ ϕ(ξ)dξ <∞;

(ii) for every n and for every set {ak} and {bl} such that a1 < . . . < an and b1 < . . . < bn, the

determinant
∣∣{ϕ(ak − bl)}k,l∈{1,...,n}

∣∣ is nonnegative.
If condition (ii) is replaced by the stricter condition that the determinant is always positive, then

ϕ is called a proper Pólya frequency function (P.P.F.F.).
14Equivalently, a mixed strategy for party i may be represented by a distribution function Fi, where Fi(xi) =

µi([0, xi]) for xi ∈ Xi.
15As usual, we identify the set of pure strategies with the subset of Dirac distributions. Therefore, the term

MSNE encompasses also any PSNE.
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The class of Pólya frequency functions is strictly contained in the class of totally positive functions

(where the integrability condition is dropped). Smooth Pólya frequency functions are necessarily

bell-shaped with unbounded support.16 Further, Pólya frequency functions are necessarily log-

concave. In fact, the class of totally positive functions of order 2 (where condition (ii) is required

for n ≤ 2 only) coincides with the class of logconcave functions (Schoenberg, 1951, Lemma 1;

Miravete, 2002, 2011). There is, however, no equally convenient characterization of totally posi-

tive functions of any other finite order.17 Notwithstanding, Pólya frequency functions of infinite

order, as introduced above, admit a convenient characterization by the fact that their bilateral

Laplace transforms are reciprocals of entire functions of the Laguerre-Pólya type (Schoenberg,

1951, Thm. 1).18 A very imprecise way to state this mathematically deep result is that Pólya

frequency functions correspond to (possibly infinite) convolutions of normal and exponential prob-

ability distributions. In the Appendix, we characterize the class of noise distributions that satisfy

both Assumption 1 and the P.P.F.F. property in terms of the bilateral Laplace transform. The

characterization requires that, in the absence of the normal convolution factor, the series of ab-

solute scale parameters of the Laplacian factors must diverge. The equivalence can be used to

verify the condition on the determinants in large classes of examples including, in particular, the

logistic and normal distributions of noise. For additional background, the reader is referred to

the monograph by Karlin (1968, Ch. 7).

For our analysis, we will require that the density g is a P.P.F.F. In addition, we will require

that g is real-analytic, which means that it is arbitrarily many times differentiable and coincides

locally with its Taylor expansion at any ξ ∈ R.

Assumption 2. g = G′ is a P.P.F.F. and real-analytic.

As discussed, Assumptions 1 and 2 do hold for the logistic and normal specifications introduced

above.

3.2 Equilibrium characterization

In the normalized model, if Vi > Vj , we will refer to i as the stronger party and to j as the weaker

party. The key result of this paper is the following.

16A function g ≥ 0 is called bell-shaped if it converges to zero at ±∞ and if, for every n = 0, 1, 2, . . ., the n-th
derivative g(n) of g exists and changes its sign exactly n times (cf. Kwásnicki and Simon, 2019).
17Cf. Weinberger (1983) and Khare (2021).
18Entire functions are functions of a complex variable that are holomorphic (i.e., complex differentiable) in the

entire complex plane. Functions of the Laguerre-Pólya type are defined by the requirement that they admit a
Hadamard product representation where all zeros lie on the real axis.
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Proposition 1. Impose Assumptions 1 and 2. Let µ∗ = (µ∗1, µ
∗
2) be a MSNE in the difference-

form contest with noise distribution G. Then:

(i) The respective cardinalities of the supports of µ∗1 and µ
∗
2 are finite and differ by at most one.

(ii) Likewise, the respective numbers of positive bids in the supports of µ∗1 and µ∗2 differ by at

most one.

(iii) The weaker party uses the zero bid with positive probability.

(iv) There is no other MSNE.

The main observation is part (iv), i.e., the uniqueness of the MSNE. The other properties are

needed in the proof of uniqueness, but also characterize the equilibrium. Properties (i) and (ii)

relate the equilibrium bid distributions of the two contestants to each other. Specifically, the

necessarily finite cardinality of the support of the equilibrium strategies differs by at most one

between the parties, and the same is true if one counts the positive bids only. These two parts

of the theorem are driven by the variation-diminishing property of P.P.F.F., and thereby capture

the main technical innovation of the present paper vis-à-vis the existing literature.19 Part (iii)

of Proposition 1 says that the weaker contestant remains inactive with positive probability. The

stronger party’s strategy, however, may or may not possess a mass point at the origin.20

3.3 Example: Insurgency

Any equilibrium of the difference-form contest in which one party, say party i, deploys a positive

resource level xi > 0, while the other party j randomizes strictly between a resource level of xj = 0

and a positive resource level xj > 0, will be referred to as an insurgency equilibrium (against party

i). Contestant j has here the role of the insurgent party, that may charge an unpredictable attack

against the dominating party i. Thus, insurgency is a semi-mixed equilibrium. In fact, as a

consequence of Proposition 1(i), it is the only type of semi-mixed equilibrium feasible under our

assumptions. The following lemma characterizes the respective resource commitments and the

probability of an attack in this type of equilibrium.

Lemma 3. Suppose that Assumption 1 holds true. Then, in any insurgency equilibrium against

party i, party i chooses x#
i > 0, while party j randomizes between xj = 0 and xj = xDj + x#

i .

19 In particular, as discussed in the Introduction, Proposition 1 does not follow from Karlin (1957, Lemma 5).
20For example, in the peace equilibrium, the stronger contestant’s strategy has a mass point at the origin, while

in the submissive equilibrium, the stronger contestant is active with probability one. Similar examples exist when
both parties randomize.
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Moreover, Vi > Vj > 1/g(0), and party j chooses the zero bid with probability21

q =
1− (Vj/Vi)

1− g(x#
i )Vj

. (5)

In response to an exogenous increase in Vi (in Vj), the intensity of the insurgent’s attack, xDj +x#
i ,

does not change (rises strictly). Furthermore, the probability of attack, 1−q, declines strictly (rises
strictly).

Later in the analysis, we will characterize the conditions under which an insurgency equilibrium

obtains.

3.4 Outline of the uniqueness argument

The proof of Proposition 1 starts by observing that the difference-form contest is strategically

equivalent to a zero-sum game on the square with analytic kernel. This observation has useful

implications. First, optimal strategies have finite support. Second, equilibrium strategies are

interchangeable, so that any pure strategy used in equilibrium is necessarily a best response to

any equilibrium strategy. These observations lead to a system of equations characterizing the

probabilities with which a party randomizes over her candidate pure strategies. In the absence of

Assumption 2, however, the system could be underdetermined (i.e., there could be fewer equations

than unknowns).22 This is the point where the variation-diminishing property of P.P.F.F. kicks in

to obtain the crucial parts (i) and (ii) of the proposition. From here, exploiting the P.P.F.F. prop-

erty another time shows that the above-mentioned system of equations indeed admits precisely

one solution, which establishes the uniqueness of the equilibrium.

4. Typology of military conflict

This section presents a classification of the types of equilibria feasible in the difference-form contest

with smooth noise and heterogeneous valuations. To illustrate the usefulness of the classification

result, we also discuss the way in which the equilibrium may transit from one type into another

in response to exogenous shifts in the parameters of the model.

4.1 Types of equilibrium

In total, the analysis identifies four types of equilibrium. The types referred to as either peace,

submission, or insurgency have been discussed before. As a fourth and final type of equilibrium,

21The denominator in (5) is always positive, as shown in the Appendix.
22An exception is the case, dealt with in Ewerhart and Sun (2018), where valuations are homogeneous and noise

is logistic.
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we introduce mutual raids (or war) as any MSNE in which both parties use strictly randomizing

strategies. The following result describes the conditions under which each of these types of

equilibrium obtains.

Proposition 2. Consider the difference-form contest with noise distribution G. Suppose that

Assumptions 1 and 2 hold true. Then, there is a continuous and strictly increasing function φ∗,

as well as a continuous function φ∗, both defined for arguments weakly exceeding 1/g(0), such

that:

(i) peace obtains if and only if max{V1, V2} ≤ 1/g(0);

(ii) j submits to i if and only if Vi > 1/g(0) and Vj ≤ φ∗(Vi);

(iii) there is insurgency against party i if and only if Vi ≥ φ∗(Vj) and Vj > φ∗(Vi).

(iv) there are mutual raids if and only if min{V1, V2} > 1/g(0), V1 < φ∗(V2), and V2 < φ∗(V1).

Part (i) simply restates the conditions for peace already discussed in Section 2. Part (ii) states the

necessary and suffi cient conditions for one-sided submission. This result is, in fact, a bit sharper

than Hirshleifer’s limit observation in that a unique threshold φ∗(Vi) for party j’s valuation is

identified. Further, as can be seen, submission by party j is feasible even if there is a local

interior maximum in party j’s equilibrium payoff function, i.e., for Vj > 1/g(0). Borrowing useful

terminology from military studies (e.g., Central Intelligence Agency, 2012), we refer to this case

as preinsurgency. Part (iii) captures the conditions for an insurgency equilibrium against the

stronger party, i.e., positive bids are used with positive probability by the weaker party. Part (iv)

characterizes the conditions under which both parties randomize in equilibrium.23

Figure 2. Types of equilibria

23For equilibria of type (i), (ii), and (iii), expected payoffs and winning probabilities may be easily expressed in
terms of xDj and x#i . For equilibria of type (iv), however, this is not feasible in general.
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Figure 2 illustrates Proposition 2 in the case of logistic noise.24 The flatter (steeper) dotted

curve corresponds to the set of combinations of V1 and V2 such that V2 = φ∗(V1) (such that

V1 = φ∗(V2)). The solid curves outline the points of transition from insurgency to war, i.e., they

correspond to the locus of combinations of V1 and V2 such that V2 = φ∗(V1) and V1 = φ∗(V2),

respectively.25 As a consequence of symmetry considerations, one obtains a total of six areas

reflecting the feasible types of equilibria.

4.2 Transitions

To illustrate the usefulness of Proposition 2, we return to the general model where parameters

are no longer normalized. Thus, in addition to the valuation parameters V1, V2, we reintroduce

the ability parameters α1, α2, and the marginal cost parameters c1, c2. One may now study the

comparative statics of the general model by considering the corresponding parameter changes in

the normalized model. Below, we offer several illustrations of this approach.

Figure 3A. Simultaneous increase in valuations

Simultaneous increase in valuations. Suppose that the status quo is peace. Then, following a

simultaneous expansion in V1 and V2, peace may easily transit into mutual raids, as illustrated by

the arrow in Figure 3.A. E.g., climate change may make water a highly valued resource and lead

to conflict (e.g., if a river runs through several countries). The melting of the northern polar ice

cap (corresponding to a simultaneous decline in c1 and c2, which has an analogous effect in the

normalized model), may lead to increasing tensions among riparian states. Cyber warfare, made

possible by an increased reliance on the internet, might serve as an additional illustration.26

24The case of normal noise is similar.
25The threshold φ∗ is actually not smooth but consists of three segments, as will be explained in the next section.
26Notably, a balance of power alone does not guarantee peace. Instead, for peace to obtain in a difference-form

contest, the costs of the aggression (including, in particular, any expected damages from retaliation) must exceed
the expected benefits from winning the conflict with higher probability.
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Figure 3B. Unilateral increase in ability

Unilateral increase in ability. Suppose again that the initial state is peace. Then, an increase

in party 1’s ability parameter α1 corresponds to an increase in V1 in the normalized model.

Hence, peace may transit into submission of party 2, as outlined in Figure 3B. The Spanish and

Portuguese conquest of the Americas, the annexation of Austria into pre-war Germany, and the

Viking dominance due to superior ship technology might all serve as illustrations. In a similar

vein, one might use the formal framework to discuss the emergence of feudalism in Europe, which

has been attributed to the invention of the stirrup.

Figure 3C. Unilateral reduction in marginal cost

Unilateral reduction in marginal cost. Suppose that the status quo is submission of party 2 by

party 1. Then, a decrease in the weaker party’s marginal cost parameter c2 corresponds to an

increase in V2 in the normalized model. Therefore, as indicated in Figure 3C, submission may

transit into insurgency, and next into mutual raids. A potential historic example could be the fur

trade during colonization of North America that made the acquisition of fire arms affordable for

native Americans since the early 17th century. Another illustration (of an increase of V2) may be

the American civil war and one of its main causes, the increased value of morality in the Northern

States.
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Figure 3D. Increase in uncertainty

Sudden increase in uncertainty. Suppose that the status quo is war. Then, an increase in uncer-

tainty (caused, e.g., by a decline in the scale parameter η in the logistic model) corresponds to a

simultaneous decline of V1 and V2. Then, following the arrow in Figure 3D, war may transit into

peace. As an illustration, one might refer to the regular ceasefire at nightfall in the Trojan war.

Figure 3E. Unilateral increase in ability (cont.)

Unilateral increase in ability (cont.) Suppose again that the status quo is war. Then, a suffi ciently

strong unilateral technological development accessible for only one party may push war into one-

sided submission. Figure 3E illustrates this case. It is often said that the atomic bomb, despite

its horror, ultimately helped ending the Second World War.27

A common element of the illustrations above is that advances in weaponry, widely understood,

have the potential to encourage conflict. This negative view on technological progress is not

universal, however. E.g., in the example where parties fight about access to water, the development

of effi cient desalination methods may mitigate the very same conflict.28 Notwithstanding, the

analysis certainly suggests a prominent role for progress in weapon technology as a driver of

conflict.

27This example leads to the question if cold war should be considered war or peace. I do not have an answer to
this question.
28 I am grateful to Judith Avrahami and Yakoov Kareev for providing this example.
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5. Counterinsurgency

What are the mechanisms through which insurgency may turn into war? This section seeks to

derive an answer to this question within our formal framework. As should be clear by now, in

an insurgency equilibrium, the stronger party i chooses a dominating bid level x#
i > 0, while the

weaker party j randomizes between the zero bid and an aggressive overbidding at x#
i +xDj . It turns

out that in any gradual transition of this equilibrium into war, it is the dominant party that faces

a challenge in the form of marginally better strategic alternatives. Upon closer inspection, this

challenge can be of three different kinds. First, a strategy that may suddenly appear marginally

better for the stronger party is an occasional withdrawal. This happens if Vi = φ0(Vj), where

φ0 is a strictly increasing function, illustrated in Figure 4 for the logistic case as a dotted line

(the vertical axis has been stretched for clarity). Once Vi falls below the threshold φ0(Vj), or

equivalently, once Vj surpasses a corresponding critical value, party i intuitively questions the

necessity of being always active, and the conflict meanders into war. We interpret this as a

challenge to the stronger party’s determination.29

Figure 4. The transition from insurgency to war

Second, the insurgency equilibrium may become a weak equilibrium if an alternative positive

level of engagement, substantially different from the equilibrium strategy, suddenly appears as

marginally better for the dominating party. As this tends to imply overbidding,30 we will interpret

this as a challenge to the stronger party’s moderation. The locus of parameter constellations where

this happens is illustrated as the upper branch of the dashed curve in Figure 4 that, in its entirety,

29For illustration, think of a police force that has to accept that certain rural areas cannot be controlled at all
times (Desai and Eckstein, 1990, p. 442). Similarly, the development of urban no-go areas might serve as an example
for this type of transition between insurgency and war.
30 Indeed, local optima at positive bid levels strictly lower than x#i never became profitable deviations in the

examples that we studied.
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is characterized by a relationship Vi = φ1(Vj), capturing insurgency equilibria where the dominant

party is indifferent between x#
i and another interior local optimum.

Third and finally, the stronger party may also face a challenge to its firmness. To under-

stand this point, note that insurgency entails that the second-order necessary condition is weakly

satisfied for the dominating bid. Formally, this can be shown to correspond to an inequality

Vi ≥ φSOC(Vj), where φSOC is again a strictly increasing function. Now, at the threshold to war,

the second-order condition on the dominating bid may hold with equality. The locus of points

where this is the case for the logistic specification is highlighted in Figure 4 as a fat line. There,

the stronger party gradually losing interest suddenly finds herself at a local minimum, with two

local maxima nearby. However, regardless of the initial direction optimally taken by the stronger

party, the new equilibrium will necessarily be war.31

6. Extensions and further discussion

6.1 Learning

What degree of sophistication is needed to end up playing Nash in a difference-form contest? To

explore this issue, we consider the following version of discrete-time fictitious play (cf. Danskin,

1981). At stage t = 0, parties select arbitrary elements x1(0) ∈ X1 and x2(0) ∈ X2. At any stage

T ≥ 1, suppose that choices x1(0), . . . ,x1(T − 1) and x2(0), . . . ,x2(T − 1) have already been

made. Then, for i ∈ {1, 2}, we denote by µTi ∈ Mi the empirical frequency distribution of party

i’s bids, i.e., µTi is defined via

µTi {xi} =
1

T
·#{0 ≤ t ≤ T − 1 : xi(t) = xi}, (6)

for any pure strategy xi ∈ Xi. Now, party i chooses xi(T ) ∈ Xi so as to maximize the expected

payoff against µTj , i.e., such that

E[Πi(xi(T ), xj)|µTj ] = Π∗i (T ) ≡ max
xi∈Xi

E[Πi(xi, xj)|µTj ]. (7)

Any path {x1(t),x2(t)}∞t=0 constructed that way will be referred to as a discrete-time fictitious

play.

To discuss convergence, we consider weak convergence of distributions (Billingsley, 1995). It

should be clear that, because parties are unlikely to hit precisely on the finitely many points of

the equilibrium support in a learning process, this is the strongest notion of convergence we can

hope for.
31Thus, the contour line separating insurgency and war may be characterized as φ∗ = max{φ0, φ1, φSOC}. By

logical necessity, however, φSOC coincides with φ1 over the relevant range of parameter values.
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Proposition 3. Let {x1(t),x2(t)}∞t=0 be a discrete-time fictitious play in a difference-form con-

test with noise distribution G. Suppose also that Assumptions 1 and 2 hold true. Then, the

corresponding sequence of empirical frequencies {(µT1 ,µT2 )}∞T=1 has the MSNE as its unique limit

distribution.

Thus, even a very unsophisticated learning process such as fictitious play leads to the equilibrium

bid distribution.32

6.2 Uniform noise

Che and Gale (2000) considered a difference-form contest with a uniform distribution

Guniform(ξ) =


0 if ξ < − 1

2s

1
2 + sξ if − 1

2s ≤ ξ ≤
1
2s

1 if ξ > 1
2s ,

(8)

where s > 0.33 They identified two types of mixed-strategy equilibria and showed that, generically,

only one type of equilibrium exists.34 While the specification (8) does not satisfy our assumptions,

the structural analysis underlying Proposition 2 may be extended as follows.

Proposition 4. Consider the Che-Gale difference-form contest with parameter s. Then, for

arbitrary valuations V1 > 0 and V2 > 0:

(i) peace is a PSNE if and only if max{V1, V2} ≤ 1/g(0);

(ii) party j submitting to party i is a PSNE if and only if Vi ≥ 1/g(0) ≥ Vj;

(iii) insurgency against party i is a MSNE if and only if Vi ≥ 1/s = Vj;

(iv) mutual raids form a MSNE if and only if either min{V1, V2} > 1/s or V1 = V2 = 1/s.

The point to take away is the necessity part of claim (iii), which says that an insurgency equilib-

rium is feasible only if the weaker party’s valuation is precisely equal to 1/s. In other words, there

is generically no insurgency equilibrium, which shows that an analysis of equilibrium transitions

based on the Che-Gale model would lead to different conclusions than those obtained above.
32A question of obvious interest, which however goes beyond the scope of the present analysis, concerns the

introduction of stochastic elements in the learning process.
33Cubel and Sanchez-Pages (2020) proposed a generalization to more than two contestants.
34 In an overlapping equilibrium, both contestants use the zero bid with positive probability, whereas the lowest

positive bid for each player is taken from the interval [ 1
2s
, 1
s
]. Moreover, the distance between any two neighboring

positive mass points for the same contestant is 1
s
. In a staggered equilibrium, only the weaker party uses a zero bid,

while the lowest bid of the stronger party is 1
2s
. Moreover, the distance between any two neighboring mass points

for the same contestant is 1
s
.
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6.3 Robustness of all-pay auctions

What happens if the scale parameter of the noise distribution grows over any finite bound? The

answer provided below should be plausible.

Proposition 5. In the difference-form contest with noise distribution G, impose Assumptions 1

and 2, and suppose that V1 ≥ V2 > 0. Further, for ρ > 0, define the rescaled noise distribution

Gρ(ξ) = G(ρξ), and let (Πρ
1,Π

ρ
2) denote the pair of equilibrium payoffs in the difference-form

contest with noise distribution Gρ. Then, limρ→∞(Πρ
1,Π

ρ
2) = (V1 − V2, 0).

Thus, as the noise vanishes, the expected payoff profile of the difference-form contest with smooth

noise converges to that of the standard all-pay auction (Baye et al., 1996).

6.4 Alternative contest technologies

As discussed in the Introduction, it is a plausible property of a combat technology that, “consistent

with military experience, increasing returns apply up to an inflection point at equal resource

commitments.”35 In this section, we derive some implications of this property for the shape of the

contest technology.

We need some definitions. By a contest success function (CSF), we mean a mapping P : R2
≥0 →

[0, 1]. We say that P is smooth if P (·, x2) is twice continuously differentiable (in a neighborhood of

the point of equal resource commitment) for any x2 > 0, anonymous if P (x2, x1) = 1−P (x1, x2),

and monotone if x2 > 0 implies ∂P (x1, x2)/∂x1 > 0. Further, P is homogenous of degree zero

if λ > 0 implies P (λx1, λx2) = P (x1, x2), and of the modified difference-form if P (x1, x2) =

G(T (x1)−T (x2)), where G is a twice differentiable distribution function such g = G′ is symmetric

w.r.t. to the origin, and T is a nonlinear twice differentiable mapping.36 Finally, we will say that
a smooth CSF P satisfies the Hirshleifer property if

x1 <
[>]

x2 ⇔
∂2P (x1, x2)

∂(x1)2
>
[<]

0. (9)

Proposition 6. Let P be a smooth, anonymous, and monotone CSF that is either homogeneous of

degree zero or of the modified difference-form. Then, P does not satisfy the Hirshleifer property.

This result extends Hirshleifer’s discussion of the Tullock example, and helps to add structure

to the set of CFS that have been proposed more recently as alternatives of the difference form.

35The quote is taken from Hirshleifer (1989, p. 101). See also Dupuy (1987) and Hirshleifer (1991).
36A natural way to arrive at a contest of the modified difference-form is to assume that (i) marginal costs of

resource deployment are positive but not constant, and (ii) contestants choose costs rather than resource commit-
ments.
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In particular, the conditions of Proposition 6 hold for the relative-difference CSF (Beviá and

Corchón, 2015; Mildenberger and Pietri, 2018), which is homogeneous of degree zero. The con-

ditions hold also for Hwang’s (2012) constant elasticity of augmentation CSF, which is of the

modified difference-form (unless the transformation is linear and the CSF coincides with the lo-

gistic difference-form). Interestingly, however, Alcalde and Dahm (2007) managed to construct a

CSF that satisfies the Hirshleifer property precisely by sacrificing the smoothness assumption.

7. Concluding remarks

In this paper, we have shown that the difference-form contest with heterogeneous valuations and

smooth noise provides a simple and intuitive framework for discussing the various stages of a

military conflict, including also the transitions between such stages. The characterization of the

unique equilibrium complements existing work and closes a long-standing gap in the literature on

contests. In addition to the conceptual discussion, the use of Pólya frequency functions for the

analysis of difference-form contests is novel, and might give rise to further applications of this

technique. The analysis may, therefore, be seen as contributing to the steadily growing literature

that aims at applying game-theoretic reasoning to the study of military conflict and its resolution.

One of the main conclusions derived from the analysis is that advances in military technology

in all of its forms, such as an improved accuracy of target systems, more effective weapon systems,

and lower marginal costs of deploying weapons (e.g., by using armed drones) are all suitable to

transform a peaceful situation into some state of conflict. Historical examples illustrating this sort

of transition between equilibria abound. In contrast, in line with the theoretical prediction, we

found it much harder to come up with an example of a conflict that ended peacefully as a result of

an advancement in military technology. International initiatives such as the Geneva Protocol and

Non-Proliferation Treaties can help but must keep pace with the constantly changing geopolitical

landscape and the rapid arrival of entirely new forms of weaponry (such as hypersonic bombs,

pulsed microwaves, social media manipulation, the instrumentalization of migration, etc.)37

37Mainly due to restrictions in space, we could not address all the aspects that the literature has dealt with, such
as endogenous armament, technological choices available to conflict parties (e.g., between defensive and aggressive
weapons, or between “conventional”and other kinds of weapons), the political economy of war and peace, collateral
damages, ethical considerations, the role of the public opinion, and the impact of military alliances, to name a few.
Exploring such extensions seems, of course, very desirable.
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Appendix

This Appendix contains technical material omitted from the body of the paper.

A. Material omitted from Section 2

The following auxiliary result characterizes the pure best response in the difference-form contest

with a smooth distribution of noise.

Lemma A.1 Suppose that Assumption 1 is satisfied. Then, the following holds true:

(i) If Vj ≤ 1/g(0), then bidding zero is strictly dominant for party j.38

(ii) If Vj > 1/g(0), then party j’s set of pure best responses to pure strategy xi ≥ 0 is given by

βj(xi) =



{xDj + xi} if xi < x#
i

{0, xDj + xi} if xi = x#
i

{0} if xi > x#
i ,

(10)

where xDj > 0 and x#
i > 0 are uniquely characterized by the first-order condition g(xDj )Vj = 1

and the indifference condition

G(xDj )Vj − (xDj + x#
i ) = G(−x#

i )Vj, (11)

respectively.

(iii) xDj < x#
i < Vj .

(iv) Both xDj and x#
i are continuously differentiable with respect to Vj, with dxDj /dVj > 0 and

dx#
i /dVj > 0.

(v) We have xDj → 0 and x#
i → 0 as Vj ↘ 1/g(0), while xDj and x#

i transgress any finite bound

as Vj →∞.

Proof. (i) Party j’s marginal payoff against party i’s bid xi ≥ 0 is given by

∂Πj(xj , xi)

∂xj
= Vjg(xi − xj)− 1. (12)

Using Vj ≤ 1/g(0) and Assumption 1, this implies that Πj(xj , xi) is strictly declining in xj .

Therefore, the unique best response is xj = 0 regardless of xi, as claimed. (ii) By assumption,

Vj > 1/g(0). Therefore, the strict unimodality of g implies that there exists a unique xDj > 0

38This is true even if party i uses a mixed strategy.
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such that g(xDj )Vj = 1. Moreover, given a pure bid xi ≥ 0, contestant j’s objective function,

Πj(xj , xi) = G(xj − xi)Vj − xj , is strictly concave for xj > xi. Hence, xj = xDj + xi is a local

maximum for party j. Since Πj(xj , xi) is strictly convex for xj ≤ xi, there does not exist any

other interior local maximum. Therefore, the set of party j’s global best responses is contained

in {0, xDj + xi}, and given by

βj(xi) =


{xDj + xi} if Πj(x

D
j + xi, xi) > Πj(0, xi)

{0, xDj + xi} if Πj(x
D
j + xi, xi) = Πj(0, xi)

{0} if Πj(x
D
j + xi, xi) < Πj(0, xi).

(13)

It is now useful to observe that

Πj(x
D
j + xi, xi)−Πj(0, xi) = G(xDj )Vj − (xDj + xi)−G(−xi)Vj (14)

= Πj(x
D
j , 0)−Πj(−xi, 0), (15)

where the domain of Πj(·, 0) has been tacitly extended to allow for negative arguments. Indeed,

as illustrated in Figure A.1, there exists a unique x#
i > 0 satisfying Πj(x

D
j , 0) = Πj(−x#

i , 0).

Moreover, Πj(x
D
j , 0) ≷ Πj(−xi, 0) if and only if xi ≶ x#

i . Clearly, this proves the claim.

Figure A.1 Party j’s expected payoff against a zero bid, Πj(xj , 0), in the case g(0)Vj > 1

(iii) We first show that x#
i > xDj . From the above, it suffi ces to prove that Πj(x

D
j , 0) > Πj(−xDj , 0).

However, using Assumption 1,

Πj(x
D
j , 0)−Πj(−xDj , 0) =

(
G(xDj )Vj − xDj

)
−
(
G(−xDj )Vj + xDj

)
(16)

= 2
(
G(xDj )Vj − xDj −G(0)Vj

)
(17)

= 2
(
Πj(x

D
j , 0)−Πj(0, 0)

)
. (18)
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Moreover, xDj is a local maximum and Πj(xj , 0) strictly concave for xj ≥ 0. Hence, Πj(x
D
j , 0) >

Πj(0, 0), which implies x#
i > xDj . Next, we show that x

#
i < Vj . Again, it suffi ces to show that

Πj(x
D
j , 0) < Πj(−Vj , 0), but this is obvious from

Πj(x
D
j , 0)−Πj(−Vj , 0) = G(xDj )Vj − xDj − (G(−Vj)Vj + Vj) (19)

= −
(
1−G(xDj )

)
Vj − xDj −G(−Vj)Vj (20)

< 0. (21)

(iv) Recall that g(xDj )Vj = 1. Therefore, using Assumption 1,

dxDj
dVj

= −
g(xDj )

g′(xDj )Vj
> 0. (22)

This proves the claim concerning xDj . Next, total differentiation of (11) yields

G(xDj )dVj +
(
g(xDj )Vj − 1

)︸ ︷︷ ︸
=0

dxDj − dx
#
i = G(−x#

i )dVj − g(−x#
i )Vjdx

#
i . (23)

Collecting terms, we arrive at

dx#
i

dVj
=
G(xDj )−G(−x#

i )

1− g(−x#
i )Vj

> 0. (24)

(v) As Vj ↘ 1/g(0), it is clear that g(xDj )Vj = 1 implies xDj → 0. Using (11), one finds

(G(0)−G(−x#
i ))− x#

i g(0)→ 0. (25)

But G is strictly convex on (−∞, 0], so that necessarily x#
i → 0. Finally, as Vj → ∞, the fact

that g is a density and g(xDj )Vj = 1 jointly imply that xDj → ∞. Moreover, from x#
i > xDj , we

see that also x#
i →∞. This proves the lemma. �

Proof of Lemma 1.39 (i) By assumption, max{V1, V2} ≤ 1/g(0). Therefore, by Lemma A.1(i),

(x∗1, x
∗
2) = (0, 0) is a PSNE in strictly dominant strategies. (ii) By assumption, Vi > 1/g(0).

Suppose first that Vj ≤ 1/g(0). Then, x∗j = 0 is a strictly dominant strategy for party j. Further,

by Lemma A.1(ii), the unique best response for party i is x∗i = xDi > 0. Hence, (x∗i , x
∗
j ) = (xDi , 0)

is the unique PSNE. Suppose next that Vj > 1/g(0). We wish to show that, for Vi large enough,

(x∗i , x
∗
j ) = (xDi , 0) is a PSNE. Clearly, the optimality condition for party i is satisfied. As for

party j, Lemma A.1(ii) says that xj = 0 is a best response to xDi provided that x
D
i ≥ x

#
i . Using

Lemma A.1(v), we can force xDi to get arbitrarily large by raising Vi. In particular, for Vi large

39The proof of Lemma 1 is replicated for the reader’s convenience.
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enough, xDi ≥ Vj . However, by Lemma A.1(iii), x
#
i < Vj . Thus, for Vi large enough, xDi > x#

i . In

particular, xj = 0 is a best response to xDi , and (x∗i , x
∗
j ) = (xDi , 0) is indeed a PSNE. This proves

the claim. (iii) An interior PSNE (x∗i , x
∗
j ) cannot exist because, by Lemma A.1, this would imply

x∗j = xDj + x∗i > x∗i = xDi + x∗j > x∗j , which is impossible. �

Proof of Lemma 2. Immediate from Glicksberg’s (1952) theorem. �

B. Material omitted from Section 3

The auxiliary result below is a characterization of all symmetric probability densities that have the

property of being a P.P.F.F. This result is obtained as a corollary of a more general equivalence

result that has been established by Schoenberg (1947) and Schoenberg and Whitney (1953).40

Lemma B.1 Suppose that Assumption 1 holds. Then, the probability density g is a P.P.F.F. if

and only if the bilateral Laplace transform

ĝ(z) =

∫ ∞
−∞

exp(ξz)g(ξ)dξ (26)

converges in a vertical strip |Re(z)| < r (with 0 < r ≤ ∞) and represents there the reciprocal 1/Ψ

of an entire function of Laguerre-Pólya type II with the Hadamard product representation

Ψ(z) = exp(−γz2)
∏∞

ν=1
(1− δ2

vz
2), (27)

where γ ≥ 0 is a constant and {δv}∞ν=1 is a sequence of nonnegative reals such that γ = 0 implies∑∞
ν=1 δv = ∞. Moreover, provided that any of these two equivalent conditions holds, g may be

represented as the Mellin transform

g(ξ) =
1

2π

∫ ∞
−∞

exp(−
√
−1ξτ)

Ψ(
√
−1τ)

dτ (−∞ < ξ <∞). (28)

Proof. The first claim is a straightforward adaption of Schoenberg and Whitney (1953, Thm.

1) to the case of probability densities that are symmetric with respect to the origin. The second

claim follows from Schoenberg (1947, Thm. 3). �

The following lemma uses Lemma B.1 to check if the densities of specific noise distributions are

P.P.F.F. In addition to the logistic and normal examples considered in the body of the paper, the

40The original articles are probably still the best reference for the interested reader. For an introduction to the
mathematical discipline of complex analysis, the reader is referred to Conway (1978).
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lemma identifies the hyperbolic secant and the normal-Laplace distributions as positive examples,

whereas the Laplace and uniform distributions are identified as negative examples.

Lemma B.2 The logistic, normal, hyperbolic secant, and normal-Laplace distributions all satisfy

Assumption 2. However, neither the Laplace density nor the uniform density are P.P.F.F.

Proof. (Logistic) In this case, the density is given as g(ξ) = η exp(ηξ)/(1 + exp(ηξ))2. It clearly

suffi ces to prove the claim for η = 1. Then, the bilateral Laplace transform of g is given by∫ +∞

−∞
exp(zξ)g(ξ)dξ =

∫ +∞

−∞

exp(zξ) exp(ξ)dξ

(1 + exp(ξ))2
(29)

=

∫ +∞

−∞

z exp(zξ)

1 + exp(ξ)
dξ (30)

=
πz

sin(πz)
, (31)

provided that |z| < 1, where the definite integral has been taken from Arfken and Weber (1999,

Example 7.1.6). But, from the infinite product representation of the sine,

sin(πz)

πz
=
∏∞

ν=1

(
1− z2

ν2

)
. (32)

Hence, γ = 0 and δν = 1
ν . As the harmonic series

∑∞
ν=1

1
ν diverges, Lemma B.1 implies that

g(ξ) is indeed a P.P.F.F. Moreover, g is clearly analytic. (Normal) For the density of the normal

distribution (3), the bilateral Laplace transform is given by ĝ(z) = exp(z2σ2/2). Hence, Ψ(z) =

exp(−z2σ2/2), and we are in the case γ > 0 in Lemma B.1. It follows that g is a P.P.F.F. Moreover,

g is obviously analytic. (Hyperbolic secant) The density of the hyperbolic secant distribution is

given as

g(ξ) =
1

exp(π2 ξ) + exp(−π
2 ξ)

. (33)

The bilateral Laplace transform reads∫ +∞

−∞
g(ξ) exp(zξ)dξ =

∫ +∞

−∞

exp(zξ)

exp(πξ2 ) + exp(−πξ
2 )
dξ

=
1

π

∫ +∞

−∞

exp((z/π) · ξ)
exp( ξ2) + exp(− ξ

2)
dξ

=
1

cos z
,

for |Re(z)| < π
2 , where the definite integral has been taken from Hirschman and Widder (1955, p.

69). The product representation of the cosine reads

cos(z) =
∏∞

ν=1

(
1− 4z2

(2ν − 1)2π2

)
. (34)
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Therefore γ = 0 and δν = 2
(2ν−1)π . Again,

∑∞
ν=1 δν diverges. Hence, by Lemma B.1, g is a

P.P.F.F. Further, g is analytic. (Normal-Laplace) By definition, the normal-Laplace distribution

is a convolution of a normal distribution and a symmetric Laplace distribution. Without loss of

generality, suppose that the symmetric Laplace distribution is normalized. Then, as shown below,

its bilateral Laplace transform reads 1
1−z2 . By the multiplication theorem for bilateral Laplace

transforms, ĝ(z) = exp(z2σ2/2)
1−z2 for |Re(z)| < 1. Hence, γ > 0, and g is a P.P.F.F. by Lemma B.1.

Further, being a convolution with a normal factor, g is analytic. (Laplace) The density of the

symmetric Laplace distribution with normalized scale parameter is given as g(ξ) = 1
2 exp(− |ξ|).

Its bilateral Laplace transform, ĝ(z) = 1
1−z2 , has only one non-vanishing factor, i.e., we are in

the case where γ = 0, and δν = 0 for ν ≥ 2. By Lemma B.1, g is not a P.P.F.F. (Uniform) The

density in this case reads g(ξ) = sI[− 1
2s
, 1
2s

](ξ), where s > 0. Rather than computing the bilateral

Laplace transform, we present a direct proof based on Definition 1. For this, let a1 = b1 = − 1
4s ,

a2 = b2 = 0. Then,∣∣∣∣ g(a1 − b1) g(a1 − b2)
g(a2 − b1) g(a2 − b2)

∣∣∣∣ =

∣∣∣∣ g(0) g(− 1
4s)

g( 1
4s) g(0)

∣∣∣∣ =

∣∣∣∣ s s
s s

∣∣∣∣ = 0. (35)

Hence, the uniform density is not a P.P.F.F.41 �

The proof of Proposition 1, presented further below, is based on a sequence of lemmas. The first

lemma collects some basic but important properties of difference-form contests that satisfy our

assumptions.

Lemma B.3 Suppose that Assumptions 1 and 2 hold true. Then:

(i) The difference-form contest with noise distribution G is strategically equivalent to a zero-sum

game on the unit square.

(ii) The set of best responses to any belief is finite.

(iii) Equilibria are interchangeable.

(iv) The set of joint equilibrium best responses for contestant i,

Yi = {xi ∈ Xi : Πi(xi, µ
∗
j ) ≥ Πi(x̃i, µ

∗
j ) for any x̃i ∈ Xi and any equilibrium strategy µ∗j} (36)

is non-empty.

Proof. (i) It is easy to see that the normalized contest is strategically equivalent to a zero-sum

game on the unit square with kernel

κ̂(x̂1, x̂2) = G(x̂1V1 − x̂2V2)− 1

2
− x̂1 + x̂2, (37)

41 In fact, given the compactness of its support, the uniform density is not even a Pólya frequency function.
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where x̂1 ≡ x1/V1 ∈ [0, 1] and x̂2 ≡ x2/V2 ∈ [0, 1]. (ii) To see that κ̂ is analytic in x̂1, it

suffi ces to note that g is analytic on the real line by Assumption 2. Thus, κ̂ is indeed an analytic

kernel. By Karlin (1959, Thm. 7.1.1), this implies that the equilibrium payoff function Πi(·, µ∗j ) =

E[Πi(·, xj)|µ∗j ] on Xi is either constant or has finitely many maxima on any nonempty compact

interval. However, Πi(·, µ∗j ) cannot be constant because

Πi(0, µ
∗
j ) > 0 > Πi(Vi, µ

∗
j ). (38)

Hence, Πi(·, µ∗j ) indeed has a finite number of global maxima on Xi. (iii) By Lemma 2, a MSNE

µ∗ = (µ∗1, µ
∗
2) exists. Fix some player i ∈ {1, 2}, and let j 6= i. Consider now two MSNE

µ∗ = (µ∗1, µ
∗
2) and µ∗∗ = (µ∗∗1 , µ

∗∗
2 ). Then,

E[ κ̂(x1, x2)|µ∗1, µ∗∗2 ] ≤ E[ κ̂(x1, x2)|µ∗∗1 , µ∗∗2 ] ≤ E[ κ̂(x1, x2)|µ∗∗1 , µ∗2], (39)

and, in analogy,

E[ κ̂(x1, x2)|µ∗∗1 , µ∗2] ≤ E[ κ̂(x1, x2)|µ∗1, µ∗2] ≤ E[ κ̂(x1, x2)|µ∗1, µ∗∗2 ]. (40)

Hence, all inequalities in (39) and (40) are actually equalities, and hence, µ∗1 is a mixed best

response to µ∗∗2 , while µ
∗∗
2 a mixed best response to µ∗1. (iv) Clearly, the support of contestant i’s

equilibrium strategy satisfies Supp(µ∗i ) 6= ∅. By part (iii), however, µ∗i is a best response to any

equilibrium strategy µ∗∗j . Therefore, Supp(µ∗i ) ⊆ Yi, and Yi is indeed non-empty. This proves the
lemma. �

In view of Lemma B.3, we may represent the elements of Yi as a finite sequence

yi,1 > yi,2 > ... > yi,Ki ≥ 0, (41)

where Ki ∈ N ≡ {1, 2, ...} is the cardinality of Yi. Let K+
i ≥ 0 denote the number of positive

elements in Yi. We will now fix one MSNE µ∗ and refer to it as the reference equilibrium. Let

Li ≥ 1 denote the cardinality of the support of µ∗i . Further, let L
+
i ≥ 0 denote the number of

positive bids used in µ∗i . Then, we have obvious inequalities

(Ki − 1) ≤ K+
i ≤ Ki

≤ ≤ ≤

(Li − 1) ≤ L+
i ≤ Li.

(42)

Let qi,k = µ∗i ({yi,k}) ∈ [0, 1] denote the probability weight of the mass point at yi,k in µ∗i , where

k = 1, ...,Ki. Then,

qi,1 + ...+ qi,Ki = 1. (43)
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Moreover, qi,k = 0 if and only if yi,k is not used in µ∗i .

We say that a function f has (at least) L changes of sign if there is a finite sequence a1 <

. . . < aL+1 such that f(al)f(al+1) < 0 for any l ∈ {1, . . . , L}. The next lemma provides a lower
bound for the number of sign changes of the second derivative of an analytic function with a given

number K ≥ 1 of global maxima. Figure B.1 illustrates the case K = 3.

Lemma B.4 Consider a function f analytic on [0,∞), and suppose that f has precisely K ≥ 1

global maxima, at ξK < . . . < ξ1. Then:

(i) If ξK > 0, then f ′′ has at least (2K − 2) changes of sign.

(ii) If ξK = 0, then f ′′ has at least (2K − 3) changes of sign.

Proof. (i) Since all maxima are interior, f ′(ξk) = 0 for k ∈ {1, . . . ,K}. By Rolle’s theorem, there
is ζk ∈ (ξk+1, ξk) such that f ′(ζk) = 0, for any k ∈ {1, . . . ,K − 1}. To provoke a contradiction,
suppose f ′′ has no change of sign in the interval (ξk+1, ζk). Then, either f ′′ ≤ 0 on (ξk+1, ζk),

or f ′′ ≥ 0 on (ξk+1, ζk). However, since f ′′ is analytic and non-constant, f ′′(ξ) = 0 is feasible at

isolated points only. Therefore, f ′ is either strictly declining or strictly increasing on [ξk+1, ζk],

in conflict with f ′(ξk+1) = f ′(ζk) = 0. The contradiction shows that there is a change of sign in

the interval (ξk+1, ζk), for any k ∈ {1, . . . ,K − 1}. An analogous argument shows that there is
likewise a change of sign in the interval (ζk, ξk), for any k ∈ {1, . . . ,K − 1}. Hence, f ′′ has at
least (2K − 2) changes of sign, as claimed. (ii) Compared to part (i), we possibly lose ξK = 0 as

a critical point and, therefore, up to one change in sign. �

Figure B.1 Critical points and turning points of the equilibrium payoff function.

The following result captures one variant of the variation-diminishing property of Pólya frequency

functions.
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Lemma B.5 Suppose that ϕ is a P.P.F.F. If ϕ is also continuously differentiable, then the sum

ξ 7→
L∑
l=1

wlϕ
′(ξ − bl), (44)

has at most (2L− 1) changes of sign, for any real numbers w1, . . . , wL and b1, . . . , bL.

Proof. A function ϕ is called a regular Pólya frequency function if the following four conditions

hold true: (i) ϕ is continuous; (ii) for every n and for every set {ak} and {bl} such that a1 <

. . . < an and b1 < . . . < bn, the determinant
∣∣{ϕ(ak − bl)}k,l∈{1,...,n}

∣∣ is nonnegative; (iii) for
each set {ak} with a1 < . . . < an there exists a set {bl} with b1 < . . . < bn such that the

determinant
∣∣{ϕ(ak − bl)}k,l∈{1,...,n}

∣∣ is positive, and the corresponding condition must hold if the
bl’s are prescribed first; (iv)

∫∞
−∞ ϕ(ξ)dξ <∞. It is straightforward to check that any P.P.F.F. is

a regular Pólya frequency function. The claim therefore follows from Karlin (1959, Lemma 7.2.3).

�

The following lemma uses Lemmas B.4 and B.5 to narrow down the set of feasible combinations

for the equilibrium characteristics Ki, Li, K+
i , and L

+
i .

Lemma B.6 Suppose that Assumptions 1 and 2 hold true. Then:

(i) Ki ≤ Lj + 1;

(ii) if Ki = K+
i , then Ki ≤ Lj;

(iii) |Ki −Kj | ≤ 1.

(iv) |Li − Lj | ≤ 1.

(v)
∣∣∣L+
i − L

+
j

∣∣∣ ≤ 1.

Proof. (i) The claim is obvious for Ki ≤ 2 (because Lj ≥ 1). Let Ki ≥ 3. As noted before, party

i’s equilibrium payoff function

Πi(xi, µ
∗
j ) = −xi + Vi ·

Kj∑
k=1

qj,kG(xi − yj,k) (45)

is analytic. Therefore, by Lemma B.4, to admit Ki global maxima within R+ = [0,∞), the second

derivative
∂2Πi(xi, µ

∗
j )

∂x2
i

= Vi ·
Kj∑
k=1

qj,kg
′(xi − yj,k) (46)

must possess at least (2Ki − 3) changes of sign in R+. However, in the vector (qj,1, . . . , qj,Kj ),

only Lj elements are nonzero. Consequently, by Lemma B.5, the second derivative (46) has a
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most (2Lj − 1) changes of sign. Hence, 2Ki − 3 ≤ 2Lj − 1, which implies Ki ≤ Lj + 1. (ii) Since

Ki = K+
i , all the global maxima of party i’s equilibrium payoff function (45) are interior. By

Lemma B.4(i), the second derivative (46) has at least (2Ki − 2) changes of sign. This implies

2Ki − 2 ≤ 2Lj − 1, so that from the fact that both Ki and Lj are integers, necessarily Ki ≤ Lj ,

as claimed. (iii) From part (i), Ki ≤ Lj + 1. Using Lj ≤ Kj , one finds Ki ≤ Kj + 1. Exchanging

the roles of i and j proves the claim. (iv) The argument is essentially the same as before. Since

Li ≤ Ki, we know that Li ≤ Lj + 1 for i ∈ {1, 2}, hence |Li − Lj | ≤ 1. (v) By contradiction.

Suppose that L+
i = L+

j + 2. We know that Ki ≥ Li ≥ L+
i and that L

+
j + 2 ≥ Lj + 1, which yields

Ki ≥ Lj + 1. Moreover, Ki ≤ Lj + 1 by part (i). Thus, Ki = Lj + 1, and all inequalities in the

derivation are actually equalities. In particular, Ki = Li, i.e., all pure best responses are played

with positive probability. Consequently, K+
i = L+

i . Moreover, from Ki = Lj + 1 and party (ii),

we obtain Ki = K+
i + 1. Hence, Li = L+

i + 1 and Lj = L+
j + 1. Therefore, Li = Lj + 2, which

however is impossible in view of part (iv). This proves the last claim and, hence, the lemma. �

The next lemma prepares the uniqueness argument.

Lemma B.7 Suppose that g is a P.P.F.F., with integral G(ξ) =

∫ ξ

−∞
g(x)dx. Let a1 > . . . > aK

and b1 > . . . > bK+1 be constants, where K ≥ 1. Then, the following square matrices are

invertible:

M1 =


g(a1 − b1) · · · g(a1 − bK) 0

...
. . .

...
...

g(aK−1 − b1) · · · g(aK−1 − bK) 0
G(aK−1 − b1) · · · G(aK−1 − bK) 1
G(aK − b1) · · · G(aK − bK) 1

 ∈ R(K+1)×(K+1) (47)

M2 =



g(a1 − b1) · · · g(a1 − bK+1) 0
...

. . .
...

...
g(aK−1 − b1) · · · g(aK−1 − bK+1) 0
G(aK−2 − b1) · · · G(aK−2 − bK+1) 1
G(aK−1 − b1) · · · G(aK−1 − bK+1) 1
G(aK − b1) · · · G(aK − bK+1) 1


∈ R(K+2)×(K+2) (48)

(49)

M3 =


1 1 1 0

g(a1 − b1) g(a1 − b2) g(a1 − b3) 0
G(a1 − b1) G(a1 − b2) G(a1 − b3) 1
G(a2 − b1) G(a2 − b2) G(a2 − b3) 1

 ∈ R4×4 (50)

Proof. We start withM1. Subtracting the last row from the second-to-last row, and subsequently
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developing the determinant along the last column yields

detM1 =

∣∣∣∣∣∣∣∣∣∣∣

g(a1 − b1) · · · g(a1 − bK) 0
...

. . .
...

...
g(aK−1 − b1) · · · g(aK−1 − bK) 0
G(aK−1 − b1) · · · G(aK−1 − bK) 1
G(aK − b1) · · · G(aK − bK) 1

∣∣∣∣∣∣∣∣∣∣∣
(51)

=

∣∣∣∣∣∣∣∣∣∣∣

g(a1 − b1) · · · g(a1 − bK) 0
...

. . .
...

...
g(aK−1 − b1) · · · g(aK−1 − bK) 0

G(aK−1 − b1)−G(aK − b1) · · · G(aK−1 − bK)−G(aK − bK) 0
G(aK − b1) · · · G(aK − bK) 1

∣∣∣∣∣∣∣∣∣∣∣
(52)

=

∣∣∣∣∣∣∣∣∣
g(a1 − b1) · · · g(a1 − bK)

...
. . .

...
g(aK−1 − b1) · · · g(aK−1 − bK)

G(aK−1 − b1)−G(aK − b1) · · · G(aK−1 − bK)−G(aK − bK)

∣∣∣∣∣∣∣∣∣ . (53)

Next, one develops the determinant in (53) along the last row and obtains

detM1 =
∑K

k=1{(−1)k+K(G(aK−1 − bk)−G(aK − bk)) (54)

×

∣∣∣∣∣∣∣
g(a1 − b1) · · · g(a1 − bk−1) g(a1 − bk+1) · · · g(a1 − bK)

...
...

...
...

g(aK−1 − b1) · · · g(aK−1 − bk−1) g(aK−1 − bk+1) · · · g(aK−1 − bK)

∣∣∣∣∣∣∣}.
Since

G(aK−1 − bk)−G(aK − bk) =

∫ aK−1

aK

g(ξ − bk)dξ (k ∈ {1, . . . ,K}), (55)

this becomes

detM1 =

∫ aK−1

aK

∑K
k=1{(−1)k+Kg(ξ − bk)× (56)∣∣∣∣∣∣∣

g(a1 − b1) · · · g(a1 − bk−1) g(a1 − bk+1) · · · g(a1 − bK)
...

...
...

...
g(aK−1 − b1) · · · g(aK−1 − bk−1) g(aK−1 − bk+1) · · · g(aK−1 − bK)

∣∣∣∣∣∣∣}dξ.

=

∫ aK−1

aK

∣∣∣∣∣∣∣∣∣
g(a1 − b1) · · · g(a1 − bK)

...
. . .

...
g(aK−1 − b1) · · · g(aK−1 − bK)
g(ξ − b1) · · · g(ξ − bK)

∣∣∣∣∣∣∣∣∣ dξ. (57)
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For ξ ∈ (aK , aK−1), as g is a P.P.F.F., the determinant in (57) is positive. Hence, detM1 > 0.

In particular, M1 is invertible, as claimed. Consider now M2. Subtracting the second-to-last row

from the third-to-last row and the last row from the second-to-last row delivers

detM2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

g(a1 − b1) · · · g(a1 − bK+1) 0
...

. . .
...

...
g(aK−1 − b1) · · · g(aK−1 − bK+1) 0
G(aK−2 − b1) · · · G(aK−2 − bK+1) 1
G(aK−1 − b1) · · · G(aK−1 − bK+1) 1
G(aK − b1) · · · G(aK − bK+1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(58)

=

∣∣∣∣∣∣∣∣∣∣∣

g(a1 − b1) · · · g(a1 − bK+1)
...

. . .
...

g(aK−1 − b1) · · · g(aK−1 − bK+1)
G(aK−2 − b1)−G(aK−1 − b1) · · · G(aK−2 − bK)−G(aK−1 − bK+1)
G(aK−1 − b1)−G(aK − b1) · · · G(aK−1 − bK)−G(aK − bK+1)

∣∣∣∣∣∣∣∣∣∣∣
. (59)

Next, we develop the determinant in (59) along the last two rows and obtain

detM2 =
∑

1≤k<l≤K+1 (60)

(−1)k+l+1(G(aK−2 − bk)−G(aK−1 − bk))(G(aK−1 − bl)−G(aK − bl))

×

∣∣∣∣∣∣∣
g(a1 − b1) · · · g(a1 − bk−1) g(a1 − bk+1) · · ·

...
. . .

...
...

. . .
g(aK−1 − b1) · · · g(aK−1 − bk−1) g(aK−1 − bk+1) · · ·

· · · g(a1 − bl−1) g(a1 − bl+1) · · · g(a1 − bK+1)
. . .

...
...

. . .
...

· · · g(aK−1 − bl−1) g(aK−1 − bl+1) · · · g(aK−1 − bK+1)

∣∣∣∣∣∣∣ .
Using

G(aK−2 − bk)−G(aK−1 − bk) =

∫ aK−2

aK−1

g(ξ − bk)dξ (k ∈ {1, . . . ,K + 1}), (61)

G(aK−1 − bl)−G(aK − bl) =

∫ aK−1

aK

g(ζ − bk)dζ (l ∈ {1, . . . ,K + 1}), (62)
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we get

detM2 =

∫ aK−2

aK−1

∫ aK−1

aK

∑
1≤k<l≤K+1 (63)

(−1)k+l+1g(ξ − bk)g(ζ − bl)

×

∣∣∣∣∣∣∣
g(a1 − b1) · · · g(a1 − bk−1) g(a1 − bk+1) · · ·

...
. . .

...
...

. . .
g(aK−1 − b1) · · · g(aK−1 − bk−1) g(aK−1 − bk+1) · · ·

· · · g(a1 − bl−1) g(a1 − bl+1) · · · g(a1 − bK+1)
. . .

...
...

. . .
...

· · · g(aK−1 − bl−1) g(aK−1 − bl+1) · · · g(aK−1 − bK+1)

∣∣∣∣∣∣∣ dζdξ

=

∫ aK−2

aK−1

∫ aK−1

aK

∣∣∣∣∣∣∣∣∣∣∣

g(a1 − b1) · · · g(a1 − bK+1)
...

. . .
...

g(aK−1 − b1) · · · g(aK−1 − bK+1)
g(ξ − b1) · · · g(ξ − bK)
g(ζ − b1) · · · g(ζ − bK)

∣∣∣∣∣∣∣∣∣∣∣
dζdξ. (64)

Since g is P.P.F.F., the determinant in (64) is positive. It follows that detM2 > 0, so that M2 is

invertible. This proves the second claim. As for M3, one observes that

detM3

=

∣∣∣∣∣∣∣∣
1 1 1 0

g(a1 − b1) g(a1 − b2) g(a1 − b3) 0
G(a1 − b1) G(a1 − b2) G(a1 − b3) 1
G(a2 − b1) G(a2 − b2) G(a2 − b3) 1

∣∣∣∣∣∣∣∣ (65)

=

∣∣∣∣∣∣∣∣
1 1 1 0

g(a1 − b1) g(a1 − b2) g(a1 − b3) 0
G(a1 − b1)−G(a2 − b1) G(a1 − b2)−G(a2 − b2) G(a1 − b3)−G(a2 − b3) 0

G(a2 − b1) G(a2 − b2) G(a2 − b3) 1

∣∣∣∣∣∣∣∣ (66)

=

∣∣∣∣∣∣
1 1 1

g(a1 − b1) g(a1 − b2) g(a1 − b3)
G(a1 − b1)−G(a2 − b1) G(a1 − b2)−G(a2 − b2) G(a1 − b3)−G(a2 − b3)

∣∣∣∣∣∣ . (67)

Next, one subtracts the bottom row from the top row, splits the matrix into two components,
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and reorders the rows in the second matrix so as to obtain

detM3

=

∣∣∣∣∣∣
1−G(a1 − b1) +G(a2 − b1) 1−G(a1 − b2) +G(a2 − b2) 1−G(a1 − b3) +G(a2 − b3)

g(a1 − b1) g(a1 − b2) g(a1 − b3)
G(a1 − b1)−G(a2 − b1) G(a1 − b2)−G(a2 − b2) G(a1 − b3)−G(a2 − b3)

∣∣∣∣∣∣
(68)

=

∣∣∣∣∣∣
1−G(a1 − b1) 1−G(a1 − b2) 1−G(a1 − b3)
g(a1 − b1) g(a1 − b2) g(a1 − b3)

G(a1 − b1)−G(a2 − b1) G(a1 − b2)−G(a2 − b2) G(a1 − b3)−G(a2 − b3)

∣∣∣∣∣∣ (69)

+

∣∣∣∣∣∣
G(a2 − b1) G(a2 − b2) G(a2 − b3)
g(a1 − b1) g(a1 − b2) g(a1 − b3)

G(a1 − b1)−G(a2 − b1) G(a1 − b2)−G(a2 − b2) G(a1 − b3)−G(a2 − b3)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1−G(a1 − b1) 1−G(a1 − b2) 1−G(a1 − b3)
g(a1 − b1) g(a1 − b2) g(a1 − b3)

G(a1 − b1)−G(a2 − b1) G(a1 − b2)−G(a2 − b2) G(a1 − b3)−G(a2 − b3)

∣∣∣∣∣∣ (70)

+

∣∣∣∣∣∣
g(a1 − b1) g(a1 − b2) g(a1 − b3)

G(a1 − b1)−G(a2 − b1) G(a1 − b2)−G(a2 − b2) G(a1 − b3)−G(a2 − b3)
G(a2 − b1) G(a2 − b1) G(a2 − b1)

∣∣∣∣∣∣ .
Using

1−G(a1 − bk) =

∫ ∞
a1

g(ζ − bk)dζ, (71)

G(a1 − bk)−G(a2 − bk) =

∫ a1

a2

g(ξ − bk)dξ, (72)

G(a2 − bk) =

∫ a2

−∞
g(ζ − bk)dζ, (73)
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we see as above that

detM3 =

∣∣∣∣∣∣
∫∞
a1
g(ζ − b1)dζ

∫∞
a1
g(ζ − b2)dζ

∫∞
a1
g(ζ − b3)dζ

g(a1 − b1) g(a1 − b2) g(a1 − b3)∫ a1
a2
g(ξ − b1)dξ

∫ a1
a2
g(ξ − b2)dξ

∫ a1
a2
g(ξ − b3)dξ

∣∣∣∣∣∣ (74)

+

∣∣∣∣∣∣
g(a1 − b1) g(a1 − b2) g(a1 − b3)∫ a1

a2
g(ξ − b1)dξ

∫ a1
a2
g(ξ − b2)dξ

∫ a1
a2
g(ξ − b3)dξ∫ a2

−∞ g(ζ − b1)dζ
∫ a2
−∞ g(ζ − b2)dζ

∫ a2
−∞ g(ζ − b3)dζ

∣∣∣∣∣∣ (75)

=

∫ ∞
a1

∫ a1

a2

∣∣∣∣∣∣
g(ζ − b1) g(ζ − b2) g(ζ − b3)
g(a1 − b1) g(a1 − b2) g(a1 − b3)
g(ξ − b1) g(ξ − b2) g(ξ − b3)

∣∣∣∣∣∣ dξdζ. (76)

+

∫ a1

a2

∫ a2

−∞

∣∣∣∣∣∣
g(a1 − b1) g(a1 − b2) g(a1 − b3)
g(ξ − b1) g(ξ − b2) g(ξ − b3)
g(ζ − b1) g(ζ − b2) g(ζ − b3)

∣∣∣∣∣∣ dζdξ. (77)

Thus, detM3 > 0 and, consequently, M3 is invertible. This proves the last claim and, hence, the

lemma. �

Lemma B.8 If Ki ≥ Kj, then µ∗j is unique.

Proof. In the case Kj = 1, there is nothing to show. Suppose, therefore, that Kj ≥ 2. Since Ki ≥
Kj , we have at least Ki − 1 ≥ 1 interior solutions to contestant i’s problem. The corresponding

first-order conditions are given as

−1 + Vi

Kj∑
l=1

qj,lg(yi,1 − yj,l) = 0 (k ∈ {1, . . . ,Ki − 1}). (78)

Further, denoting by Π∗i contestant i’s payoff in the reference equilibrium µ∗, there are Ki indif-

ference conditions

−yi,k + Vi

Kj∑
l=1

qj,lG(yi,k − yj,l) = Π∗i (k ∈ {1, . . . ,Ki}). (79)

Combining now the (Kj − 1) equations in (78) corresponding to k ∈ {1, . . . ,Kj − 1} with the two
equations in (79) corresponding to k ∈ {Kj − 1,Kj}, one obtains

g(yi,1 − yj,1) · · · g(yi,1 − yj,Kj ) 0
...

. . .
...

...
g(yi,Kj−1 − yj,1) · · · g(yi,Kj−1 − yj,Kj ) 0
G(yi,Kj−1 − yj,1) · · · G(yi,Kj−1 − yj,Kj ) 1
G(yi,Kj − yj,1) · · · G(yi,Kj − yj,Kj ) 1




qj,1
qj,2
...

qj,Kj
−Π∗i /Vi

 =
1

Vi


1
...
1

yi,Kj−1

yi,Kj

 . (80)
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By Lemma B.7, the square matrix on the left-hand side of equation (80) is invertible. Therefore, at

most one solution (qj,1, ..., qj,Kj ,−Π∗i /Vi) is feasible. Clearly, this must correspond to the reference

equilibrium strategy µ∗j . �

Lemma B.9 If Ki = Kj − 1, then µ∗j is unique.

Proof. There are three cases.

Case 1.42 Assume first that Ki = 1, so that Kj = 2. In this case, contestant i chooses a pure

strategy yi,1 ∈ Xi with probability qi,1 = 1, while contestant j chooses a pure strategy yj,1 with

probability qj,1, and a different strategy yj,2 with probability qj,2. By Lemma 1, for contestant j

to be indifferent between the two pure strategies yj,1 and yj,2, it is necessary that

yi,1 = x#
i (81)

yj,1 = xDj + x#
i (82)

yj,2 = 0. (83)

where x#
i > xDj > 0 satisfy

g(xDj )Vj = 1, (84)

G(xDj )Vj − (xDj + yi,1) = G(−x#
i )Vj . (85)

As the maximum yi,1 > 0 is interior, the probabilities qj,1 and qj,2 satisfy(
g(yi,1 − yj,1) g(yi,1 − yj,2)

1 1

)(
qj,1
qj,2

)
=

(
1/Vi

1

)
. (86)

But the matrix on the left-hand side is invertible, as follows from∣∣∣∣ g(yi,1 − yj,1) g(yi,1 − yj,2)
1 1

∣∣∣∣ = g(yi,1 − yj,1)− g(yi,1 − yj,2) (87)

= g(−xDj )− g(x#
i ) (88)

> 0. (89)

This proves the claim.

Case 2. Assume next that Ki = 2, so that Kj = 3. Then, we have the system
1 1 1 0

g(yi,1 − yj,1) g(yi,1 − yj,2) g(yi,1 − yj,3) 0
G(yi,1 − yj,1) G(yi,1 − yj,2) G(yi,1 − yj,3) 1
G(yi,2 − yj,1) G(yi,2 − yj,2) G(yi,2 − yj,3) 1




qj,1
qj,2
qj,3
−Π∗i /Vi

 =


1

1/Vi
yi,1/Vi
yi,2/Vi

 . (90)

42This case corresponds to the insurgency equilibrium.
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From Lemma B.7, the system admits at most one solution. The claim follows.

Case 3. Assume, finally, that, Ki ≥ 3. Then, we consider the system

g(yi,1 − yj,1) · · · g(yi,1 − yj,Kj ) 0
...

. . .
...

...
g(yi,Kj−1 − yj,1) · · · g(yi,Kj−1 − yj,Kj ) 0
G(yi,Ki−2 − yj,1) · · · G(yi,Ki−2 − yj,Kj ) 1
G(yi,Ki−1 − yj,1) · · · G(yi,Ki−1 − yj,Kj ) 1
G(yi,Ki − yj,1) · · · G(yi,Ki − yj,Kj ) 1




qj,1
qj,2
...

qj,Kj
−Π∗i /Vi

 =
1

Vi



1
...
1

yi,Ki−2

yi,Ki−1

yi,Ki


. (91)

By Lemma B.7, the square matrix on the left-hand side is invertible, proving the claim also in

this case. The lemma follows. �

The following lemma states that at least one of the contestants employs the zero bid with positive

probability. Moreover, this is necessarily the case for the weaker party.

Lemma B.10 Given Assumption 1, the following holds true:

(i) At least one party i ∈ {1, 2} uses the zero bid with positive probability, i.e., Li = L+
i + 1.

(ii) If Vj < Vi, then contestant j uses the zero bid with positive probability.43

Proof. (i) For i ∈ {1, 2}, let yi,1 > . . . > yi,Li denote the bids used by contestant i with

positive probability, and let qi,1, . . . , qi,Li denote the corresponding probabilities. Further, let

ymin
i = yi,Li denote the lowest bid level used with positive probability by party i. Suppose first

that ymin
i 6= ymin

j . Then, without loss of generality, ymin
i > ymin

j . Twice differentiating Πj(·, µ∗i )
yields

∂2Πj(y
min
j , µ∗i )

∂x2
j

= Vj ·
∑Li

l=1qi,lg
′(ymin

j − yi,l). (92)

By Assumption 1, g′(ξ) > 0 holds for ξ < 0. Therefore, the right-hand side of (92) is positive,

and the maximum ymin
j cannot be interior. Hence, ymin

j = 0. Suppose, next, that ymin
i = ymin

j

and Li > 1. Then, the argument goes through as before. Suppose, finally, that ymin
i = ymin

j and

Li = 1. Then, ymin
i = ymin

j ∈ βj(ymin
i ), so that ymin

i is a fixed point of the correspondence βj .

From Lemma 1, this is feasible only if ymin
i = 0. This proves the claim. (ii) By contradiction.

Suppose that Vj < Vi, yet all of contestant j’s bids are positive. Then, contestant j’s first-order

conditions may be combined into

1

Vj

 1
...
1

 =

 g(yj,1 − yi,1) · · · g(yj,1 − yi,Li)
...

. . .
...

g(yj,Lj − yi,1) · · · g(yj,Lj − yi,Li)


 qi,1

...
qi,Li

 . (93)

43The same conclusion holds for Vi = Vj , as will become clear below.
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By part (i), contestant i uses the zero bid with positive probability, i.e., yi,Li = 0. Hence, g(yi,1 − yj,1) · · · g(yi,1 − yj,Lj )
...

. . .
...

g(yi,Li − yj,1) · · · g(yi,Li − yi,Lj )


 qj,1

...
qj,Lj

 =
1

Vi


1
...
1

1− c0

 , (94)

where c0 ≥ 0 denotes the shadow cost of the constraint yi,Li ≥ 0. Exploiting Assumption 1, this

transforms into g(yj,1 − yi,1) · · · g(yj,Lj − yi,1)
...

. . .
...

g(yj,1 − yi,Li) · · · g(yi,Lj − yi,Li)


 qj,1

...
qj,Lj

 =
1

Vi


1
...
1

1− c0

 , (95)

Multiplying (93) from the left with the row vector
(
qj,1 · · · qj,Lj

)
, and subsequently exploit-

ing (95), delivers

1

Vj
=
(
qj,1 · · · qj,Lj

) g(yj,1 − yi,1) · · · g(yj,1 − yi,Li)
...

. . .
...

g(yj,Lj − yi,1) · · · g(yj,Lj − yi,Li)


 qi,1

...
qi,Li

 (96)

=


 g(yj,1 − yi,1) · · · g(yj,Lj − yi,1)

...
. . .

...
g(yj,1 − yi,Li) · · · g(yi,Lj − yi,Li)


 qj,1

...
qj,Lj



T  qi,1

...
qi,Li

 (97)

=
1

Vi

(
1 · · · 1 1− c0

) qi,1
...

qi,Li

 (98)

≤ 1

Vi
, (99)

where MT denotes the transpose of matrix M . However, this is in conflict with our assumption

that Vj < Vi. The contradiction shows that party j necessarily uses the zero bid with positive

probability, as has been claimed. �

Proof of Proposition 1. (i) By Lemma B.3(ii), any equilibrium strategy has finite support.

Moreover, from Lemma B.6(iv), |Li − Lj | ≤ 1, as claimed. (ii) Similarly, by Lemma B.6(v),∣∣∣L+
i − L

+
j

∣∣∣ ≤ 1. (iii) This is Lemma B.10(ii). (iv) By Lemma B.6(iii), either Ki ≥ Kj or

Ki = Kj − 1. Uniqueness of µ∗j follows, therefore, from Lemmas B.8 and B.9, respectively. An

analogous argument, with the roles of i and j exchanged, shows that µ∗i is likewise unique. This

concludes the proof of the proposition. �

Proof of Lemma 3. Lemma 1 implies that, for party j’s strictly mixed strategy to be a

best response to the pure strategy xi used by party i, necessarily xi = x#
i , with party j strictly
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randomizing over the two pure strategies xj = 0 and xj = xDj +x#
i . Further, min{V1, V2} > 1/g(0)

and x#
i > xDj > 0. Hence, using Assumption 1, g(x#

i ) < g(xDj ). Now, party i’s first-order

condition implies qg(x#
i ) + (1− q) g(−xDj )︸ ︷︷ ︸

=1/Vj

Vi − 1 = 0. (100)

But, by assumption, q ∈ (0, 1). Thus, Vi > Vj > 1/g(0), as claimed. Moreover, solving (100) for

q yields (5). Next, one notes that, by definition, neither xDj nor x#
i depend on Vi. Therefore,

xDj + x#
i does not depend on Vi either. The comparative statics of xDj + x#

i with respect to

Vj follows from Lemma A.1(iv). To see that 1 − q is strictly declining in Vi, it suffi ces to note
that the right-hand side of (5) is strictly increasing in Vi, given that dx

#
i /dVi = 0. Finally, total

differentiation of (100) yields

dq =
qg′(x#

i )dx#
i + (1− q)g′(xDj )dxDj

g(xDj )− g(x#
i )

, (101)

where the denominator is positive by Assumption 1. Using Lemma A.1(iv) another time, we see

that dq/dVj < 0. This proves the final claim and, hence, the lemma. �

C. Material omitted from Section 4

Lemma 1 characterizes the set of parameter constellations for which peace obtains. Below, the

proof of Proposition 2 is accomplished with the help of additional lemmas that jointly characterize

the set of parameter constellations for which there is submission and insurgency, respectively. The

residual case of war is then automatically dealt with given the uniqueness of the MSNE.

Lemma C.1 (Submission) Suppose that Assumption 1 holds true. Then, there exists a function

φ∗ ≡ φ∗(Vi) such that party j submits to party i if and only if Vi > 1/g(0) and Vj ≤ φ∗(Vi).

Proof. Party j submitting to party i means that party j bids x∗j = 0 while party i bids some

x∗i > 0. By Lemma A.1, x∗j = 0 being a pure-strategy best response to x∗i > 0 is equivalent

to saying that either (a) Vj ≤ 1/g(0), or (b) Vj > 1/g(0) and x∗i ≥ x#
i . Moreover, x

∗
i > 0

being a pure-strategy best response to x∗j = 0 is equivalent to saying that Vi > 1/g(0) and

x∗i = xDi . Putting these pieces together, a necessary and suffi cient condition for party j to submit

to party i is that either (a) Vj ≤ 1/g(0) < Vi, with x∗i = xDi , or (b) min{V1, V2} > 1/g(0), with
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x∗i = xDi ≥ x#
i . As case (a) does not require further analysis, we focus on case (b).

44 Thus, we

wish to determine a threshold value Vj = φ∗(Vi) ∈ (1/g(0),∞) such that xDi ≥ x#
i holds true if

and only if Vj ≤ φ∗(Vi). For this, recall that xDi does not vary with Vj . However, Lemma A.1

shows that x#
i is continuously and strictly increasing in Vj , with x

#
i → 0 as Vj → 1/g(0), and

x#
i → ∞ as Vj → ∞. Thus, there is indeed a unique threshold value Vj = φ∗(Vi) ∈ (1/g(0),∞),

characterized by x#
i = xDi , such that x

D
i ≥ x

#
i holds true if and only if Vj ≤ φ∗(Vi). �

The following lemma documents some basic properties of the function φ∗.

Lemma C.2 For Vi > 1/g(0), the threshold Vj = φ∗(Vi) ∈ (1/g(0), Vi) is uniquely determined by

the equation (
G(xDj )−G(−xDi )

)
Vj = (xDi + xDj ). (102)

Moreover, φ∗ admits a continuous expansion to [1/g(0),∞) via φ∗(1/g(0)) = 1/g(0). Finally, φ∗

is strictly increasing and exceeds all finite bounds as Vi →∞.

Proof. Equation (102) results from substituting xDi for x#
i in relationship (11) from Lemma

A.1. Given that (11) uniquely characterizes x#
i , the same is true for x

D
i in equation (102). In

particular, recalling that xDi is strictly increasing in Vj , one sees that Vj = φ∗(Vi) is indeed

uniquely characterized by (102). Next, from g(xDj ) > g(x#
i ) = g(xDi ), it follows immediately that

Vj = φ∗(Vi) < Vi. As Vi → 1/g(0), this implies φ∗(Vi) → 1/g(0), so that letting φ∗(1/g(0)) =

1/g(0) defines a continuous extension. To see that φ∗ is strictly increasing on [1/g(0),∞), one

totally differentiates (102) and obtains

(g(xDj )Vj − 1)︸ ︷︷ ︸
=0

dxDj + (g(xDi )Vj − 1)dxDi + (G(xDj )−G(−xDi ))dVj = 0. (103)

Hence,
dφ∗(Vi)

dxDi
=

g(xDj )− g(xDi )

g(xDj )(G(xDj )−G(−xDi ))
. (104)

But, as seen above, g(xDj ) > g(xDi ). Thus, dφ∗(Vi)/dxDi > 0. Since dxDi /dVi > 0 by Lemma

A.1(iv), this implies dφ∗/dVi > 0. Thus, φ∗ = φ∗(Vi) is indeed continuous and strictly increasing

on (1/g(0),∞), as claimed. By continuity, this is true also on [1/g(0),∞). Finally, as Vi → ∞,
Lemma A.1(v) shows that that xDi →∞ and G(−xDi )→ 0, while xDj remains unchanged, so that

relationship (102) implies Vj = φ∗(Vi)→∞. This completes the proof of the lemma. �
44Case (ii) corresponds to the preinsurgency equilibrium mentioned in the body of the paper. I.e., the weaker

party’s equilibrium payoff function has an interior local maximum that yields a payoff weakly lower than the
equilibrium bid of zero.
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The next four lemmas prepare the characterization of the set of parameter values for which

insurgency is an equilibrium.

Lemma C.3 Suppose that Assumption 1 holds true. Suppose also that party j’s mixed strategy

µj strictly randomizes between xj = 0 and xj = x#
i + xDj , with q = µj({0}) ∈ (0, 1) given by

equation (5) in Lemma 3. Then, party i’s marginal payoff is negative for xi ≥ x#
i + 2xDj .

Proof. Under the assumptions made,

∂Πi(x
#
i , µj)

∂xi
=
{
qg(x#

i ) + (1− q)g(xDj )
}
Vi − 1 = 0. (105)

Take some xi ≥ x#
i + 2xDj . Then, clearly, xi > x#

i > 0, hence g(xi) < g(x#
i ) from Assumption 1.

Similarly, xi − (x#
i + xDj ) ≥ xDj > 0, hence g(xi − (x#

i + xDj )) ≤ g(xDj ). Thus,

∂Πi(xi, µj)

∂xi
=
{
qg(xi) + (1− q)g(xi − (x#

i + xDj ))
}
Vi − 1 < 0, (106)

as claimed. �

Lemma C.4 Suppose that Assumption 1 holds true. Then,

g(xDj )
(
G(x#

i )−G(xi)
)
− g(x#

i )
(
G(−xDj )−G(xi − (xDj + x#

i ))
)
> 0, (107)

for any xi ∈ [0, x#
i ) ∪ (x#

i , x
#
i + 2xDj ].

Proof. Inequality (107) is obviously equivalent to∫ x#i

xi

{
g(ξ)g(xDj )− g(x#

i )g(ξ − (xDj + x#
i ))
}
dξ > 0. (108)

Now, for ξ ∈ [0, x#
i ), Assumption 1 implies g(ξ) > g(x#

i ) > 0 and g(xDj ) > g(ξ − (xDj + x#
i )) > 0.

Therefore, the term in the curly brackets in (108) is positive. This already proves the claim

for xi ∈ [0, x#
i ). Next, for ξ ∈ (x#

i , x
#
i + 2xDj ], Assumption 1 implies 0 < g(ξ) < g(x#

i ) and

0 < g(xDj ) ≤ g(ξ − (xDj + x#
i )). Therefore, in this case, the integrand in (108) is seen to be

negative. However, for xi ∈ (x#
i , x

#
i + 2xDj ], the integral bounds are reversed, which proves the

claim also in this case. �

Lemma C.5 Suppose that Assumption 1 holds true. Suppose also that party j’s mixed strategy

µj strictly randomizes between xj = 0 and xj = x#
i + xDj , with q = µj({0}) ∈ (0, 1) given by

equation (5) in Lemma 3. Then, for any xi ∈ [0, x#
i ) ∪ (x#

i , x
#
i + 2xDj ],(

Πi(x
#
i , µj) ≥ Πi(xi, µj)

)
⇔ (Vi ≥ φ(Vj , xi)) , (109)
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where45

φ(Vj , xi) =
(g(xDj )− g(x#

i ))(x#
i − xi) +G(x#

i )−G(xi)−G(−xDj ) +G(xi − (x#
i + xDj ))

g(xDj )(G(x#
i )−G(xi))− g(x#

i )(G(−xDj )−G(xi − (xDj + x#
i )))

. (110)

Proof. Let xi ∈ [0, x#
i ) ∪ (x#

i , x
#
i + 2xDj ] such that Πi(x

#
i , µj) ≥[<] Πi(xi, µj). Under the

assumptions made, this implies(
qG(x#

i ) + (1− q)G(−xDj )
)
Vi − x#

i ≥[<]

(
qG(xi) + (1− q)G(xi − (x#

i + xDj ))
)
Vi − xi. (111)

Using

q =
g(xDj )− 1/Vi

g(xDj )− g(x#
i )

(112)

to eliminate q in (111), and subsequently multiplying through with (g(xDj ) − g(x#
i )) > 0, one

obtains(
g(xDj )(G(x#

i )−G(xi))− g(x#
i )(G(−xDj )−G(xi − (xDj + x#

i )))
)
Vi

≥[<] (g(xDj )− g(x#
i ))(x#

i − xi) +G(x#
i )−G(−xDj )−G(xi) +G(xi − (x#

i + xDj )). (113)

Using Lemma C.4, this implies Vi ≥[<] φ(Vj , xi). This proves the lemma. �

Lemma C.6 Suppose that Assumption 1 holds true. Then, the mapping φ ≡ φ(Vi, xi) admits a

continuous extension φ̂ ≡ φ̂(Vi, xi) on [1/g(0),∞)× [0,∞) such that φ̂(1/g(0), ·) = 1/g(0).

Proof. For any Vj > 1/g(0), a twofold application of L’Hôpital’s rule shows that

lim
xi→x#i

φ(Vj , xi)

= lim
xi→x#i

∂2

∂x2i

{
(g(xDj )− g(x#

i ))(x#
i − xi) +G(x#

i )−G(xi)−G(−xDj ) +G(xi − (x#
i + xDj ))

}
∂2

∂x2i

{
g(xDj )(G(x#

i )−G(xi))− g(x#
i )(G(−xDj )−G

(
xi − (xDj + x#

i )
)

)
}

(114)

=
g′(x#

i ) + g′(xDj )

g(xDj )g′(x#
i ) + g(x#

i )g′(xDj )
. (115)

Hence, using Assumption 1, the ratio in (115) is well-defined. Next, as Vj ↘ 1/g(0), we have

45Note that the denominator in equation (110) is positive by Lemma C.4.
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xDj → 0 and x#
i → 0 by Lemma A.1(v). Hence, using that g′(0) = 0,

lim
Vj↘1/g(0)

φ(Vj , xi)

= lim
Vj↘1/g(0)

(g(xDj )− g(x#
i ))(x#

i − xi) +G(x#
i )−G(xi)−G(−xDj ) +G(xi − (x#

i + xDj ))

g(xDj )(G(x#
i )−G(xi))− g(x#

i )(G(−xDj )−G(xi − (xDj + x#
i )))

(116)

= lim
(xDj ,x

#
i )

→(0,0)

g(xDj )−g(−x#i )

xDj +x#i
(x#
i − xi) +

{
G(x#i )−G(−xDj )

xDj +x#i
− G(xi)−G(xi−(xDj +x#i ))

xDj +x#i

}
g(xDj )−g(−x#i )

xDj +x#i
(G(x#

i )−G(xi)) + g(x#
i )

{
G(x#i )−G(−xDj )

xDj +x#i
− G(xi)−G(xi−(xDj +x#i ))

xDj +x#i

} (117)

=
1

g(0)
. (118)

Thus, the function φ ≡ φ(Vi, xi), defined through relationship (110) for Vi > 1/g(0) and xi ∈
[0, x#

i ) ∪ (x#
i , x

#
i + 2xDj ], admits a continuous extension φ̃ ≡ φ̃(Vi, xi) on the closed graph of the

correspondence

Θ(Vj) =


{0} if Vj = 1/g(0)

[0, x#
i + 2xDj ] if Vj > 1/g(0).

(119)

Moreover, φ̃(1/g(0), ·) = 1/g(0). Next, the cartesian product [1/g(0),∞)× [0,∞), being a closed

subset of R2, is a normal topological space. Hence, using the Tietze-Urysohn extension theorem,

the mapping φ̃ ≡ φ̃(Vi, xi) admits a further continuous extension φ̂ ≡ φ̂(Vi, xi) on [1/g(0),∞) ×
[0,∞), which proves the lemma. �

Lemma C.7 (Insurgency) There exists a function φ∗ ≡ φ∗(Vj) ≥ 1/g(0), defined for arguments

Vj ≥ 1/g(0), such that there is an insurgency equilibrium against party i if and only if φ∗(Vi) < Vj

and φ∗(Vj) ≤ Vi. Moreover, φ∗ is continuous in Vj, with φ∗(1/g(0)) = 1/g(0).

Proof. We will first construct the function φ∗, then show the necessity and, finally, the suffi ciency

of the conditions. (Construction of φ∗) The correspondence Θ defined through equation (119)

is continuous, compact-valued, and nonempty-valued. Moreover, the mapping φ̂ = φ̂(Vj , xi) is

continuous by Lemma C.6, with φ̂(1/g(0), ·) = 1/g(0). Therefore, by Berge’s maximum theorem,

φ∗(Vj) = max
xi∈Θ(Vj)

φ̂(Vj , xi) (120)

is finite, and varies continuously in Vj on the interval [1/g(0),∞). Moreover, φ∗(1/g(0)) = 1/g(0).

(Necessity) Take an insurgency equilibrium against party i. Then, by Lemma 3, Vi > 1/g(0).

Moreover, by equilibrium uniqueness, party j submitting to party i is not an equilibrium. There-

fore, Lemma C.1 implies that φ∗(Vi) < Vj . Further, using Lemma C.5, we see that φ(Vj , xi) ≤ Vi
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for any xi ∈ [0, x#
i )∪ (x#

i , x
#
i +2xDj ]. By continuity, φ̂(Vj , xi) ≤ Vi for any xi ∈ [0, x#

i +2xDj ], and

so φ∗(Vj) ≤ Vi. (Suffi ciency) Suppose that φ∗(Vi) < Vj and φ∗(Vj) ≤ Vi. Consider a candidate

equilibrium of the insurgency type where party i chooses the pure strategy xi = x#
i , while party j

randomizes strictly between xj = 0 and xj = xDj +x#
i , and the zero bid is chosen with probability

q as given by equation (5) in Lemma 3. By Lemma A.1(ii), party j’s strategy is optimal. We wish

to show that also party i’s strategy is optimal. By Lemma C.3, any pure strategy xi ≥ x#
i +2xDj is

suboptimal for party i. Moreover, from φ∗(Vj) ≤ Vi, Lemma C.5 implies Πi(x
#
i , µ

∗
j ) ≥ Πi(xi, µ

∗
j )

for any xi ∈ [0, x#
i ) ∪ (x#

i , x
#
i + 2xDj ]. Therefore, x#

i is indeed an optimal strategy for party i.

Thus, the candidate equilibrium is a MSNE, proving also the suffi ciency of the conditions. �

Proof of Proposition 2. The claimed properties of the functions φ∗ and φ∗ are taken from

Lemmas C.2, and C.7, respectively. (i) Immediate from Lemma 1. (ii) Immediate from Lemma

C.1. (iii) Immediate from Lemma C.7. (iv) By Proposition 1, there exists a unique MSNE.

Suppose that min{V1, V2} > 1/g(0), V1 > φ∗(V2), and V2 > φ∗(V1). As just seen, there cannot be

a PSNE, neither a semi-mixed equilibrium (in which only one party randomizes, while the other

party chooses a pure strategy). Therefore, the equilibrium is necessarily one in which both parties

randomize. Clearly, the steps of this arguments may be reversed. �

D. Material omitted from Section 5

This section states and proves basic properties of the functions φ0 and φSOC that arise in the

discussion of counterinsurgency. The following auxiliary result is used in the proof of Lemma D.2

below.

Lemma D.1 Suppose that Assumption 1 is satisfied. Then,

G(x#
i )−G(0)−G(−xDj ) +G(−(xDj + x#

i )) > 0. (121)

Proof. By Assumption 1, G(−ξ) = 1−G(ξ). Therefore,

G(x#
i )−G(0)−G(−xDj ) +G(−(xDj + x#

i )) =
{
G(x#

i )−G(0)
}
−
{
G(xDj + x#

i )−G(xDj )
}
(122)

=

∫ x#i

0

(
g(ξ)− g(xDj + ξ)

)
dξ (123)

> 0, (124)

as claimed. �
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In view of Lemma C.5, let φ0(Vj) = φ(Vj , 0) denote the threshold for Vi at which the stronger

party i in an insurgency equilibrium becomes indifferent between the dominating bid x#
i and

inactivity. The following lemma documents some properties of the function φ0.

Lemma D.2 (Properties of φ0) If Assumption 1 holds true, then (i) limVj↘1/g(0) φ
0(Vj) =

1/g(0), and (ii) dφ0/dVj > 0.

Proof. (i) The claim follows directly from Lemma C.6. (ii) Differentiating φ0 with respect to Vj

delivers
dφ0

dVj
=
dφ0

dxDj

dxDj
dVj

+
dφ0

dx#
i

dx#
i

dVj
. (125)

By Lemma A.1(iv), dxDj /dVj > 0 and dx#
i /dVj > 0. It therefore suffi ces to prove that dφ0/dxDj >

0 and dφ0/dx#
i > 0. In the special case xi = 0, relationship (110) reads

φ0(Vj) =
x#
i (g(xDj )− g(x#

i )) +G(x#
i )−G(0)−G(−xDj ) +G(−(xDj + x#

i ))

g(xDj )(G(x#
i )−G(0))− g(x#

i )(G(−xDj )−G(−(xDj + x#
i )))

. (126)

Applying the quotient formula yields

dφ0

dxDj
=

1

N2



[
g(xDj )(G(x#

i )−G(0))− g(x#
i )(G(−xDj )−G(−(xDj + x#

i )))
]

×
[
x#
i g
′(xDj ) + g(xDj )− g(xDj + x#

i )
]

−
[
x#
i (g(xDj )− g(x#

i )) +G(x#
i )−G(0)−G(−xDj ) +G(−(xDj + x#

i ))
]

×
[
g′(xDj )(G(x#

i )−G(0))− g(x#
i )(−g(xDj ) + g(xDj + x#

i ))
]


, (127)

where N > 0 is a shorthand notation for the denominator in (126). Rearranging leads to

dφ0

dxDj
=
G(x#

i )−G(0)− x#
i g(x#

i )

N2
(128)

×
{ (

G(x#
i )−G(0)−G(−xDj ) +G(−(xDj + x#

i ))
) ∣∣∣g′(xDj )

∣∣∣
+(g(xDj )− g(x#

i ))(g(xDj )− g(xDj + x#
i ))

}
.

Noting that G(x#
i ) − G(0) − x#

i g(x#
i ) > 0 by the strict concavity of G on [0,∞), and invoking

Lemma D.1, it is seen that dφ0/dxDj > 0. Further,

dφ0

dx#
i

=
1

N2



[
g(xDj )(G(x#

i )−G(0))− g(x#
i )(G(−xDj )−G(−(xDj + x#

i )))
]

×
(
g(xDj )− g(xDj + x#

i )− x#
i g
′(x#

i )
)

−
[
x#
i (g(xDj )− g(x#

i )) +G(x#
i )−G(0)−G(−xDj ) +G(−(xDj + x#

i ))
]

×
[
g(x#

i )(g(xDj )− g(xDj + x#
i ))− g′(x#

i )(G(−xDj )−G(−(xDj + x#
i )))

]


.

(129)
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After some rearrangement, one arrives at

∂dφ0

dx#
i

=
1

N2



(g(xDj )− g(x#
i ))

(
G(x#

i )−G(0)− x#
i g(x#

i )
)

×
[
(g(xDj )− g(xDj + x#

i ))
]

+
∣∣∣g′(x#

i )
∣∣∣ (x#

i g(xDj )−G(−xDj ) +G(−(xDj + x#
i ))
)

×
(
G(x#

i )−G(0)−G(−xDj ) +G(−(xDj + x#
i ))
)


. (130)

Now, G(x#
i )−G(0)−x#

i g(x#
i ) > 0 as noted above, and similarly, x#

i g(xDj )−G(−xDj )+G(−(xDj +

x#
i ) > 0 by the strict convexity of G on (−∞, 0]. Therefore, invoking Lemma D.1 another time

shows that dφ0/dx#
i > 0. This proves the lemma. �

The following auxiliary result, related to the bell-shape of Pólya frequency functions, is used in

the proof of Lemma D.4 below.

Lemma D.3 Suppose that Assumptions 1 and 2 are satisfied. Then, there are constants 0 <

ζ2 < ζ3 such that g is strictly concave on [0, ζ2] and strictly convex on [ζ2,∞), while g′ is strictly

convex on [0, ζ3] and strictly concave on [ζ3,∞).

Proof. Since g is a Pólya frequency function, g is bell-shaped, i.e., for n = 0, 1, 2, . . ., the n-th

derivative of g, henceforth denoted by g(n), has precisely n changes of sign (cf. Hirschman and

Widder, 1955, p. 92). In particular, g′′ has precisely two changes of sign. Since g′′ is analytic, sign

changes occur at isolated zeros. Given that g′′ is symmetric, these occur at ±ζ2, for some ζ2 > 0.

Given Assumption 1, g′(−ε) > 0 > g′(ε) for any ε > 0. Hence
∫ ε
−ε g

′′(ξ)dξ = g′(ε) − g′(−ε) < 0,

i.e., there necessarily exists ξ ∈ (−ε, ε) such that g′′(ξ) < 0. Since g′′ has no change of sign except

at ±ζ2, it follows that g′′ ≤ 0 on [0, ζ2), while g′′ ≥ 0 on (ζ2,∞). Moreover, these inequalities are

strict except at isolated points. Clearly, this proves the first claim. To prove the second claim,

note that g′′(ξ)→ 0 as ξ → ±∞, because g′′ is asymptotically weakly monotone, and having |g′′|
bounded away from zero would imply that g either turns negative or grows indefinitely, which is

impossible. Now, between any two zeros of g′′ on the extended real line [−∞,∞], there necessarily

exists a local maximum or minimum of g′′. Analyticity of g′′ implies that the extremum is isolated,

so that it is a sign change of g′′′. In particular, g′′′ has a change of sign at some ζ3 ∈ (ζ2,∞).

Exploiting symmetry, the sign changes of g′′′ occur at zero and ±ζ3. We have shown above that

g′′ drops below zero in any neighborhood of the origin and that g′′(ζ2) = 0. Therefore, as above,

necessarily g′′′(ζ) > 0 at some ζ ∈ (0, ζ2). Clearly, this implies that g′′′ ≥ 0 on (0, ζ3), while

g′′′ ≤ 0 on (ζ3,∞). Again, these inequalities are strict except at isolated points. This proves the

second claim, and hence, the lemma. �
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Let Vi = φSOC(Vj) denote the threshold value for which the second derivative of Πi(xi, µ
∗
j ) vanishes

at xi = x#
i in an insurgency equilibrium against party i. The following lemma documents some

properties of the function φSOC.

Lemma D.4 (Properties of φSOC) Suppose that Assumption 1 is satisfied. Then, the following

holds true:

(i) φSOC(Vj) = lim
xi→x#i

φ(Vj , xi) for all Vj > 1/g(0).

(ii) limVj↘1/g(0) φ
SOC(Vj) = 1/g(0).

(iii) If, in addition, Assumption 2 holds true, then dφSOC/dVj > 0.

Proof. (i) Take some Vj > 1/g(0). Starting from an insurgency equilibrium µ∗ against party j,

the second derivative of Πi(xi, µ
∗
j ) vanishes at xi = x#

i if and only if

qg′(x#
i )− (1− q)g′(xDj ) = 0, (131)

where

q =
g(xDj )− (1/Vi)

g(xDj )− g(x#
i )

(132)

by Lemma 3. Plugging (132) into (131) and solving for Vi leads to

φSOC(Vj) =
g′(xDj ) + g′(x#

i )

g′(xDj )g(x#
i ) + g′(x#

i )g(xDj )
. (133)

The claim follows now from equations (114-115) in the proof of Lemma C.6. (ii) This follows from

Lemma C.6. (iii) As in the proof of Lemma D.2, it suffi ces to check that dφSOC/dxDj > 0 and

dφSOC/dx#
i > 0. Differentiating (133) with respect to xDj yields

dφSOC

dxDj
=

1

Ñ2


[
g′(xDj )g(x#

i ) + g′(x#
i )g(xDj )

]
g′′(xDj )

−
[
g′(xDj ) + g′(x#

i )
] [
g′′(xDj )g(x#

i ) + g′(x#
i )g′(xDj )

]  , (134)

where Ñ = g′(xDj )g(x#
i ) + g′(x#

i )g(xDj ) < 0. Eliminating double terms, one obtains

dφSOC

dxDj
=
g′(x#

i )

Ñ2

g′′(xDj )
(
g(xDj )− g(x#

i )
)

︸ ︷︷ ︸
>0

−g′(xDj )
(
g′(xDj ) + g′(x#

i )
) . (135)

We claim that dφSOC/dxDj > 0. If g′′(xDj ) ≤ 0, then the claim follows directly from (135). If,

however, g′′(xDj ) > 0, then rearranging and exploiting the logconcavity of g yields

dφSOC

dxDj
=
g′(x#

i )

Ñ2

g′′(xDj )g(xDj )− g′(xDj )2︸ ︷︷ ︸
≤0

−g(x#
i )g′′(xDj )− g′(xDj )g′(x#

i )

 > 0. (136)
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Thus, dφSOC/dxDj > 0, as claimed. Next, by symmetry of the right-hand side of (133) with respect

to an exchange of xDj and x
#
i ,

dφSOC

dx#
i

=
g′(xDj )

Ñ2

g′′(x#
i )
(
g(x#

i )− g(xDj )
)

︸ ︷︷ ︸
<0

−g′(x#
i )
(
g′(xDj ) + g′(x#

i )
) . (137)

We claim that dφSOC/dx#
i > 0. There are again two cases. Suppose first that g′′(x#

i ) ≥ 0. Then,

the claim follows directly from (137). Suppose next that g′′(x#
i ) < 0. Using Lemma D.3, this

implies that g is strictly concave and strictly declining on [xDj , x
#
i ], while g′ is strictly convex and

strictly declining on [xDj , x
#
i ]. Therefore,∣∣∣g(xDj )− g(x#

i )
∣∣∣ < ∣∣∣g′(x#

i )
∣∣∣ · ∣∣∣x#

i − x
D
j

∣∣∣ (138)

and ∣∣∣g′(xDj )− g′(x#
i )
∣∣∣ > ∣∣∣g′′(x#

i )
∣∣∣ · ∣∣∣x#

i − x
D
j

∣∣∣ . (139)

Multiplying inequality (138) through with
∣∣∣g′′(x#

i )
∣∣∣ > 0 and inequality (139) through with∣∣∣g′(x#

i )
∣∣∣ > 0, and combining the resulting two inequalities yields∣∣∣g′′(x#
i )
∣∣∣ · ∣∣∣g(xDj )− g(x#

i )
∣∣∣ < ∣∣∣g′(x#

i )
∣∣∣ · ∣∣∣g′(xDj )− g′(x#

i )
∣∣∣ < ∣∣∣g′(x#

i )
∣∣∣ · ∣∣∣g′(xDj ) + g′(x#

i )
∣∣∣ . (140)

Therefore, the right-hand side of (137) is positive, which proves the claim. �

E. Material omitted from Section 6

The following lemma is needed in the proof of Proposition 3.

Lemma E.1 Fix some discrete-time fictitious play {x1(t),x2(t)}∞t=0. At any stage T ≥ 1, let

εT ≥ 0 be the smallest value satisfying

Π∗i (T )− E[Πi(xi, xj)|µTi ,µTj ] ≤ εT (i ∈ {1, 2}). (141)

Then, limT→∞ εT = 0.

Proof. We consider the two-person zero-sum game with continuous kernel

κ(x1, x2) = G(x1 − x2)− 1

2
− x1

V1
+
x2

V2
, (142)
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where x1 ∈ [0, V1] and x2 ∈ [0, V2]. Clearly, {(x1(t),x2(t)}∞t=0 is a discrete-time fictitious play also

in this zero-sum game. Moreover, for any T ≥ 1,

MT =
Π∗1(T )

V1
− 1

2
+
E[x2|µT2 ]

V2
(143)

corresponds to the maximum of the function x1 7→ 1
T

∑T−1
t=0 κ(x1,x2(t)), while

mT = −Π
∗
2(T )

V2
+

1

2
− E[x1|µT1 ]

V1
(144)

corresponds to the minimum of the function x2 7→ 1
T

∑T−1
t=0 κ(x1(t), x2). Therefore, using the main

result in Danskin (1981, p. 148),

lim sup
T→∞

(MT −mT ) ≤ 0. (145)

But

MT −mT =

MT − E[κ(x1, x2)|µT1 ,µT2 ]︸ ︷︷ ︸
≥0

−
mT − E[κ(x1, x2)|µT1 ,µT2 ]︸ ︷︷ ︸

≤0

 ≥ 0, (146)

so that limT→∞ (MT −mT ) = 0. Moreover, for

εT = max{MT − E[κ(x1, x2)|µT1 ,µT2 ],
∣∣mT − E[κ(x1, x2)|µT1 ,µT2 ]

∣∣}, (147)

the pair (µT1 ,µ
T
2 ) is an εT -equilibrium. As limT→∞ εT ≤ limT→∞ (MT −mT ) = 0, this proves

the lemma. �

Proof of Proposition 3. Lemma E.1 implies that, for T = 1, 2, . . ., the pair (µT1 ,µ
T
2 ) is an

εT -equilibrium, i.e.,

E[Πi(x̃i, xj)|µTj ] ≤ E[Πi(xi, xj)|µTi ,µTj ] + εT (i ∈ {1, 2}, x̃i ∈ Xi). (148)

Moreover, limT→∞ εT = 0. Since X1 × X2 is compact, {(µT1 ,µT2 )}∞T=1 is tight. Therefore,

{(µT1 ,µT2 )}∞T=1 has a subsequence {(µ
Tν
1 ,µTν2 )}∞ν=1 that converges weakly to some pair of proba-

bility distributions µ∗ = (µ∗1, µ
∗
2) ∈ M1 ×M2. Moreover, as Πi is continuous on X1 × X2, it is

uniformly continuous. Hence, we may take the limit T →∞ in (148) and arrive at

E[Πi(x̃i, xj)|µ∗j ] ≤ E[Πi(xi, xj)|µ∗i , µ∗j ] (i ∈ {1, 2}, x̃i ∈ Xi), (149)

i.e., µ∗ is a MSNE. By Proposition 1, µ∗ is unique. Thus, any limit point of {(µT1 ,µT2 )}∞T=1 must

equal µ∗. By a well-known corollary of the Helly selection theorem (cf. Billingsley, 1995, pp.

336-337), {(µT1 ,µT2 )}∞T=1 converges weakly to µ
∗. This proves the proposition. �
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The following auxiliary result, exploited in the proof of Proposition 4, extends Lemma A.1 to the

case of the Che-Gale contest.

Lemma E.2 (Pure-strategy best response) Consider the Che-Gale difference-form contest

with parameter s > 0. Then, the following holds true:

(i) If Vj < 1/s, then bidding zero is strictly dominant for party j (even against a mixed belief).

(ii) If Vj = 1/s, then party j’s set of pure best responses to a pure strategy xi ≥ 0 is given by

βj(xi) =


[0, xi + 1

2s ] if xi ≤ 1
2s

{0} if xi > 1
2s .

(150)

(iii) If Vj > 1/s, then

βj(xi) =


{xi + 1

2s} if xi < Vj − 1
2s

{0, xi + 1
2s} if xi = Vj − 1

2s

{0} if xi > Vj − 1
2s .

(151)

Proof. In the Che-Gale difference-form contest with parameter s, party j’expected payoffagainst

a pure bid xi ≥ 0 is given by

Πj(xj , xi) =


−xj if xj < xi − 1

2s

−xj + (1
2 + s(xj − xi))Vj if xj ∈ [xi − 1

2s , xi + 1
2s ]

−xj + Vj if xj > xi + 1
2s .

(152)

(i) If sVj < 1, then it can be readily checked that Πj(·, xi) is strictly declining for any xi ≥ 0.

Thus, the zero bid is strictly dominant in this case, as claimed. (ii) Next, suppose that Vj = 1/s.

Then, there are two subcases. If xi ≤ 1
2s , then Πj(·, xi) is constant on the interval [0, xi+

1
2s ], and

strictly declining for larger values of xj . If, however, xi > 1
2s , then Πj(·, xi) is strictly declining

outside of the interval [xi − 1
2s , xi + 1

2s ], and flat within. Clearly, this proves the claim. (iii)

Finally, suppose that Vj > 1/s. There are again two subcases. If xi ≤ 1
2s , then Πj(·, xi) is

strictly unimodal, and hence, βj(xi) = {xi + 1
2s}. Moreover, in this case, xi ≤

1
2s ≤

1
s −

1
2s <

Vj − 1
2s , in line with (151). If, however, xi >

1
2s , then Πj(·, xi) is strictly declining outside of the

interval [xi − 1
2s , xi + 1

2s ], and strictly increasing within. Hence, βj(xi) ⊆ {0, xi + 1
2s}. Moreover,

Πj(xi + 1
2s , xi)−Πj(0, xi) = (Vj − 1

2s)− xi, which naturally leads to the three cases considered in
relationship (151). This proves the final claim and, hence, the lemma. �
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Proof of Proposition 4. The assertions are proved one by one.

(i) Suppose that max {V1, V2} ≤ 1/s. Then, by Lemma E.2(i-ii), 0 ∈ β1(0) and 0 ∈ β2(0). Hence,

peace is a PSNE. Conversely, suppose that peace is a PSNE. To provoke a contradiction, suppose

that Vj > 1/s for some j ∈ {1, 2}. Then, since 0 ∈ βj(0), Lemma E.2(iii) implies that xi ≥ Vj− 1
2s ,

with xi = 0. However, Vj − 1
2s >

1
2s > 0, which is impossible. This proves the claim.

(ii) Suppose that Vi ≥ 1/s ≥ Vj . Let x∗i = 1
2s . Clearly, by Lemma E.2(i-ii), 0 ∈ βj(x∗i ). Moreover,

by Lemma E.2(ii-iii), x∗i ∈ βi(0). Thus, x∗i = 1
2s and xj = 0 form a PSNE. Conversely, suppose

that party j submits to party i. Then, there exists x∗i > 0 such that x∗i ∈ βi(0) and 0 ∈ βj(x∗i ).
Since x∗i > 0 is a best response, Lemma E.2(i) immediately implies that Vi ≥ 1/s. It remains

to be shown that Vj ≤ 1/s. Suppose not, i.e., that Vj > 1/s. Then, from Lemma E.2(iii) and

0 ∈ βj(x∗i ), we see that x∗i ≥ Vj − 1
2s . Moreover, using Vi ≥ 1/s and Lemma E.2(ii-iii), necessarily

x∗i ≤ 0 + 1
2s . Putting the pieces together, we obtain x

∗
i ≥ Vj − 1

2s >
1
2s ≥ x

∗
i , which is impossible.

Thus, indeed Vj ≤ 1/s, which concludes the proof of the claim.

(iii) Suppose that Vi ≥ 1/s = Vj . It is claimed that, in this case, party i choosing the pure

strategy x∗i = 1
2s , and party j choosing a mixed strategy µj that randomizes between xj = 0 and

xj = x+
j ≡ 1

2s , with q = µj({0}) ∈ (0, 1) suitably chosen, constitutes an insurgency equilibrium

against party i. To see why, note that, by Lemma E.2(ii), βj(x∗i ) = [0, 1
2s ] ⊇ {0,

1
2s}. Therefore,

µj is a mixed best response to x∗i . As for party i, her expected payoff against µj is given by

Πi(xi, µj) = qΠi(xi, 0) + (1− q)Πi(xi,
1
2s) (153)

=


−xi +

[
q(1

2 + sxi) + (1− q)(1
2 + s

(
xi − 1

2s

)
)
]
Vi if xi ∈ [0, 1

2s ]

−xi +
[
q + (1− q)(1

2 + s
(
xi − 1

2s

)
)
]
Vi if xj ∈ ( 1

2s ,
1
s ]

−xi + Vj if xi > 1
s .

(154)

Since sVi ≥ 1, the mapping Πi(·, µj) is weakly increasing on [0, 1
2s ]. Let q = 1− 1

sVi
if sVi > 1, and

q = 1
2 if sVi = 1. Then, (1−q)sVi ≤ 1 in either case, so that Πi(·, µj) is weakly declining on [ 1

2s ,
1
s ].

Finally, Πi(·, µj) is strictly declining on [1
s ,∞). Therefore, x∗i = 1

2s is a best response for party i,

and we have found an insurgency MSNE against party i. For the converse, suppose that x∗i > 0,

x+
j > 0, and q ∈ (0, 1) constitute an insurgency equilibrium against party i. Since both parties

find it optimal to choose a positive bid with positive probability, we have min{V1, V2} ≥ 1/s

by Lemma E.2(i). It is claimed that Vj = 1/s. Suppose not, i.e., that Vj > 1/s. Then, using

Lemma E.2(iii), and the fact that βj(x∗i ) is not a singleton, we see that x
∗
i = Vj − 1

2s . Moreover,

x+
j = x∗i + 1

2s = Vj . Note that party i’s bid x∗i wins with probability one against party j’s zero

bid because 1
2 + sx∗i = sVj > 1. However, party i’s bid never wins against party j’s high bid
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x+
j = Vj because 1

2 + s(x∗i − x+
j ) = 0. Suppose that party i lowers her bid x∗i by some ε > 0.

Then, provided that ε > 0 is small enough, the adjusted bid xi = x∗i −ε still wins with probability
one against party j’s zero bid, while the probability of winning against x+

j remains unchanged,

i.e., equal to zero as before. Therefore, x∗i is not optimal after all. The contradiction shows that

Vj = 1/s, as claimed.

(iv) As above, we start with the suffi ciency part. There are two cases. Suppose first that

min {V1, V2} > 1/s. Without loss of generality, V1 ≥ V2 > 1/s. For this case, Che and Gale

(2000, Prop. 5) have shown that there always exists an equilibrium of the overlapping or staggered

type (but generically not both). In the sequel, we will check that both bidders use randomized

strategies in those equilibria. An overlapping equilibrium exists when sV1 ≤ k ≤ sV2 + 1 for some

integer k. Given that sV1 ≥ sV2 > 1, it is easy to see that this condition can be satisfied for k ≥ 2

only. By Che and Gale (2000, Prop. 3), bidder 1 chooses the zero bid with probability 1 − k−1
V2s
,

and (k − 1) other bid levels with positive probability. If k = 2, the inequality V2s > 1 ensures

that the zero bid is chosen with positive probability, i.e., bidder 1 plays a randomized strategy. If

k > 2, however, this is likewise true (even though the zero bid need not be chosen with positive

probability). Similarly, bidder 2 chooses the zero bid with probability 1− k−1
V1s
, and (k−1) other bid

levels with positive probability. Using the same case distinction as above, bidder 2 is seen to play

a randomized strategy as well. A staggered equilibrium exists when sV2 ≤ k ≤ min{sV2 + 1, sV1}
for some integer k. Again, given sV2 > 1, this condition can be satisfied for k ≥ 2 only. By

Che and Gale (2000, Prop. 4), bidders 1 places positive weight on (k − 1) lower bids, while the

largest bid is played with probability 1 − k−1
sV1
. As above, one easily verifies that bidder 1 uses

a randomized strategy. Bidder 2 places probability 1 − k−1
sV2

> 0 on the zero bid, and positive

probability on (k − 1) positive bid levels. Therefore, also bidder 2 uses a randomized strategy.

This proves the suffi ciency claim in the case V2 > 1/s. Suppose next that V1 = V2 = 1/s.46 We

claim that there exists an equilibrium µ∗ = (µ∗1, µ
∗
2) in which both parties randomize. Indeed,

suppose that µ∗j randomizes uniformly over [0, 1
2s ]. Then, bidder i’s expected payoff from choosing

xi reads

Πi(xi, µ
∗
j ) = 2s

∫ 1
2s

0
Πi(xi, xj)dxj . (155)

There are three cases. First, if xi ∈ [0, 1
2s), then |xi − xj | ≤

1
2s on the entire interval of integration,

so that

Πi(xi, xj) = −xi +

(
1

2
+ s(xi − xj)

)
Vi =

1

2s
− xj , (156)

46This case is excluded in Che and Gale (2000, Ass. 1).
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and hence,

Πi(xi, µ
∗
j ) = 2s

∫ 1
2s

0
(

1

2s
− xj)dxj =

1

4s
. (157)

Second, if xi ∈ [ 1
2s ,

1
s ], then Πi(xi, xj) = 1

s − xi for xj ∈ [0, xi − 1
2s ], while Πi(xi, xj) is given by

(156) for xj ∈ [xi − 1
2s ,

1
2s ]. Therefore,

Πi(xi, µ
∗
j ) = 2s

∫ xi− 1
2s

0
(
1

s
− xi)dxj + 2s

∫ 1
2s

xi− 1
2s

(
1

2s
− xj)dxj = xi(1− xis). (158)

Finally, if xi > 1
s , then Πi(xi, µ

∗
j ) = 1

s − xi. Thus, Πi(xi, µ
∗
j ) is constant on [0, 1

2s ], and strictly

declining for xi ≥ 1
2s . Therefore, any mixed strategy with support contained in [0, 1

2s ] is a best

response to µ∗j . By symmetry, both parties randomizing uniformly over the interval [0, 1
2s ] is an

equilibrium. Clearly, this proves the claim, and completes the proof of the suffi ciency part. As

for the necessity part, suppose that both parties randomize in a MSNE µ∗. By Lemma E.2(i),

the zero bid is the unique best response for bidder j if Vj < 1/s (even if party i chooses a

randomized strategy). Hence, min{V1, V2} ≥ 1/s. We wish to show that either V1 = V2 = 1/s or

min{V1, V2} > 1/s. To provoke a contradiction, suppose that Vi > 1/s = Vj for some i, j ∈ {1, 2}
with j 6= i. Then, party j’s (directional) marginal revenue d

dxj
E[ 1

sG
uniform(xj − xi)

∣∣µ∗i ] is bounded
by one, so that the mapping Πj(·, µ∗i ) is weakly declining. There are now two cases. Suppose first
that the support of µ∗i , denoted by supp(µ∗i ), satisfies supp(µ∗i ) ∩ ( 1

2s ,∞) 6= ∅. Then, party j’s

marginal revenue at zero is strictly smaller than one, so that the zero bid is the unique optimal

bid for i, in conflict with our assumptions. Next, suppose that

supp(µ∗i ) ⊆ [0, 1
2s ]. (159)

Denote by xmin
i the lower boundary of supp(µ∗i ). Then, the marginal revenue at any bid strictly

exceeding xmin
i is strictly smaller than one (because j wins against any bids suffi ciently close to

xmin
i with probability one). Therefore, Πj(·, µ∗i ) is strictly declining on [xmin

i + 1
2s ,∞), so that

supp(µ∗j ) ⊆ [0, xmin
i + 1

2s ]. (160)

But this in turn implies that |xi − xj | ≤ 1
2s for any xi ∈ supp(µ∗i ) and xj ∈ supp(µ∗j ). Since

Vi > 1/s, it is seen that party i’s marginal revenue is strictly larger than one on the convex hull

of supp(µ∗i ), so that µ
∗
i is a pure strategy, which is again in conflict with our present assumptions.

This proves the necessity part, and hence, concludes the proof of the proposition. �

Proof of Proposition 5. Consider the difference-form contest with noise distribution G and

V1 ≥ V2 > 0. By Proposition 1(ii), party 2 uses the zero bid with positive probability. This
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implies

Π∗2 = Π2(0, µ∗1) = V2 ·
K1∑
k=1

q1,kG(−y1,k). (161)

As g is a P.P.F.F., it is logconcave. Therefore, G is likewise logconcave, so that g/G is weakly

declining. Hence,

Π∗2 = V2 ·
K1∑
l=1

q1,kg(−y1,k)
G(−y1,k)

g(−y1,k)
. (162)

≤ V2 ·
K1∑
l=1

q1,kg(−y1,k)
G(0)

g(0)
(163)

=
1

2g(0)

(
∂Π2(0, µ∗1)

∂x2
+ 1

)
. (164)

Since ∂Π2(0, µ∗1)/∂x2 ≤ 0, we see that Π∗2 ≤ 1
2g(0) . All what has been said applies likewise if G

is replaced by Gρ. Therefore, in the difference-form contest with noise distribution Gρ, player 2’s

payoff satisfies Π∗2 ≤ 1
2ρg(0) . Therefore, party 2’s expected payoff diminishes as ρ → ∞. Next,

one notes that party 2 never bids above V2. Therefore, as ρ → ∞, party 1 may bid V2 + ε, for

ε > 0 small, and thereby guarantee an expected payoff arbitrarily close to V1 − V2. On the other

hand, if party 1’s expected payoff exceeds V1 − V2 in the limes superior as ρ → ∞, then party
1 invests on average strictly less than V2 in the corresponding subsequence. Therefore, party 2

could realize a positive rent in the subsequence, even as ρ→∞, which is impossible. This proves
the last claim, and hence, the proposition. �

Proof of Proposition 6. By contradiction. Suppose first that P is homogeneous of degree zero.

Then, provided that x2 > 0, we have P (x1, x2) = P (x1/x2, 1) ≡ p(θ), where θ = x1/x2. Moreover,

from anonymity, P (x1, x2) + P (x2, x1) = 1. Hence,

p(θ) + p(
1

θ
) = 1 (0 < θ <∞). (165)

Twice differentiating (165) yields

p′′(θ) +
2

θ3
p′(

1

θ
) +

1

θ4
p′′(

1

θ
) = 0, (166)

for any θ suffi ciently close to unity. Next, differentiating p(x1/x2) = P (x1, x2) with respect to x1

shows that
1

x2
p′(
x1

x2
) =

∂P (x1, x2)

∂x1
> 0 (x1 ≥ 0, x2 > 0) (167)
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because P is monotone. In particular, letting x1 = x2 > 0, we see that p′(1) > 0. From (166),

p′′(1) < 0. Thus,

∂2P (x1, x2)

∂(x1)2

∣∣∣∣
x1=x2

=
1

(x2)2
p′′(

x1

x2
)

∣∣∣∣
x1=x2

=
1

(x2)2
p′′(1) < 0, (168)

which in conflict with the Hirshleifer property because ∂2P (x1, x2)/∂(x1)2 is continuous in x1, for

any x2 > 0 suffi ciently close to x1. This proves the claim in the case that P is homogeneous of

degree zero. Suppose next that P = G(T (x1)−T (x2)), with T nonlinear. Differentiating P twice
with respect to x1 yields

∂2P (x1, x2)

∂(x1)2
= T ′′(x1)g(T (x1)− T (x2)) + (T ′(x1))2g′(T (x1)− T (x2)), (169)

where g = G′, as before. Evaluating at the point of equal resource commitment, i.e., at x1 = x2 >

0, one obtains
∂2P (x1, x2)

∂(x1)2

∣∣∣∣
x1=x2

= T ′′(x1) g(0)︸︷︷︸
>0

+(T ′(x1))2 g′(0)︸︷︷︸
=0

. (170)

By the smoothness assumption and Hirshleifer’s property, the left-hand side vanishes. Therefore,

T ′′(x1) = 0 for any x1 > 0. This implies, however, that T is linear, in conflict with what has been
assumed above. This proves the proposition. �
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