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Abstract

These days, it is common practice to base inference about the coefficients in a hetoskedastic

linear model on the ordinary least squares estimator in conjunction with using heteroskedas-

ticity consistent standard errors. Even when the true form of heteroskedasticity is unknown,

heteroskedasticity consistent standard errors can also used to base valid inference on a weighted

least squares estimator and using such an estimator can provide large gains in efficiency over the

ordinary least squares estimator. However, intervals based on asymptotic approximations with

plug-in standard errors often have coverage that is below the nominal level, especially for small

sample sizes. Similarly, tests can have null rejection probabilities that are above the nominal

level. In this paper, it is shown that under unknown hereroskedasticy, a bootstrap approxima-

tion to the sampling distribution of the weighted least squares estimator is valid, which allows for

inference with improved finite-sample properties. For testing linear constraints, permutations

tests are proposed which are exact when the error distribution is symmetric and is asymptot-

ically valid otherwise. Another concern that has discouraged the use of weighting is that the

weighted least squares estimator may be less efficient than the ordinary least squares estimator

when the model used to estimate the unknown form of the heteroskedasticity is misspecified.

To address this problem, a new estimator is proposed that is asymptotically at least as efficient

as both the ordinary and the weighted least squares estimator. Simulation studies demonstrate

the attractive finite-sample properties of this new estimator as well as the improvements in

performance realized by bootstrap confidence intervals.

KEY WORDS: Bootstrap, conditional heteroskedasticity, HC standard errors.

JEL classification codes: C12, C13, C21.
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1 Introduction

In this paper, we consider the problem of inference in a linear regression model. Under conditional

homoskedasticity, the ordinary least squares (OLS) estimator is the best linear unbiased estimator.

Traditional inference based upon the ordinary least squares estimator, such as the F test or t confi-

dence intervals for individual coefficients, relies on estimators of asymptotic variance that are only

consistent when the model is conditionally homoskedastic. In many applications, the assumption

of conditional homoskedasticity is unrealistic. When instead the model exhibits conditional het-

eroskedasticity, traditional inference based on the ordinary least squares estimator may fail to be

valid, even asymptotically.

If the skedastic function is known (that is, the function that determines the conditional het-

eroskedasticty of the error term given the values of the regressors), the best linear unbiased estimator

(BLUE) is obtained by computing the ordinary least squares estimator after weighting the data

by the inverse of square root of the value of the skedastic function. Unfortunately, in all but

the most ideal examples, the heteroskedasticity is of unknown form, and this estimator cannot be

used. However, if the skedastic function can be estimated, then weighting the model by the inverse

square root of the estimate of the skedastic function produces a “feasible” weighted least squares

(WLS) estimator. Although this estimator is no longer unbiased, it can often give improvements

in efficiency over the ordinary least squares estimator. Even so, estimating the skedastic function

is often challenging, and a poorly estimated skedastic function may produce an estimator that is

less efficient than the ordinary least squares estimator. Furthermore, when the estimated skedastic

function is not consistent, traditional inference based on the weighted least squares estimator may

not be valid. Because of these difficulties the weighted least squares estimator has largely fallen

out of favor with practitioners.

As an alternative, White (1980) develops heteroskedasticity consistent (HC) standard errors

which allow for asymptotically valid inference, based on the ordinary least squares estimator, in the

presence of conditional heteroskedasticity of unknown form. Although this approach abandons any

efficiency gains that could be achieved from weighting, the standard errors are consistent under min-

imal model assumptions. Despite the asymptotic validity, simulation studies, such as MacKinnon

and White (1985) who investigate the performance of several different heteroskedasticity consistent

standard errors, show that inference based on normal or even t approximations can be misleading

in small samples. In such cases, it is useful to consider bootstrap methods.

Following the proposal of White’s heteroskedasticity consistent covariance estimators, resampling

methods have been developed that give valid inference based on the ordinary least squares estimator.

Freedman (1981) proposes the pairs bootstrap which resamples pairs of predictor and response

variables from the original data. Another popular technique is the wild bootstrap which is suggested

by Wu (1986). This method generates bootstrap samples by simulating error terms according to

a distribution whose variance is an estimate of the conditional variance for each predictor variable.
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The choice of distribution used to simulate the error terms is discussed extensively in Davidson and

Flachaire (2008), Chesher (1989), and MacKinnon (2012). Recent numerical work comparing the

pairs bootstrap and the wild bootstrap to asymptotic approximations is given in Flachaire (2005)

and Cribari-Neto (2004). Godfrey and Orne (2004) conducts simulations suggesting that combining

heteroskedasticity consistent standard errors with the wild bootstrap produces tests that are more

reliable in small samples than using the normal approximation. Despite the improvements that

the resampling methods produce over asymptotic approximations, inference based on the ordinary

least squares estimator may still not be as efficient as weighted least squares.

Neither the solution of using heteroscedasticity consistent covariance estimators, nor using

weighted least squares with traditional inference seem entirely satisfactory. Even recently there

has been debate about the merits of weighting. Angrist and Pischke (2010) are of the belief that

any potential efficiency gains from using a weighted least squares estimator are not substantial

enough to risk the harm that could be done by poorly estimated weights. On the other hand,

Leamer (2010) contends that researchers should be working to model the heteroskedasticity in

order to determine whether sensible reweighting changes estimates or confidence intervals.

Even in examples where the estimated skedastic function is not consistent for the true skedastic

function, the weighted least squares estimator can be more efficient than the ordinary least squares

estimator in a first order asymptotic sense. Arguably, a more satisfying approach to inference

than simply abandoning weighting is to base inference on the weighted least squares estimator in

conjunction with HC errors. This proposal goes back to at least Wooldridge (2012) and is made

rigorous in Romano and Wolf (2017). Regardless of whether or not the parametric family used

to estimate the skedastic function is correctly specified, the weighted least squares estimator has

an asymptotically normal distribution with mean zero and a variance that can be consistently

estimated by the means of HC standard errors (as long as some mild technical conditions are

satisfied).

There are two difficulties with basing inference on these consistent standard errors. As is the

case with using White’s standard errors, using heteroskedasticity consistent standard errors with

the weighted least squares estimator leads to inference that can be misleading in small samples.

This problem is even more severe with the weighted estimator than with the ordinary least squares

estimator because the plug-in standard errors use the estimated skedastic function, and are the same

estimators that would be used if it had been known a priori that the model would be weighted by

this particular estimated skedastic function. Confidence intervals, for example, do not account for

the randomness in estimating the skedastic function and for this reason tend to have coverage that

is below the nominal level, especially in small samples.

The other trouble is that inference based on the weighted least squares estimator using consistent

standard errors may not be particularly efficient, and investing effort in modeling the conditional

variance may be counterproductive. In fact, when the family of skedastic functions is misspecified
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(or the estimated skedastic function is not consistent for the true skedastic function), the weighted

least squares estimator can be less efficient than the ordinary least squares estimator, even when

conditional heteroskedasticity is present. Although this possibility seems rare, it is theoretically

unsatisfying and has been given as a reason to abandon the approach altogether.

In this paper, we will address these limitations of the weighted least squares estimator, namely

the unsatisfying finite sample performance of asymptotic approximations, and the potential asymp-

totic inefficiency relative to the ordinary least squares estimator. Thus, the general goal is to

improve the methodology in Romano and Wolf (2017) by constructing methods with improved ac-

curacy and efficiency. We begin by establishing that the wild and pairs bootstrap approximations to

the sampling distribution of the weighted least squares estimator are consistent. Using resampling

methods, rather than asymptotic approximations, has the advantage that for each resample, the

skedastic function can be re-estimated. This leads to approximations of the sampling distribution

which account for the variability from estimating the weights that can have better finite sample

properties than asymptotic approximations, which are the same as if the weights had been spec-

ified in advance and were non-random. This allows for confidence intervals and hypothesis tests

with better finite sample performance than t intervals or F tests. For testing, we further estab-

lish asymptotic validity of permutation tests, which also have the advantage of re-estimating the

function, but have the added benefit of finite sample exactness in some circumstances. To address

the concern of the possible inefficiency of the weighted least squares estimator, we propose a new

estimator that is a convex-combination of the ordinary least squares estimator and the weighted

least squares estimator and is at least as efficient (asymptotically) as both the weighted and the

ordinary least squares estimator (and potentially more efficient than either).

The remainder of the paper is organized as follows. Model assumptions are given in Section 2.

Consistency of both the pairs and wild bootstrap approximations to the distribution of the weighted

least squares estimator is given in Section 3; notably, the bootstrap accounts for estimation of the

skedastic function as it is re-estimated in each bootstrap sample. Tests for linear constraints of

the coefficient vector using both bootstrap methods, as well as a randomization test, are given in

Section 3.2. Estimators based on a convex-combination of the ordinary and weighted least squares

estimators that are asymptotically no worse, but potentially more efficient than the ordinary least

squares estimator, as well as the consistency of the bootstrap distribution of these estimators,

are given in Section 4. Here, the bootstrap is useful not only to account for the randomness

in the skedastic function but also the randomness in the convex weights. Section 5 provides an

example where the convex-combination estimator is strictly more efficient than either the ordinary

or weighted least squares estimators. Simulations to examine finite-sample performance, as well as

an empirical application, are provided in Section 6. Proofs are given in the appendix.
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2 Model and Notation

Throughout the paper, we will be concerned with the heteroskedastic linear regression model spec-

ified by the following assumptions.

(A1) The model can be written

yi = x>
i β + εi ,

i = 1, ..., n, where xi ∈ Rp is a vector of predictor variables, and εi is an unobservable error

term with properties specified below.

(A2) {(yi, xi)} are independent and identically distributed (i.i.d.) according to a distribution P .

(A3) The error terms have conditional mean zero given the predictor variables:

E(εi|xi) = 0 .

(A4) Σxx
..= E(xix

>
i ) is nonsingular.

(A5) Ω ..= E(ε2
i xix

>
i ) is nonsingular.

(A6) There exists a function v(·), called the skedastic function, such that

E(ε2
i |xi) = v(xi) .

It is also convenient to write the linear model specified by assumption (A1) in vector-matrix

notation.

Y = Xβ + ε

where

Y ..=





y1

...

yn



 , ε ..=





ε1

...

εn



 , and X ..=





x>
1
...

x>
n



 =





x11 . . . x1p

... . . .
...

xn1 . . . xnp



 .

Finally, following the notation of Romano and Wolf (2017), define

Ωa/b
..= E

(
xix

>
i

a(xi)

b(xi)

)

for any functions a, b : Rp → R such that this expectation is finite. Using this convention, Σxx =

Ω1/1 and Ω = Ωv/1.

5



3 Estimators and Consistency of the Bootstrap

Under the model assumptions given in Section 2, it is common to use the ordinary least squares

(OLS) estimator

β̂OLS
..=
(
X>X

)−1
X>Y

to estimate β. Although this estimator is unbiased, it is not efficient when the model is not

conditionally homoskedastic. Ideally, one would use the best linear unbiased estimator (BLUE)

which is obtained by regressing yi/
√

v(xi) on xi/
√

v(xi) by OLS. But this estimator requires

knowledge of the true skedastic function and thus is not feasible in most applications.

Instead, one can estimate the skedastic function and weight the observations by the estimate

of the skedastic function. Typically, the skedastic function is estimated by vθ̂(·), a member of a

parametric family
{
vθ(·) : θ ∈ Rd

}
of skedastic functions. For instance, a popular choice for the

family of skedastic functions is

vθ(xi) ..= exp
(
θ0 + θ1 log |xi,1| + . . . + θp log |xi,p|

)
, with θ ..= (θ0, θ1, . . . , θp) ∈ Rp+1 . (3.1)

The weighted least squares (WLS) estimator based on the estimated skedastic function is ob-

tained by regressing yi/
√

vθ̂(xi) on xi/
√

vθ̂(xi) by OLS and thus given by

β̂WLS
..= (X>V −1

θ̂
X)−1X>V −1

θ̂
Y

where Vθ
..= diag {vθ(x1), ..., vθ(xn)}.

Provided the estimated skedastic function vθ̂(·) is suitably close to some limiting estimated

skedastic function, say vθ0
(·) for n large, then the weighted least squares estimator has an asymp-

totically normal distribution. Note that vθ0
(·) need not correspond to the true skedastic function,

which of course happens if the family of skedastic functions is not well specified. Romano and Wolf

(2017) assume that θ̂ is a consistent estimator of some θ0 in the sense that

n1/4(θ̂ − θ0)
P−→ 0 , (3.2)

where
P−→ denotes convergence in probability. This condition is verified by Romano and Wolf

(2017) for the family of skedastic functions given in Lemma 3.1 under moment conditions. They

also assume that at this θ0, 1/vθ(·) is differentiable in the sense that there exists a d-dimensional

vector-valued function

rθ0
(x) =

(
rθ0,1(x), . . . , rθ0,d(x)

)

and a real-valued function sθ0
(·) (satisfying some moment assumptions) such that

∣∣∣∣
1

vθ(x)
− 1

vθ0
(x)

− rθ0
(x)(θ − θ0)

∣∣∣∣ ≤
1

2
|θ − θ0|2sθ0

(x) , (3.3)

for all θ in some small open ball around θ0 and all x.
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If (3.2) and (3.3) are satisfied, then under some further regularity conditions,

√
n
(
β̂WLS − β

)
d−→ N (0, Ω−1

1/w
Ωv/w2Ω−1

1/w
)

where w(·) ..= vθ0
(·) and

d−→ denotes convergence in distribution.

The matrices Ω1/w and Ωv/w2 appearing in the asymptotic variance can be consistently estimated

by

Ω̂1/w
..=

X ′V −1

θ̂
X

n

and

Ω̂v/w2
..=

1

n

n∑

i=1

(
ε̃2
i

v2
θ̂
(xi)

· xix
>
i

)

,

respectively, for suitable residuals ε̃ that are consistent for the true error terms ε. Then the asymp-

totic variance of the weighted least squares estimator, denoted by Avar(β̂WLS), can be consistently

estimated by

Âvar
(
β̂WLS

)
= Ω̂−1

1/w
Ω̂v/w2Ω̂−1

1/w
. (3.4)

Remark 3.1. When the ‘raw’ OLS residuals, ε̂i
..= yi − xiβ̂OLS, are used to compute Ω̂v/w2 , the

estimator (3.4) is commonly referred to as the HC0 estimator. To improve finite-sample performance

other variants of HC used scaled residuals instead. The HC1 estimator scales the OLS residuals

by
√

n/(n − p), which reduces bias. When the errors are homoskedastic, the variance of the OLS

residual ε̂i is proportional to 1/(1 − hi), where hi is the ith diagonal entry of the ‘hat’ matrix

H ..= X(X>X)−1X>. The HC2 estimator uses the OLS residuals scaled by 1/
√

(1 − hi). The HC3

estimator uses the OLS residuals scaled by 1/(1− hi).

3.1 Confidence Intervals

Using the plug-in estimator of asymptotic variance, Âvar
(
β̂WLS

)
in (3.4), gives approximate t

confidence intervals for the coefficients having the form

β̂WLS,k ± tn−p,1−α/2 · SE(β̂WLS,k)

where

SE(β̂WLS,k) ..=

√
Âvar(β̂WLS,k)/n ,

and tn−p,1−α/2 is the 1−α/2 quantile of the t-distribution with n−p degrees of freedom. These in-

tervals are asymptotically valid; however, simulations suggest that the true coverage rates are often

smaller than the nominal level, especially in small samples. The standard errors for these confidence

intervals are the same standard errors that would be used if we had known before observing any

data that the model would be weighted by 1/
√

vθ̂(·) and the intervals do not account for variability

in the estimation of the skedastic function. The coverage can be improved by reporting intervals
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based on the “pairs” bootstrap confidence intervals where the skedastic function is estimated on

each bootstrap sample separately.

The empirical distribution of a sample (x1, y1), ..., (xn, yn) is

P̂n(s1, ..., sp, t) ..=
1

n

n∑

i=1

I {xi,1 ≤ s1, ..., xi,p ≤ sp, yi ≤ t} .

The pairs bootstrap, which is commonly used for heteroskedastic regression models, generates boot-

strap samples, (x∗
1, y

∗
1), ..., (x

∗
n, y

∗
n) from P̂n. Alternatively, one could generate bootstrap samples

(x1, y
∗
1), ..., (xn, y

∗
n) using the wild bootstrap which simulates new response variables

y∗i
..= xiβ̂WLS + ε∗i

where ε∗i are sampled from any distribution F with mean zero and variance ε̂2
i .

Remark 3.2. Typically ε∗i
..= ui · ε̂i where ui is a random variable with mean zero and variance

one. When the errors are symmetric, a commonly used distribution (which will be referred to as

the F2 distribution) for ui takes values ±1, each with probability 1/2. For skewed errors, Mammen

(1993) proposes simulating ui according to a distribution (which will be referred to as the F1

distribution) that takes values −(
√

5− 1)/2 with probability (
√

5 + 1)/(2
√

5) and (
√

5 + 1)/2 with

probability (
√

5−1)/(2
√

5). This distribution has third moment one, and accounts for skewness in

the distribution of the errors.

When computing the weighted least squares estimator β̂WLS, the parameter for the estimated

skedastic function is re-estimated on the bootstrap sample by θ̂∗. The following theorem establishes

that the distribution of
√

n
(
β̂∗

WLS − β̂WLS

)
, using the pairs or the wild bootstrap, is a consistent

approximation of the sampling distribution of
√

n
(
β̂WLS − β

)
.

Theorem 3.1. Suppose that (x1, y1), ..., (xn, yn) are i.i.d. satisfying assumptions (A1)−(A6) above,

and that
{
vθ(·) : θ ∈ Rd

}
is a family of continuous skedastic functions satisfying (3.3) for some θ0

for any functions rθ0
(·) and sθ0

(·) such that

E |x1y1r(x1)|2 < ∞ and E |x1y1s(x1)|2 < ∞ .

Let θ̂ be an estimator satisfying (3.2). Further suppose that n1/4
(
θ̂∗ − θ0

)
converges to zero in con-

ditional probability. (These assumptions are verified, under moment assumptions, for a particular

parametric family of skedastic functions in Lemma 3.1). Let β̂WLS
..= (X>V −1

θ̂
X)−1X>V −1

θ̂
Y and

vθ0
=.. w so that W = Diag(vθ0

(x1), ..., vθ0
(xn)). If

E





(
y2
i +

∑p
j=1 x2

i,j

)2

w2(xi)



 < ∞ ,
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Ωv/w2 and Ω1/w exist, and Ω1/w is invertible, then the conditional law of
√

n
(
β̂∗

WLS
− β̂WLS

)
, based

on a pairs bootstrap sample or a wild bootstrap sample, converges weakly to the multivariate normal

distribution with mean zero and covariance matrix Ω−1
1/w

Ωv/w2Ω−1
1/w

in probability. Furthermore,

for any k, the distribution of
√

n
(
β̂∗

WLS,k − β̂WLS,k

)
/

√
Âvar(β̂WLS,k)∗ is asymptotically standard

normal in probability, where

√
Âvar(β̂WLS,k)∗/n is the estimated standard error of β̂∗

WLS,k using

the bootstrap sample.

Remark 3.3. Of course, the bootstrap distribution is random and hence its weak convergence

properties hold in a probabilistic sense. As is customary, when we say that a sequence of random

distributions, say Ĝn converges weakly to G in probability, we mean that ρ(Ĝn, G)
P−→ 0 where ρ is

any metric metrizing weak convergence on the space of distributions. We also say that a sequence

Tn(X, Y ) converges in conditional probability to zero almost surely if for almost every sequence

{xi, yi}, Tn(X∗, Y ∗) → 0 in P̂n probability.

The approximation given in Theorem 3.1 guarantees the basic bootstrap confidence intervals

computed by (
β̂WLS,k − q(1 − α/2, P̂), β̂WLS,k − q(α/2, P̂)

)

are asymptotically level α, where q(α, P̂) denotes the α quantile of

√
n
(
β̂∗

WLS,k − β̂WLS,k

)
.

Rather than using the basic bootstrap confidence intervals, bootstrap-t intervals can be constructed.

Again appealing to 3.1, the bootstrap-t intervals
(

β̂WLS −
√

Âvar(β̂WLS,k)/n · t(1 − α/2, P̂), β̂WLS −
√

Âvar(β̂WLS,k)/n · t(α/2, P̂)

)

are asymptotically level α where t(α, P̂ ) denotes the α quantile of

√
n
(
β̂∗

WLS,k − β̂WLS,k

)
√

Âvar(β̂WLS,k)∗
.

Remark 3.4 (Adaptive Least Squares). Romano and Wolf (2017) propose choosing between the

OLS and WLS estimators by applying a test for conditional heteroskedasticity and call the resulting

estimator the adaptive least squares (ALS) estimator. The confidence intervals reported for the

ALS estimator, agree with either the confidence intervals for the WLS or OLS estimators (using

HC standard errors), depending on the decision of the test. Rather than using asymptotic intervals,

the corresponding bootstrap intervals for either the WLS or OLS estimators can be used for the

ALS estimator.

In Theorem 3.1, it was assumed that we have a family of skedastic functions {vθ(·)}, and an

estimator of θ, say θ̂, such that n1/4
(
θ̂∗ − θ0

)
converges in conditional probability to zero. We will

9



now verify this assumption for a flexible family of skedastic functions which includes the family

specified in (3.1).

Lemma 3.1. For any functions gi : Rd → Rd, i = 1, ..., d, define the family
{
vθ : θ ∈ Rd

}
by

vθ(x) ..= exp

[
d∑

i=1

θjgj(x)

]
,

and let θ̂ be the estimator obtained by regressing hδ(ε̂i) ..= log
(
max

{
δ2, ε̂2

i

})
(where ε̂i

..= yi −
xiβ̂OLS) on g(xi) =

(
g1(xi), ..., gd(xi)

)
by OLS, where δ > 0 is a small constant. Then, n1/4

(
θ̂∗−θ0

)

converges in conditional probability to zero for

θ0
..= E(g(xi)g(xi)

′)E(g(xi)hδ(εi))

provided E(gj(xi)gk(xi))
4/3 and E(gj(xi)hδ(εi))

4/3 are both finite for each j and k.

3.2 Hypothesis Testing

Just as using a t approximation often produces confidence intervals with coverage below the nominal

confidence level, especially for small samples, using an F approximation to conduct F tests of linear

constraints often gives rejection probabilities that are above the nominal significance level, especially

for small samples. And as with confidence intervals, using the bootstrap can produce tests that

have rejection probabilities that are closer to the nominal level. Consider the hypothesis

H0 : Rβ = q

where R is a J × p matrix of full rank (with J ≤ p) and q is a vector of length J. Two appropriate

test statistics for this hypothesis are the Wald statistic

Wn(X, Y ) ..= n ·
(
Rβ̂WLS − q

)> [
RΩ̂−1

1/w
Ω̂v/w2Ω̂−1

1/w
R>
]−1 (

Rβ̂WLS − q
)

, (3.5)

and the maximum statistic,

Mn(X, Y ) ..= max
1≤k≤p






∣∣∣[Rβ̂WLS]k − qk

∣∣∣
[
RΩ̂−1

1/w
Ω̂v/w2Ω̂−1

1/w
R>
]

k,k





. (3.6)

It follows immediately from the results of Romano and Wolf (2017) that, under the null, the

sampling distribution of Wn(X, Y ) is asymptotically chi-squared with J degrees of freedom and the

sampling distribution of Mn(X, Y ) is asymptotically distributed as the maximum of the absolute

values of k correlated standard normal variables. Let Gn(x, P ) denote the sampling distribution of

Wn when (X1, Y1) are distributed according to P .

Define cn(1− α, P̂ ) to be the 1 − α quantile of the distribution of

(
R
(
β̂∗

WLS − β̂WLS

))> [
RΩ̂∗−1

1/w
Ω̂∗

v/w2Ω̂
∗−1
1/w

R>
]−1 (

R
(
β̂∗

WLS − β̂WLS

))
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and dn(1− α, P̂ ) to be the 1 − α quantile of the distribution of

max
1≤k≤p






(
[Rβ̂∗

WLS]k − [Rβ̂WLS]k

)

[
RΩ̂∗−1

1/wΩ̂∗
v/w2Ω̂

∗−1
1/wR>

]

k,k






using the pairs or wild bootstrap.

Theorem 3.2. Suppose that (x1, y1), ..., (xn, yn) are i.i.d. according to a distribution P such that

Rβ = q. Then, under the assumptions of Theorem 3.1,

P
(
Wn(X, Y ) > cn(1 − α, P̂n)

)
→ α

as n → ∞. That is, the bootstrap quantiles of the Wald statistic converge to the corresponding

quantiles of a chi-squared distribution with J degrees of freedom when Rβ = q. Similarly,

P
(
Mn(X, Y ) > dn(1− α, P̂n)

)
→ α

as n → ∞.

We point out that hypothesis testing using the wild bootstrap is closely related to a commonly

used randomization test under symmetry assumptions.

Suppose that the εi follow a symmetric distribution conditional on Xi in the sense that the distri-

bution of εi given Xi is the same as the distribution of −εi given Xi. Then under H : β = 0, the joint

distribution of the (Xi, Yi) is invariant under the group of transformations Gn
..= {gδ : δ ∈ {1,−1}n}

such that gδ((x1, y1), ..., (xn, yn)) = ((x1, δ1y1), ..., (xn, δnyn)) for any x, y ∈ Rn. Given a test

statistic Tn used to test the hypothesis H : β = 0, the permutation test rejects if Tn(X, Y ) exceeds

the appropriate quantiles of the permutation distribution of Tn, which is given by

R̂Tn
n (t) ..=

1

2n

∑

gδ∈Gn

I {Tn(X, gδ(Y )) ≤ t} .

For any choice of test statistic, the invariance of the distribution of the data under the group

of transformations is sufficient to ensure that the randomization test is exact; see Lehmann and

Romano (2005, Chapter 15) for details.

Typically for regression problems, the test statistic is chosen to be the usual F statistic in

homoskedastic models, or the Wald statistic in heteroskedastic models. While under the symmetry

assumption this test is exact in either setting, Janssen (1999) shows that this test is robust against

violations of the symmetry assumptions (in the sense that the test is still asymptotically valid when

the distribution of the Yi is not symmetric).

When the symmetry assumption is satisfied, the randomization test using Wn or Mn — as

defined in equations (3.5) and (3.6), respectively — is exact in the sense that the null rejection

probability is exactly the nominal level for any sample size. Even when this assumption is not

satisfied, the test is still asymptotically valid, as the following theorem demonstrates.
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Theorem 3.3. Suppose that (x1, y1), ..., (xn, yn) are i.i.d. according to a distribution P such that

β = 0. Suppose that n1/4(θ̂(gδ(X, Y ))−θ0) converges in probability to zero conditionally on the X ’s

and Y ’s for any uniformly randomly chosen gδ ∈ Gn. (This assumption is verified, under moment

assumptions, for a particular parametric family of skedastic functions in Lemma 3.2). Then, under

the assumptions of Theorem 3.1, the permutation distribution R̂Wn
n of Wn satisfies

sup
t∈R

∣∣∣R̂Wn
n (t)− JWn

n (t, P )
∣∣∣→ 0

in probability as n → ∞ where JWn
n (·, P ) is the sampling distribution of Wn under P . Similarly,

the permutation distribution R̂Mn
n of Mn satisfies

sup
t∈R

∣∣∣R̂Mn
n (t)− JMn

n (t, P )
∣∣∣→ 0

in probability as n → ∞ where JMn
n (·, P ) is the sampling distribution of Mn under P .

Once again, this theorem makes assumptions about the convergence in probability of the estimate

of the parameter in the skedastic function. We verify this assumption for a particular family of

skedastic functions.

Lemma 3.2. For any functions gi : Rd → Rd, i = 1, ..., d, define the family
{
vθ : θ ∈ Rd

}
by

vθ(x) ..= exp

[
d∑

i=1

θjgj(x)

]

,

and let θ̂ be the estimator obtained by regressing hδ(ε̂i) ..= log
(
max

{
δ2, ε̂2

i

})
on g(xi) =

(
g1(xi), ..., gd(xi)

by OLS, where δ > 0 is a small constant. Then, for any randomly and uniformly chosen gδ ∈ Gn,

n1/4
(
θ̂(gδ(X, Y )) − θ0

)
converges in conditional probability to zero for

θ0
..= E(g(xi)g(xi)

′)E(g(xi)hδ(εi))

provided E(gj(xi)gk(xi))
4/3 and E(gj(xi)hδ(εi))

4/3 are both finite for each j and k.

4 A Convex Linear Combination of the Ordinary and Weighted

Least Squares Estimators

When the family of skedastic functions is misspecified, the weighted least squares estimator can be

less efficient than the ordinary least squares estimator, even asymptotically.

When interested in inference for a particular coefficient, say βk, practitioners might be tempted

to decide between the ordinary and weighted least squares estimators based on which estimator

has the smaller standard error In particular, it might be tempting to report the estimator

β̂MIN,k
..=

{
β̂WLS,k if Âvar(β̂OLS,k) > Âvar(β̂WLS,k)

β̂OLS,k if Âvar(β̂OLS,k) ≤ Âvar(β̂WLS,k)
,

12



along with the corresponding confidence interval

β̂MIN,k ± tn−p,1−α/2 ·
√

1

n
min

{
Âvar(β̂WLS,k), Âvar(β̂OLS,k)

}
. (4.1)

Asymptotically, this estimator has the same efficiency as the better of the ordinary least squares

and weighted estimators. However, the confidence interval (4.1) tends to undercover in finite

samples due to the minimizing over the standard error. The next theorem establishes consistency

of the bootstrap (and also bootstrap-t) distribution, which can be used to produce confidence

intervals with better finite-sample coverage than those given by (4.1).

Theorem 4.1. Under the conditions of Theorem 3.1, the sampling distribution of
√

n
(
β̂MIN,k−βk

)

converges weakly to the normal distribution with mean zero and variance

σ2
MIN

..= min
{
Avar(β̂WLS,k), Avar(β̂OLS,k)

}

The distribution of
√

n
(
β̂∗

MIN,k − β̂k

)
, where the samples (x∗

i , y
∗
i ) are generated according to

the pairs bootstrap or the wild bootstrap, converges weakly to the normal distribution having mean

zero and variance σ2
MIN

in probability. Furthermore, for any k, the distribution of
√

n
(
β̂∗

MIN,k −
β̂MIN,k

)
/σ̂∗

MIN
is asymptotically standard normal in probability, where

σ∗
MIN

..= min

{√
Avar(β̂WLS,k)∗,

√
Avar(β̂OLS,k)∗

}
.

When the estimated skedastic function is consistent for the true skedastic function, the estimator

β̂MIN,k is asymptotically as efficient as the best linear unbiased estimator. On the other hand, when

the skedastic function is misspecified, one can find an estimator which is at least as efficient as β̂MIN,

regardless of whether or not the skedastic function is well modeled, but can potentially have smaller

asymptotic variance. With the aim of creating such an estimator, consider estimators of the form

β̂λ
..= λβ̂OLS + (1− λ)β̂WLS (4.2)

for λ ∈ [0, 1], which are convex-combinations of the ordinary and weighted least squares estimators.

To study the asymptotic behavior of these estimators, it is helpful to first find the asymptotic joint

distribution of the ordinary and weighted least squares estimators.

Theorem 4.2. Under the assumptions of Theorem 3.1,

√
n

((
β̂WLS

β̂OLS

)

−
(

β

β

))
d−→ N

((
0

0

)

,

(
Ω−1

1/wΩv/w2Ω−1
1/w Ω−1

1/wΩv/wΩ−1
1/1

Ω−1
1/1Ωv/wΩ−1

1/w Ω−1
1/1Ωv/1Ω

−1
1/1

))

as n → ∞ .

It follows that for any λ ∈ [0, 1],
√

n
(
β̂λ − β

)
asymptotically has a normal distribution with

mean zero and covariance matrix

Avar(β̂λ) ..= λ2Ω−1
1/w

Ωv/w2Ω−1
1/w

+ 2λ(1− λ)Ω−1
1/w

Ωv/wΩ−1
1/1

+ (1− λ)2Ω−1
1/1

Ωv/1Ω
−1
1/1

,
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which can be consistently estimated by

Âvar(β̂λ) ..=
[
λ2Ω̂−1

1/w
Ω̂v/w2Ω̂−1

1/w
+ 2λ(1− λ)Ω̂−1

1/w
Ω̂v/wΩ̂−1

1/1
+ (1 − λ)2Ω̂−1

1/1
Ω̂v/1Ω̂

−1
1/1

]
.

For any particular coefficient βk, it then holds that
√

n
(
β̂λ,k −βk

)
is asymptotically normal with

mean zero and variance Avar(β̂λ,k), which denotes the kth diagonal entry of Avar(β̂λ). This variance

can be consistently estimated by Âvar(β̂λ,k), the kth diagonal entry of Âvar(β̂λ). In conjunction

with this standard error, the estimator β̂λ,k can be used for inference about βk. For instance,

asymptotically valid t confidence intervals are given by

β̂λ,k ± tn−p,1−α/2 ·
√

Âvar(β̂λ,k)/n .

These intervals suffer from the same shortcomings as the asymptotic confidence intervals based on

the weighted least squares estimator. But using the bootstrap can once again lead to improved

finite-sample performance, and the following theorem establishes consistency of the bootstrap (and

also bootstrap-t) distribution.

Theorem 4.3. Under the conditions of Theorem 3.1,
√

n
(
β̂∗

λ−β̂λ

)
, using the pairs or the wild boot-

strap, converges weakly to the normal distribution with mean zero and variance Avar(β̂λ), in prob-

ability for any fixed λ. Furthermore, for any k, the distribution of
√

n
(
β̂∗

λ,k − β̂λ,k

)
/

√
Âvar(β̂λ,k)∗

is asymptotically standard normal in probability, where

√
Âvar(β̂λ,k)∗/n is the estimated standard

error of β̂∗
λ,k using the bootstrap sample.

Although inference for βk can be based on β̂λ for any λ ∈ [0, 1], we would like to choose a value

of λ that results in an efficient estimator. The asymptotic variance Avar(β̂λ,k) is a quadratic func-

tion of λ, and therefore has a unique minimum, say λ0, over the interval [0, 1] unless Avar(β̂λ,k) is

constant in λ (which may occur if there is homoskedasticity); in this case, define λ0 = 1. Asymptot-

ically, β̂λ0,k is the most efficient estimate of βk amongst the collection
{
β̂λ,k : λ ∈ [0, 1]

}
. Because

this collection includes both the weighted and ordinary least squares estimators, β̂λ0,k is at least

as efficient as the ordinary least squares estimator, and may have considerably smaller asymptotic

variance when the skedastic function is well modeled. In fact, this estimator can have smaller

asymptotic variance than both the ordinary and weighted least squares estimators. Unfortunately,

without knowing the asymptotic variance, we cannot find λ0 and we cannot use the estimator β̂λ0,k.

Instead, we can estimate λ0 by λ̂0, the minimum of Âvar(β̂λ,k) over the interval [0, 1], provided

there is a unique minimum (otherwise set λ̂0 = 1). In particular, the minimizer is given by

λ̂0 =

[
Ω̂−1

1/1
Ω̂v/1Ω̂

−1
1/1

− Ω̂−1
1/w

Ω̂v/wΩ̂−1
1/1

]

k,k[
Ω̂−1

1/w
Ω̂v/w2Ω̂−1

1/w
− 2 · Ω̂−1

1/w
Ω̂v/wΩ̂−1

1/1
+ Ω̂−1

1/1
Ω̂v/1Ω̂

−1
1/1

]

k,k

,

if this quantity lies in the interval [0,1], or otherwise λ̂0 is zero or one depending on which gives a
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smaller variance. If we choose to use the estimator, β̂λ̂0,k
, then the confidence interval

β̂λ̂0,k ± tn−p,1−α/2 ·
√

1

n
Âvar(β̂λ̂0,k

)

will tend to have a coverage rate that is (much) smaller than the nominal level in finite samples, since

the smallest estimated variance is likely downward biased for the true variance. Instead, reporting

bootstrapped confidence intervals where the λ̂0 is recomputed for each bootstrap sample may give

more reliable confidence intervals. The next theorem demonstrates that the bootstrap distribution

of
√

n
(
β̂∗

λ̂∗
0
,k
− β̂λ̂0,k

)
consistently approximates the sampling distribution of

√
n
(
β̂λ̂0,k − βk

)
.

Theorem 4.4. Under the conditions of Theorem 3.1, the sampling distribution of
√

n
(
β̂λ̂0,k

− βk

)

converges weakly to the normal distribution with mean zero and variance Avar(β̂λ0,k) and the boot-

strap distribution of
√

n
(
β̂∗

λ̂∗
0
,k
− β̂λ̂0,k

)
also converges weakly to the normal distribution with mean

zero and variance Avar(β̂λ0,k) in probability. Also, for any k, the distribution of
√

n
(
β̂∗

λ̂0,k
−

β̂λ0,k

)
/
√

Âvar(β̂λ̂,k)
∗ converges to the standard normal distribution in probability, where

√
Âvar(β̂λ̂,k)

∗/n

is the estimated standard error of β̂∗
λ̂,k

using the bootstrap sample.

5 Toy Examples of Linear Combinations with Lower Variance

We will now give an example of a regression model where the optimal λ is in [0, 1] followed by an

example where the optimal λ is outside of [0, 1].

For both examples, we will consider the simplest case, namely univariate regression through the

origin:

yi = βxi + εi .

For the first example, let xi be uniform on the interval [−1, 1] and εi have conditional mean

zero and conditional variance var(εi|xi) =
√
|xi|. In this example, we will estimate the skedastic

function from the family {vθ(x) = θ · |x| : θ > 0} by regressing the squared residuals, ε̂2i on the |xi|.
Consequently,

θ0 = E
(
|xi|2

)−1
E
(
|xi|ε2

i

)
= E

(
|xi|2)−1E

(
|xi|3/2

)
=

6

5

The estimator (1− λ)β̂WLS + λβ̂OLS has variance

(1 − λ)2
E
√
|xi|

(E |xi|)2
+ 2λ(1− λ)

E |xi|3/2

E |xi|Ex2
i

+ λ2 E |xi|5/2

(
Ex2

i

)2 ,
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λ: 0 .25 .50 .75 1 14/23

n = 20

eMSE 0.1449 0.1380 0.1345 0.1344 0.1378 0.1340

Coverage 0.9613 0.9596 0.9575 0.9553 0.9527 0.9573

Width 1.6645 1.6267 1.6066 1.6057 1.6247 1.6038

n = 50

eMSE 0.0564 0.0539 0.0527 0.0528 0.0540 0.0525

Coverage 0.9524 0.9487 0.9465 0.9449 0.9448 0.9465

Width 0.9589 0.9371 0.9258 0.9253 0.9360 0.9242

n = 100

eMSE 0.0270 0.0259 0.0254 0.0254 0.0261 0.0255

Coverage 0.9520 0.9514 0.9506 0.9486 0.9481 0.9483

Width 0.6592 0.6448 0.6375 0.6376 0.6450 0.6366

Table 5.1: Empirical mean squared error of estimators of β as well as coverage and average length

of confidence intervals based on the normal approximation.

which is minimized by

λ0 = 1 −
− E|xi|3/2

E|xi|Ex2

i
+ E|xi|5/2

(Ex2
i )

2

E

√
|xi|

(E|xi|)2
− 2

E|xi|3/2

E|xi|Ex2

i
+

E|xi|5/2

(Ex2

i )
2

= 1 − −12
5 + 18

7
8
3 − 212

5 + 18
7

=
14

23
.

Table 5.1 presents the empirical mean squared error (eMSE) of this estimator for various λ,

as well as the coverage and average length of t intervals (with nominal coverage probability 95%)

based on 10,000 simulations. For these simulations, the error terms are normally distributed.

For the second example, let the xi be standard normal, and εi have conditional mean zero and

conditional variance var(εi|xi) = x2
i . For the weighted least squares estimator, we will again use

the incorrectly specified family of skedastic functions {vθ(x) = θ · |x| : θ > 0}.
In this example, the value of λ minimizing the asymptotic variance of (1 − λ)β̂WLS + λβ̂OLS is

λ0 = 1 − E
(
x2

i

)−1
E
(
x4

i

)
E
(
x2

i

)−1 − E (|xi|)−1
E
(
|xi|3

)
E
(
x2

i

)−1

E
(
x2

i

)−1
E
(
x4

i

)
E
(
x2

i

)−1 − 2 + E (|xi|)−1
Ex2

i E (|xi|)−1

= 1 − 3− 2

π/2− 4 + 3

≈ −0.75 .

Although choosing values of lambda outside the interval [0, 1] may give estimators with lower

variance, we recommend restricting lambda to the interval [0, 1]. In situations where Avar(β̂λ)
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is nearly constant in lambda (such as homoskedastic models), the estimates of λ can be highly

unstable when not restricted, and the resulting intervals can have poor coverage. We recommend

choosing λ̂ = 0 if the minimizing λ is negative, or λ̂ = 1 if the minimizing λ is positive. Even if

the optimal lambda is outside the interval [0.1], choosing estimators in this way gives an estimator

that asymptotically has the same variance as the better of the ordinary and weighted least squares

estimators.

6 Monte Carlo Simulations and Empirical Application

In this section, we present simulations studying the accuracy of the bootstrap approximations, as

well as the efficiency of the convex-combination estimator in comparison with the ordinary and

weighted least squares estimators. Simulations are given for univariate regression models in Section

6.1 and for multivariate models in Section 6.2. An empirical application is given in Section 6.3.

We give the coverage and average length of bootstrap and asymptotic approximation confidence

intervals. Because of the duality between intervals and testing, we omit simulations for tests. The

tables presented compare the ordinary least squares estimator, the weighted least squares estimator,

the estimator chosen between the ordinary and weighted estimators based on which has smaller

sample variance, and the convex-combination estimator giving smallest sample variance (referred

to as OLS, WLS, Min, and Optimal, respectively). Simulations are also given for the adaptive

least squares (ALS) estimator. For this estimator, two methods of wild bootstrap-t intervals are

given. The first recomputes the ALS estimator by performing a test for heteroskedasticity on each

bootstrap sample (and is referred to as ALS1 in the tables) and the other reports the bootstrap-t

interval of the estimator chosen by the test for heteroskedasticty (and is referred to as ALS2 in the

tables).

Each of the covariance estimators given in Remark 3.1 can be used for computing standard

errors. For covariance estimation, the HC2 and HC3 estimators outperform either the HC0 or HC1

estimators. The HC3 estimator may not always outperform the HC2 estimator, but is claimed in

Flachaire (2005) to outperform the HC2 estimator in many situations. For this reason, in each of the

simulations presented, the HC3 covariance estimator is used. Further simulations, which are omitted

here, indicated that the performance of the bootstrap intervals are relatively insensitive to the choice

of covariance estimator, but the HC3 estimator performed noticeably better for the asymptotic

intervals than the other estimators. Intervals based on a t-approximation use 10,000 simulations,

while bootstrap intervals use 10,000 simulations with 1,000 bootstrap samples. The bootstrap

intervals presented are given by the wild bootstrap-t methods. Unless otherwise specified, the

errors for the wild bootstrap distribution are generated using the F2 (or Rademacher) distribution,

which puts equal mass on ±1 (as defined in Remark 3.2). In the bootstrap simulations, we scale

the residuals (from the ordinary least squares estimator) by 1/
√

1 − hi when generating bootstrap

samples, where the hi are defined as in Remark 3.1. All confidence intervals are constructed with
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a nominal coverage probability of 95%.

Throughout, the parametric family used to estimate the skedastic function is

vθ(x) ..= exp (θ0 + θ1 log |x1| + · · ·+ θp log |xp|) ,

and θ̂ is found by the OLS solution to the regression problem

logmax
{
ε̂2i , δ

2
}

= θ0 + θ1 log |x1|+ · · ·+ θp log |xp| + ui

where ui is the error term and δ ..= .1. This method of estimating the skedastic function is also used

in Romano and Wolf (2017). For the ALS estimator, the test for conditional heteroskedasiticity is

the usual F -test of the hypothesis H : θ1 = · · · = θp = 0 at the 5% level.

6.1 Univariate models

Simulations are given using the model

yi = α + xiβ +
√

v(xi)εi

where xi ∼ U(1, 4) and εi are i.i.d. according to a distribution specified in several scenarios below.

Several forms of the true skedastic function v(·) are used, and are specified in the tables. In each

of the simulations, (α, β) = (0, 0) and a confidence interval is constructed for β.

Table 8.1 gives the empirical mean squared error when the errors, εi, are N (0, 1). Table 8.2

gives the coverage of and average length of t intervals. To understand the effect of skewness of the

error distributions, these simulations are repeated using exponential (with parameter one, centered

to have mean zero) errors in Table 8.4 (with HC3 estimators).

Table 8.3 give the coverage and average length of wild bootstrap-t intervals when the errors

are N (0, 1). Simulations with exponential errors are given in Table 8.5. Table 8.6 repeats the

simulations in Table 8.5, but instead uses the F1 distribution (as defined in Remark 3.2) to generate

the wild bootstrap error terms.

The empirical mean squared error of the weighted least squares estimator (Table 8.1) can be

considerably smaller than that of the ordinary least squares estimator when the skedastic function

is well modeled. When the family of skedastic functions is misspecified or there is conditional

homoskedasticity, the weighted least squares may have worse mean squared error. While in several

of the simulations, the empirical mean squared error of the weighted least squares estimator can

be reduced by the ordinary least squares estimator, using the optimal combination, or the estima-

tor with smallest estimated variance gives similar performance to the better of the ordinary and

weighted least squares estimators. The adaptive least squares estimator has mean squared error

that is close to the better of the ordinary and weighted least squares estimators, but can have

somewhat larger mean squared error than the optimal combination estimator.
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For normal errors, the asymptotic approximation intervals have coverage that is very close to

the nominal level when using the ordinary least squares estimator. However, for each of the other

estimators, the corresponding asymptotic intervals can have coverage that is noticeably under the

nominal level (especially in small samples). Furthermore, coverage of the t intervals based on

either the minimum variance or optimal convex-combination estimator is somewhat lower than

the coverage of intervals based on either the ordinary or weighted least squares estimators. By

comparison, the intervals using the wild bootstrap-t method have coverage that is closer to the

nominal level than those based on an asymptotic approximation. For any estimator, the bootstrap

intervals have comparable width to the corresponding t intervals.

In homoskedastic models, the size of the bootstrap-t intervals based on the convex-combination

estimator are only very slightly wider than those given by the ordinary least squares estimator

using the asymptotic approximation, and the intervals have comparable levels of coverage for each

of the sample sizes studied. In the heteroskedastic models, the convex-combination estimator

performs comparably to the weighted least squares estimator, even in small samples (e.g., n=20).

By comparison, the adaptive least squares estimator gives intervals that tend to be somewhat wider

than the weighted least squares estimator in small samples. In moderate and large samples, the

adaptive least squares estimator performs comparably to the weighted least squares estimator. In

each of the simulations, intervals based on the convex-combination estimator perform similarly to

using the weighted least squares estimator in situations when this estimator is more efficient, but

never perform noticeably worse than intervals based on the ordinary least squares estimator.

As with normal errors, when the errors follow an exponential distribution, the wild bootstrap-t

intervals improve coverage over the asymptotic approximation intervals. However, even when using

the bootstrap intervals, the coverage can be much below the nominal level for any of the estimators

aside from the ordinary least squares estimator. In this setting, the performances of the optimal

convex-combination estimator, and the adaptive least squares estimator are very similar.

Theoretical results, such as those given in Liu (1988), suggest that using the F1 distribution

may have better coverage than the F2 distribution when the errors are skewed. The simulations

indicate that even with skewed errors, the F2 distribution has better small-sample performance.

The findings here are in agreement with the simulation study provided in Davidson and Flachaire

(2008). This paper asserts that “the F2 distribution is never any worse behaved than the F1 version,

and is usually markedly better.”

In the univariate setting with normally distributed errors, there is very little downside to using

the optimal convex-combination estimator when compared with the ordinary least squares esti-

mator, and this estimator often significantly improves efficiency. In small samples, the bootstrap

intervals have coverage that is closer to the nominal level than the corresponding asymptotic ap-

proximation intervals. When the errors are very skewed, weighting can improve efficiency, and the

bootstrap intervals again give better coverage, although the coverage can be much lower than the
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nominal level. If the errors are severely skewed, it may not be worth weighting in very small sample

sizes as the coverage for any of the estimators other than the ordinary least squares estimator can

be severely below the nominal level.

6.2 Multivariate models

Simulations are given using the model

yi = α + xi,1β1 + xi,2β2 + xi,3β3 +
√

v(xi)εi

where the xi,j ∼ U(1, 4) for j = 1, 2, 3 and εi ∼ N (0, 1). Several forms of the true skedastic function

v(·) are used, and are specified in the tables. Without loss of generality, the regression coefficients

are all set to zero, and a confidence interval is constructed for β1. In this section, simulations

are given for homoskedastic models as well as heteroskedastic models using the following skedastic

functions:

• v1(x) ..= exp (2 log |x1|+ 2 log |x2| + 2 log |x3|)

• v2(x) ..= (|x1| + |x2|+ |x3|)2

• v3(x) ..=
(
|x1|2 + |x2|2 + |x3|2

)

• v4(x) ..= exp
(

2
3 |x1| + 2

3 |x2| + 2
3 |x3|

)

Table 8.8 gives the coverage and average length of t intervals and Table 8.7 gives the coverage

and average length of wild bootstrap-t intervals.

These simulations demonstrate that intervals based on the weighted least squares estimator, or

the optimal convex-combination estimator found using an asymptotic approximation have coverage

that is below the nominal level. In small samples (n = 20), the coverage of the intervals based on

the bootstrap is closer to the nominal level than the asymptotic approximation intervals, although

the coverage can be somewhat below the nominal level. In moderate sample sizes (n = 50), the

coverage of the bootstrap intervals is almost exactly at the nominal level in each of the examples,

whereas the asymptotic intervals can still have coverage that is noticeably below the nominal level.

In each of the examples, the optimal convex-combination estimator performs comparably to the

better of the weighted and ordinary least squares estimators.

In small samples, there appears to be little improvement in efficiency from weighting, but the

coverage for each of the weighted estimators tends to be somewhat lower than the coverage for the

intervals based on the ordinary least squares estimator. Therefore, in small sample sizes (n = 20), it

may be better to use the ordinary least squares estimator. In more moderate samples (n=50), there

can be substantial improvements in efficiency from weighting. The optimal convex-combination

estimator performs comparably to the better of the ordinary and weighted least squares estimators.
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In comparison, the adaptive least squares can be more efficient than the ordinary least squares

estimator, but is often less efficient than either the convex-combination estimator, or the weighted

least squares estimator. Therefore, if the sample size is relatively small, it may be best to report the

asymptotic intervals from the ordinary least squares estimator. In moderate and large sample size,

the optimal convex-combination estimator gives nearly best performance in each of the simulations.

Especially in moderate sample sizes (n=50), the coverage of the intervals based on this interval is

improved by using the bootstrap.

6.3 Empirical Example

The dataset under consideration is a sample of 506 observations taken from the Boston area in

1970. Five of the included variables are:

log (price): log of median house price in US dollars

log(nox) log of nitrogen oxide in the air in ppm

log(dist) log of weighted distance from employment centers in miles

rooms average number of rooms per house

stratio average student-teacher ratio

The response variable is log(price), and the four remaining variables are the explanatory vari-

ables. The family of skedastic functions used to estimate the true skedastic function, as well as the

method of estimating the parameter, is that used in Section 6.2 but extended to have two additional

predictors. Table 8.9 gives the estimates of the coefficients for each of the predictors. Table 8.10

gives the corresponding confidence intervals. Table 8.11 gives the lengths of the intervals in Table

8.10.

The estimated coefficient of stratio from the optimal convex-combination estimator is between

the ordinary and weighted least squares estimator. For this coefficient, the interval is narrower

for the convex-combination estimator than either the ordinary or weighted least squares estimator

(and also the adaptive least squares estimator which agrees with the weighted least squares estima-

tor). For the remaining variables, the estimated coefficients using the optimal convex-combination

estimator are identical to those using the weighted least squares estimator which produces narrower

intervals than the ordinary least squares estimator. For these coefficients, the intervals from the

convex-combination estimator are nearly identical to those from the weighted least squares estima-

tor. This example confirms that for large sample sizes, the optimal convex-combination estimator

produces intervals that are nearly identical to the narrower of the intervals given by the weighted

and ordinary least squares estimators, if not even narrower.
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7 Conclusion

Making some attempt to model the skedastic function and using a weighted estimator can result

in large gains in efficiency when compared with inference based on ordinary least squares estima-

tors. Still, there are some shortcomings to basing inference on a weighted least squares estimator,

with heteroskedasticity-consistent standard errors (which are valid when the skedastic function is

not consistently estimated), and using an asymptotic approximation to the sampling distribution.

Simulations demonstrate that asymptotic approximations can give poor small sample performance,

yielding confidence intervals with coverage below the nominal level, or tests with type I error rates

that can be larger than the nominal level. Furthermore, a badly estimated skedastic function can

result in an estimator that is less efficient than simply using the ordinary least squares estimator

irrespective of the sample size.

In this paper, we propose an estimator that is a convex-combination between the ordinary and

weighted least squares estimators. The convex-combination estimator takes advantage of weighting

when weighting provides improvement in efficiency, and performs comparably to the OLS otherwise.

There is little downside, even in homoscedastic models, to using the convex-combination estimator

rather than the OLS estimator. But in circumstances when the WLS estimator is advantageous,

the convex-combination estimator has comparable performance to the WLS estimator. Simulations

confirm that the convex-combination estimator performs similarly to the better of the WLS and

OLS estimators. In contrast, the adaptive least squares estimator may not realize all of the efficiency

gains to be had by weighting, especially in small and moderate sample sizes.

For either the weighted least squares estimator or the convex-combination estimator, inference

based on asymptotic approximations to the sampling distributions can have poor performance

in small or even moderate sample sizes. This paper established consistency of the pairs and wild

bootstrap for both of these estimators. Simulations demonstrated that in small or moderate samples,

using the bootstrap approximations has improved coverage for confidence intervals. Of course,

the bootstrap often has higher-order accuracy when compared with asymptotic approximations as

discussed in Hall (1992). Proving improvements in accuracy from the bootstrap in our application is

an open question, but would require accounting for the data-driven choice of weights, and is beyond

the scope of the paper. Inference using the convex-combination estimator bridges the gap between

the ordinary and weighted least squares estimator. Unless the sample size is very small relative to

the number of coefficients under consideration, in which case weighting may only provide relatively

modest benefits, the convex-combination estimator is never noticeably worse than the ordinary least

squares estimator, and potentially much better. In small and moderate samples, using a bootstrap

approximation to the sampling distribution leads to more reliable inference.
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8 Tables
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OLS WLS Min Optimal ALS

n = 20, v(x) = 1 0.0754 0.0838 0.0795 0.0794 0.0764

n = 50, v(x) = 1 0.0284 0.0297 0.0294 0.0292 0.0282

n = 100, v(x) = 1 0.0136 0.0140 0.0140 0.0138 0.0137

n = 20, v(x) = x2 0.5611 0.4550 0.4824 0.4775 0.5291

n = 50, v(x) = x2 0.2107 0.1555 0.1637 0.1627 0.1787

n = 100, v(x) = x2 0.0511 0.0352 0.0363 0.0360 0.0745

n = 20, v(x) = log(x)2 0.0654 0.0457 0.0483 0.0487 0.0582

n = 50, v(x) = log(x)2 0.0249 0.0137 0.0138 0.0146 0.0152

n = 100, v(x) = log(x)2 0.0123 0.0063 0.0062 0.0065 0.0063

n = 20, v(x) = 4 exp(.02x + .02x2) 0.3613 0.4088 0.3943 0.3816 0.3651

n = 50, v(x) = 4 exp(.02x + .02x2) 0.1368 0.1450 0.1390 0.1405 0.1392

n = 100, v(x) = 4 exp(.02x + .02x2) 0.0667 0.0686 0.0682 0.0677 0.0678

Table 8.1: Empirical mean squared error of estimators of β.
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OLS WLS Min Optimal ALS

n = 20, v(x) = 1
Coverage 0.9507 0.9353 0.9340 0.9338 0.9477

Length 1.1950 1.1608 1.1341 1.1301 1.1866

n = 50, v(x) = 1
Coverage 0.9491 0.9423 0.9412 0.9411 0.9483

Length 0.6805 0.6755 0.6669 0.6659 0.6789

n = 100, v(x) = 1
Coverage 0.9500 0.9449 0.9457 0.9463 0.9479

Length 0.4661 0.4646 0.4616 0.4612 0.4656

n = 20, v(x) = x2
Coverage 0.9476 0.9425 0.9355 0.9349 0.9401

Length 3.2361 2.8017 2.7418 2.7117 3.0106

n = 50, v(x) = x2
Coverage 0.9438 0.9433 0.9380 0.9359 0.9380

Length 1.8600 1.5711 1.5637 1.5500 1.6275

n = 100, v(x) = x2
Coverage 0.9465 0.9482 0.9469 0.9458 0.9475

Length 1.2761 1.0641 1.0634 1.0574 1.0817

n = 20, v(x) = log(x)2
Coverage 0.9463 0.9495 0.9406 0.9388 0.9421

Length 1.1017 0.8774 0.8687 0.8595 0.9496

n = 50, v(x) = log(x)2
Coverage 0.9461 0.9516 0.9498 0.9466 0.9443

Length 0.6375 0.4706 0.4704 0.4675 0.4746

n = 100, v(x) = log(x)2
Coverage 0.9465 0.9498 0.9496 0.9477 0.9516

Length 0.4379 0.3134 0.3134 0.3125 0.3130

n = 20, v(x) = 4 exp(.02x + .02x2)
Coverage 0.9548 0.9388 0.9358 0.9368 0.9470

Length 2.6677 2.6016 2.5252 2.5134 2.6386

n = 50, v(x) = 4 exp(.02x + .02x2)
Coverage 0.9512 0.9431 0.9435 0.9437 0.9516

Length 1.5151 1.5042 1.4807 1.4778 1.5099

n = 100, v(x) = 4 exp(.02x + .02x2)
Coverage 0.9516 0.9497 0.9484 0.9492 0.9529

Length 1.0375 1.0338 1.0245 1.0234 1.0351

Table 8.2: Coverage and average length of confidence intervals for β based on an asymptotic

approximation using HC3 standard errors.
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OLS WLS Min Optimal ALS1 ALS2

n = 20, v(x) = 1

Coverage 0.9463 0.9447 0.9439 0.9438 0.9448 0.9435

Length 1.1935 1.2535 1.2298 1.2262 1.2157 1.1952

n = 50, v(x) = 1

Coverage 0.9503 0.9484 0.9514 0.9506 0.9486 0.9471

Length 0.6775 0.6967 0.6889 0.6969 0.6804 0.6748

n = 100, v(x) = 1

Coverage 0.9476 0.9479 0.9481 0.9477 0.9485 0.9482

Length 0.4640 0.4706 0.4677 0.4671 0.0.4699 0.4697

n = 20, v(x) = x2

Coverage 0.9432 0.9470 0.9447 0.9449 0.9425 0.9403

Length 3.3621 3.0161 3.0451 3.0251 3.32317 3.1048

n = 50, v(x) = x2

Coverage 0.9483 0.9478 0.9459 0.9465 0.9471 0.9414

Length 1.8844 1.5971 1.6253 1.6144 1.6889 1.6472

n = 100, v(x) = x2

Coverage 0.9475 0.9515 0.9512 0.9527 0.9504 0.0.9511

Length 1.2874 1.0733 1.0791 1.0782 1.0698 1.0832

n = 20, v(x) = log(x)2
Coverage 0.9417 0.9510 0.9487 0.9494 0.9418 0.9353

Length 1.1823 0.9407 0.9718 0.9648 1.0645 0.9703

n = 50, v(x) = log(x)2
Coverage 0.9487 0.9516 0.9521 0.9508 0.9484 0.9436

Length 0.6505 0.4704 0.4774 0.4793 0.4828 0.4739

n =100, v(x) = log(x)2
Coverage 0.9490 0.9485 0.9497 0.9486 0.9488 0.9492

Length 0.4424 0.3116 0.3116 0.3140 0.3126 0.3126

n = 20, v(x) = 4 exp(.02x + .02x2)

Coverage 0.9445 0.9420 0.9431 0.9428 0.9456 0.9439

Length 2.6782 2.8347 2.7696 2.7579 2.7275 2.6663

n = 50, v(x) = 4 exp(.02x + .02x2)

Coverage 0.9474 0.9484 0.9461 0.9485 0.9450 0.9440

Length 1.5091 1.5522 1.5309 1.5256 1.5183 1.5050

n = 100, v(x) = 4 exp(.02x + .02x2)

Coverage 0.9526 0.9492 0.9507 0.9513 0.9511 0.9504

Length 1.0336 1.0459 1.0384 1.0369 1.0372 1.0364

Table 8.3: Coverage and average length of confidence intervals for β based on the wild bootstrap-t

method with HC3 covariance estimates.
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OLS WLS Min Optimal ALS

n = 20, v(x) = 1
Coverage 0.9636 0.9274 0.9280 0.9266 0.9422

Length 1.1500 1.0756 1.0464 1.0410 1.1127

n = 20, v(x) = x2
Coverage 0.9185 0.9101 0.9035 0.9013 0.9121

Length 3.0413 2.5939 2.5196 2.4868 2.7363

n = 20, v(x) = log(x)2
Coverage 0.9099 0.9058 0.8992 0.8981 0.9046

Length 1.0341 0.8317 0.8161 0.8058 0.8750

n = 20, v(x) = 4 exp(.02x + .02x2)
Coverage 0.9605 0.9266 0.9247 0.9240 0.9426

Length 2.5280 2.3657 2.2899 2.2742 2.4477

Table 8.4: Coverage and average length of confidence intervals for β based on the asymptotic

approximation using the HC3 covariance estimator with exponential errors.

OLS WLS Min Optimal ALS1 ALS2

n = 20, v(x) = 1
Coverage 0.9557 0.9292 0.9322 0.9348 0.9388 0.9355

Length 1.1364 1.1334 1.1167 1.1112 1.1181 1.0967

n = 20, v(x) = x2
Coverage 0.9316 0.9355 0.9221 0.9201 0.9210 0.9201

Length 3.0863 2.7799 2.7749 2.7494 2.8986 2.7847

n = 20, v(x) = log(x)2
Coverage 0.9171 0.9238 0.9040 0.9070 0.9045 0.8998

Length 1.1605 0.9568 0.9093 0.9009 0.9294 0.8847

n = 20, v(x) = 4 exp(.02x + .02x2)
Coverage 0.9680 0.9429 0.9357 0.9363 0.9392 0.9351

Length 2.7516 2.7648 2.5510 2.5103 2.5088 2.4565

Table 8.5: Coverage and average length of wild bootstrap-t confidence intervals for β using the

HC3 covariance estimator with exponential errors.

OLS WLS Min Optimal ALS1 ALS2

n = 20, v(x) = 1
Coverage 0.9193 0.8849 0.8885 0.8890 0.9008 0.8948

Length 1.0042 1.0078 0.9890 0.9838 0.9976 0.9711

n = 20, v(x) = x2
Coverage 0.8851 0.8966 0.8929 0.8943 0.8882 0.8747

Length 2.6845 2.4739 2.4387 2.4162 2.5394 2.4354

n = 20, v(x) = log(x)2
Coverage 0.8691 0.8939 0.8864 0.8860 0.8828 0.8666

Length 0.9151 0.7735 0.7753 0.7676 0.8106 0.7730

n = 20, v(x) = 4 exp(.02x + .02x2)
Coverage 0.9166 0.8857 0.8878 0.8873 0.8963 0.8922

Length 2.2245 2.2604 2.2023 2.1942 2.2201 2.1609

Table 8.6: Coverage and average length of wild bootstrap-t (generated using Mammen’s error

distribution) confidence intervals for β using the HC3 covariance estimator with exponential errors.
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OLS WLS Min Optimal ALS1 ALS2

n = 20, v(x) = 1

Coverage 0.9420 0.9376 0.9381 0.9360 0.9418 0.9383

Length 1.3119 1.4537 1.4140 1.4017 1.3421 1.3106

n = 50, v(x) = 1

Coverage 0.9517 0.9473 0.9479 0.9486 0.9473 0.9448

Length 0.6960 0.7470 0.7280 0.7222 0.6983 0.6904

n = 100, v(x) = 1

Coverage 0.9496 0.9510 0.9499 0.9471 0.9492 0.9476

Length 0.4696 0.4889 0.4813 0.4773 0.4726 0.4698

n = 20, v(x) = v1(x)

Coverage 0.9467 0.9496 0.9494 0.9490 0.9434 0.9350

Length 24.4902 22.7113 22.4493 22.1392 23.795 22.6830

n = 50, v(x) = v1(x)

Coverage 0.9492 0.9533 0.9547 0.9545 0.9517 0.9349

Length 13.1570 9.3530 9.5490 9.3708 9.4461 10.4717

n = 100, v(x) = v1(x)

Coverage 0.9514 0.9582 0.9573 0.9568 0.9569 0.9553

Length 8.9963 5.4756 5.5501 5.4863 5.5503 5.4984

n = 20, v(x) = v2(x)

Coverage 0.9424 0.9404 0.9391 0.9398 0.9377 0.9337

Length 10.0941 11.2374 10.7655 10.6653 10.2414 9.9523

n = 50, v(x) = v2(x)

Coverage 0.9517 0.9528 0.9510 0.9506 0.9480 0.9458

Length 5.3449 5.5378 5.4130 5.3408 5.3900 5.2702

n =100, v(x) = v2(x)

Coverage 0.9512 0.9494 0.9504 0.9485 0.9481 0.9430

Length 3.6078 3.5658 3.5518 3.4946 3.6213 3.5610

n = 20, v(x) = v3(x)

Coverage 0.9373 0.9349 0.9370 0.9369 0.9382 0.9377

Length 6.0691 6.7292 6.4700 6.4147 6.0984 6.0871

n = 50, v(x) = v3(x)

Coverage 0.9487 0.9454 0.9465 0.9488 0.9482 0.9432

Length 3.2075 3.3498 3.2673 3.2264 3.2659 3.1943

n = 100, v(x) = v3(x)

Coverage 0.9492 0.9501 0.9493 0.9484 0.9470 0.9450

Length 2.1843 2.1817 2.1620 2.1316 2.1957 2.1632

n = 20, v(x) = v4(x)

Coverage 0.9471 0.9434 0.9461 0.9450 0.9440 0.9376

Length 20.8139 20.5321 20.0122 19.7953 20.8253 19.9887

n = 50, v(x) = v4(x)

Coverage 0.9504 0.9489 0.9501 0.9490 0.9447 0.9338

Length 11.1697 9.1714 9.2610 9.1012 10.1090 9.6712

n = 100, v(x) = v4(x)

Coverage 0.9516 0.9496 0.9501 0.9492 0.9552 0.9505

Length 7.6657 5.6528 5.7152 5.6237 5.8274 5.7378

Table 8.7: Coverage and average length of confidence intervals for β1 based on the wild bootstrap-t

method.
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OLS WLS Min Optimal ALS

n = 20, v(x) = 1

Coverage 0.9665 0.9264 0.9284 0.9280 0.9586

Length 1.3649 1.2433 1.2063 1.1962 1.3529

n = 50, v(x) = 1

Coverage 0.9547 0.9281 0.9303 0.9305 0.9525

Length 0.7127 0.6927 0.6779 0.6747 0.7072

n = 100, v(x) = 1

Coverage 0.9501 0.9401 0.9384 0.9404 0.9510

Length 0.4767 0.4715 0.4654 0.4641 0.4759

n = 20, v(x) = v1(x)

Coverage 0.9675 0.9482 0.9398 0.9387 0.9533

Length 24.8500 19.1977 18.5013 18.0865 22.7933

n = 50, v(x) = v1(x)

Coverage 0.9572 0.9551 0.9473 0.9460 0.9440

Length 13.3704 8.8556 8.7810 8.5842 9.6507

n = 100, v(x) = v1(x)

Coverage 0.9535 0.9604 0.9577 0.9544 0.9588

Length 9.0588 5.4373 5.4267 5.3342 5.4555

n = 20, v(x) = v2(x)

Coverage 0.9607 0.9234 0.9215 0.9195 0.9562

Length 10.4320 9.5058 9.0461 8.9017 10.2254

n = 50, v(x) = v2(x)

Coverage 0.9541 0.9362 0.9346 0.9334 0.9469

Length 5.4633 5.1493 4.9956 4.9407 5.3603

n =100, v(x) = v2(x)

Coverage 0.9532 0.9358 0.9364 0.9375 0.9431

Length 3.6640 3.4356 3.3935 3.3643 3.5411

n = 20, v(x) = v3(x)

Coverage 0.9621 0.9238 0.9209 0.9208 0.9566

Length 6.2806 5.6983 5.4457 5.3680 6.1906

n = 50, v(x) = v3(x)

Coverage 0.9562 0.9321 0.9303 0.9318 0.9473

Length 3.2997 3.1127 3.0222 2.9923 3.2495

n = 100, v(x) = v3(x)

Coverage 0.9551 0.9411 0.9407 0.9412 0.9475

Length 2.2141 2.0956 2.0678 2.0522 2.1572

n = 20, v(x) = v4(x)

Coverage 0.9645 0.9324 0.9248 0.9245 0.9550

Length 21.2127 17.1633 16.5004 16.1612 20.2824

n = 50, v(x) = v4(x)

Coverage 0.9537 0.9454 0.9387 0.9379 0.9386

Length 11.4171 8.5834 8.4802 8.3146 9.4878

n = 100, v(x) = v4(x)

Coverage 0.9503 0.9485 0.9452 0.9427 0.9497

Length 7.7106 5.5034 5.4869 5.4028 5.6219

Table 8.8: Coverage and average length of confidence intervals for β1 based on an asymptotic

approximation.
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Coefficient OLS WLS Min Optimal

Constant 11.0838 10.1952 10.1952 10.1952

log(nox) −0.9535 −0.7934 −0.7934 −0.7934

log(dist) −0.1343 −0.1265 −0.1265 −0.1265

rooms 0.2545 0.3065 0.3065 0.3065

stratio −0.0525 −0.0367 −0.0525 −0.0451

Table 8.9: Estimated coefficients for each predictor.
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Constant log(nox) log(dist) rooms stratio

OLS (10.3236 , 11.8411) (−1.2068 , −0.7010) (−0.2406, −0.0260) (0.2047, 0.3046) (−0.0614, −0.0433)

WLS (9.6224, 10.7555) (−0.9976, −0.5859) (−0.2007 , −0.0526) (0.2741, 0.3396) (−0.0460 , −0.0274)

Min (9.6079, 10.7598) (−0.9960 , −.5872) (−0.1998 , −0.0527) (0.2734, 0.3396) (−0.0621, −0.0430)

Opt (9.6336, 10.7702) (−0.9970, −0.5924) (−0.2001, −0.0537) (0.2732 , 0.3399) (−0.0541 , −0.0361)

ALS1 (9.6096, 10.7613) (−0.9969, −0.5810) (−0.1996 , −0.0527) (0.2732 , 0.3400) (−0.0459 , −0.0272)

ALS2 (9.6224, 10.7555) (−0.9976, −0.5859) (−0.2007 , −0.0526) (0.2741, 0.3396) (−0.0460 , −0.0274)

Table 8.10: Confidence intervals for each predictor.
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Constant log(nox) log(dist) rooms stratio

OLS 1.5175 0.5058 0.2146 0.0999 0.0181

WLS 1.1331 (0.7467) 0.4117 (0.8140) 0.1481 (0.6901) 0.0655 (0.6557) 0.0186 (1.0276)

Min 1.1519 (0.7591) 0.4088 (0.8082) 0.1471 (0.6855) 0.0662 (0.6627) 0.0191 (1.0552)

Opt 1.1366 (0.7490) 0.4046 (0.7999) 0.1464 (0.6822) 0.0667 (0.6677) 0.0180 (0.9945)

ALS1 1.1517 (0.7589) 0.4159 (0.8223) 0.1469 (0.6845) 0.0668 (0.6687) 0.0187 (1.0331)

ALS2 1.1331 (0.7467) 0.4117 (0.8140) 0.1481 (0.6901) 0.0655 (0.6557) 0.0186 (1.0276)

Table 8.11: Length of intervals for each predictor and the length expressed as a ratio of the length

of the OLS intervals in parenthesis.
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9 Appendix

Proof of Theorem 3.1. For a fixed function w(·), define W ..= diag {w(x1), ..., w(xn)} and

β̂W
..= (X>W−1X)−1X>W−1Y .

If the skedastic function is estimated from a family {vθ} by vθ̂, the weighted least squares estimator

is given by by

β̂WLS
..= (X>V −1

θ̂
X)−1X>V −1

θ̂
Y

where Vθ
..= diag {vθ(x1), ..., vθ(xn)}. We would like to show that the bootstrap distribution

√
n
(
β̂∗

WLS − β̂WLS

)
(conditional on the data) consistently approximates the sampling distribution

of
√

n
(
β̂WLS−β

)
. To do this, we will first show that the distribution of

√
n
(
β̂∗

W − β̂W

)
consistently

approximates the distribution of
√

n
(
β̂W −β

)
for a fixed W (satisfying some regularity conditions).

We will then show that
√

n
(
β̂∗

WLS − β̂WLS

)
−√

n
(
β̂∗

W − β̂W

)
converges in conditional probability

to zero for W = Vθ0
, assuming that the estimate θ̂∗ of the variance parameter is conditionally

consistent for some fixed θ0. That is, the proof of Theorem 3.1 will rely on Lemmas 9.1 and 9.2

which are stated below.

Lemma 9.1. Suppose that (x1, y1), ..., (xn, yn) are i.i.d. satisfying assumptions (A1)−(A6). Suppose

that w : Rd → R+ is a fixed and known function (although not necessarily the true skedastic function)

and satisfies

E





(
y2
i +

∑p
j=1 x2

i,j

)2

w2(xi)



 < ∞

Define W ..= diag(w(x1), ..., w(xn)), and let β̂W
..= (X>W−1X)−1X>W−1Y . Then, for almost all

sample sequences, the conditional law of
√

n
(
β̂∗

W − β̂W

)
converges weakly to the normal distribution

with mean 0 and variance Ω−1
1/w

Ωv/w2Ω−1
1/w

.

Proof of Lemma 9.1 using the pairs bootstrap. Let CP be the set of sequences {Pn} such that

(B1) Pn converges weakly to P (the distribution of (xi, yi)).

(B2) βW (Pn) ..=
(∫

1
w(x)xx>dPn

)−1
·
∫

1
w(x)xydPn → β .

(B3)
∫

1
w(x)xx>dPn → Ω1/w .

(B4)
∫ (

1/w(x)x>(y − xβW (Pn)
)> (

1/w(x)x>(y − xβW (Pn)
)
dPn → Ωv/w2 .

To prove the lemma, we will first show that the distribution of
√

n
(
β̂W − βW (Pn)

)
under Pn

converges weakly to the normal distribution with mean 0 and variance Ω−1
1/w

Ωv/w2Ω−1
1/w

whenever

{Pn} ∈ Cp, and then show that the empirical distribution is in Cp almost surely.
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Let (xn,i, yn,i), i = 1, ..., n be independent and identically distributed according to Pn such that

{Pn} ∈ CP .

Define residuals εn,i
..= Yn,i − Xn,iβW (Pn) so that

√
n
(
β̂W − βW (Pn)

)
=

√
n
(
X>

n W−1Xn

)−1
X>

n W−1 (εn + XnβW (Pn)) − βW (Pn)

=

(
1

n
X>

n W−1Xn

)−1 √
nX>

n W−1εn .

It follows immediately from the assumptions that
(

1

n
X>

n W−1Xn

)−1
P−→ Ω−1

1/w ,

and we have the desired asymptotic normal distribution if we can show

√
nX>

n W−1εn
d−→ N (0, Ωv/w2) .

We will first consider the case of xi ∈ R. Because
∫

x>
n,i

1

w(xn,i)
(yn,i − xn,iβW (Pn))dPn = 0 ,

and ∫
x>

n,ixn,i
1

w2(xn,i)
ε2
n,idPn → Ωv/w2 ,

the asymptotic normality follows from the Lindeberg-Feller Central Limit Theorem if we can verify

that

E

(
x2

n,1

1

w2(xn,1)
ε2
n,1

{
x2

n,1

1

w2(xn,1)
ε2
n,1 > nδ

})
→ 0

for all δ > 0, where {·} denotes the indicator function of a set. Since βW (Pn) → β and (xn,i, yn,i)
d−→

(X, Y ) ∼ P ,

xn,1
1

w(xn,1)
εn,1

d−→ X

w(X)
(Y − Xβ) =

X

w(X)
ε .

By assumption (B4), we also have that the second moments converge in addition to the convergence

in probability. Therefore, for any fixed γ that is a continuity point of the distribution of Xε/w(X)

and n > γ/δ, we have that

E

(
x2

n,1

1

w2(xn,1)
ε2
n,1

{
x2

n,1

1

w2(xn,1)
ε2
n,1 > nδ

})
≤ E

(
x2

n,1

1

w2(xn,1)
ε2
n,1

{
x2

n,1

1

w2(xn,1)
ε2
n,1 > γ

})

→ E

(
X2 1

w2(X)
ε2

{
X2 1

w2(X)
ε2 > γ

})
.

The Lindeberg-Feller condition is satisfied, since the right-hand side of this equation can be made

arbitrarily small by choosing γ sufficiently large. The multivariate case follows analogously using

the Cramér-Wold device. For any vector of constants, C ∈ Rp, we must show

n∑

i=1

εn,i

w(xn,i)
xn,iC

d−→ N (0, C>Ωv/w2C) .

34



This convergence follows from the Lindeberg-Feller CLT if

E

((
εn,i

w(xn,i)
xn,iC

)2
{(

εn,i

w(xn,i)
xn,iC

)2

> nδ

})
→ 0

for all δ > 0. This convergence holds by the same argument as in the one-dimensional case given

above. It is easily seen that the empirical distribution functions P̂n are almost surely in CP , and

the result of the theorem follows.

Proof of Lemma 9.1 using the wild bootstrap. Let S be the set of sequences {xi, yi} satisfying the

following conditions:

(S1) β̂W → β ,

(S2) Ω̂1/w → Ω1/w ,

(S3) Ω̂v/w2 → Ωv/w2 , and

(S4)
√

n
(
β̂WLS − β̂W

)
→ 0 .

Write

√
n
(
β̂∗

W − β̂W

)
=

√
n
(
X>

n W−1Xn

)−1
X>

n W−1ε̂∗ +
√

n
(
β̂WLS − β̂W

)
.

On S,
(

1
nX>

n W−1Xn

)−1 → Ω1/w, and
√

n
(
β̂WLS − β̂W

)
→ 0. Thus, to show the desired asymptotic

normality, it suffices to show that, on S, W−1ε̂∗
d−→ N (0, Ωv/w2) conditionally on the x′s and y′s.

This convergence holds using the Cramér-Wold device, since for each vector c ∈ Rp,

c>X>
n W−1 ε̂∗ =

∑
xic

1

w(xi)
ε̂∗

which is asymptotically normal with mean zero and variance c>Ωv/w2c by the Lindeberg-Feller

Central Limit Theorem which is applicable because condition (S3) holds.

The conditions specified by the set S do not hold almost surely, but they do hold in probability.

By the Almost Sure Representation Theorem, there exist versions of the X ’s and Y ’s such that

S holds almost surely. It follows that the asymptotic normality of the wild bootstrap distribution

holds in probability.

Lemma 9.2. Suppose that θ̂∗ is consistent for θ0, in the sense that n1/4
(
θ̂∗ − θ0

)
converges in

conditional probability to zero. Suppose that β̂WLS
..= (X>V −1

θ̂
X)−1X>V −1

θ̂
Y and vθ0

=.. w so that

W ..= diag(vθ0
(X1), ..., vθ0

(Xn)). Under the assumptions of Theorem 3.1,

√
n
(
β̂∗

WLS − β̂WLS

)
−
√

n
(
β̂∗

W − β̂W

) P−→ 0

in probability.
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Proof of Lemma 9.2 using the pairs bootstrap. Let CP be the set of sequences {Pn} that satisfy the

following conditions:

(C1) Pn converges weakly to P

(C2)
∫

1
w(x)xx>dPn → Ω1/w

(C3)
∫ (

1/w(x)x>(y − xβW (Pn)
)> (

1/w(x)x>(y − xβW (Pn)
)
dPn → Ωv/w2

(C4) n1/4 (βW (Pn) − β(Pn)) → 0

(C5) n1/4EPn

(
xi(y − xβ(Pn))rθ0,l

(x)
)
→ 0 for each i = 1, ..., p, l = 1, ..., d

(C6) EPn

∣∣xiεrθ0,l
(x)
∣∣2 → EP (|xiεrθ0,l(x)|2) for each i = 1, ..., p, l = 1, ..., d

(C7) EPn |xiεsθ0
(x)|2 → EP (|xiεsθ0

(x)|2) for each i = 1, ..., p, l = 1, ..., d

(C8) n1/4
(
θ̂ − θ0

)
converges in Pn-probability to zero

Suppose that (xn,i, yn,i), i = 1, ..., n are i.i.d. according to Pn where
{
Pn

}
is any sequence

in CP .

Define the residuals

εŴ ,n,i
..= yn,i − xn,iβŴ (Pn) ,

εn,i
..= yn,i − xn,iβ(Pn) ,

and

εW,n,i
..= yn,i − xn,iβW (Pn)

where

βŴ (Pn) ..=

(∫
1

v
θ̂
(x)

xx>dPn

)−1 ∫ 1

v
θ̂
(x)

xydPn ,

β(Pn) ..=

(∫
xx>dPn

)−1 ∫
xydPn ,

and

βW (Pn) ..=

(∫
1

w(x)
xx>dPn

)−1 ∫ 1

w(x)
xydPn .

Then,

√
n
(
β̂WLS − βWLS(Pn)

)
−
√

n
(
β̂W − βW (Pn)

)
= (X>

n Ŵ−1Xn)−1X>
n Ŵ−1εŴ ,n

− (X>
n W−1Xn)−1X>

n W−1εW,n .

To show this quantity converges in probability to zero, it suffices to show that

1√
n

(
X>

n Ŵ−1εŴ ,n − X>
n W−1εW,n

)
P−→ 0
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and
1

n

(
X>

n Ŵ−1Xn − X>
n W−1Xn

)
P−→ 0 .

We can write the first expression as

1√
n

[
X>

n

(
Ŵ−1 − W−1

)
εW,n + X>

n Ŵ−1Xn

(
βŴ (Pn)− βW (Pn)

)]
.

By the assumptions on sequences in CP ,
√

n
(
βŴ − βW

) P−→ 0. It will be seen later that 1
nX>

n Ŵ−1Xn
P−→

E(x>x/w(x)), so the second tern in the above expression converges to zero in probability. The first

term is

1√
n

X>
n

(
Ŵ−1 − W−1

)
εW,n =

1√
n

∑
x>

n,i

(
1

v
θ̂
(xn,i)

− 1

vθ0
(xn,i)

)
εW,n,i

which, as in Romano and Wolf (2017), can be written as A + B where the jth entry of A is

Aj =
1√
n

n∑

i=1

xn,i,jεW,n,i

K∑

l=1

rθ0,l(xn,i)(θ̂l − θ0,l) ,

and with probability tending to one,

|Bj| ≤
1

2
√

n

∣∣∣θ̂ − θ0

∣∣∣
2∑

|xn,i,jεW,n,isθ0
(xn,i)| .

Because n1/4(θ̂l − θ0,l)
P−→ 0, to show Aj

P−→ 0, we only need to show that

n−3/4
n∑

i=1

xn,i,jεW,n,irθ0,l(xn,i)
P−→ 0

for each l = 1, ..., K. We will do this by showing that the mean and variance converge to zero.

The variance converges to zero since

varPn

(

n−3/4
n∑

i=1

xn,i,jεW,n,irθ0,l(xn,i)

)

= n−1/2varFn (xn,i,jεW,n,irθ0,l(xn,i))

and, by the assumptions on CP , the sequence of variances varPn (xn,i,jεW,n,irθ0,l(xn,i)) is bounded.

To show that the mean converges to zero, write

n−3/4
n∑

i=1

xn,i,jεW,n,irθ0,l(xn,i) = n−3/4
n∑

i=1

xn,i,jεn,irθ0,l(xn,i)+n−3/4
n∑

i=1

(εW,n,i−εn,i)xn,i,jrθ0,l(xn,i) .

The expectation of the first term converges to zero by assumption and the expectation of the second

term converges to zero, since

EPn

(

n−3/4
n∑

i=1

xn,i,jεn,irθ0,l(xn,i)

)

= EPn

(
1

n
Xn,ixn,i,jrθ0,l(xn,i)

)
n1/4

(
β̂(Pn) − β̂W (Pn)

)
→ 0 .
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Similarly, since
√

n
∣∣θ̂−θ0

∣∣2 P−→ 0, we have that |Bj| P−→ 0 provided 1
n

∑∣∣xn,i,jεW,n,isθ0
(xn,i)

∣∣ = Op(1).

As in the argument for Aj, this last sum has expectation tending to a constant, and variance tending

to zero, and so it converges in probability to a constant.

Finally we must show that

1

n

(
X>

n Ŵ−1Xn − X>
n W−1Xn

)
=

1

n

∑
x>

i xn,i

(
1

vθ̂(xn,i)
− 1

vθ0
(xn,i)

)

converges in probability to zero. The argument proceeds as above.

Since
√

n
(
β̂Ŵ − β̂W

)
converges to zero in probability, but not necessarily almost surely, the em-

pirical distribution functions P̂n do not lie in CP almost surely. However, it is easily seen that

the empirical distribution functions satisfy the moment conditions on CP in probability, so the

asymptotic normality of the bootstrap distribution holds in probability.

Proof of Lemma 9.2 using the wild bootstrap. Let S ′ be the set on which (S1)–(S4) hold as well as

(S5) 1
n

∑n
i=1

∣∣xiŷirθ0,l
(x)
∣∣2 → EP (|xiyirθ0,l(x)|2) for each i = 1, ..., p, l = 1, ..., d ,

(S6) 1
n

∑n
i=1 |xiŷisθ0

(x)|2 → EP (|xiyisθ0
(x)|2) for each i = 1, ..., p, l = 1, ..., d , and

(S7) n1/4
(
θ̂∗ − θ0

)
converges in probability to zero.

We will show that

√
n
(
β̂∗

WLS − β̂WLS

)
−
√

n
(
β̂∗

W − β̂W

)
=
√

n

[(
X>W ∗−1X

)−1
X>W ∗−1ε∗

−
(
X>W−1X

)−1
X>W−1ε∗

]
+
√

n
(
β̂WLS − β̂W

)

converges to probability to zero, conditional on any sequence of x′s and y′s in S ′.

By assumption, the second term converges to zero on S ′. To show the first term converges in

probability to zero, we will show that

1√
n

(
X>

n Ŵ ∗−1ε∗ − X>
n W−1ε∗

)
P−→ 0

and
1

n

(
X>

n Ŵ ∗−1Xn − X>
n W−1Xn

)
P−→ 0 .

The first quantity can be written as

1√
n

X>
n

(
Ŵ−1 − W−1

)
ε∗ =

1√
n

∑
x>

n,i

(
1

vθ̂∗(xn,i)
− 1

vθ0
(xn,i)

)
ε∗i
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which again can be written as A + B where the jth entry of A is

Aj
..=

1√
n

n∑

i=1

xn,i,jε
∗
i

K∑

l=1

rθ0,l(xn,i)(θ̂
∗
l − θ0,l) ,

and with probability tending to one,

|Bj| ≤
1

2
√

n

∣∣∣θ̂∗ − θ0

∣∣∣
2∑

|xn,i,jε
∗
i sθ0

(xn,i)| .

By assumption (S7), n1/4(θ̂∗l − θ0,l)
p−→ 0. Further, for each l, n−3/4

∑n
i=1 xn,i,jε

∗
i

∑K
l=1 rθ0,l(xn,i)

converges in probability to zero since it has mean zero and variance

var

(

n−3/4
n∑

i=1

xn,i,jε
∗
i rθ0,l(xn,i)

)

= n−3/2
n∑

i=1

(xn,i,j ε̂irθ0,l(xn,i))
2

which converges to zero on S ′ by assumption (S5). Consequently, Aj converges in probability to

zero for each j. Similarly, Bj converges in probability to zero since
√

n(θ̂∗l − θ0,l)
2 converges in

probability to zero, and 1
n

∑ |xn,i,jε
∗
i sθ0

(xn,i)| converges in probability to a constant.

The other convergence,
1

n

(
X>

n Ŵ ∗−1Xn − X>
n W−1Xn

)
P−→ 0 ,

follows from a similar argument.

Proof of Lemma 3.1. We will first consider the estimate θ̃ obtained by regressing hδ(εi) on g(xi). By

a similar argument to Lemma 9.1,
√

n
(
θ̃∗−θ̃

)
is almost surely asymptotically normal. Consequently,

n1/4
(
θ̃∗ − θ̃

)
converges in conditional probability to zero, almost surely. We can express

n1/4
(
θ̃ − θ0

)
= n1/4

(
(G>G)−1G>h − θ0

)

= n1/4(G>G)−1G>e .

where G and h are the matrix and vector containing the g(xi) and hδ(εi), respectively, and e is the

vector with entries ei = hδ(yi)−g(x)θ0. Since ( 1
nG>G)−1 converges almost surely to E(g(xi)

>g(xi))

and n−3/4G>e converges in almost surely to zero, n1/4
(
θ̃ − θ0

)
converges almost surely to zero.

Writing

n1/4
(
θ̃∗ − θ0

)
= n1/4

(
θ̃∗ − θ̃

)
+ n1/4

(
θ̃ − θ0

)
,

we see this quantity converges in conditional probability to zero, almost surely.

Now,

θ̂∗ − θ̃∗ =

(
1

n

∑
g(x∗

i )g
>(x∗

i )

)−1 1

n

∑
g(x∗

i ) (hδ(ε̂
∗
i ) − hδ(ε

∗
i )) .

It is easily seen that
(

1
n

∑
g(x∗

i )g
>(x∗

i )
)

converges in conditional probability to E(g(x)g(x)′) and

n−3/4
∑

g(x∗
i ) (hδ(ε̂

∗
i ) − hδ(ε

∗
i )) converges in conditional probability to zero, almost surely.
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Proof of Theorem 3.2. The bootstrap estimator Ω̂∗−1
1/wΩ̂∗

v/w2Ω̂
∗−1
1/w converges in conditional probabil-

ity to Ω−1
1/w

Ωv/w2Ω−1
1/w

. As a consequence of Theorem 2, the bootstrap distribution of
√

nR(β∗
WLS −

β̂WLS) approximates the distribution of
√

n(Rβ̂ − q). It follows that the bootstrap distribution of

W ∗
n consistently approximates the distribution of Wn. Moreover, both the bootstrap distribution

of M∗
n and the sampling distribution of Mn are asymptotically distributed as maxi |Zi| where Z is

a multivariate normal random variable with mean zero and covariance matrix V Ω−1
1/w

Ωv/w2Ω−1
1/w

V ,

with V a diagonal matrix whose diagonal entries are equal to the square root of the diagonal entries

of Ω−1
1/wΩv/w2Ω−1

1/w. The claims of the theorem now follow from Slutsky’s Theorem.

Proof of Theorem 3.3 and Lemma 3.2. These claims follow from the same arguments as the wild

bootstrap counterparts, but with ε̂i replaced by εi.

Proof of Theorem 4.1. For almost all sequences {(xi, yi)}, Âvar(β̂OLS,k)
∗ converges to Avar(β̂OLS,k)

and Âvar(β̂WLS,k) converges to Avar(β̂WLS,k) in conditional probability. The claim follows from

applying Slutsky’s theorem conditionally.

Proof of Theorem 4.2. Following the argument of Theorem 3.1 of Romano and Wolf (2017), we must

only find the asymptotic joint distribution of
√

n(β̂W − β) and
√

n(β̂OLS − β) since
√

n(β̂WLS −
β̂W )

P−→ 0. We can write
√

n(β̂W − β) =
(

1
nX>W−1X

)−1 1√
n
X>W−1ε and

√
n(β̂OLS − β) =

(
1
nX>X

)−1 1√
n
X>ε. Because

(
1

n
X>W−1X

)−1
P−→ E

(
1

w(xi)
x>

i xi

)−1

= Ω−1
1/w ,

and (
1

n
X>X

)−1
P−→ E

(
x>

i xi

)−1
= Ω−1

1/1
,

it is enough to find the joint limiting distribution of 1√
n
X>W−1ε and 1√

n
X>ε. These are scaled

sums of i.i.d. mean zero random variables, so the Multivariate Central Limit Theorem gives

√
n

(
1
nX>W−1ε

1
nX>ε

)
d−→ N




(

0

0

)

,




E

(
x>

i xi
v(xi)

w2(xi)

)
E

(
x>

i xi
v(xi)
w(xi)

)

E

(
x>

i xi
v(xi)
w(xi)

)
E
(
x>

i xiv(xi)
)







 .

The claim follows from Slutsky’s Theorem.

Proof of Theorem 4.3. An argument analogous to the proof of Theorem 3.1 to the one presented

above shows that for any fixed λ, the bootstrap distribution of

√
n(λβ̂∗

WLS + (1 − λ)β̂∗
OLS − λβ̂WLS − (1 − λ)β̂OLS) =

√
n(β̂∗

λ − β̂λ) ,

is asymptotically normal with mean zero and covariance matrix Avar(β̂λ) in probability.

It follows from the weak law of large numbers for triangular arrays that Âvar(β̂λ)∗ converges in

conditional probability to Avar(β̂λ), almost surely. The second convergence follows from Slutsky’s

Theorem.
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Proof of Theorem 4.4. We begin with the case where Avar(β̂λ,k) is non-constant. In order to show

that
√

n
(
β̂

λ̂
−β
) d−→ N

(
0, Avar(β̂λ0

)
)
, we will show that

√
n
(
β̂

λ̂0
− β

)
−√

n
(
β̂λ0

− β
) P−→ 0. Indeed,

√
n
(
β̂λ̂0

− β
)
−

√
n
(
β̂λ0

− β
)

=
√

n
(
λ̂0 − λ0

)[
β̂OLS − β̂WLS

]

which converges in probability to zero.

Theorem 4.3 gives that for any fixed λ, the bootstrap distribution of

√
n(λβ̂∗

WLS + (1 − λ)β̂∗
OLS − λβ̂WLS − (1 − λ)β̂OLS) =

√
n(β̂∗

λ − β̂λ) ,

is asymptotically normal with mean zero and covariance matrix Avar(β̂λ) in conditional probability.

To prove the convergence of the bootstrap distribution stated in the theorem, we will first show

that the bootstrap distribution of
√

n
(
β̂∗

λ̂∗
− β̂λ̂∗

)
is asymptotically normal with mean 0 and co-

variance matrix Avar(β̂λ) in probability and then show that
√

n
(
β̂∗

λ̂∗
− β̂λ̂

)
−√

n
(
β̂∗

λ̂∗
− β̂λ̂∗

)
p−→ 0

in probability.

To show the desired asymptotic normality of
√

n
(
β̂∗

λ̂∗
− β̂λ̂∗

)
, we will show

√
n
(
β̂∗

λ0
− β̂λ0

)
−

√
n
(
β̂∗

λ̂∗
− β̂λ̂∗

)
P−→ 0 .

We can write

√
n
(
β̂∗

λ0
− β̂λ0

)
−

√
n
(
β̂∗

λ̂∗
− β̂λ̂∗

)
=
√

n(λ̂∗ − λ0)
[
β̂∗

WLS − β̂WLS

]

+
√

n
(
(1 − λ̂∗) − (1− λ0)

)[
β̂∗

OLS − β̂OLS

]
.

Because
√

n
(
β̂∗

WLS − β̂WLS

)
and

√
n
(
β̂∗

OLS − β̂OLS

)
are asymptotically normal (in probability), the

desired convergence follows from Slutsky’s Theorem if we can show λ̂∗ P−→ λ0. Note that λ̂∗ is a

continuous function of
[
Ω̂∗−1

1/w
Ω̂∗

v/w2Ω̂
∗−1
1/w

]

k,k
,
[
Ω̂∗−1

1/w
Ω̂∗

v/wΩ̂∗−1
1/1

]

k,k
, and

[
Ω̂∗−1

1/1
Ω̂∗

v/1Ω̂
∗−1
1/1

]

k,k
. Because

these quantities converge in probability to the population versions almost surely, it follows from

the continuous mapping theorem that λ̂∗ converges in conditional probability to λ0.

Similarly,

√
n
(
β̂∗

λ̂∗
− β̂λ̂∗

)
−

√
n
(
β̂∗

λ̂∗
− β̂λ̂

)
=
√

n
(
β̂λ̂∗ − β̂λ̂0

)

=
√

n(λ̂∗ − λ̂0)
[
β̂∗

WLS − β̂WLS

]

P−→ 0

in conditional probability.

The case where Avar(β̂λ,k) is constant is similar, but follows from a simpler argument.
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