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Abstract

This paper investigates the relationship between uniqueness of Nash equilibria and local

stability with respect to the best-response dynamics in the cases of sum-aggregative and

symmetric games. If strategies are equilibrium complements, local stability and uniqueness

are the same formal properties of the game. With equilibrium substitutes, local stability

is stronger than uniqueness. If players adjust sequentially rather than simultaneously, this

tends towards making a symmetric equilibria of symmetric games more stable. Finally, the

relationship between the stability of the Nash best-response dynamics is compared to the

stability of the response-dynamics induced by aggregate-taking behavior.
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1 Introduction

Since Cournot’s famous mathematical illustration of a stable equilibrium (Cournot (1897)), i.e.

a situation where mutual rational, non-cooperative behavior dynamically restores a previous

accidental departure of the equilibrium, the stability of an equilibrium has been a major con-

cern to economists. It has been recognized early that the stability of an equilibrium depends

critically on the underlying notion of dynamics (see e.g. McManus and Quandt (1961) for an

early illustration), which are not generically specified by the conventional definition of a nor-

mal form game. Subsequent research revealed that examining dynamics matters not only on

the conceptual ground of whether a (Nash)-equilibrium is eventually effectively reached when

starting from a disequilibrium situation, but also because important mathematical connections

between stability and other properties of the game have been uncovered. For example, Moulin

(1984) finds a striking relationship between the stability of the equilibrium and whether a game

is dominance-solvable or not in case of the stepwise best-reply adjustment process. In case of

continuous adjustment process, where the individual rate of adjustment depends proportionally

on the marginal benefit of playing the current strategy, Dixit (1986) highlights an intimate rela-

tionship between the stability of an equilibrium and the associated comparative static changes.

Okuguchi and Yamazaki (2008) derive sufficient conditions for the unique equilibrium in sum-

aggregative games to be globally stable. Dastidar (2000) shows that there is a close relationship

between local gradient stability and uniqueness of equilibria in the Cournot game. In this paper

I pursue a similar question by investigating the relationship between uniqueness and local stabil-

ity of the stepwise best-reply dynamics for the analytically tractable classes of sum-aggregative

games and symmetric games. I show that if strategies are equilibrium complements (without

the game e.g. being supermodular), local stability and uniqueness are the same mathematical

properties for both classes of games, but local stability is only sufficient for uniqueness in case

of substitutes. Further, it is shown that these results extend to local dominance-solvability and

to aggregate-taking behavior, a type of behavior that has been subject to augmented research

recently. In case of symmetric games it is illustrated that the difference between stability and

uniqueness in dependence of the strategy type vanishes if we consider sequential rather than si-

multaneous updating of the best-replies, and economic implications of this finding are discussed.

Moreover, it is shown that sum-aggregative symmetric games with substitutes naturally have a

unique equilibrium, the symmetric equilibrium, which is necessarily stable under the gradient
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(or sequential) dynamics. This paper is organized as follows. After introducing the notation

and general assumptions as well as the essential facts from matrix algebra, I derive the main

results and tools required for the stability analysis in section 2. Although some results in this

section are familiar, the derivation proceeds at a high level of generality and thereby keeps care-

fully track of the required assumptions. As newer results of matrix analysis are exploited, the

reader may find proofs to be short, elegant and instructive. In section 3 I apply the previously

developed machinery to sum-aggregative games for the case of conventional best-response and

aggregate-taking behavior, and examine the relationship between uniqueness and stability. Sec-

tion 4 provides a characterization when symmetric equilibria of (higher-dimensional) symmetric

games are locally stable, and compares the relationship between uniqueness and stability for the

simultaneous and sequential best-response dynamics and the gradient dynamics.

2 Contractions and local contraction

I first introduce the basic notation and essential mathematical concepts and then derive the

main results about contractions, which are repeatedly used later in the paper.

2.1 The game: Notation and assumptions

Consider a game of N ≥ 2 players. Specifically, the joint strategy space is S ≡ S(k) =
N∏
j=1

Sj(k),

where Sg(k) ⊂ Rk, the strategy space space of player g, is non-empty and convex. Int(S)

denotes the interior of S. The point xg ≡ (xg1, ..., xgk) ∈ Sg(k) denotes a strategy of player

g and x = (x1, ..., xN ) ∈ S ⊂ RkN is a strategy profile. From the perspective of a player g

let S−g denote the joint strategy space of all opponents of g and x−g ∈ S−g is a particular

strategy profile of g’s opponents. The payoff of player g is represented by Πg ∈ C2 (S,R),

where I always assume Πg to be strongly quasiconcave1 in xg. Hence
(
N,S(k),

{
Πj
})

is a twice

differentiable k-dimensional N -player game, simply referred to as a game. For such a game the

joint best-response φ(x) =
(
ϕ1(x−1), ..., ϕN (x−N )

)
is a well-defined and continuous function,

i.e. φ ∈ C0(S,S). For notational simplicity I frequently write ϕj(x) instead of ϕj(x−j). Let

∂φ(x) denotes its derivative at x. Finally, ∇Π(x) ≡
(
∇jΠj(x)

)N
j=1

is the Nk-vector obtained by

stacking all player gradients, and its Jacobian is denoted by H(x) = ∂∇Π(x)
∂x .

1Strong quasiconcavity means that the Hessian ∂2Πg(x)

∂xg∂xTg
is negative definite on

{
z 6= 0 : z · ∂Π(x)

∂xg
= 0, z · z = 1

}
(see Diewert et al. (1981), p. 409).
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2.2 Contraction mappings

X = (Rn, |·|X) and Y = (Rm, |·|Y ) are two complete metric spaces, where |·| denotes the re-

spective vector norm. Ū denotes a compact and convex subset of Rn with non-empty interior

U . Any reference e.g. to open or closed subsets of Ū means open or closed relative to Ū in the

usual topological sense. Specifically,
(
Ū , |·|X|Ū

)
is another complete metric space.

Among the class of continuous functions, the subclass of Lipschitz-continuous function plays an

outstanding role in economics. A function φ : Ū → Rm, Ū ⊂ Rn, is Lipschitz on Ū if there

is q > 0 such that |φ(x)− φ(x′)|Y ≤ q|x− x′|X for any x, x′ ∈ Ū . Lipschitz-continuity arises

naturally in many economic applications, as continuously differentiable functions on convex sets

are locally Lipschitz, and Lipschitz if these sets are also compact.

Fact 1 If
(
N,S,

{
Πj
})

is a game, φ (S) ⊂ Int(S) and S is compact, then φ is Lipschitz.

Proof:

Because φ (S) ⊂ Int(S), the Implicit Function Theorem (IFT) asserts φ ∈ C1 (S,S), which

implies that φ is locally Lipschitz. Consequently, φ is Lipschitz if S is compact.

�

The function φ is called a contraction (mapping) if it is Lipschitz with q < 1. The set of

all contractions from X to Y are denoted as C(X,Y ). It is important to bear in mind that

contractions are always defined contingent on certain norms (as X,Y are spaces rather than

sets), and the contraction property generally is not invariant under equivalent norms2.

Contractions are the main ingredient of the Banach fixpoint (FP) theorem. Its beauty stems

from the fact that it asserts the three desirable properties of a game, existence and uniqueness

of equilibrium as well as global stability of the best-reply map, to simultaneously occur: If

φ : S → S is a contraction and S is compact, then φ has exactly one FP x∗ and the recurrence

relation xt = φ(xt−1) converges globally (i.e. for any initial value x0 ∈ S) to x∗. In memoriam

of its initial discoverer, such convergence of the joint best-reply has frequently been quoted as

Cournot stability.

2This is a crucial difference to the more general Lipschitz property, which is preserved under equivalent norms.
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2.3 Essential facts from matrix analysis

Mn denotes the set of all real n × n matrices and λ is an eigenvalue of A ∈ Mn. σ(A) is

the spectrum of A, i.e. the n-list of all eigenvalues of A with corresponding spectral radius

ρ(A) ≡ max {|λ| : λ ∈ σ(A)}. Matrix norms are denoted by ‖·‖. A matrix norm has all prop-

erties of a vector norm and additionally satisfies submultiplicativity (i.e. ‖AB‖ ≤ ‖A‖ ‖B‖).

Whereas some authors do not include submultiplicativity in their definition of a matrix norm,

it is of central importance to this paper as under submultiplicativity the spectral radius gives

a lower bound for any matrix norm. Mathematically, this holds as submultiplicativity imposes

a restriction on which linear combinations of matrix norms generate new matrix norms.3 An

important class of matrix norms are those induced by some vector norm |·|: ‖A‖|·| ≡ max
|v|=1

|Av|.

As ‖A‖|·| turns the space of all bounded linear operators from X to Y into a Banach space (as

Y is a Banach space), such norms are frequently referred to as operator norms. The following

facts about matrix norms and their spectra are well known (see e.g. Horn and Johnson (1985)):

Fact 2 For any matrix norm there exists an operator norm ‖·‖|·| such that ‖A‖|·| ≤ ‖A‖ is true

for any A ∈Mn. Moreover, we have that |Av| ≤ ‖A‖|·| |v|.

Fact 3 If A ∈Mn then ρ(A) ≤ ‖A‖ for any matrix norm. Moreover, for any A ∈Mn and any

ε > 0 there exists a matrix norm such that ‖A‖ < ρ(A) + ε. Furthermore, lim
t→∞

At = 0 if and

only if ρ(A) < 1.

2.4 Characterization of (local) contractions

The following theorem provides a general characterization for a differentiable mapping φ to be

a contraction. Notably, φ is not required to be continuously differentiable, nor differentiable at

boundary points, and the linear operator ∂φ is not required to be a square matrix.

Theorem 1 Suppose φ ∈ C0
(
Ū ,Rm

)
is (Frechet)-differentiable on U . Then φ ∈ C(Ū , Y ) if and

only if

sup
x∈U
‖∂φ(x)‖|·|X < 1 (1)

Proof: Section 6.1

The fact that φ is continuous on Ū implies that (1) must be verified only for interior points of

3If ‖·‖ is a matrix norm, then r ‖·‖ is a matrix norm (i.e. satisfies submultiplicativity) if and only if r ∈ [1,∞).
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Ū , which is convenient for applications as φ may not be differentiable on boundary points (see

e.g. the rent-seeking game in section 3). Theorem 1 says that φ is a contraction if and only if

its directional derivatives, i.e. its local rate of change in some direction v, are smaller than one

as measured by the |·|Y -norm. In terms of minimal assumptions the proof of theorem 1 shows

that compactness of Ū is not critical, but differentiability and convexity are vital assumptions.

In economic theory, the case Y = X is of central importance, mainly because then the Banach

FP theorem can eventually be applied. If the premise of theorem 1 is satisfied then fact 2 in

conjunction with theorm 1 implies that if a matrix norm ‖·‖ satisfies ‖∂φ(x)‖ < 1 for any x ∈ U ,

then there is a norm |·|X such that φ is a contraction on Ū .

Under the additionally assumption that φ is continuously differentiable on Ū , we obtain a

condition on the spectral radius of ∂φ(x):

Corollary 1 Suppose that Y = X and φ ∈ C1
(
Ū ,Rn

)
. Then there exists a norm |·| such that

φ ∈ C(Ū ,Rn) if and only if sup
x∈U

ρ (∂φ(x)) < 1.

Proof: Section 6.2

I now derive a local version of when a function is a contraction. Suppose that φ : Ū → Ū and

let x∗ be a FP of φ. I say that x∗ is (locally) contraction-stable if there is a compact, convex

and complete metric space (V, |·|), x∗ ∈ V ⊂ Ū , such that φ ∈ C(V, V ).

Theorem 2 (Local contractions) Suppose φ : Ū → Ū , φ(x∗) = x∗ and ∂φ is continuous at

x∗. Then x∗ is contraction-stable if and only if

‖∂φ(x∗)‖|·| < 1 (2)

Moreover, if (2) is satisfied, the best-reply process xt = φ(xt−1) converges to x∗ for any initial

value x0 ∈ V .

Proof: Section 6.3

The next two results follow from theorem 2 and fact 3.

Corollary 2 Under the premise of theorem 2 we can replace (2) by the requirement that ρ (∂φ(x∗)) <

1.
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Examples can be constructed, where the best-reply dynamics (xt) converges to x∗ even if

ρ (∂φ(x∗)) = 1. This is a knife-edge case as there is no neighborhood4 V of x∗ such that

xt → x∗ on V if φ is a local expansion (ρ(∂φ(x∗)) > 1). Clearly, the best-response φ clearly

cannot be a local contraction if ρ (∂φ(x∗)) = 1. Moreover, theorem 4 in section 3.1 shows that

if ρ (∂φ(x∗)) = 1 at an equilibrium candidate, then Det(H(x∗)) = 0, i.e. the game cannot be

regular. But we cannot hope to disentangle the connection between uniqueness and stability

in general for non-regular games. In fact, the notion of contraction-stability is precisely what

is required to describe the sharp mathematical relationship between uniqueness and stability.

Finally, if there is local convergence and ρ (∂φ(x∗)) = 1, the best-response φ cannot be linear at

x∗:

Corollary 3 If ∂φ is continuous at the FP x∗, then x∗ is contraction-stable if and only if φ’s

linearization at x∗, L(x) = ∂φ(x∗)x + (I − ∂φ(x∗))x∗, is a contraction on Rn. Moreover, the

speed of convergence is approximately bounded by |xt+1−x∗|
|x0−x∗| ≤ ρ(∂φ(x∗))t.

Proof:Section 6.4

Note from the convergence rate inequality that the spectral radius not only qualitatively de-

termines whether or not a FP is contraction-stable but also influences how quickly a certain

vicinity of the FP is reached; a smaller value suggests that fewer iterations are required.

It is also noteworthy that contraction-stability is invariant to forward-anticipation of the players,

as long as all players anticipate in the same way.5 If all players forward-anticipate the best-

response of their opponents e.g. by r = 1 period, the best-reply process corresponds to xt+1 =

φ ◦ φ ◦ (xt) = φ3(xt), or generally to xt+1 = φ2r+1(xt) for r steps.

Proposition 1 The composition φ(2r+1) is a local contraction at x∗ if and only if φ is a local

contraction at x∗.

Proof:

Evaluating the adjustment matrix of φ2r+1(x) at x∗ gives ∂φ(x∗)2r+1, which by fact 3 and

corollary 2 implies the result.

�
4If φ is a diffeomorphism on Rn and x∗ is a hyperbolic FP (|λ| 6= 1 ∀ EV of ∂φ(x∗)) then even if ρ (∂φ(x∗)) > 1

as long as at least one EV has |λ < 1|, there can be some lower-dimensional submanifold about x∗ on which the
best-reply dynamics converge to x∗ (see e.g. Nitecki (1971)).

5Section 4.2 examines the case of sequential adjustments.
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Despite its innocent looking nature, condition (2) (or its spectral counterpart) can be hard to

verify in applications. Using particular induced matrix norms results in sufficient conditions on

the row (for |·|∞) or column (for |·|1) sums. Let Rm(x∗) ≡
Nk∑
t=1

∣∣∣∂ϕm∂xt

∣∣∣ < 1 denote the m-th row

sum of ∂φ(x∗) and Cm(x∗) ≡
Nk∑
t=1

∣∣∣ ∂ϕt∂xm

∣∣∣ < 1 denotes the m-th column sum.

Corollary 4 If ∂φ is continuous at the FP x∗ and Rm(x∗) < 1 or Cm(x∗) < 1 holds ∀m =

1, ..., Nk then x∗ is a locally contraction stable equilibrium.

If φ ∈ C0(Ū ,Rn) and Rm(x) < 1 (or Cm(x) < 1) hold for any x ∈ U , then the Banach FP

theorem together with theorem 1 assert that the game has a unique and globally contraction-

stable equilibrium.

For example, Hadar (1966) uses ‖·‖|·|∞ to discuss the scope of contraction-stability in an oligopolis-

tic model of product differentiation, noting that diagonal-dominance is far from necessary. In

case of sum-aggregative games it is possible to tractably generalize the stability conditions up

to almost necessary conditions.

A straightforward application of the IFT shows that, for k = 1, the Hadar-condition ‖∂φ(x)‖|·|∞ <

1 is equivalent to the requirement that H(x) has a dominant negative diagonal. This equivalence

breaks down if k > 1. It is easy to give numerical examples e.g. if k = 2, where Rm(x∗) < 1 ist

true for all m but H(x∗) violated diagonal dominance. Nevertheless, the following result holds:

Corollary 5 Suppose k = 2, x∗ is a FP and H(x∗) has a dominant negative diagonal. Then

Rm(x∗) < 1, m = 1, ..., 2N .

Proof: See section 6.5

3 Sum-Aggregative games

Consider a one-dimensional game with Πj = Πj(xj ,
∑
xi). The most intensively studied example

of such a game is the Cournot model of quantity competition: Πj = P (
∑
xi)xj − cj(xj), but

also the CES-model of price-competition Πj = (xj − cj)
x−σj∑
i
x1−σ
i

Vj , where xj denotes player j’s

price, has been used in various applications of oligopolistic competition. More recently, rent-

seeking games of the form Πj = π
(

xj∑
xi+rj

)
− cj(xj) have received considerable attention (see

Konrad (2009)). In the following two sections I derive the relationship between uniqueness

8



and (local) contraction-stability of equilibria in such games for conventional Nash behavior and

aggregate-taking behavior.

3.1 Uniqueness and local contraction-stability

I begin by deducing a useful characterization of contraction-stability in sum-aggregative games.

Suppose that φ(S) ⊂ Int(S). Then for any x ∈ Int(S) the matrix ∂φ(x) takes on the form

A =


a1 b1 · · · · · · b1

b2 a2 b2 · · · b2

· · · · · · · · · · · · · · ·

bN · · · · · · · · · aN

 (3)

where aj = 0 and bj = − Πj12+Πj22

Πj11+2Πj12+Πj22

.

Lemma 1 If aj 6= bj the matrix (3) has Det(A) =
N∏
j=1

(aj − bj)

(
N∑
j=1

bj
aj−bj + 1

)
. If aj = bj for

at least one j, then Det(A) = aj
∏
i 6=j

(aj − bj).

Proof:

If aj 6= bj subtract the first column from all other columns, multiply out (aj − bj) row-wise, add

to the first row all other rows and calculate the determinant of the remaining lower-triangular

matrix. If aj = bj for more than one j, Det(A) = 0. If aj = bj for exactly one j we can assume

without loss of generality that j = 1, and subtracting the first column from all other columns

gives a lower-triangular matrix.

�

From lemma 1 we get that an EV λ 6= 0 of ∂φ(x) either solves
∑ bj

λ+bj
= 1 or6 λ = −bj .

Theorem 3 Let x∗ be an interior equilibrium of the sum-aggregative game as described above.

If all bj(x
∗) have the same sign and

∑ |bj(x∗)|
1+|bj(x∗)| < 1, then x∗ is contraction-stable. Moreover,

if this holds at any x ∈ Int(S), then the game has a unique and globally contraction-stable

equilibrium x∗.

6The second case can occur only if bj = bg for at least two players.
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Proof:

Note that if bj(x
∗) ≥ 0 for all j, ρ(∂φ(x∗)) ≥ 0 is in fact an eigenvalue of ∂φ(x∗) according to the

Perron-Frobenius theorem, and obviously ρ(∂φ(x∗)) 6= −bj(x∗). If
∑ bj

1+bj
< 1 then

∑ bj
λ+bj

= 1

implies that ρ(∂φ(x∗)) < 1. If bj(x
∗) < 0 the claim follows from the previous result as −∂φ(x∗)

is positive. The last claim follows from corollary 1 and the Banach FP theorem.

�

Remarkably, the conditions of theorem 3 are more general in case of strategic complements or

substitutes (either bj ≥ 0 or bj < 0 ∀j) than the Rm- or Cm-condition in corollary 4.

Proposition 2 If Rm(x∗) < 1 or Cm(x∗) < 1 ∀m and strategies are either complements or

substitutes, then the premise of theorem 3 is satisfied and x∗ is contraction-stable.

Proof:

If bj ≥ 0 ∀j and Rm < 1 ∀m, then bj <
1

N−1 and hence
∑
j

bj
1+bj

< 1. If bj ≥ 0 ∀j and Cm < 1 ∀m

then assuming without loss of generality that bn ≥ bn−1 ≥ ... ≥ b1 implies
∑
j

bj
1+bj

≤ 1
1+b1

∑
j
bj

and the claim follows as
∑
j 6=1

bj < 1. The case of substitutes is proved similarly.

�

It is easy to find numerical examples showing the converse to be false. Moreover, if all bj have

the same sign,
∑ |bj |

1+|bj | < 1 is necessary for contraction-stability, i.e. theorem 3 characterizes

contraction-stability for such games:

Corollary 6 Suppose x∗ is an interior contraction-stable equilibrium of a sum-aggregative game

and all bj(x
∗) have the same sign. Then

∑ |bj(x∗)|
1+|bj(x∗)| < 1.

Proof:

If bj(x
∗) ≥ 0 for all j, ρ (∂φ(x∗)) is the largest EV of ∂φ(x∗) and

∑
j

bj
ρ+bj

= 1 together with ρ < 1

imply that
∑
j

bj
1+bj

< 1. If bj(x
∗) < 0 then the claim follows from a similar argument.

�

We also see from theorem 3 and corollary 6 that contraction-stability does not necessarily require

individual slopes to satisfy |bj | < 1, nor is |bj | < 1 ∀j itself sufficient for contraction-stability.

But it is clear that at most one player j can have |bj(x∗)| ≥ 1 for x∗ to be contraction-stable.
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If the slope condition in theorem 3 holds globally, then uniqueness and (global) stability of

the equilibrium both hold simultaneously. Obviously, this condition is restrictive and often is

violated in examples. But what can be said about the relationship between uniqueness and

stability, if we require only local contraction-stability?

Concerning uniqueness of equilibria the index theorem (see e.g. Vives (1999)) tells us that a game

with only regular interior equilibria has a unique equilibrium if and only if Det (−H(x)) > 0 on

Cr ≡ {x ∈ Int(S) : ∇Π(x) = 0}, where Cr is the set of critical points. I refer to a game with

φ(S) ⊂ Int(S) and Det(H(x)) 6= 0 on Cr as an index game. The main analytical power of the

index theorem stems from the fact that it is very general and provides us with a local condition

for uniqueness. The index characterization result together with the (local) characterization of

contraction-stability (theorem 3 and corollary 6) allows us to give a remarkably simple proof

that the following relationship between uniqueness and contraction-stability is satisfied:

Theorem 4 Consider a sum-aggregative index game. If bj(x) ≥ 0 ∀j on Cr, then the game has

a unique equilibrium if and only if every x ∈ Cr is contraction-stable. If bj(x) ≤ 0 ∀j on Cr

and every x ∈ Cr is contraction-stable, then there is a unique equilibrium.

Proof: Section 6.7

Note that the premise of theorem 4 restricts the best-response slopes only on Cr. Individual

replies can be non-monotonic and have different signs outside of this set, as is the case in the

rent-seeking example. In particular, the game needs not be super- nor submodular. Theorem

4 shows that uniqueness and contraction-stability are the same formal properties of a game

with equilibrium complements. This is interesting as the index refers to a topological-algebraic

property of a vector field, whereas contraction is a metric-analytical property of a function.

Nevertheless, the restrictions imposed by the respective conditions of these theorems are the

same in case of a (weakly) increasing joint-best response at critical points. A further consequence

of theorem 4 is, that whenever a game with either equilibrium complements or substitutes has

multiple equilibria, there must be unstable equilibria.

In case of equilibrium substitutes uniqueness and contraction-stability generally are not the

same properties, uniqueness generally being less restrictive than contraction-stability. This is a

difference to the gradient dynamics (see section 4.2) as used e.g. in Dastidar (2000), where it is

shown that a unique equilibrium in the Cournot-model is almost always stable. The difference
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between substitutes and complements stems from the fact that both uniqueness and contraction-

stability in games with complements impose the same restriction on the collective equilibrium

response, but uniqueness mainly imposes a restriction on individual slopes in case of substitutes.

Moulin (1984) shows that there is a tight relationship between contraction-stability and local

dominance-solvability of equilibria. A game is locally dominance solvable at x∗ if there exists

a neighborhood V (x∗) such that the individual successive elimination of dominated strategies

shrinks the joint strategy to the singleton {x∗} on V (x∗). Let ∂φ(x∗)+ denote the matrix

derived from ∂φ(x∗) by replacing each entry with its absolute value. For a one-dimensional

game we have that x∗ is locally dominance-solvable if and only if7 ρ (∂φ(x∗)+) < 1. As

ρ (∂φ(x)) ≤ ρ (∂φ(x)+) contraction-stability is less restrictive than dominance-solvability but

in case of equilibrium complements or substitutes (i.e. all non-zero entries of ∂φ(x∗) have

the same sign) the two properties are the same. Thus in view of theorem 4 we may immedi-

ately conclude that uniqueness in sum-aggregative index games with equilibrium complements

always implies local dominance-solvability (and vice-versa). Similarly, if all critical points are

contraction-stable in a sum-aggregative game with substitutes, then there is a unique and locally

dominance-solvable equilibrium (and vice-versa).

As a final remark it should be noticed that we can use the above analysis to address the

relationship between uniqueness and contraction-stability in two-player (not necessarily sum-

aggregative) games:

Proposition 3 A two-player index game where strategies are either complements or substi-

tutes on Cr has a unique equilibrium if and only if every critical point is contraction-stable (or

equivalently locally dominance-solvable).

Proof:

In view of theorem 4 we only have to prove that uniqueness implies contraction-stability in case

of substitutes at x ∈ Cr. If bj(x) ∈ (−1, 0], then
bj(x)
bj(x)−1 ∈ [0, 1

2), hence x is contraction-stable.

If b1(x) = −1 and b2(x) ∈ (−1, 0], then x also is contraction-stable. Finally, if b1(x) < −1 and

b2(x) ∈ (−1, 0] we have Det(−H(x)) > 0 if and only if b1(x) > 1
b2(x) , which in turn is equivalent

to
∑ bj(x)

bj(x)−1 < 1, showing that x is contraction-stable.

7Similar to the discussion in section 2.4, knife-edge cases can be constructed, where x∗ is locally dominance-
solvable but ρ

(
∂φ(x∗)+

)
= 1. But then the type of game considered by theorem 3 would have a singularity at x∗,

meaning that the index theorem cannot be invoked. Therefore, this non-generic case is ruled out by assumption.
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�

3.2 Aggregate-taking behavior dynamics and uniqueness

Recently, there has been increased interest in aggregate-taking behavior (ATB, see e.g. Alos-

Ferrer and Ania (2005)) as opposed to Nash-behavior (NB). A relative advantage of ATB over

NB is that analyzing a game under ATB usually is simpler in applications, especially in presence

of heterogeneity (see e.g. Grossmann et al. (2012)). ATB means that the players play a best-

response but not directly to the individual strategies of their opponents but rather to some

aggregate strategy. For example, the players might ignore the exact composition of the aggregate

because of perceptional or informational limitations. Although the concept of ATB is not limited

to sums, the case of sum-aggregative games is natural in many settings and simple, explaining

why it arises frequently in applications. The crucial point where ATB and NB differ is that

under ATB the players ignore how their own strategy affects the aggregate when making their

decisions. This points towards a more Walrasian motivation of ATB as an appropriate behavioral

assumption especially if own effects on the aggregate are negligible, e.g. in large games. In case

of the sum-aggregative games considered here, the difference in behavior manifests itself in the

respective FOC’s and the corresponding slopes. Consider a sum-aggregative game with strongly

quasiconcave payoffs8 Πj(xj , Q) in xj for any given Q =
∑
i
xi, and only interior solutions of

the respective optimization problems, i.e. ϕjA(Q) ∈ Int(S). Then, the ATB joint-response

corresponds to the function φA(x) =
(
ϕjA(Q)

)N
j=1

, with slopes ∂ϕjA(Q) ≡ bjA(Q) = −Πj12

Πj11

. An

interior ATB equilibrium x∗A solves φA(x∗A) = x∗A. Under ATB the best-response dynamics are

described by the recurrence relation xt+1 = φA(xt) =
(
ϕjA(

∑
xti)
)N
j=1

. Hence we can use the

same machinery as before to assess the local contraction-stability of an ATB-equilibrium by

verifying whether or not φA is a local contraction at x∗A:

Proposition 4 Suppose that x∗A is an interior ATB equilibrium with aggregate Q∗. Then x∗A is

contraction-stable under the ATB response dynamics if and only if

∣∣∣∣∣ N∑j=1
bjA (Q∗)

∣∣∣∣∣ < 1. Moreover,

if the previous condition holds for any Q(x) =
∑
xi with x ∈ Int(S), the game has a unique

and globally contraction-stable ATB equilibrium.

8Πj
1(xj , Q) = 0 ⇒ Πj

11(xj , Q) < 0
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Proof:

The first claim can be proved by using corollary 2 and lemma 1, noting that the j-th row of the

matrix ∂φA(x) has the form (bjA, ..., b
j
A), i.e. an EV λ of ∂φA(x) either is zero or solves λ =

∑
bjA.

Alternatively, we can sum up the equations ϕjA(Q) = xj to obtain the single equilibrium equation∑
ϕiA(Q) = Q. Hence Q∗ is contraction-stable if and only if

∣∣∣∂∑ϕiA(Q∗)
∂Q

∣∣∣ < 1, which also proves

the first claim. The second claim follows from corollary 1 and the Banach FP theorem.

�

Let∇ΠA(x) ≡
(
∇jΠj (xj , Q)

)N
j=1

be theN -vector obtained by stacking all players ATB gradients

(remember that players treat Q as fixed), with corresponding Jacobian HA(x) = ∂∇ΠA(x)
∂x . Any

candidate for an interior ATB equilibrium belongs to CrA ≡ {x ∈ Int(S) : ∇ΠA(x) = 0}. I call

a game with ATB, φA(S) ⊂ Int(S) and Det(HA(x)) 6= 0 on CrA an ATB index game. As

mentioned above, ATB has the advantage of simplifying the involved algebra. This can be seen

in the proof of the next theorem, which states that with ATB contraction-stability at critical

points is always sufficient for uniqueness, and necessary under complements (i.e. if bAj ≥ 0 on

CrA).

Theorem 5 A sum-aggregative ATB index game has a unique equilibrium if and only if∑
bjA(Q(x)) < 1 on CrA. If every x ∈ CrA is ATB contraction-stable, then there is a unique

ATB equilibrium. Moreover, if bjA(x) ≥ 0 ∀j on CrA, then the game has a unique ATB equilib-

rium if and only if every x ∈ CrA is ATB contraction-stable.

Proof:

Suppose that x ∈ CrA. Note that the j-th row of HA(x) has all entries equal to Πj
12 except the

diagonal entry, which is Πj
11 + Πj

12. Using lemma 1 we immediately see that Det(−HA(x)) > 0

if and only if
∏
j

(−Πj
11)(1−

∑
i
bAi ) > 0. Consequently, there is a unique ATB equilibrium if and

only if
∑
i
bAi (Q(x)) < 1, where Q(x) =

∑
xi by the index theorem. All remaining claims then

follow from proposition 4.

�

This result is similar to theorem 4, but a glance at the proof shows that it requires considerably

less effort to be established. Moreover it is notable, that theorem 5 does not generally require

the slopes to have the same signs at critical points. This originates from the convenient property
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of ATB that every row of ∂φA(x) has the same entries, which implies that there is at most one

non-zero EV λ of (∂φA(x)) independent of the signs of the entries, and ρ (∂φA(x)) = |λ|.

Does ATB stabilize or destabilize a given game compared to the NB with respect to the induced

best-response dynamics? A direct comparison of proposition 4 to theorem 3 suggests that,

unfortunately, the question may be hard to answer generally, as usually x∗A 6= x∗. Nevertheless,

section 4.3 shows with linear and symmetric best-responses there is a clear-cut result, supported

by a nice intuition.

4 Symmetric games

Besides the class of sum-aggregative games, the class of symmetric games is another candidate

where we can expect to uncover some pattern between uniqueness and contraction-stability due

to the symmetric structure of the best-replies. Symmetric games have been of considerable

importance in applied work (e.g. Salop (1979), Grossman and Shapiro (1984), Hefti (2011)),

mainly because symmetry simplifies the analysis. In this section I apply previous results to

symmetric games. I provide a simple characterization for the local contraction-stability of a

symmetric equilibrium and, similar to section 3, relate stability to uniqueness. As before, there

is a crucial difference if strategies are either substitutes or complements. As symmetric games are

highly tractable, contraction-stability can be effectively compared to (time-continuous) gradient-

stability. Whereas in case of complements these two dynamical concepts are equivalent, gradient-

stability is less restrictive in terms of the slope coefficients with substitutes. However, this

difference evaporates if players follow a sequential rather than a simultaneous updating process.

As illustrated in a simple example, these findings can be of economic interest e.g. if individual

adjustments change over time and a presumably stable equilibrium bifurcates to an unstable

one without changing the conventional parameters of the game.
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4.1 Uniqueness and contraction-stability

Let M denote a partitioned Nk ×Nk−matrix with N ×N partitions of the form

M =



0 A A · · · A

A 0 A · · · A

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

A A · · · A 0


(4)

Lemma 2 The spectral radius of M is ρ(M) = (N − 1)ρ(A).

Proof: Section 6.6

Note that for k = 1 the result follows from lemma 1. It is not hard to see that in a symmetric

k-dimensional N -player game the matrix ∂φ(x∗) takes on the form (4) at a symmetric equi-

librium x∗, where 0 and A both are k × k matrices and A = ∂ϕj(x∗)
∂xg

, g 6= j. From Lemma

2 and corollary 2 we immediately get the following characterization of contraction-stability at

symmetric equilibria:

Theorem 6 The interior symmetric equilibrium x∗ is contraction-stable if and only if (N −

1)ρ
(
∂ϕ1(x∗)
∂x2

)
< 1.

Hence to check for contraction-stability we only need to evaluate the slopes of the best-response

function of an arbitrary player with respect to the strategy of some other player. Let ϕ̃(x̄) ≡

ϕ1(x̄, ..., x̄), x̄ ∈ S, and note that x∗ = (x∗1, ..., x
∗
1) is an interior symmetric equilibrium if and

only if ϕ̃(x∗1) = x∗1. The advantage of this formulation especially in applications is that we

only need to write down the profit function as Π(x1, x̄, ..., x̄) and solve the respective FOC at

symmetric points. Theorem 6 can be succinctly restated in terms of ϕ̃:

Corollary 7 The interior symmetric equilibrium x∗ is contraction-stable if and only if ρ
(
∂ϕ̃(x∗1)
∂x̄

)
<

1.

Proof:

Follows from theorem 6 and
∂ϕ̃(x∗1)
∂x̄ = (N − 1)∂ϕ

1(x∗)
∂xh

.

�
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See the proof of proposition 5 for how
∂ϕ̃(x∗1)
∂x̄ can be expressed in terms of partial derivatives of

Π. In now turn to the relationship between uniqueness and contraction-stability in symmetric

games. Any equilibrium in a symmetric games must either be symmetric or asymmetric, and if x∗

is an asymmetric equilibrium, there must be at least N−1 further asymmetric equilibria. Under

fairly general conditions, a symmetric game possesses at least one symmetric equilibrium (Hefti

(2011)). Hence uniqueness may fail to hold in symmetric games because there are asymmetric

equilibria or multiple symmetric equilibria. Let us first deal with the relationship between

contraction-stability and multiplicity of symmetric equilibria. Let ∇1Π̃1(x1) ≡ ∇1Π1(x1, ..., x1).

Hence ∇1Π̃1 : S(k)→ Rk defines a vector field over S(k) with corresponding Jacobian H̃(x1) ≡
∂∇1Π̃1(x1)

x1
. Note that any interior symmetric equilibrium x∗ = (x∗1, ..., x

∗
1) has x∗1 ∈ Crs ≡{

x1 ∈ Int(S(k)) : ∇1Π̃1(x1) = 0
}

. I call a symmetric game, where ∇1Π̃1 points into S(k) at

boundary points9 and Det(H̃(x1)) 6= 0 on Crs a symmetric index game. For such an index

game we can use the index theorem to count the multiplicity of symmetric equilibria (their

number must always be odd, see Hefti (2011) for details). Moreover, a symmetric index games

has exactly one symmetric equilibrium if and only if Det(−H̃(x1)) > 0 on Crs. The following

proposition says that in general (i.e. for k ≥ 1) local contraction-stability implies the existence

of exactly one symmetric equilibrium.

Proposition 5 Consider a k-dimensional symmetric index game. If every x1 ∈ Crs is contraction-

stable, then there is exactly one symmetric equilibrium.

Proof:

Suppose that x1 ∈ Crs and let A(x1) = ∂2Π1(x1,x−1)
∂x1∂x1

and B(x1) = ∂2Π1(x1,x−1)
∂x1∂x2

(N − 1), both

evaluated at (x1, ..., x1). The IFT implies that ∂ϕ̃(x1)
∂x̄ = −(A(x1))−1B(x1). Next, note that

H̃(x1) can be written as H̃(x1) = A(x1)+B(x1) so simple algebra shows that Det(−H̃(x1)) > 0

if and only if Det
(
I − ∂ϕ̃(x1)

∂x̄

)
> 0. Now, λ ∈ σ

(
∂ϕ̃(x1)
∂x̄

)
if and only if (1−λ) ∈ σ

(
I − ∂ϕ̃(x1)

∂x̄

)
.

Consequently, if x∗ is contraction-stable, we must have |λ| < 1 for any EV of ∂ϕ̃(x1)
∂x̄ , which in

turn implies Det
(
I − ∂ϕ̃(x1)

∂x̄

)
=

k∏
i=1

(1− λi) > 0 as can easily be verified, and the claim follows

from the index theorem.

�
9For k = 1 this is equivalent to saying that the game has no symmetric boundary equilibria.
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Put differently, proposition 5 says that whenever a symmetric index game has multiple symmetric

equilibria, there must be unstable equilibria. We also see that the equivalence between unique-

ness and local contraction-stability encountered in section 3.1 in case of equilibrium complements

appears to be a one-dimensional phenomenon, as Det(−H̃(x1)) > 0 does not necessarily imply

ρ
(
∂ϕ̃(x1)
∂x̄

)
< 1 even if ∂ϕ̃(x1)

∂x̄ > 0 already for k = 2. But if k = 1 we get a similar result

concerning uniqueness and stability as in section 3.1. First, note that the equivalence between

contraction-stability and local dominance solvability necessarily extends to symmetric equilibria

and leads to the following characterization of contraction-stability of symmetric equilibria in

one-dimensional symmetric games:

Proposition 6 Let x∗ be an interior symmetric equilibrium of a one-dimensional symmetric

game. Then x∗ is contraction-stable if and only if one of the following conditions is satisfied:

1)
∣∣∣∂ϕ̃(x1)

∂x̄

∣∣∣ < 1

2) Rm(x∗) < 1 ∀m

3) H(x∗) has a dominant diagonal

4) The game is locally dominance solvable at x∗

Proof:

The first two equivalence relations follow from corollary 7 as ρ
(
∂ϕ1(x∗)
∂x2

)
=
∣∣∣∂ϕ1(x∗)

∂x2

∣∣∣ (N − 1) =∣∣∣∂ϕ̃(x1)
∂x̄

∣∣∣, and 2) ⇔ 3) follows from the IFT. The last equivalence follows from Moulin’s result

mentioned earlier.

�

Notably, diagonal dominance of the Jacobian H(x∗) is not only sufficient for contraction-stability

(which we already know from section 2.4) but also necessary10 in case of a symmetric game.

The following proposition shows that the inexistence of multiple symmetric equilibria and

contraction-stability are the same properties of a game where strategies are complements at

symmetric equilibria. Further, these properties are independent of whether or not there are

asymmetric equilibria. In Hefti (2011) it is shown that

Π1(x1, x2;X) = 0 =⇒ −Π12(x1, x2;X)

Π11(x1, x2;X)
> −1 , X ≡ (x3, ..., xN ) (5)

10For k > 1 this equivalence generally breaks down (but because of corollary 5 the sufficiency part still holds).
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is a sufficient condition for the inexistence of asymmetric equilibria.

Proposition 7 Let x∗ be an interior symmetric equilibrium of a one-dimensional symmetric

index game.

1) If ∂ϕ̃(x1)
∂x̄ ≥ 0 on Crs, then x∗ is the only symmetric equilibrium if and only if any x1 ∈ Crs

is contraction-stable.

2) If ∂ϕ̃(x1)
∂x̄ ≤ 0 on Crs, x∗ is the only symmetric equilibrium, and if (N − 1)Π12(x1, x−1) >

Π11(x1, x−1) holds for any x−1 ∈ SN−1 whenever Π1(x1, x−1) = 0, then x∗ is both unique

and contraction-stable.

Proof:

The proof of proposition 5 reveals that there is exactly one symmetric equilibrium if and only

if ∂ϕ̃(x1)
∂x̄ < 1 on Crs, and the first claim follows from proposition 6. Similarly, if ∂ϕ̃(x1)

∂x̄ ≤ 0

on Crs, there is exactly one symmetric equilibrium. The remaining claim is true, as (N −

1)Π12(x1, x−1) > Π11(x1, x−1) on Π1(x1, x−1) = 0 implies both contraction-stability of any

symmetric equilibrium candidate and condition (5) to hold.

�

Obviously, in case of equilibrium symmetric complements there can be a single symmetric equi-

librium (necessarily contraction-stable) with our without the existence asymmetric equilibria.

However, if additionally (5) is satisfied, then the symmetric equilibrium necessarily is unique.

Summarizing, we note that a similar divergence as encountered in section 3.1 between uniqueness

and stability in dependence of the strategy type is also present in symmetric games. Further,

proposition 7 shows that with substitutes the symmetric equilibrium is a contraction if the reply-

functions are sufficiently flat11, which in turn limits the scope of asymmetric equilibria. In case

of complements a change in the number of players affects both the scope for multiple symmetric

equilibria and whether a symmetric equilibrium is contraction-stable. Such a relation does not

hold for games with substitutes. Below it is shown that the restrictive nature of contraction-

stability in case of symmetric substitutes crucially originates from the requirement that all

players update their behavior simultaneously.

11It is noteworthy that for N > 2 the above condition generally is weaker than diagonal dominance.
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4.2 Gradient dynamics, sequential adjustments and uniqueness

The notion of contraction-stability implicitly entails the simultaneity of the best-response ad-

justments in its definition. What happens if players adjust sequentially, e.g. by taking turns?

Although this question has been raised earlier (Gabay and Moulin (1980) and Moulin (1984)),

there has been no clear-cut answer, as examples can be constructed, where an equilibrium is sta-

ble under sequential adjustments but not under simultaneous adjustments and vice-versa. This

section illustrates that in symmetric games a stability ranking of the two different adjustment

processes exists in terms of the restrictions imposed on the best-response slope coefficient, and

compares these restrictions to those imposed by gradient dynamics.

I refer to the time-continuous adjustment process x(t) induced by the N FOCs, ẋj = sΠj
1 (x)

for 1 ≤ j ≤ N , as gradient dynamics (see e.g. Dixit (1986), Vives (1999), Dastidar (2000) or

Hefti (2011) for applications). s > 0 is an arbitrary speed of adjustment. Let Ĥ(x) denote

the Jacobian associated with the right sides of these equations. An interior equilibrium x∗ is

(locally) gradient stable if all eigenvalues of Ĥ(x) have negative real parts.

Lemma 3 Suppose x∗ is a symmetric interior equilibrium. Then x∗ is gradient stable if and

only if
∂ϕ̃(x∗1)

∂x̄
∈ (−(N − 1), 1) or

∂ϕ1(x∗1)

∂x2
∈
(
−1,

1

N − 1

)
(6)

Proof:

As Ĥ(x∗) = sH(x∗) is a symmetric matrix, all eigenvalues are negative if and only if −H(x∗)

is positive definite. Using lemma 1 and
∂ϕ̂(x∗1)
∂x̄ = − (N−1)Π1

12(x∗)

Π1
11(x∗)

= (N − 1)
∂ϕ1(x∗1)
∂x2

it easily is

verified that this is the case if and only if condition (6) holds.

�

While the slope domain of
∂ϕ̃(x∗1)
∂x̄ asserting contraction-stability is symmetric around 0, this is

not the case for the gradient dynamics (if N > 2). Nevertheless, we see that gradient-stability,

contraction-stability, local dominance-solvability and the existence of exactly one symmetric

equilibrium are the same formal properties of a symmetric index game with equilibrium com-

plements. Hence under complements very different dynamic processes (in case of dominance-

solvability infinite foresight) all make the same stability prediction. As a remark it should also be

noted that by the open mapping principle these results stay valid under sufficiently small (asym-

metric) perturbations of the exogenous parameters of the game. The asymmetry in condition
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(6) reveals an interesting tension between the response to a change of an individual strategy and

to a change of all the opponents’ strategies. With complements the individual slope condition is

always satisfied but the collective slope conditions might be violated whereas the opposite holds

with substitutes.

I now illustrate that the relative restriction imposed by contraction-stability compared to the

gradient dynamics originate from the simultaneity entailed in its definition. For a given ordering

{1, ..., N} of the players the sequential dynamic is defined by the sequence (xt) with components

evolving according to:

xt+1
i =

 ϕi(xt−i)
1+t−i
N ∈ N

xti else
(7)

I call the symmetric equilibrium x∗ sequentially stable if xt → x∗ locally, and convergence

occurs if (7) induces a local contraction. In order to establish xt → x∗ it suffices to show

that the subsequence xN , x2N , x3N , ... converges to x∗. Let yt = xtN and consider the sequence

yt+1 = z
(
yt
)
, where z

(
yt
)

= zN ◦ zN−1 ◦ ... ◦ z1(yt) with zj(y) =
(
y1, ..., ϕ

j(y−j), ..., yN
)
. By

corollary 3 the composite mapping z is a local contraction at x∗ if and only if

L(x) = z(x∗) + ∂z(x∗) · (x− x∗) = x∗ + ∂zN (x∗) · . . . · ∂z1(x∗) · (x− x∗)

= x∗ +A(x∗) · (x− x∗)
(8)

is a contraction, i.e. if and only if ρ (A(x∗)) < 1. Hence, if ρ (A(x∗)) < 1 the sequence (yt)

converges (locally) to x∗. By symmetry, ∂zj(x
∗) can be represented by the N × N -matrix

∂zj = (zlm) with

zlm =


1 l = m 6= j

a l = j 6= m

0 else

and a = ∂ϕ1(x∗)
∂x2

. Then, A(x∗) =
N∏
j=1

∂zj(x
∗) is a N × N -matrix, where the first column has

only zeroes as entries. Hence the non-trivial eigenvalues λ of A(x∗) can be found by solving

Â(x∗)v = λv, where Â is obtained from A by deleting the first row and column. For N = 4 we
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obtain

Â(x∗) =


a2 a(1 + a) a(1 + a)

a2(1 + a) a2(2 + a) a(1 + a)2

a2(1 + a)2 a2(1 + a)(2 + a) a2(3 + a(3 + a))

 (9)

Note that the submatrix obtained by deleting the last row and column of Â corresponds to the

situation if there were N = 3 players, and deleting the last two rows and columns leads to the

case of N = 2 players. If a ≥ 0 and we use the maximum row-sum norm to bound the spectral

radius, we obtain that ρ(Â) < 1 if a < 1/(N − 1) for N = 2, 3, 4. For a < 0 using the same

norm reveals that ρ(Â) < 1 if a > −1, for N = 2, 3, 4. These simple calculations show that if

a ∈
(
−1, 1

N−1

)
, N ∈ {2, 3, 4}, then ρ (A(x∗)) < 1, i.e. sequential stability results. Comparing

this to 3 we see that the stability domain of the sequential dynamics corresponds at least to the

domain of the gradient dynamics. In fact, by explicitly calculating the spectral radius it can be

shown that this bound is sharp, i.e. the two domains coincide. Unfortunately, the question how

ρ (A(x∗)) depends on a cannot be answered analytically for general N in a simple way, as the

maximum row-sum norm (or other conventional norms) do not efficiently bound the spectral

radius if N > 4 and a < 0. Using numerics12 to calculate the eigenvalues in dependence of (a,N)

reveals the stability regions of the sequential dynamics and the gradient dynamics to coincide

also for N > 4 (left picture of figure 1). These findings can be summarised as:

N=5
N=10

N=15 sim
semi

seq

Figure 1: Spectral radius

Observation 1 For symmetric equilibria the stability regions of the sequential and the gradient

dynamics coincide.

12The numerical simulation was conducted on a Mathematica 8.0 platform.
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The difference between the simultaneous and the sequential dynamics with substitutes is inter-

esting. It means that an equilibrium, which is unstable under simultaneous updating, might

be stable if the players only update infrequently, e.g. because they allocate their limited atten-

tion among several different activities. While small shocks would be absorbed by the sequential

dynamics, this may not hold for the simultaneous dynamics. Further numerical examination

support the conjecture of the dynamics gradually approaching the simultaneous dynamics in

case of substitutes the more frequently the players update. This is illustrated in the right pic-

ture of figure 1 for N = 3, where ”sim” is the simultaneous and ”seq” the sequential dynamics.

”Semi” corresponds to a case, where players 2 and 3 behave sequentially but player 1 updates

every period. Summarizing, we record that if players start to concentrate more on a symmetric

game with substitutes, i.e. they update their responses more frequently, a previously stable

pattern can become unstable. It would certainly be of interest to test such a conjecture in the

lab.

If the symmetric index game under consideration is of a sum-aggregative nature and e.g. costs

are strictly convex, the following strong result can be obtained:

Proposition 8 A sum-aggregative symmetric index game with equilibrium substitutes and

Π11(x1,
∑
xi) < 0 has a unique and gradient (or sequentially) stable symmetric equilibrium.

Proof:

Equilibrium substitutes, lemma 3 and observation 1 imply that the only symmetric equilibrium

x∗ is gradient (or sequentially) stable if and only if Π12(x∗)
Π11(x∗) < 1. Hence, if (5) is satisfied, there

cannot be any asymmetric equilibria and x∗ must be gradient stable. But for sum-aggregative

games condition (5) is equivalent to Π11(x1,
∑
xi) < 0.

�

Both the Cournot-game and the rent-seeking game mentioned in section 3 are prone to equi-

librium substitutes. If in the Cournot example the strategies (quantities) are substitutes (P ′ +

x1P
′′ < 0) and costs are strictly convex, then proposition 8 implies that the symmetric equi-

librium is the unique and gradient stable equilibrium.13 Similarly, the rent-seeking game Π1 =

π
(

x1∑
xj+r

)
−c(x1), with π′ > 0, r, c′′ ≥ 0 and π′′ ≤ 0, with equilibrium substitutes (−π′′(z)z

π′(z) < 1)

13This generalizes a result of Dastidar (2000) to arbitrary sum-aggregative games with substitutes.
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has a unique and gradient (or sequentially) stable symmetric equilibrium. Further, in both ex-

amples the symmetric equilibrium usually is prone to violate (simultaneous) contraction-stable if

N > 2. This can be illustrated by considering the class of homogeneous symmetric games. Sup-

pose that Π(xj , x−j) = π(xj , x−j)− θxηj , where π is homogeneous of some degree k in (xj , x−j)

and η ≥ 1. The Tullock contest success function, πj =

(
xj∑
n
xn

)r
V , where r ∈ (0, 1], is an

important example for k = 0 (as only relative efforts matter for success). The Cournot model

with iso-elastic market demand, πj =

(∑
n
xn

)k−1

xj is an example where homogeneity degree

k ∈ [0, 1) is possible. Let ε = (N − 1)x1
∂2π

∂x1∂x2
/ ∂π∂x1

.

Proposition 9 For any k < 1 there exists exactly one symmetric equilibrium x∗, which is

contraction-stable (or locally dominance-solvable) if and only if ρ =
∣∣∣ ε

(η−k)+ε

∣∣∣ < 1.

Proof:

As π̃1(x1) ≡ π1(x1, x1, ..., x1) is (k− 1)-homogeneous in x1, π̃1(x1) = τxk−1
1 , τ > 0, which shows

that π̃1(x) − θηxη−1 = 0 has a unique solution whenever k < 1. Using the IFT and (k − 1)-

homogeneity of π1 gives ∂ϕ̃(x1)
∂x̄ = ε

(η−k)+ε in any symmetric equilibrium, and the claim follows

from proposition 6.

�

The following table depicts that, unless η > 1, the symmetric equilibrium usually is not

contraction-stable.

Game Parameter Complements Contraction- Gradient
iff stability stability

Tullock r ∈ (0, 1] r ≤ 1
N−1 r < 2

N−1 r ∈ (0, 1]

Cournot k ∈ [0, 1) k = 0, N = 2 N = 2 k ∈ [0, 1)

Table 1: Stability regions for η = 1

As ε is zero-homogeneous in x, so is ∂ϕ̃(x1)
∂x̄ , which further implies that ε(x1, ..., x1) must be con-

stant. Hence ρ′(η) < 0 unambiguously.14 Further, proposition 9 suggests that with substitutes

a lower value of k tends towards making the equilibrium more likely to be stable. Formally,

ρ′(k) > 0 holds if and only if ε(k) > (k − η)ε′(k), which may or may not be satisfied in the

Cournot-example (but mostly it is satisfied), depending on the exact parameter constellation.

14It should be noted that while this statement holds in homogeneous games, it can be violated as x∗ also
depends on parameters influencing the elasticity of the costs.
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Summarizing, we observe that while we cannot expect simultaneous contraction-stability to

occur if strategies are substitutes in the Tullock or Cournot-example unless costs are sufficiently

convex, sequential stability (or gradient stability) is necessarily satisfied at the unique symmetric

equilibrium of the game.

4.3 Linear sum-aggregative games and ATB

In this section I compare the ATB dynamics to the NB dynamics in terms of their stability in

case of a symmetric linear sum-aggregative game. Let Q =
∑
i
xi and Q̄j =

∑
i 6=j

xi. Under NB

the players optimize Πj
(
xj , xj + Q̄j

)
for given Q̄j , whereas under ATB the optimize Πj (xj , Q)

for given Q. The FOC of the NB-problem is linear in
(
xj , Q̄j

)
if and only if the FOC of

the ATB-problem is linear in (xj , Q). Hence, without loss of generality, we can work with

Πj = Axj + BQxj − 1
2cx

2
j . As we are interested only in stability we can choose A = 0 and set

c > 0 and 2B < c. Then x∗A = x∗ = 0, bj = B
c−2B and bjA = B

c .

Proposition 10 If strategies are complements (B ≥ 0) then the equilibrium is ATB contraction-

stable whenever it is NB contraction-stable. Under substitutes the opposite direction applies.

Proof:

Let ρ ≡ ρ (∂φ) and ρA ≡ ρ (∂φA). From the proof of proposition 4 we obtain ρA =
∣∣∣∑ bjA

∣∣∣ = N |B|
c .

Further ρ = (N−1)|B|
(c−2B) follows from lemma 2. If B ≥ 0, then plugging (N−1)B

c−2B = ε into ρA gives

Nε
(N−1)+2ε . Hence ρA < 1 if and only if Nε < (N − 1) + 2ε, which holds whenever ε < 1, proving

the first claim. The second claim follows as ρA = −BN
c > − BN

c−2B > ρ.

�

There are two differences between ATB and NB relevant for stability. First, the ATB dynamics

have an additional potential for instability originating from the fact that a player is updating

his strategy over his own prior action, not just over the actions of his opponent. Formally, this

manifests itself in the fact that the response matrix ∂φA may have a non-zero diagonal. If all

slopes under ATB and under NB were identical (which is never possible in a linear game unless

B = 0) then ρA ≥ ρ. The second effect originates from the fact that an NB-player takes into

account his own effect on the aggregate when updating his response, while an ATB-player does

not. To illustrate, consider the decision of player 1 and suppose that dx2 > 0. Then dQ̄1 > 0,
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which under complementarity implies dx1 > 0 for both ATB and NB. But dx1 > 0 also means

dQ > 0, which is taken into account only by the NB-player and, by complementarity, induces him

to increase x1 even further. Thus for complements player 1’s response towards a change of an

opponent’s strategy is stronger under NB than under ATB, which manifests itself in a steeper

slope of his response function. But steeper slopes, i.e. stronger individual responses, always

tend towards making the NB dynamics less stable. If strategies are substitutes the direction is

reversed by the same logic, i.e. the fact that the players take into account their own effects on

the aggregate flattens their response and tends towards stabilizing NB.

The presence of the above two potentially countervailing effects explains why in general we can-

not expect to find a clear-cut stability ranking between NB and ATB. Nevertheless, proposition

10 shows that with linear response functions the second (player-specific) effect unambiguously

is the dominant one.

As a final remark it is a general consequence of theorem 2 (not restricted to symmetric games)

that if Q(x) is a function continuous at x∗ (e.g. an average of some strategies), sequences of

the type Qt = Q(xt) converge (locally) to Q(x∗) if xt → x∗. In general, the converse is false

(e.g. consider Q(x) = x∗), meaning that we cannot generally infer the stability of individual

responses from the stability e.g. of the average response. However, we can imagine such a failure

to be a rare event. As an illustration, consider a symmetric one-dimensional linear game with

ϕj(x−j) = a
∑
i 6=j

xi + b and equilibrium x∗ = (x∗1, ..., x
∗
1) satisfying x∗1 = a(N − 1)x∗1 + b. Let

Qt =
∑
j
xtj and zt = Qt − Q∗. As zt = (a(N − 1))tz0 = (a(N − 1))t(

∑
j
x0
j − Q∗), observe that

Qt → Q∗ but xt 9 x∗ is possible only if (
∑
j
x0
j = Q∗), which does not occur almost surely as{

x ∈ Rn :
n∑
j=1

xj = Q∗

}
is a zero-measure Lebesgue set.

5 Conclusion

This paper has examined the mathematical connections between the time-honored notion of

best-response dynamics and uniqueness of equilibria in case of sum-aggregative or symmetric

games. It was shown that for sum-aggregative games with equilibrium complements unique-

ness and local stability are the same properties: If there is a unique equilibrium, it must be

locally contraction-stable and, vice-versa, if every critical point satisfies contraction-stability

the game possesses exactly one equilibrium. In case of equilibrium substitutes, local stability of
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equilibrium candidate points implies uniqueness, but not vice-versa. A similar result holds in

symmetric games. A symmetric game with equilibrium complements has exactly one symmetric

equilibrium if and only if it is contraction-stable. In this case the symmetric equilibrium is also

sequentially or gradient stable as well as locally dominance-solvable. Moreover, if best-replies

have slopes larger than −1, the equilibrium is unique (without strategies e.g. being complements

everywhere). If strategies are equilibrium substitutes, uniqueness of the symmetric equilibrium

does not imply contraction-stability, and contraction-stability is more restrictive than gradi-

ent stability. It was illustrated that if players update their response sequentially rather than

simultaneously this difference vanishes. This is an interesting result as it suggests that with

substitutes, the level of awareness or attention the players devote to a game influences whether

or not a self-restoring equilibrium dynamic can be expected to prevail. Furthermore, it was

shown that in sum-aggregative symmetric index games with equilibrium substitutes (such as

the Cournot or Tullock game) the symmetric equilibrium necessarily is unique and sequentially

(or gradient) stable. Finally, the response-dynamics induced by aggregate-taking behavior was

compared to the conventional Nash response-dynamics. While in complete generality a compar-

ison with respect to stability produces no clear-cut results due to the presence of two potentially

countervailing effects, it was shown that in linear symmetric games contraction-stability of the

Nash response dynamics always implies the stability of the aggregate-taking dynamics in case

of complements, and vice-versa in case of substitutes.

UNIVERSITY OF ZURICH

HARVARD UNIVERSITY

6 Proofs

6.1 Proof of theorem 1

”⇒”. Let q ≡ sup
x∈U,|v|X=1

|∂φ(x) · v|Y = sup
x∈U
‖∂φ(x)‖|·|X < 1. Because U is an open, convex set,

the mean value theorem gives for any x, x′ ∈ U :

|φ(x)− φ(x′)|Y ≤ sup
0≤t≤1,|v|X=1

(|∂φ(x+ t(x′ − x)) · v|Y ) |x− x′|X

≤ q|x− x′|X
(10)
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Hence φ is a contraction on U . Let x ∈ ∂Ū , x′ ∈ Ū and take any two sequences (xn), (x′n) in

U with xn → x and x′n → x′. Because of |φ(xn)− φ(xn
′)|Y ≤ q|xn − xn′|X continuity implies

|φ(x)− φ(x′)|Y ≤ q|x− x′|X which shows that φ is a contraction on Ū .

”⇐”. Suppose ∃ q < 1 such that |φ(x)− φ(x′)|Y ≤ q|x− x′|X ∀ x, x′ ∈ Ū . Take an arbitrary

x ∈ U and an arbitrary v ∈ Rn with |v|X = 1. Then for any x′ ∈ U with x′ 6= x there exists t ∈ R

such that x′ = x+ tv. Then q ≥ |φ(x)−φ(x′)|Y
|x−x′|X

=
|φ(x+tv)−φ(x)|Y

|t| . As φ is Frechet-differentiable on

U , the directional derivatives exist. Hence

q ≥ lim
t→0

|φ(x+ tv)− φ(x)|Y
|t|

=

∣∣∣∣limt→0

(
φ(x+ tv)− φ(x)

t

)∣∣∣∣
Y

= |∂φ(x) · v|Y

holds for any x ∈ U and, as v was arbitrary up to |v|X = 1, we get sup
x∈U,|v|X=1

|∂φ(x) · v|Y ≤ q < 1.

�

6.2 Proof of corollary 1

”⇒” Let sup
x∈U

ρ (∂φ(x)) = δ < 1 and note that continuity of ρ (∂φ(x)) implies that ∃ ε > 0

such that ρ (∂φ(x)) < δ + ε < 1 holds on Ū . Then, by fact 3, ∀ x0 ∈ Ū there exists a matrix

norm ‖·‖(x0) such that ‖∂φ(x0)‖(x0) < δ+ε. Continuity of ∂φ(x) asserts the existence of an open

neighborhood B(x0) ⊂ Ū such that ‖∂φ(x)‖(x0) < δ+ε for any x ∈ B(x0). Because Ū is compact

and
⋃
x∈Ū

B(x) covers Ū there exists a finite subcover
n⋃
j=1

B(xj), and ‖∂φ(x)‖(xj) < δ + ε for any

x ∈ B(xj). Further, ‖·‖ ≡ max
{
‖·‖(x1), ..., ‖·‖(xn)

}
is a matrix norm such that ‖∂φ(x)‖ < δ+ ε

holds for any x ∈ Ū and the claim follows from fact 2 and theorem 1.

”⇐” Follows from theorem 1 and fact 3.

�

6.3 Proof of theorem 2

”⇒”. Define σ(x) ≡ ‖∂φ(x∗)‖|·| = sup
|v|=1

|∂φ(x) · v|. Hence q ≡ σ(x∗) < 1. As σ is continuous

at x∗ there exists a closed δ-ball B̄ (x∗, δ) ≡ V , δ > 0, such that σ(x) < 1 ∀x ∈ V . Let

Q ≡ sup
x∈V

σ(x) < 1. Then theorem 1 implies that φ is a contraction on V , i.e. |φ(x)− φ(x′)| ≤

Q |x− x′| for x, x′ ∈ V , and |φ(x)− φ(x∗)| ≤ Qδ < δ shows that φ(V ) ⊂ V .

”⇐”. Follows from theorem 1. For the last claim note that, using the definition of (xt), as
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φ ∈ C(V, V ) we inductively obtain from
∣∣xk+1 − xk

∣∣ ≤ q
∣∣xk − xk−1

∣∣, q = ‖∂φ(x∗)‖|·|, that∣∣xk − xt∣∣ ≤ (q)t−(q)k

1−q
∣∣x1 − x0

∣∣ ≤ (q)t

1−q
∣∣x1 − x0

∣∣, where k > t ≥ 0. This shows that (xt) is Cauchy,

hence convergent by the completeness of V , and lim
t→∞

xt = lim
t→∞

φ(xt) = x∗, where the last

statement uses continuity of φ on V and the fact that φ has exactly one FP on V .

�

6.4 Proof of corollary 3

”⇒”. By presupposition there is |·| and q < 1 such that |L(x)− L(x′)| ≤ q |x− x′| for any

x, x′ ∈ Rn or equivalently |∂φ(x∗)v| ≤ q |v|, v ∈ Rn. Hence also ‖∂φ(x∗)‖|·| ≤ q < 1, and

the claim follows from theorem 2. ”⇐”. If x∗ is contraction-stable, then ‖∂φ(x∗)‖|·| < 1 for

some |·| because of theorem 2. The claim then follows from |L(x)− L(x′)| = |∂φ(x∗)(x− x′)| ≤

‖∂φ(x∗)‖ |x− x′|. To see the last claim, let xt+1 = φ ◦ φ ◦ ...φ(x0) ≡ z(x0). Linearizing z at

x∗ gives z(x0) ∼= x∗ + ∂φ(x∗)t (x0 − x∗). The suggested bound then follows as |xt+1 − x∗| ∼=∣∣∂φ(x∗)t (x0 − x∗)
∣∣ ≤ ρ(∂φ(x∗))t |x0 − x∗| (use submultiplicativity and facts 2 and 3).

�

6.5 Proof of corollary 5

For a vector v let v+ ≡ (|vi|) denote the vector of the absolute values of the components of v.

Similarly, if M is a matrix then M+ denotes the matrix of absolute values of the components

of M . The triangle inequality implies (Mv)+ ≤ M+v+. Let Hg = ∂2Πg(x)
∂xg∂xTg

denote the Hessian

of Πg(x). As H(x∗) has a dominant negative diagonal, the matrix Hg is negative definite and

thus invertible. Hence the IFT gives for j 6= g and 1 ≤ i ≤ 2:

(
∂ϕg

∂xji

)+

=

(
− (Hg)−1

(
∂∇gΠg

∂xji

))+

≤
(

(Hg)−1
)+
(
∂∇gΠg

∂xji

)+

which further implies ∑
j 6=g

k∑
i=1

(
∂ϕg

∂xji

)+

≤
(

(Hg)−1
)+

zg (11)

where zg =
∑
j 6=g

2∑
i=1

(
∂∇gΠg

∂xji

)+
. Let Ĥg be the matrix derived from Hg by taking the absolute

values of each off-diagonal element. Because H(x∗) has a dominant negative diagonal it follows
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that −Ĥg · 1 > zg. Further simple algebra shows that

(
(Hg)−1

)+
=
(
−Ĥg

)−1
≥ 0 (12)

Hence we get (
−Ĥg

)−1 (
−Ĥg

)
· 1 >

(
−Ĥg

)−1
zg ≥

(
(Hg)−1

)+
zg

which by (11) gives I · 1 >
∑
j 6=g

2∑
i=1

(
∂ϕg

∂xji

)+
for any g = 1, ..., N . Thus we may conclude that

Rm < 1 holds ∀m.

�

Remark: The above proof can be generalized to the case k > 2, the main problem being

expression (12). Using laborious Laplace expansions (and the triangle inequality) it follows that

(
(Hg)−1

)+
≤
((
−Ĥg

)−1
)+

=
(
−Ĥg

)−1

The equality between the second and third term follows from the fact that −Ĥg is an invertible

matrix with non-positive off-diagonal elements (a Z-matrix) and it is known that
(
−Ĥg

)−1

must be non-negative (see e.g. Mckenzie (1959)). The rest of the proof remains the same.

6.6 Proof of lemma 2

The case where ρ(A) = 0 is trivial so suppose ρ(A) > 0. Note that α ∈ σ(M) if and only if

MV =


A (v2 + ...+ vN )

A (v1 + v3 + ...+ vN )
...

A (v1 + ...+ vN−1)

 = αV V 6= 0 (13)

where V = (vj)
N
j=1 and each vj is itself a k-vector. If Av = λv then setting vj = v

N−1 shows that

λ(N − 1) ∈ σ(M), as every row of (13) reads Av = α
N−1v. This is true for every λ ∈ σ(A) (with

the corresponding eigenvector), hence we have found k EV of M . To find the other EV of M ,

first set v1 = v, v2 = −v and v3 = ... = vN = 0. Then, the first row of (13) reads A(−v) = αv,

the second row is Av = α(−v) and all other rows are 0 = 0. Hence we found k further EV
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of M , and they take on the values −σ(A). Continuing by setting v1 = v and v3 = −v leaving

all other coordinates zero gives the next k EV (note that the so constructed eigenvectors of M

are linearly independent). Proceeding in this manner shows that all EV of M must be either

(N − 1)λ or −λ, λ ∈ σ(A).

�

6.7 Proof of theorem 4

Lemma 1 implies that Det(−H) =
∏
j

(−Πj
11)(1 + bj)

(
1−

∑
i

bi
1+bi

)
if bj 6= −1 and Det(−H) =∏

j
(−Πj

11)
∏
i 6=j

(1 + bj) if bj = −1. Hence strong quasiconcavity and bj(x) ≥ 0 implyDet(−H(x)) >

0 on Cr if and only if
∑ bj(x)

1+bj(x) < 1, and the first claim follows from theorem 3 and corollary

6. To prove the second claim, suppose that bj ≤ 0 ∀j at any critical point, and note that

if bj ∈ (−1, 0) ∀j at critical points, then the equilibrium is necessarily unique independent of

whether or not x ∈ Cr is contraction-stable. Further, if x ∈ Cr is contraction-stable, we can have

bj(x) ≥ −1 for at most one j, so henceforth suppose that b1(x) ≤ −1, bj(x) ∈ (−1, 0] for j > 1

and x ∈ Cr is contraction-stable. If b1(x) = −1, then Det(−H(x)) > 0 as (1 + bj(x)) > 0 for

j > 1. It remains to show that b1(x) < −1 also implies Det(−H(x)) > 0. But Det(−H(x)) > 0

holds under the previous assumptions if and only if
∑
j

bj(x)
1+bj(x) > 1. Let zj(x) ≡ bj(x)

bj(x)−1 and note

that x is contraction-stable if and only if
∑
j
zj(x) < 1. Now set z1 = ε−

∑
j>1

zj , where ε < 1 by

contraction-stability. Note that z1 ∈ (1
2 , 1), zj ∈ [0, 1

2) for any j > 1 and
∑
j>1

zj <
1
2 . We have

Det(−H) > 0 if

b1
1 + b1

+
∑
j>1

bj
bj + 1

=

∑
j>1

zj − ε

2(
∑
j>1

zj − ε) + 1
+
∑
j>1

zj
2zj − 1

≡ ζ(ε) > 1

As z1 >
1
2 the first summand is larger than 1 and strictly decreasing in ε. Hence it suffices to

show that ζ(1) ≥ 1, which trivially holds if zj = 0 for all j > 1. Assuming zN ∈ (0, 1
2) and using

derivatives it is straightforward to verify that (0, ..., 0) = argmin
z2,...,zN−1

ζ(1) for z2, ..., zN−1 ∈ [0, 1/2)

and
N−1∑
j=2

zj ≤ 1
2 − zN , which implies ζ(1) ≥ zN−1

2(zN−1)+1 + zN
2zN−1 = 1 for any zN ∈ (0, 1

2), which

completes the proof.

�
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