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Applied researchers often test for the difference of the Sharpe ratios of two investment
strategies. A very popular tool to this end is the test of Jobson and Korkie [Jobson, J.D. and Korkie,
B.M. (1981). Performance hypothesis testing with the Sharpe and Treynor measures. Journal of
Finance, 36:889–908], which has been corrected byMemmel [Memmel, C. (2003). Performance
hypothesis testingwith the Sharpe ratio. Finance Letters,1:21–23]. Unfortunately, this test is not
valid when returns have tails heavier than the normal distribution or are of time series nature.
Instead, we propose the use of robust inferencemethods. In particular, we suggest to construct a
studentized time series bootstrap confidence interval for the difference of the Sharpe ratios and
to declare the two ratios different if zero is not contained in the obtained interval. This approach
has the advantage that one can simply resample from the observed data as opposed to some
null-restricted data. A simulation study demonstrates the improved finite sample performance
compared to existing methods. In addition, two applications to real data are provided.
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1. Introduction

Many applications of financial performance analysis are concerned with the comparison of the Sharpe ratios of two investment
strategies (such as stocks, portfolios, mutual funds, hedge funds, or technical trading rules). Since the true quantities are not
observable, the Sharpe ratios have to be estimated from historical return data and the comparison has to be based on statistical
inference, such as hypothesis tests or confidence intervals.

It appears that the status quo in the applied literature is the test of Jobson and Korkie (1981) and its corrected version byMemmel
(2003); for example, see DeMiguel et al. (in press), DeMiguel and Nogales (2007), and Gasbarro et al. (2007), among others.
Unfortunately, this test is not validwhen returnshave tails heavier than the normal distribution or are of time series nature. The former
is a quite common, and by now well-known, property of financial returns. As far as the latter is concerned, serial correlation of the
actual returns is, arguably, onlyaminor concern for stocks andmutual funds, but it is certainly relevant tohedge funds; forexample, see
Brooks and Kat (2002) and Malkiel and Saha (2005). However, even stocks and mutual funds often exhibit correlation of the squared
returns, that is, volatility clustering; for example, see Campbell et al. (1997, Chapter 12) and Alexander (2001, Chapter 4).

In this paper, we discuss inference methods that are more generally valid. One possibility is to compute a HAC standard error3

for the difference of the estimated Sharpe ratios by themethods of Andrews (1991) and Andrews andMonahan (1992), say. Such an
approach works asymptotically but does not always have satisfactory properties in finite samples. As an improved alternative, we
suggest a studentized time series bootstrap.
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It has been argued that for certain applications the Sharpe ratio is not the most appropriate performance measure; e.g., when the
returns are far from normally distributed or autocorrelated (which happens for many hedge funds) or during bear markets. On the
other hand, there is recent evidence that the Sharpe ratio can result in almost identical fund rankings compared to alternative
performance measures; e.g., see Eling and Schuhnacher (2007). We do not enter this debate. Instead, we believe that the task of
choosing the appropriate performancemeasure is up to the finance practitioner, not the statistician. Our aim is to provide a reliable
inference method in case the comparison of two Sharpe ratios is deemed of interest.

2. The problem

We use the same notation as Jobson and Korkie (1981) and Memmel (2003). There are two investment strategies i and nwhose
excess returns over a given benchmark at time t are rti and rtn, respectively. Typically, the benchmark is the risk-free rate but it
could also be something else, such as a stock index.4 A total of T return pairs (r1i, r1n)′,…, (rTi, rTn)′ are observed. It is assumed that
these observations constitute a strictly stationary time series so that, in particular, the bivariate return distribution does not change
over time. This distribution has mean vector µ and covariance matrix Σ given by

A ¼ Ai
An

! "
and R ¼ r2i rin

rin r2n

! "
:

The usual sample means and sample variances of the observed returns are denoted by µ̂i, µ̂n and σ̂ i
2, σ̂n

2, respectively.
The difference between the two Sharpe ratios is given by

D ¼ Shi " Shn ¼ Ai
ri

" An
rn

and its estimator is

D̂¼ Sĥi " Sĥn ¼ Â i

r̂i
" Ân

rn

:

Furthermore, letu=(µi,µn,σi
2,σn

2)′ and û=(µ̂i, µ̂n, σ̂i
2, σ̂i

2)′. Memmel (2003) computes a standard error for Δ̂based on the relation

ffiffiffi
T

p
û"u
$ %

Y
d
N 0;Xð Þ;

whereYd denotes convergence indistribution, andanapplicationof thedeltamethod.However, just likeJobsonandKorkie (1981), heuses
a formula forΩ that crucially relies on i.i.d. return data from a bivariate normal distribution, namely he assumes

X ¼

r2i rin 0 0
rin r2n 0 0
0 0 2r4i 2r2in
0 0 2r2in 2r4n

0

BB@

1

CCA:

This formula is no longer valid if the distribution is non-normal or if the observations are correlated over time. To give just two
examples, considerdata that are i.i.d. but not necessarily normal. First, the entry in the lower right corner ofΩ is givenbyE[(r1n−µn)4]−σi

4

instead of by 2σn
4. Second, the asymptotic covariance between µ n and σ n

2, say, is in general not equal to zero.5 To give another example,
consider data from a stationary time series. Then the entry in the upper left corner is given by r2i þ 2

Pl
t¼1 Cov r1i; r 1þtð Þi

$ %
instead of by

simply σ i
2.

3. Solutions

We find it somewhat more convenient to work with the uncentered second moments. So letγi=E(r1i2) and γn=E(r1n2 ). Their sample
counterparts are denoted by γ̂i and γ̂n, respectively. Furthermore, letυ=(μi, μn,γi, γn)′ and υ̂=(μ̂i, μ̂n, γ̂i, γ̂n)′. This allows us towrite

D ¼ f υð Þ and D̂¼ f υ̂
$ % ð1Þ

with

f a; b; c; dð Þ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffi
c" a2

p " bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d" b2

p : ð2Þ

We assume that

ffiffiffi
T

p
υ̂"υ
$ %

Y
d
N 0;Ψð Þ; ð3Þ

4 Strictly speaking, when the benchmark is a stock index, say, rather than the risk-free rate, one should speak of the Information ratio rather than the Sharpe
ratio.

5 For example, consider data from a Poisson distribution, in which case µ̂ and σ̂ 2 estimate the same parameter.
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where Ψ is an unknown symmetric positive semi-definite matrix. This relation holds under mild regularity conditions.
For example, when the data are assumed i.i.d., it is sufficient to have both E(r1i4) and E(r1n4 ) finite. In the time series case it is
sufficient to have finite 4+δ moments, where δ is some small positive constant, together with an appropriate mixing condition;
for example, see Andrews (1991). The delta method then implies

ffiffiffi
T

p
D̂"D

& '
Y
d
N 0;jVf tð ÞΨjf tð Þð Þ ð4Þ

with

jVf a; b; c;dð Þ ¼ c

c" a2ð Þ1:5
;" d

d" b2ð Þ1:5
;"1

2
a

c" a2ð Þ1:5
;
1
2

b

d" b2ð Þ1:5

 !
:

Now, if a consistent estimator Ψ̂; of Ψ is available, then a standard error for Δ̂ is given by

s D̂
& '

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVf υ̂

$ %
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$ %

T
:
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3.1. HAC inference

As is well-known, the limiting covariance matrix in Eq. (3) is given by

Ψ ¼ lim
T"l

1
T

XT

s¼1

XT

t¼1

E ysyVt½ '; with yVt ¼ rti " A1; rtn " An; r2ti " gi; r
2
tn " gn

$ %
:

By change of variables, the limit can be alternatively expressed as

Ψ ¼ lim
TYl

ΨT ; with ΨT ¼
XT"1

j¼"Tþ1
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1
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1
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><

>:

The standard method to come up with a consistent estimator Ψ̂=Ψ̂T is to use heteroskedasticity and autocorrelation robust
(HAC) kernel estimation; for example, see Andrews (1991) and Andrews and Monahan (1992). In practice this involves choosing a
real-valued kernel function k(·) and a bandwidth ST. The kernel k(·) typically satisfies the three conditions k(0)=1, k(·) is
continuous at 0, and limx→±∞ k(x)=0. The kernel estimate for Ψ is then given by

Ψ̂¼ Ψ̂T ¼ T
T " 4

XT"1

j¼"Tþ1
k

j
ST

! "
ĈT jð Þ; where

ĈT jð Þ ¼
1
T

XT

t¼jþ1
ŷt yVˆ t"j for jz 0

1
T

XT

t¼"jþ1
ŷtþj yVˆ t for j b 0

; with yVˆ t ¼ rti " Â1; rtn " Ân; r2ti " ĝi; r
2
tn " ĝn

$ %
:

8
><

>:

The factor T/(T−4) is a small-sample degrees of freedom adjustment that is introduced to offset the effect of the estimation of
the 4-vector υ in the computation of the Γ̂ T (j), that is, the use of the ŷt rather than the yt.

An important feature of a kernel k(·) is its characteristic exponent 1≤q≤∞, determined by the smoothness of the kernel at the
origin. Note that the bigger q, the smaller is the asymptotic bias of a kernel variance estimator; on the other hand, only kernels with
q≤2 yield estimates that are guaranteed to be positive semi-definite in finite samples. Most of the commonly used kernels have
q=2, such as the Parzen, Tukey–Hanning, and Quadratic-Spectral (QS) kernels, but exceptions do exist. For example, the Bartlett
kernel has q=1 and the Truncated kernel has q=∞. For a broader discussion on this issue, see Andrews (1991) again.

Once a particular kernel k(·) has been chosen for application, onemust pick the bandwidth ST. Several automatic methods, based
on various asymptotic optimality criteria, are available to this end; for example, see Andrews (1991) and Newey and West (1994).

Finally, given the kernel estimator Ψ̂, the standard error s(Δ̂ ) is obtained as in Eq. (5) and then combined with the asymptotic
normality of Eq. (4) to make HAC inference as follows.
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A two-sided p-value for the null hypothesis H0: Δ=0 is given by

p̂ ¼ 2U " j D̂j
s D̂
& '

0

@

1

A

where Φ (·) denotes the c.d.f. of the standard normal distribution. Alternatively, a 1−α confidence interval for Δ is given by

D̂Fz1"a=2s D̂
& '

where zλ denotes the λ quantile of the standard normal distribution, that is, Φ(zλ)=λ.
It is, however, well-known that such HAC inference is often liberal when sample sizes are small to moderate. This means

hypothesis tests tend to reject a true null hypothesis too often compared to the nominal significance level and confidence intervals
tend to undercover; for example, see Andrews (1991), Andrews and Monahan (1992), and Romano and Wolf (2006).

Remark 3.1. Lo (2002) discusses inference for a single Sharpe ratio. The method he presents in the section titled “IID Returns”
corresponds to Jobson and Korkie (1981) and Memmel (2003), since it actually assumes i.i.d. normal data. The method he presents
in the section titled “Non-IID Returns” corresponds to the HAC inference of this subsection.

Opdyke (2007) discusses both inferences for a single Sharpe ratio and for the difference of two Sharpe ratios. He first considers
the case of general i.i.d. data (i.e., not necessarily normal) and corrects the formulae for the limiting variances of Lo (2002, Section
“IID Returns”) and of Memmel (2003), respectively, which assume normality. He also considers the case of general stationary data
(i.e., time series). However, his formulae for the time series case are incorrect, since they are equivalent to the formulae for the i.i.d.
case. For example, the limiting variance in Eq. (6), for the case of general stationary data, is equivalent to the limiting variance in
Eq. (3), for general i.i.d. data. The problem is that in the case of general stationary data, simple and easily-implemented formulae do
not exist.

3.2. Bootstrap inference

There is an extensive literature demonstrating the improved inference accuracy of the studentized bootstrap over ‘standard’
inference based on asymptotic normality; see Hall (1992) for i.i.d. data and Lahiri (2003) for time series data. Very general results
are available for parameters of interests which are smooth functions of means. Our parameter of interest, Δ, fits this bill; see Eqs.
(1) and (2).

Arguably, the regularity conditions used by Lahiri (2003, Section 6.5) in the time series case are rather strong (and too strong for
most financial applications); for example, they assume 35+δ finite moments (where δ is some small number) and certain
restrictions on the dependence structure.6 However, it should be pointed out that these conditions are sufficient only to prove the
very complex underlying mathematics and not necessary. Even when these conditions do not hold, the studentized bootstrap
typically continues to outperform ‘standard’ inference; e.g., see Section 4. To avoid any confusion, it should also be pointed that
these strong regularity conditions are only needed to prove the superiority of the studentized bootstrap. In terms of first-order
consistency it does not really need stronger sufficient conditions than ‘standard’ inference.

We propose to test H0: Δ=0 by inverting a bootstrap confidence interval. That is, one constructs a two-sided bootstrap
confidence interval with nominal level 1−α for Δ. If this interval does not contain zero, then H0 is rejected at nominal level α. The
advantage of this ‘indirect’ approach is that one can simply resample from the observed data. If one wanted to carry out a ‘direct’
bootstrap test, one would have to resample from a probability distribution that satisfied the constraint of the null hypothesis, that
is, from some modified data where the two empirical Sharpe ratios were exactly equal; e.g., see Politis et al. (1999, Section 1.8).

In particular, we propose to construct a symmetric studentized bootstrap confidence interval. To this end the two-sided
distribution function of the studentized statistic is approximated via the bootstrap as follows:

L j D̂"Djj
s D̂
& '

0

@

1

AcL j D̂⁎" D̂j
s D̂⁎
& '

0

@

1

A: ð6Þ

In this notation, Δ is true difference between the Sharpe ratios, Δ̂ is the estimated difference computed from the original data,
s(Δ̂ ) is a standard error for Δ̂ (also computed from the original data), Δ̂⁎ is the estimated difference computed from bootstrap
data, and s(Δ̂⁎) is a standard error for Δ̂ ⁎ (also computed from bootstrap data). Finally, L(X) denotes the distribution of the random
variable X.

Letting z|·|,λ* be a λ quantile of L(|Δ̂⁎− Δ̂ |/s(Δ̂⁎)), a bootstrap 1−α confidence interval for Δ is then given by

D̂Fzj(j;1"a
⁎ s D̂

$ %
: ð7Þ

The point is that when data are heavy-tailed or of time series nature, then z|·|,1 −α⁎ will typically be somewhat larger than z1−α/2
for small to moderate samples, resulting in more conservative inference compared to the HACmethods of the previous subsection.

We are left to specify (i) how the bootstrap data are to be generated and (ii) how the standard errors s(Δ̂ ) and s(Δ̂⁎) are to be
computed. For this, it is useful to distinguish between i.i.d. data and time series data. The first case, i.i.d. data, is includedmainly for

6 The conditions are too lengthy to be reproduced here.
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completeness of the exposition. It is well-known that financial returns are generally not i.i.d. Evenwhen the autocorrelation of the
returns is negligible (which often happens with the stock and mutual fund returns), there usually exists autocorrelation of the
squared returns, that is, volatility clustering. We therefore recommend to always use the bootstrap method for time series data in
practice.

3.2.1. I.I.D. data
To generate bootstrap data, one simply uses Efron's (1979) bootstrap, resampling individual pairs from the observed pairs (rti,

rtn)′, t=1,…, T, with replacement. The standard error s(Δ̂ ) is computed as in Eq. (5). Since the data are i.i.d., one takes for Ψ̂ here
simply the sample covariance matrix of the vectors (rti, rtn, rti2, rtn2 )′, t=1,…, T. The standard error s(Δ̂⁎) is computed in exactly the
same fashion but from the bootstrap data instead of the original data. To be more specific, denote the tth return pair of the
bootstrap sample by (rti⁎, rtn⁎)′. Then one takes for Ψ̂⁎ the sample covariance matrix of the vectors (rti⁎, rtn⁎, rti⁎2, rtn⁎2)′, t=1,…, T.
Furthermore, the estimator of υ=(μi, μn, γi, γn)′ based on the bootstrap data is denoted by υ̂⁎=(μ̂ i⁎, μ̂n⁎, γ̂i⁎, γ̂n⁎)′. Finally, the
bootstrap standard error for Δ̂⁎ is given by

s D̂⁎
$ %

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVf υ̂⁎ð Þ Ψ̂⁎jf υ̂⁎ð Þ

T

s

: ð8Þ

3.2.2. Time series data
The application of the studentized bootstrap is somewhat more involved when the data are of time series nature. To generate

bootstrap data, we use the circular block bootstrap of Politis and Romano (1992), resampling now blocks of pairs from the observed
pairs (rti, rtn)′, t=1,…, T, with replacement.7 These blocks have a fixed size b≥1. The standard error s(Δ̂ ) is computed as in Eq. (5).
The estimator Ψ̂ is obtained via kernel estimation; in particular we propose the prewhitened QS kernel of Andrews and Monahan
(1992).8 The standard error s(Δ̂⁎) is the ‘natural’ standard error computed from the bootstrap data, making use of the special block
dependence structure; see Götze and Künsch (1996) for details. To be more specific, let l= ⌊n/b⌋, where ⌊·⌋ denotes the integer part.
Again, the estimator of υ=(μi, μn, γi, γn)′ based on the bootstrap data is denoted by υ̂⁎=(μ̂ i⁎, μ̂n⁎, γ̂ i⁎, γ̂n⁎)′. Then define

yt⁎ ¼ rti⁎" Âi⁎; rtn⁎" Ân⁎; r⁎2ti " ĝi⁎; r⁎2tn " ĝn⁎
& '

t ¼ 1; N ; T fj ¼
1ffiffiffi
b

p
Xb

t¼1
y j"1ð Þbþt
⁎ t ¼ 1; N ; l

and

Ψ̂⁎ ¼ 1
l

Xl

j¼1

fjfVj:

With this more general definition9 of Ψ̂⁎, the bootstrap standard error for Δ̂⁎ is again given by formula (8).
An application of the studentized circular block bootstrap requires a choice of the block size b. To this end, we suggest to use a

calibration method, a concept dating back to Loh (1987). One can think of the actual coverage level 1−λ of a block bootstrap
confidence interval as a function of the block size b, conditional on the underlying probability mechanism P which generated the
bivariate time series of returns, the nominal confidence level 1−α, and the sample size T. The idea is now to adjust the ‘input’ b in
order to obtain the actual coverage level close to the desired one. Hence, one can consider the block size calibration function g:
b→1−λ. If g(·) were known, one could construct an ‘optimal’ confidence interval by finding b that minimizes |g(b)− (1−α)| and
then use b̃ as the block size of the time series bootstrap; note that |g(b)− (1−α)|=0 may not always have a solution.

Of course, the function g(·) depends on the underlying probability mechanism P and is therefore unknown. We now propose a
bootstrap method to estimate it. The idea is that in principle we could simulate g(·) if P were known by generating data of size T
according to P and by computing confidence intervals for Δ for a number of different block sizes b. This process is then repeated
many times and for a given b, one estimates g(b) as the fraction of the corresponding intervals that contain the true parameter. The
method we propose is identical except that P is replaced by an estimate P̂ and that the true parameter Δ is replaced by the ‘pseudo’
parameter Δ̂ .

Algorithm 3.1 (Choice of the block size).

1. Fit a semi-parametric model P̂ to the observed data (r1i, r1n)′,…, (rTi, rTn)′.
2. Fix a selection of reasonable block sizes b.
3. Generate K pseudo sequences (r1i⁎ , r1n⁎ )′k…, (rTi⁎ , rTn⁎ )′, k=1,…, K, according to P̂ . For each sequence, k=1,…, K, and for each b,

compute a confidence interval CIk,b with nominal level 1−α for Δ̂ .
4. Compute g (b)=#{Δ̂ ∈CIk,b}/K.
5. Find the value b that minimizes |ĝ (b)− (1−α)|.

7 The motivation for using the circular block bootstrap instead of the moving blocks bootstrap of Künsch (1989) is to avoid the ‘edge effects’ of the latter; see
Romano and Wolf (2006, Section 4).

8 We have found that the prewhitened Parzen kernel, which is defined analogously, yields very similar performance.
9 Note that for the special case b=1, this definition results in the sample covariance matrix of the bootstrap data (rti⁎, rtn⁎, rti⁎2, rtn⁎2)′, t=1,…, T, used for i.i.d. data.
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Of course, the question remains which semi-parametric model to fit to the observed return data. When using monthly data, we
recommend to simply use a VAR model in conjunction with time series bootstrapping the residuals.10 If the data are sampled at
finer intervals, such as daily data, one might want to use a bivariate GARCH model instead.

Next, one might ask what is a selection of reasonable block sizes? The answer is any selection that contains a bwith ĝ (b) very
close to 1−α. If nothing else, this can always be determined by trial and error. In our experience, ĝ(·) is typically monotonically
decreasing in b.

So if one starts with blow=1 and a bup ‘sufficiently’ large, one is left to specify some suitable grid between those two values. In
our experience, again, for a sample size of T=120, the choices blow=1 and bup=10 usually suffice. In that case the final selection
{1, 2, 4, 6, 8, 10} should be fine, as ĝ(·) does not tend to decrease very fast in b.

Finally, how large should K be chosen in application to real data? The answer is as large as possible, given the computational
resources. K=5000 will certainly suffice for all practical purposes, while K=1000 should be the lower limit.

Remark 3.2. As outlined above, a two-sided test for H0: Δ=0 at significance level α can be carried out by constructing a bootstrap
confidence interval with confidence level 1−α. The test rejects if zero is not contained in the interval. At times, it might be more
desirable to obtain a p-value. In principle, such a p-value could be computed by ‘trial and error’ as the smallest α for which the
corresponding 1−α confidence interval does not contain zero. However, such a procedure is rather cumbersome. Fortunately, there
exists a shortcut that allows for an equivalent ‘direct’ computation of such a p-value. Denote the original studentized test statistic
by d, that is,

d ¼ j D̂j
s D̂
$ %

and denote the centered studentized statistic computed from the mth bootstrap sample by d ⁎,m, m=1,…, M, that is,

d̃⁎;m ¼ j D̂⁎;m " D̂j
s D̂⁎

;m& ' ;

where M is the number of bootstrap resamples. Then the p-value is computed as

PV ¼
d̃⁎;m zd
n o

þ 1

M þ 1
: ð9Þ

Remark 3.3. As far as we know, there have been two previous proposals to use bootstrap inference for Sharpe ratios, but both are
somewhat limited.

Vinod andMorey (1999) discuss inference for the difference of two Sharpe ratios. However, they only employ Efron's (1979) i.i.d.
bootstrap, so their approach would not work for time series data. Moreover, the way they studentize in the bootstrap world is
incorrect, as they use a common standard error for all bootstrap statistics (instead, one must compute an individual standard error
from each bootstrap data set, as described before).

Scherer (2004) discusses inference for a single Sharpe ratio, but his approach could be easily extended to inference for a
difference of two Sharpe ratios. Unlike us, he employs a non-studentized bootstrap for both i.i.d. and time series data. The problem
is that a non-studentized bootstrap does not provide improved inference accuracy compared to ‘standard’ inference based on
asymptotic normality; again see Hall (1992) and Lahiri (2003). Scherer (2004) addresses this problem for i.i.d. data by employing a
double bootstrap (which also provides improved inference accuracy; Hall, 1992), but he does not address it for time series data.
Moreover, his time series bootstrap is of parametric nature, based on an AR(1) model with i.i.d. errors, and would therefore not be
valid in general.

Incidentally, the asymptotically valid approaches detailed in this paper, HAC inference and the studentized bootstrap, can be
easily modified to make inference for a single Sharpe ratio. The details are straightforward and left to the reader.

4. Simulation study

The purpose of this section is to shed some light on the finite sample performance of the various methods via some (necessarily
limited) simulations. We compute empirical rejection probabilities under the null, based on 5000 simulations per scenario. The
nominal levels considered are α=0.01, 0.5, 0.1. All bootstrap p-values are computed as in Eq. (9), employing M=499. The sample
size is T=120 always.11

10 At this point we opt for the stationary bootstrap of Politis and Romano (1994), since it is quite insensitive to the choice of the average block size. The
motivation for time series bootstrapping the residuals is to account for some possible ‘left over’ non-linear dependence not captured by the linear VAR model.
11 Many empirical applications use ten years of monthly data.

855O. Ledoit, M. Wolf / Journal of Empirical Finance 15 (2008) 850–859



4.1. Competing methods

The following methods are included in the study:

• (JKM) The test of Jobson and Korkie (1981), using the corrected version of Memmel (2003).
• (HAC) The HAC test of Subsection 3.1 based on the QS kernel with automatic bandwidth selection of Andrews (1991).
• (HACPW) The HAC test of Subsection 3.1 based on the prewhitenedQS kernel with automatic bandwidth selection of Andrews and
Monahan (1992).

• (Boot-IID) The bootstrap method of Subsubsection 3.2.1.
• (Boot-TS) The bootstrap method of Subsubsection 3.2.2. We use Algorithm 3.1 to pick a data-dependent block size from the input
block sizes b∈{1, 2, 4, 6, 8, 10}. The semi-parametric model used is a VAR(1) model in conjunction with bootstrapping the
residuals. For the latter we employ the stationary bootstrap of Politis and Romano (1994) with an average block size of 5.

4.2. Data generating processes

In all scenarios, we want the null hypothesis of equal Sharpe ratios to be true. This is easiest achieved if the twomarginal return
processes are identical.

It is natural to start with i.i.d. bivariate normal data with equal mean 1 and equal variance 1. The within-pair correlation is
chosen as ρ=0.5, which seems a reasonable number for many applications. This DGP is denoted by Normal-IID.

We then relax the strict i.i.d. normal assumption in various dimensions.
First, we keep the i.i.d. assumption but allow for heavy tails. To this end, we use bivariate t6 data, shifted to have equal mean 1

and standardized to have common variance 1. The within-pair correlation is ρ=0.5 again. This DGP is denoted by t6-IID.
Next, we consider an uncorrelated process but with correlations in the squared returns, as is typical for stock returns. The

standard way tomodel this is via a bivariate GARCH(1,1) model. In particular, we use the bivariate diagonal-vechmodel dating back
to Bollerslev et al. (1988). Let r̃ti= rti−μi, r̃tn= rtn−μn, and denote by Ωt−1 the conditioning information available at time t−1. Then
the diagonal-vech model is defined by

E r̃ ti jXt"1
$ %

¼ 0 E r̃ tn jXt"1
$ %

¼ 0 Cov r̃ ti r̃ tn jXt"1
$ %

¼ htin
¼ cin þ ain r̃ t"1ð Þi r̃ t"1ð Þn þbinh t"1ð Þin:

In other words, the conditional (co)variances depend only on their own lags and the lags of the corresponding (cross) products.
We use the following coefficient matrices:

C ¼ 0:15 0:13
0:13 0:15

! "
A ¼ 0:075 0:050

0:050 0:075

! "
B ¼ 0:90 0:89

0:90 0:89

! "
:

These matrices are inspired by the bivariate estimation results based on weekly returns on a broad U.S. market index and a
broad U.K. market index.12 However, all three diagonals are forced to be equal to get identical individual return processes; see
Ledoit et al. (2003, Table 2).

The first variant of the GARCHmodel uses i.i.d. bivariate standard normal innovations to recursively generate the series r̃t=(r̃ti, r̃tn)′.
At the end, we add a global mean, that is, rt= r̃t+μ, where μ is chosen as μ=(16.5/52, 16.5/52)′. Again this choice is inspired by the
previouslymentioned estimation results, forcingμi=μn to get identical individual returnprocesses; seeLedoit et al. (2003, Table 1). This
DGP is denoted by Normal-GARCH.

The second variant of the GARCH model uses i.i.d. bivariate t6 innovations instead (standardized to have common variance
equal to 1, and covariance equal to 0).13 Everything else is equal. This DGP is denoted by t6-GARCH.

Finally, we also consider correlated processes. To this end, we return to the two i.i.d. DGPs Normal-IID and t6-IID, respectively,
but add some mild autocorrelation to the individual return series via an AR(1) structure with AR coefficient /=0.2.14 This then
corresponds to a VAR(1) model with bivariate normal or (standardized) t6 innovations. The resulting two DGPs are denoted by
Normal-VAR and t6-VAR, respectively.

5. Results

The results are presented in Table 1 and summarized as follows:

• JKM works well for i.i.d. bivariate normal data but is not robust against fat tails or time series effects, where it becomes liberal.
• HAC inference, while asymptotically consistent, is often liberal in finite samples. This finding is consistent with many previous
studies; e.g., see Romano and Wolf (2006) and the references therein.

12 We use estimation results based on weekly returns, since generally there are very few GARCH effects at monthly or longer return horizons. With weekly data,
T=120 corresponds to a data window of slightly over two years.
13 There is ample evidence that the innovations of GARCH processes tend to have tails heavier than the normal distribution; e.g., see Kuester et al. (2006) and
the references therein.
14 For example, a first-order autocorrelation around 0.2 is quite typical for monthly hedge fund returns.
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• Boot-IID works well for i.i.d. data but is liberal for time series data.
• Boot-TS works well both for i.i.d. and time series data.

Remark 4.1. We also included HAC and HACPW based on the (prewhitened) Parzen kernel instead of the (prewhitened) QS kernel.
The results were virtually identical and are therefore not reported. Since the Parzen kernel has a finite support while the QS kernel
does not, it is somewhat more convenient to implement; e.g., see Andrews (1991).

6. Empirical applications

As a brief illustration, we consider two applications to investment funds. In each case, we want to test the null hypothesis of
equality of the Sharpe ratios of the two funds being compared.

The first application deals with mutual funds. The selected funds are Fidelity (FFIDX), a ‘large blend’ fund, and Fidelity
Aggressive Growth (FDEGX), a ‘mid-cap growth’ fund. The data were obtained from Yahoo! Finance.15

The second application deals with hedge funds. The selected funds are Coast Enhanced Income and JMG Capital Partners. The
data were obtained from the CISDM database; see Romano et al. (2008, Section 9).

In both applications, we use monthly log returns in excess of the risk-free rate. The return period is 01/1994 until 12/2003, so
T=120. Table 2 provides some relevant summary statistics. Note that all returns are in percentages and that none of the statistics
are annualized.

Table 3 presents the corresponding p-values of the five methods previously considered in the simulation study. Boot-TS uses a
data-dependent choice of block size based on Algorithm 3.1. The semi-parametric model is a VAR(1) model in conjunction with
bootstrapping the residuals. For the latter we employ the stationary bootstrap of Politis and Romano (1994) with an average block

Table 2
Summary sample statistics for monthly log returns in excess of the risk-free rate: mean, standard deviation, Sharpe ratio, and first-order autocorrelation

Fund r
_

s Sĥ Φ̂

Fidelity 0.511 4.760 0.108 −0.010
Fidelity Aggressive Growth 0.098 9.161 0.011 0.090
Coast Enhanced Income 0.245 0.168 1.461 0.152
JMG Capital Partners 1.228 1.211 1.014 0.435

Table 1
Empirical rejection probabilities (in percent) for various data generating processes (DGPs) and inference methods; see Section 4 for a description

DGP JKM HAC HACPW Boot-IID Boot-TS

Nominal level α=1%
Normal-IID 1.2 1.2 1.2 1.1 1.0
t6-IID 3.5 1.9 2.1 1.4 1.3
Normal-GARCH 1.7 1.8 1.8 1.5 1.1
t6-GARCH 1.8 2.0 2.0 1.6 1.2
Normal-VAR 2.5 2.2 1.8 2.7 1.2
t6-VAR 6.4 2.6 2.2 1.8 1.1

Nominal level α=5%
Normal-IID 5.0 5.3 5.4 4.9 4.8
t6-IID 10.7 6.7 6.9 5.2 5.0
Normal-GARCH 7.2 7.1 7.2 6.0 5.5
t6-GARCH 7.4 7.7 7.5 6.9 5.7
Normal-VAR 9.5 6.9 6.1 8.5 5.0
t6-VAR 14.5 7.9 7.3 7.3 5.1

Nominal level α=10%
Normal-IID 10.3 10.3 10.7 10.1 9.6
t6-IID 17.9 12.4 12.5 10.3 9.9
Normal-GARCH 12.8 12.5 12.3 12.4 10.5
t6-GARCH 13.7 13.3 13.1 13.1 11.1
Normal-VAR 15.6 12.4 10.8 15.6 9.7
t6-VAR 22.5 13.3 12.0 13.3 9.8

For each DGP, the null hypothesis of equal Sharpe ratios is true and so the empirical rejection probabilities should be compared to the nominal level of the test,
given by α. We consider three values of α, namely α=1%, 5% and 10%. All empirical rejection probabilities are computed from 5000 repetitions of the underlying
DGP, and the same set of repetitions is shared by all inference methods.

15 We use close prices adjusted for dividends and stock splits.

857O. Ledoit, M. Wolf / Journal of Empirical Finance 15 (2008) 850–859



size of 5. The nominal confidence level is 1−α=0.95 and the set of input block sizes is {1, 2, 4, 6, 8,10}. The two estimated calibration
functions, based on K=5000 pseudo sequences, are displayed in Fig. 1. As a result, the estimated optimal block sizes are b̃ =4 for the
mutual funds application and b̃ =6 for the hedge funds application.

The bootstrap p-values are computed as in Eq. (9), employing M=4999. In both applications, JKM results in a rejection of the
null at significance level α=0.05, while HAC, HACPW, and Boot-TS do not. Not surprisingly, given the noticeable autocorrelation of
hedge fund returns, the differences are more pronounced for the second application. Boot-IID results in a rejection for the mutual
funds data but not for the hedge fund data. However, as discussed previously, we recommend to always use Boot-TS with financial
return data.

7. Conclusion

Testing for the equality of the Sharpe ratios of two investment strategies is an important tool for performance analysis. The
current status quo method in the applied literature appears to be the test of Memmel (2003), which is a corrected version of the
original proposal of Jobson and Korkie (1981). Unfortunately, this test is not robust against tails heavier than the normal
distribution and time series characteristics. Since both effects are quite commonwith financial returns, the test should not be used.

We have discussed alternative inference methods which are robust. HAC inference uses kernel estimators to cone up with
consistent standard errors. The resulting inference works well with large samples but is often liberal for small to moderate sample
sizes. In such applications, it is preferable to use a studentized time series bootstrap. Arguably, this procedure is quite complex to
implement, but corresponding programming code is freely available at http://www.iew.uzh.ch/chairs/wolf/team/wolf/publications
en.html.

Finally, both the HAC inference and the studentized bootstrap detailed in this paper could be modified to make inference for
(the difference of) various refinements to the Sharpe ratio recently proposed in the literature–e.g., see Ferruz and Vicente (2005)
and Israelsen (2003, 2005)–as well as many other performance measures, such as the Information ratio, Jensen's alpha, or the
Treynor ratio, to name just a few.

Fig. 1. Estimated calibration functions for the two empirical applications. The nominal level is 1−α=0.95. The resulting estimated optimal block sizes are b =4 for
the mutual funds application and b =6 for the hedge funds application.

Table 3
p-values (in percent) for various inference methods; see Section 4 for a description

Data JKM HAC HACPW Boot-IID Boot-TS

Mutual funds 3.9 6.3 6.7 4.4 9.2
Hedge funds 1.0 14.7 25.4 5.8 29.4

The data set ‘mutual funds’ corresponds to the top two funds of Table 2; the data set ‘hedge funds’ corresponds to the bottom two funds of Table 2. All p-values are
for the two-sided test of equal Sharpe ratios.
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