The Saturation of Spending Diversity and the Truth about Mr Brown and **Mrs Jones**

Christian Kiedaisch*, Andreas Chai[‡], Nicholas Rohde[‡]

*Department of Economics, University of Zurich; [#]Griffith Business School christian.kiedaisch@econ.uzh.ch

"The preference hypothesis only acquires prima facie plausibility when it is applied to the statistical average. To assume that the representative consumer acts like an ideal consumers is a hypothesis worth testing; to assume that an actual person, the Mr. Brown or Mrs. Jones, who lives around the corner, does in fact act in such a way does not deserve a moment's consideration." J.R. Hicks - A Revision of Demand Theory (1956) -

1. Measuring Spending Diversity

2 A Model of Spending Diversity

Generalized Stone Geary utility:

$$U_{i} = \left[\sum_{j=1}^{k} \beta_{ij}^{\frac{1}{\varepsilon}} \left(q_{ij} - \gamma_{j}\right)^{\frac{\varepsilon}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

• $q_{ij} \ge 0$: quantity of good *j* consumed by household *i* • $\gamma_i \ge 0$: "subsistence consumption" level of good *j*; the same for all households

(3)

- *n* households (indexed by *i*); *k* expenditure categories
- Total expenditures of household i: x_i
- Expenditure share of household *i* on good *j*: s_{ij}
- Calculate **Entropy** of expenditure shares to measure spending diversity

Individual Spending Diversity E_i :

$$E_{i} = -\sum_{j=1}^{k} \phi(s_{ij}) \qquad \begin{cases} \phi(s_{ij}) = s_{ij} \ln s_{ij} & s_{ij} > 0 \\ \phi(s_{ij}) = 0 & s_{ij} = 0 \end{cases}$$

 \Rightarrow Entropy E_i increases when expenditure shares become more equal

Group Level Spending Diversity \hat{E}_d :

• Households partitioned into 50 income groups

• Average expenditure shares within group d: $\hat{s}_{id} = [50/n] \sum_{i \in d} s_{ij}$ • Entropy of average shares: $\hat{E}_d(\hat{s}_{id})$

Empirical approach:

• Data: UK Family Expenditure Survey (1990 to 2000)

• $\beta_{ij} \ge 0$ can vary across households $(\sum_{i=1}^{k} \beta_{ij} = 1)$ • $\varepsilon > 0$ determines substitutability between goods

Budget constraint:

$$x_i = \sum_{j=1}^k p_j q_{ij}$$

 p_i denotes price of good j

2.1 An Example with Three Goods

Setup:

(1)

• Basic need good j = 1 with $\gamma_1 > 0$; two more luxurious goods j = 2 and j = 3 with $\gamma_2 = \gamma_3 < \gamma_1$

• $p_1 = 1, p_2 = p_3 = p$

• Two (groups of) households (i = 1 and i = 2) with same expenditures x

• $\beta_{i1} = 1 - \overline{\beta}$: equal preferences for good 1

• Opposite preferences regarding goods 2 and 3: $\beta_{12} = \beta_{23}$ and $\beta_{13} = \beta_{22} (\beta_{i2} + \beta_{i3} = \bar{\beta})$

Implications:

- Aggregated demand $Q_j = q_{1j} + q_{2j}$ for each good j is independent of preference hetero**geneity**, i.e. of β_{i2} and β_{i3} (for $\overline{\beta}$, x, and p given)
- Aggregated demand can be derived from utility maximization problem of two (groups of) representative households with (per household) expenditures $x_a = x$ and average preferences

• Estimate E_i and \hat{E} as a function of expenditures x

1.1 The Engel Curves for Spending Diversity

 $\beta_{a1} = 1 - \overline{\beta}$ and $\beta_{a2} = \beta_{a3} = \frac{\beta}{2}$

For a certain parameter range, the **model can generate all stylized facts**:

Engel curves for group level and individual spending diversit

Individual Engel curves

Engel curves for group level and individual spending diversity

2.2 The Value of Product Variety

Assumptions:

- Same setup as 2.1; however, only the basic need good exists initially
- Goods 2 and 3 ($\gamma_2 = \gamma_3 < 0$) can be simultaneously introduced through innovation or trade

Notes: The Figures on the left show E_i , while the Figures on the right depict \hat{E} . Each row represents a different level of aggregation across expenditure categories. The number of observations was 6,047 in 1990, 5,984 in 1995 and 5,865 in 2000.

Differences between Group Level and Individual Spending Diversities

 $\hat{E} - E_i$ with 200+ expenditure categories

1.2 Stylized Facts

• Stylized fact 1: Inverse-U relation between individual spending diversity E_i and household income x_i (\neq cross-country studies like Clements et al., 2006).

- Stylized fact 2: Positive or inverse-U relation between group level spending diversity \hat{E} and average group income x.
- Stylized fact 3: \hat{E} exceeds E_i for each level of x.
- Stylized fact 4: The difference $\hat{E} E_i$ is either U-shaped in x or rises in x.

• Value of product variety: amount F_i of good 1 that household i is willing to give up in order to be able to purchase all three goods (goods 2 and 3 at price p)

Proposition 1

A household with heterogeneous preferences ($\beta_{ij} \neq \frac{\overline{\beta}}{2}$ for $j \in \{2, 3\}$) values variety more than a household with average preferences ($\beta_{a2} = \beta_{a3} = \frac{\beta}{2}$) does and the more so, the more heterogeneous these preferences are (i.e. $F_i > F_a$ holds, with $\frac{\partial F_i}{\partial \beta_{ii}} > 0$ when $\beta_{ij} > \frac{\beta}{2}$). Small degrees of preference heterogeneity can lead to substantial disagreement between individual and representative (average) households about the value of product variety.

Conclusion

The truth about Mr Brown and Mrs Jones:

- Possess different spending pattern
- Differences between spending pattern grow in income (for large incomes)
- \Rightarrow emergent consumption heterogeneity
- Ignoring preference heterogeneity and focusing on representative households leads to underestimation of value of product variety
- \Rightarrow It is worthwhile to pay attention to what Mr Brown and Mrs Jones do instead of only focusing on average behavior

