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ABSTRACT
The bivariate probit model is frequently used for estimating the effect of an endogenous binary regressor (the ‘treatment’) on
a binary health outcome variable. This paper discusses simple modifications that maintain the probit assumption for the
marginal distributions while introducing non-normal dependence using copulas. In an application of the copula bivariate
probit model to the effect of insurance status on the absence of ambulatory health care expenditure, a model based on
the Frank copula outperforms the standard bivariate probit model. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The bivariate probit model is frequently used in health economics when one wants to estimate the effect of a
treatment on a binary health outcome. It arises from a two-equation structural latent variable framework, where
the first equation y1 = 1(b0 + b1y2 + e1> 0) describes the health outcome variable (y1) as a function of a binary
treatment (y2) and latent error e1, whereas the second equation y2 = 1(p0 + p1z + e2> 0) determines whether or
not treatment is received. The model is completed by assuming that the latent errors e1 and e2 have a bivariate
standard normal joint distribution with correlation r. If r= 0, then separate estimation of the first structural
equation by a simple probit model identifies the structural treatment effect b1. If r 6¼ 0, then the treatment is said
to be ‘endogenous’, and joint estimation is required. Recent applications in this journal include those of
Dormont et al. (2009), French and Maclean (2006), Gitto et al. (2006), Latif (2009), MacDonald and Shields
(2004), and Smith Conway and Kutinova (2006). The bivariate probit model is also discussed in popular
textbooks on health econometrics by Jones and O’Donnell (2002) and Jones (2007).

The purpose of this paper is to propose an alternative, general class of structural probit models that allow for
correlation between the two latent errors (and hence endogenously determined treatment) without imposing
joint normality. A key component of this approach is the concept of a copula (see, e.g., Joe, 1997; Nelson,
2006; Trivedi and Zimmer, 2007), which treats the modeling of marginal distributions and of dependence
structure as separate tasks. Copulas thereby provide a convenient device for generating a flexible non-normal
distribution for the errors. The parameters of the resulting copula bivariate probit model (CBP) can be
estimated by maximum likelihood.

The CBP model is related to earlier applications of copula theory to structural limited dependent variable
models. Lee (1983) uses copulas to generalize the normality assumption that underpins the selectivity model
of Heckman (1976). In his case, the structural two-equation system consists of a continuous outcome equation
and a latent selection equation. Continuous copulas are used to construct the joint distribution of error terms in
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the two equations. Extensions of this approach were provided by Prieger (2002) and Smith (2003). Smith
(2005) derives a copula-based switching regression model, again for a continuous dependent variable. A regres-
sion model with binary endogenous variable can be obtained as a special case. To the best of my knowledge,
the use of copula theory for structural bivariate binary response models has not been considered so far.

I discuss two specific versions of the CBP model: one based on the Frank copula and one based on
the Clayton copula. On the one hand, these copulas have been chosen because they are simple and
the resulting models require, in contrast to the standard bivariate probit, no numerical integration in order
to compute probabilities. On the other hand, the dependence structure they imply departs in interesting
ways from that of a bivariate normal distribution. Although the conditional expectation function (cef) of
the latter is linear, the Frank CBP model has a cef that becomes flat in the tails (signifying mean inde-
pendence once the conditioning event is sufficiently rare), whereas the Clayton CBP model has an
asymmetric cef.

The paper includes a formal Monte Carlo analysis showing that it is possible to empirically discriminate
between the different CBP models. Furthermore, using a wrong copula can lead to substantial bias in the
estimation of structural parameters. The proposed approach is illustrated in an application to the endogeneity
of insurance choice in a model for ambulatory health expenditures, following Deb et al. (2006).

2. ECONOMETRIC METHODS

2.1. Bivariate probit model

The bivariate probit model provides a convenient setting for estimating the effect of an endogenous binary
regressor y2 on a binary outcome variable y1. The standard model assumes a constant treatment effect, the presence
of exclusion restriction, and the absence of simultaneity. Formally, the structural model consists of two latent
equations

y�1 ¼ xbþ ay2 þ e1 (1)

y�2 ¼ zgþ e2 (2)

where the stochastic errors that are independent of x and z but not necessarily independent of each other.
Moreover, the observed binary outcomes are

y1 ¼ 1 y�1 > 0
� �

; y2 ¼ 1 y�2 > 0
� �

where 1(�) is the indicator function. The main interest is in the structural treatment parameter a or the average
treatment effect Ex[P(e1>� xb� a)�P(e1>� xb)]. The joint distribution of y1 and y2 (conditional on x and z)
has four elements:

P y1 ¼ 0; y2 ¼ 0ð jx; zÞ ¼ P e1≤� xb; e2≤� zgð Þ (3)

P y1 ¼ 1; y2 ¼ 0ð jx; zÞ ¼ P e1 > �xb; e2≤� zgð Þ (4)

P y1 ¼ 0; y2 ¼ 1ð jx; zÞ ¼ P e1≤� xb� a; e2 > �zgð Þ (5)

P y1 ¼ 1; y2 ¼ 1ð jx; zÞ ¼ P e1 > �xb� a; e2 > �zgð Þ (6)

This distribution is fully determined once the joint distribution of e1 and e2 is known. In the bivariate probit
model, it is assumed that e1 and e2 have joint distribution function ?F(e1, e2) =Φ2(e1, e2,r), where Φ2 denotes
the cumulative density function of the bivariate standard normal distribution, and r is the coefficient of corre-
lation. In this case, the joint probability function f(y1, y2|x, z) can be written compactly as

f y1; y2ð jx; zÞ ¼ Φ2 s1 xbþ ay2ð Þ; s2 zgð Þ; s1s2r½ � (7)

where sj= 2yj� 1, j = 1, 2.
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It is important to understand that the thus defined bivariate probit model introduces two sources of depen-
dence between y1 and y2, related to the parameters a and r, respectively. Although the joint model simplifies
to two univariate probit equations under independence of the structural errors (r= 0), this does not mean that
y1 and y2 are independent in this case. The reason is that the first probit equation of the recursive base model
gives the probability of y1 conditional on y2. Therefore, full independence of y1 and y2 requires r= 0 and
a = 0. The CBP model developed in this paper uses copulas to model dependence between the structural errors.
It does not model the dependence between the two binary outcomes directly, although dependence between the
structural errors obviously affects that dependence.

2.2. Clayton and Frank copulas and their properties

Any joint distribution function has a copula representation in which dependence and marginals are separately
specified or ‘uncoupled’. Copulas are thus building blocks for multivariate distributions that preserve the probit
assumption for Equations 1 and 2 but do not impose joint normality. In particular, one can recur to well-known
parametric classes of copula functions that allow for different kinds of dependence and often have quite simple
functional forms.

Formally, a copula is a multivariate joint distribution function defined on the n-dimensional unit cube [0, 1]
such that every marginal distribution is uniform on the interval [0, 1] (see, e.g., Nelson, 2006). For example, for
n = 2, we can write C(u, v) =P(U≤ u,V≤ v), with marginal distributions given by P(U≤ u,V≤ 1) =C(u, 1) and
P(U≤ 1,V≤ v) =C(1, v), respectively. The normal, or Gaussian, copula, again for n = 2, is

P U≤u;V≤vð Þ ¼ C u; vð Þ ¼ Φ2 Φ�1 uð Þ;Φ�1 vð Þ; θ� �
(8)

where θ is the coefficient of correlation. Apart from the Gaussian copula and the independence copula
C(u, v) = uv, I consider in this paper two further copulas, the Clayton copula

C u; vð Þ ¼ u�θ þ v�θ � 1
� ��1=θ

(9)

and the Frank copula

C u; vð Þ ¼ �θ�1log 1þ e�θu � 1ð Þ e�θv � 1ð Þ
e�θ � 1ð Þ

� �
(10)

It is easy to verify that all four copulas (Gaussian, independence, Clayton, Frank) have uniform marginal
distributions, as C(u, 1) = u and C(1, v) = v.

The significance of copulas in the present context lies in the fact that by way of transformation, they can be
used to generate joint distribution functions for the two structural errors in the bivariate probit model, e1 and e2,
keeping the normal marginals but without assuming full bivariate normality. Let u =Φ(e1) and v =Φ(e2).
Then F(e1, e2) =C(Φ(e1),Φ(e2)) is a joint distribution function for e1 and e2 with marginal distributions that
are standard normal.

For example, the normal copula recovers the standard bivariate probit model because

F e1; e2ð Þ ¼ Φ2 Φ�1 Φ e1ð Þð Þ;Φ�1 Φ e2ð Þð Þ� � ¼ Φ2 e1; e2ð Þ
whereas under the Clayton assumption,

F e1; e2ð Þ ¼ Φ e1ð Þ�θ þΦ e2ð Þ�θ � 1
� 	�1=θ

In order to compare the differences in the dependence structure implied by the Frank and Clayton copulas
with that of the bivariate normal distribution, correlation is not a good indicator. First, it detects only linear
dependence, whereas dependence in copulas is nonlinear in general. Second, and relatedly, it is not invariant
to transformation of the marginal distributions. As a consequence, other measures of dependence have been
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suggested. A common one is Kendall’s t, a measure of the degree of concordance. Imagine drawing two
random pairs (U1,V1) and (U2,V2) from the joint distribution of U and V. Then t is defined as

t ¼ P U1 � U2ð Þ V1 � V2ð Þ > 0½ � � P U1 � U2ð Þ V1 � V2ð Þ < 0½ �
t can vary between�1 and 1. It is zero if U and V are independent. Not all copulas cover the full spectrum of

possible ts. If they do so, they are called comprehensive. The normal and Frank copulas are comprehensive,
whereas the Clayton copula 9 is not, the reason is that it only captures positive dependence. It is ‘half
comprehensive’, however, because t can take any value between 0 and 1. Of course, one can always reflect
a Clayton copula, modeling the relationship between U and �V instead, in which case the dependence is
strictly negative, with ts between �1 and 0.

Additional insight into the nature of dependence implied by these copula models can be obtained from their
conditional expectation functions. The cef of the bivariate normal distribution is linear, with E(e2|e1) = re1. For
the Clayton and Frank copulas, simple expressions for the conditional expectations are not available, but it is
straightforward to obtain them by way of simulation. Figures 1 and 2 show a sample of 500 draws from the
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Figure 1. Five hundred draws from a Frank copula with standard normal marginals, θ= 3.3. Linear regression line and locally weighted
polynomial regression
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Figure 2. Five hundred draws from a Clayton copula with standard normal marginals, θ= 1. Linear regression line and locally weighted
polynomial regression
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Frank and Clayton copulas, with standard normal marginals, for θ= 3.3 and θ= 1, respectively. Also shown are
the cefs (obtained from a nonparametric regression) as well as the linear regression line.

The Frank copula is symmetric. Its cef is near linear in the center but flattens out in the tails. This is an
interesting feature that can be of value in applications to sample selection models where the linearity of the
cef of the bivariate normal distribution lacks plausibility when selection probabilities are very small. The
Clayton copula looks quite different. It is not symmetric, and the cef shows much stronger dependence in
the left tail of the distribution than in the right. Again, this is a distinctive feature that may be a priori desirable
in some applications.

2.3. Copula bivariate probit model

The generic probability expressions for the bivariate probit model were given in equations 3–6. Under a copula
representation with probit marginals, these expressions can be written as

P y1 ¼ 0; y2 ¼ 0ð Þ ¼ C Φ �xbð Þ;Φ �zgð Þ½ � (11)

P y1 ¼ 1; y2 ¼ 0ð Þ ¼ C 1;Φ �zgð Þ½ � � C Φ �xbð Þ;Φ �zgð Þ½ � (12)

P y1 ¼ 0; y2 ¼ 1ð Þ ¼ C Φ �xb� að Þ; 1½ � � C Φ �xbð Þ;Φ �zgð Þ½ � (13)

P y1 ¼ 1; y2 ¼ 1ð Þ ¼ 1� C Φ �xb� að Þ; 1½ � � C 1;Φ �zgð Þ½ � þ C Φ �xb� að Þ;Φ �zgð Þ½ � (14)

The joint probabilities of the CBP model depend on the selected copula as well as on four parameters,
x = (b, g, a, θ), where θ is the dependence parameter of the copula function. If the true copula is assumed
to belong to a parametric family C = {Cx, x2Ξ}, a consistent and asymptotically normally distributed
estimator of the parameter x can be obtained through maximum likelihood. Assuming an independent
sample of n observations (yi1, yi2, xi, zi), the likelihood function L(x ; y1, y2, x, z) is proportional to

Yn
i¼1

P yi1 ¼ 1; yi2 ¼ 1ð Þyi1yi2 � P yi1 ¼ 1; yi2 ¼ 0ð Þyi1 1�yi2ð Þ

�P yi1 ¼ 0; yi2 ¼ 1ð Þ 1�yi1ð Þyi2 � P yi1 ¼ 0; yi2 ¼ 0ð Þ 1�yi1ð Þ 1�yi2ð Þ

Numerical optimization methods can be used to maximize the log-likelihood function. These can employ
analytical first derivatives that have a relatively tractable form. For example,

@P y1 ¼ 0; y2 ¼ 0ð jxÞ
@b

¼ �cu Φ �xbð Þ;Φ �zgð Þ½ �f �xbð Þx

where cu = @ C(u, v)/@ u. A formal requirement for identification is that there is at least one exogenous regressor
with a nonzero coefficient, i.e., b 6¼ 0 or g 6¼ 0 (Wilde, 2000). As long as the model is correctly specified, the
maximum likelihood estimator has the usual asymptotic properties. It is useful to think of these estimators as
providing best approximations to an unknown true model, in a quasi-likelihood sense (White, 1982), and a
robust covariance estimator should be used.

3. RESULTS

3.1. Simulation study

To learn about the behavior and performance of the CBP model under various data generating processes
(DGPs), I report results for a simulation experiment carried out in order to evaluate the bias and accuracy of
the estimators as well as model selection. The DGP is a simple recursive model for two binary dependent
variables with probit margins:
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y1 ¼ 1 b0 þ b1xþ ay2 þ e1 > 0ð Þ
y2 ¼ 1 g0 þ g1zþ e2 > 0ð Þ

where ?(b0, b1, g0, g1, a) = (0.5,� 0.5, 0, 1, 0.5). In all cases, x and z are independent identically distributed
Gaussian with mean zero and standard deviation of 1.

The stochastic errors e1 and e2 are generated from three alternative copula models:

• Normal copula with r= 0.5.
• Frank copula with θ = 3.3.
• Clayton copula with θ= 1.

The dependence parameters have been chosen to yield the same value for t in all three cases, namely 0.33.
The marginal distributions of the stochastic errors e1 and e2 are standard normal. Given the parameter values
and the distribution of x and z, the mean of y1 is approximately 73%, whereas the mean of y2 is approximately
50%. The simulations are conducted for three sample sizes n = 500, 1000, 5000 and run for r= 5000 replica-
tions each.

The results are shown in Table I (normal DGP), Table II (Frank DGP), and Table III (Clayton DGP). When
looking at the results, there are two key questions of interest. First, what are the biases that result from estimat-
ing the wrong model? Second, do tests and model selection criteria reveal the right model? The Gaussian,
Clayton, and Frank copulas nest the independence copula, so a test for independence can be based on the
likelihood ratio test statistic. In the case of the Clayton copula, a small adjustment is needed, as θ sits at the
boundary of the parameter space under the null hypothesis. Chernoff (1954) shows for this case that the distri-
bution of the likelihood ratio statistic under the null is mixed discrete and continuous, with probability mass of

Table I. Simulation results for normal copula bivariate probit model data generating process (r= 0.5, r= 5000)

b̂0 b̂1 â θ̂ t Log-likelihood % Pick

n= 500
Normal 0.499 �0.504 0.512 0.497 0.335 �473.5 40.8

(0.107) (0.072) (0.226) (0.132)
Frank 0.501 �0.507 0.527 3.419 0.333 �473.7 33.6

(0.108) (0.073) (0.233) (1.251)
Clayton 0.467 �0.507 0.554 0.747 0.260 �474.1 25.5

(0.115) (0.074) (0.241) (0.370)
Independence 0.231 �0.527 1.120 N.A. N.A. �479.3 0

(0.086) (0.075) (0.145) N.A.
n= 1000
Normal 0.500 �0.501 0.502 0.502 0.337 �950.7 48.6

(0.076) (0.050) (0.161) (0.093)
Frank 0.503 �0.503 0.515 3.392 0.336 �951.0 31.6

(0.077) (0.051) (0.166) (0.859)
Clayton 0.466 �0.504 0.546 0.721 0.259 �951.9 19.7

(0.082) (0.052) (0.171) (0.245)
Independence 0.228 �0.524 1.116 N.A. N.A. �961.9

(0.059) (0.053) (0.101) N.A.
n= 5000
Normal 0.500 �0.501 0.500 0.501 0.334 �4763.6 80.0

(0.034) (0.022) (0.071) (0.041)
Frank 0.503 �0.504 0.514 3.313 0.333 �4765.2 16.4

(0.034) (0.022) (0.072) (0.367)
Clayton 0.465 �0.504 0.546 0.691 0.256 �4769.8 3.6

(0.037) (0.023) (0.075) (0.103)
Independence 0.229 �0.523 1.110 N.A. N.A. �4817.3

(0.027) (0.023) (0.045) N.A.

The main entries in the table give the mean values of the statistics over repeated samples. Standard deviations are given in parentheses. The
true parameter values are b0 = 0.5, b1 =� 0.5, and a= 0.5. N.A. indicates not applicable.
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Table II. Simulation results for Frank copula bivariate probit model data generating process (θ= 3.3, r = 5000)

b̂0 b̂1 â θ̂ t Log-likelihood % Pick

n= 500
Normal 0.492 �0.498 0.503 0.490 0.330 �475.3 28.8

(0.107) (0.072) (0.221) (0.129)
Frank 0.501 �0.501 0.503 3.465 0.337 �475.1 52.8

(0.106) (0.072) (0.224) (1.225)
Clayton 0.457 �0.500 0.550 0.719 0.252 �476.1 18.4

(0.116) (0.074) (0.240) (0.370)
Independence 0.227 �0.521 1.101 N.A. N.A. �481.0 0

(0.084) (0.075) (0.143) N.A.
n= 1000
Normal 0.489 �0.498 0.506 0.486 0.325 �954.3 28.0

(0.077) (0.051) (0.160) (0.093)
Frank 0.499 �0.502 0.504 3.357 0.333 �954.0 61.4

(0.075) (0.051) (0.160) (0.826)
Clayton 0.452 �0.500 0.557 0.672 0.246 �956.0 10.6

(0.084) (0.052) (0.175) (0.243)
Independence 0.226 �0.520 1.097 N.A. N.A. �965.0

(0.060) (0.052) (0.101) N.A.
n= 5000
Normal 0.490 �0.497 0.503 0.487 0.324 �4782.3 18.1

(0.034) (0.022) (0.069) (0.040)
Frank 0.500 �0.501 0.501 3.309 0.333 �4780.6 81.3

(0.033) (0.023) (0.070) (0.351)
Clayton 0.451 �0.499 0.557 0.647 0.243 �4791.0 0.6

(0.037) (0.023) (0.076) (0.100)
Independence 0.225 �0.518 1.095 N.A. N.A. �4833.7

(0.027) (0.023) (0.045) N.A.

Table III. Simulation results for Clayton copula bivariate probit model data generating process (θ= 1, r = 5000)

b̂0 b̂1 â θ̂ t Log-likelihood % Pick

n= 500
Normal 0.513 �0.497 0.521 0.573 0.393 �465.1 19.4

(0.104) (0.072) (0.222) (0.124)
Frank 0.507 �0.498 0.551 4.109 0.384 �465.6 9.2

(0.105) (0.073) (0.235) (1.427)
Clayton 0.505 �0.501 0.501 1.088 0.341 �464.2 71.4

(0.108) (0.073) (0.222) (0.427)
Independence 0.203 �0.527 1.241 N.A. N.A. �473.0 0.0

(0.086) (0.076) (0.148) N.A.
n= 1000
Normal 0.509 �0.497 0.524 0.570 0.388 �934.0 14.8

(0.073) (0.051) (0.160) (0.089)
Frank 0.505 �0.498 0.554 3.964 0.380 �935.1 4.4

(0.073) (0.052) (0.169) (0.978)
Clayton 0.501 �0.501 0.503 1.040 0.336 �932.3 80.8

(0.076) (0.052) (0.160) (0.290)
Independence 0.201 �0.526 1.238 N.A. N.A. �949.1

(0.060) (0.053) (0.103) N.A.
n= 5000
Normal 0.509 �0.496 0.522 0.570 0.386 �4681.0 2.0

(0.033) (0.022) (0.070) (0.038)
Frank 0.505 �0.498 0.553 3.874 0.378 �4686.6 0.1

(0.033) (0.023) (0.074) (0.403)
Clayton 0.500 �0.501 0.501 1.007 0.334 �4672.4 97.9

(0.034) (0.023) (0.070) (0.119)
Independence 0.200 �0.525 1.235 N.A. N.A. �4754.4

(0.027) (0.023) (0.046) N.A.
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0.5 at 0 and half a w21ð Þ distribution for positive values. To select among the three dependence copulas (which are

non-nested), application of information criteria reduce to simple log-likelihood comparisons, as the number of para-
meters is the same in the three models.

From Table I, we see that the parameter of the exogenous regressor b1 (the true value is �0.5) is estimated
well regardless of model and sample size. However, the parameter of the endogenous regressor a is subject to
bias in the misspecified models. The bias is very large for the independence model, where it amounts to over
100%, but there is also substantial bias for the Clayton copula. For n = 500, for instance, the Clayton mean
is 0.549, compared with the true value of 0.5. The bias does not vanish as the sample size increases.

The average likelihood ratio test statistic for the independence model against the normal model is 11.6 for
n = 500, increasing to 107.4 for n = 5000. Although the simulation results show that the copula models do well
in detecting dependence, they also show that larger samples are needed to reliably discriminate between the
three copulas with dependence. For example, although the correctly specified normal copula model has the
highest average log-likelihood even if n is only 500, the Frank copula model is picked instead in a substantial
proportion of instances (33.6%) when model selection is based on the highest log-likelihood value. The situation
improves considerably when the sample size is increased to 5000. Now, the correct model is picked in 80% of all
simulation runs.

These qualitative conclusions are largely confirmed by the other two DGPs in Tables II and III. In Table II,
data are generated from a Frank copula with dependence parameter θ= 3.3. Again, the correct model estimates
the true parameter values accurately on average, even for the smallest sample size, whereas a misspecified
model tends to overestimate the structural parameter a. There is one exception, though, because the normal
copula appears to provide an unbiased estimator as well, indicating a certain degree of robustness. Also in terms
of log-likelihood value, Frank and normal copulas are closest to each other, which was already true under the
normal DGP in Table I. In a different context, Prokhorov and Schmidt (2009) point to the possibility of robust
estimation in the class of radially symmetric copulas, which includes the Gaussian and the Frank copulas.

By contrast, the Clayton copula is not a good substitute for the Frank copula, at least for the parameters
chosen in this simulation experiment, as it overestimates the structural parameter a by about 10%. In the large
sample, the Clayton model is almost never picked (only in 0.6% of all cases).

Finally, in Table III, data were generated from the Clayton copula with true dependence parameter θ = 1,
corresponding to a Kendall’s t of 0.33. The empirical distinctiveness of the Clayton model is evident from
the last column of Table III, where it is seen that even in the small sample, model selection favors the (true)
Clayton model in most cases (71.4%), increasing to near uniform selection (97.9%) in the large sample. The
large sample bias in the structural parameter is larger for the Frank model than for the normal model (about
10% as compared with 5%), whereas the independence model overestimates the true parameter by a factor
of almost 1.5.

The simulations document the potential advantages of copula bivariate probit models for applied work. First,
the models are distinguishable through their different dependence patterns even in relatively small samples, and
log-likelihood–based selection criteria work well. Second, the modified models are relevant because bias
results when the wrong specification is chosen. Moreover, the simulation results suggest that if the true DGP
has dependence, it is better to use any model with dependence (regardless of whether it is the right or the wrong
one) for estimating the structural parameter a than it is to erroneously impose independence. Third, and finally,
it is encouraging that these models can in fact disentangle the direct effect of y1 on y2 from the indirect effect
exerted through the dependence between the error terms.

3.2. Application to Medical Expenditures

Deb et al. (2006) (hereafter referred to as ‘DMT’) analyzed the determinants of medical expenditure in a two-
part framework, i.e., distinguishing between the extensive margin (whether expenditures are zero or positive)
and the intensive margin (positive expenditures). Such two-part models are frequently employed in studies
of health care utilization, because a substantial fraction of observations is typically zero (see also Manning
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et al., 1981). In particular, DMT considered a simultaneous recursive system of equations where insurance plan
choice is modeled through the multinomial probit model and endogeneity of insurance status in the health
expenditure equation arises from correlated unobservables. Results were obtained using Bayesian posterior
simulation via Gibbs Sampler, applied to data from the 1996 to 2001 waves of the Medical Expenditure Panel
Survey.

The application reported here departs from DMT in a number of dimensions. First, I use a subset of the
DMT data, excluding all individuals enrolled in a fee-for-service plans. The remaining individuals are either
part of a health maintenance organization (HMO), a rather restrictive insurance model involving a gatekeeper
physician and a preselected network of providers, or they are enrolled in a preferred provider organization
(PPO) plan. The PPO plans also have a gatekeeper but leave otherwise more provider choice. The restriction
to PPO and HMO plans yields a sample of 12,382 persons, 15% of whom had no ambulatory expenditures.
Eighty-five percent of persons were enrolled in an HMO plan, with the remaining 15% in a PPO plan.

Second, I focus on the hurdle decision for ambulatory expenditures (DMT also model the positive part). This
particular sub-model fits into the class of models discussed in this paper. The goal is thus to estimate the effect
of an endogenous binary explanatory variable (whether or not the individual has an HMO plan (yes = 1)) on a
binary outcome (whether or not the individual had any ambulatory health expenditures (no = 1)).

Third, I depart from DMT both in terms of estimation technique (maximum likelihood estimation rather than
Bayesian posterior estimation) and in terms of the range of dependence models under consideration. Whereas
DMT assume joint normality, I will contrast the results obtained under this assumption with those obtained
from Frank and Clayton dependence.

Otherwise, I follow the specification of DMT. In particular, I use the same regressors in the outcome
equation. They include indicators of self-perceived health status variables (VEGOOD, GOOD, and FAIRPOOR),
measures of chronic diseases and physical limitation (TOTCHR, PHYSLIM, and INJURY), geographical
variables (NOREAST,MIDWEST, SOUTH, and MSA), and socio-economic variables (BLACK, HISPANIC,
FAMSIZE, FEMALE, MARRIED, EDUC, AGE, AGE2, AGEXFEM, and INCOME), respectively. I also use
the same exclusion restrictions for the insurance choice equations. These are the age of the spouse (SPAGE)
and whether the spouse was covered by an HMO in the previous year (LGSPHMO). I refer to DMT for a detailed
description of these variables.

Table IV contains the key results. For each of the four copulas (independence, normal, Frank, and Clayton),
it lists the estimated a parameter, the implied average treatment effect of HMO on no ambulatory expenditure,
the estimated dependence parameter, and Kendall’s t as well as the log-likelihood value. The ATE’s vary quite
a bit, from +1.9% under independence to �2.6% in the Frank CBP model. Although the ATE estimates are
consistently negative in CBP models with dependence, the size is cut by half when moving from the Frank
CBP to the normal CBP model and cut by half again when moving to the Clayton CBP.

Statistically, the Frank CBP has the largest log-likelihood value, although the differences are not large. A
test of the Frank CBP against the independence CBP formally rejects the independence assumption. The
chi-squared (1)� distributed likelihood ratio test statistic is 4.6, with p value of .032. Similarly, the Frank
dependence parameter is significantly greater than zero. The sign suggests positive self-selection: those who
are more likely to opt for HMO have a higher than average probability of having no ambulatory expenses. If
unaccounted for, then the positive dependence between the unobservables in the two equations is captured by the
effect estimate that is indeed found to be positive and even statistically significant in the independence model.
Once endogeneity is accounted for, the effect switches its sign, but it is not statistically significant.

It is interesting to observe that the conclusion obtained from formal applications of hypothesis tests based on
the normal CBP would be quite different because the independence CBP cannot be rejected against the normal
CBP model. Likelihood ratio and z-test statistics are both insignificant. As a consequence, one would be led to
interpret the +1.9% ATE under independence as causal.

The full set of regression coefficients for the independence and Frank copulas is displayed in Table V.
Except for the HMO coefficient, there is not much difference between the size and precision of the estimated
effects between the two models.

COPULA BIVARIATE PROBIT MODELS
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4. DISCUSSION

The paper considers the problem of modeling and estimating the effect of a binary endogenous regressor on a
binary outcome variable using copulas. The CBP model is an alternative to semiparametric estimation of
bivariate probit models (e.g., Chen and Zhou, 2007; Murphy, 2007). It offers a relatively simple and par-
simonious compromise between the standard bivariate probit model and these semiparametric alternatives.

Table IV. Results for absence of ambulatory expenditure example

â Treatment effect Dependence parameter Kendall’s t Log-likelihood

Independence 0.101* 0.0187 N.A. N.A. �8341.6
(0.044) N.A.

Bivariate probit �0.067 �0.0131 0.112 0.071 �8340.0
(0.106) (0.063)

Frank copula �0.131 �0.0256 0.982* 0.108 �8339.3
(0.117) (0.453)

Clayton copula �0.032 �0.0061 0.124 0.058 �8340.4
(0.105) (0.095)

*Statistical significance at the 5% level.
Treatment effect is the effect of health maintenance organization on the probability of no ambulatory health expenditures.

Table V. Full regression results for absence of ambulatory expenditure

Independent Frank Independent Frank

HMO No AE HMO No AE HMO No AE HMO No AE

FAMSIZE �0.049 0.083 �0.049 0.082 VEGOOD 0.048 �0.145 0.048 �0.142
(0.012) (0.011) (0.012) (0.011) (0.038) (0.036) (0.039) (0.037)

EDUC �0.166 �0.625 �0.168 �0.623 GOOD 0.052 �0.221 0.053 �0.217
(0.070) (0.067) (0.071) (0.067) (0.043) (0.043) (0.044) (0.043)

INCOME �0.011 �0.045 �0.011 �0.045 FAIRPOOR 0.100 �0.466 0.098 �0.463
(0.007) (0.008) (0.007) (0.008) (0.073) (0.095) (0.072) (0.097)

FEMALE 0.008 �0.920 0.010 �0.913 PHYSLIM �0.040 �0.286 �0.040 �0.287
(0.118) (0.121) (0.118) (0.122) (0.050) (0.066) (0.052) (0.065)

BLACK 0.175 0.262 0.172 0.270 TOTCHR �0.004 �0.640 �0.004 �0.638
(0.048) (0.046) (0.049) (0.047) (0.022) (0.036) (0.022) (0.035)

HISPANIC 0.170 0.135 0.169 0.141 INJURY 0.033 �0.657 0.035 �0.655
(0.047) (0.042) (0.047) (0.042) (0.039) (0.048) (0.038) (0.047)

MARRIED �0.316 �0.242 �0.317 �0.244 YEAR98 0.051 �0.090 0.049 �0.088
(0.082) (0.038) (0.081) (0.038) (0.049) (0.048) (0.050) (0.048)

NOREAST �0.027 �0.137 �0.027 �0.137 YEAR99 �0.016 �0.027 �0.019 �0.027
(0.052) (0.048) (0.052) (0.048) (0.049) (0.047) (0.051) (0.047)

MIDWEST �0.346 �0.185 �0.346 �0.201 YEAR00 �0.203 �0.118 �0.205 �0.126
(0.049) (0.050) (0.050) (0.050) (0.044) (0.044) (0.043) (0.044)

SOUTH �0.360 0.029 �0.359 0.010 YEAR01 �0.143 �0.102 �0.145 �0.108
(0.044) (0.041) (0.044) (0.042) (0.048) (0.049) (0.048) (0.050)

MSA �0.114 0.020 �0.111 0.018 SPAGE �0.113 �0.113
(0.046) (0.047) (0.046) (0.048) (0.019) (0.019)

AGE �0.203 0.103 �0.207 0.108 LGSPHMO 1.710 1.710
(0.108) (0.113) (0.106) (0.114) (0.043) (0.042)

AGE2 0.236 �0.263 0.241 �0.268 HMO 0.101 �0.131
(0.129) (0.138) (0.127) (0.137) (0.044) (0.117)

AGEXFEM 0.125 0.783 0.120 0.772 theta 0.982
(0.285) (0.306) (0.286) (0.306) (0.453)

constant 2.087 0.525 2.092 0.724
(0.241) (0.243) (0.235) (0.265)

Standard errors are given in parentheses; the following variables are scaled by factor 10� 1: EDUC, INCOME, AGEXFEM, and AGE2. AE,
Ambulatory Expenditure.

R. WINKELMANN

Copyright © 2011 John Wiley & Sons, Ltd. Health Econ. (2011)
DOI: 10.1002/hec



The main benefits of CBP models are twofold. First, they make it relatively effortless to assess the sen-
sitivity of results within a broader class of joint distributions for the stochastic errors. Second, by consid-
ering a number of different copulas one can obtain, in a quasi-likelihood sense, a better approximation to
the true underlying distribution.

The evidence provided in the paper, based on simulations and a real data application, suggests that CBP
models work well in practice and provide a viable and simple alternative to the standard bivariate probit
approach. Of course, the bivariate probit can well be the best model in the considered class of CBP models.
Even then, however, one does not know this before the analysis, and selecting from a larger menu of models
is helpful for assessing the sensitivity of estimates to distributional assumptions.

The methods and models presented in the paper have at least two immediate extensions. First, they can be
applied to cases where the outcome variable is an ordered response with more than two outcomes. For example,
one can easily construct a model with ordered probit marginals for the outcome variable and binary probit
marginal for the endogenous regressor. The ordered probit model has a latent variable representation as
well. Let

y�1 ¼ xbþ ay2 þ e1

The observed ordered responses y1 = 1, 2, . . ., J are obtained from a threshold observation mechanism

y1 ¼
XJ
j¼0

1 y�1 > kj
� �

where ks, 0 =�1< ks, 1< . . .< ks, J =1 partition the real line. It follows that

P y1 ¼ j; y2 ¼ 0ð Þ ¼ C Φ kj � xb
� �

;Φ �zgð Þ� �� C Φ kj�1 � xb
� �

;Φ �zgð Þ� �
and

P y1 ¼ j; y2 ¼ 1ð Þ ¼ C Φ kj � xb� a
� �

; 1
� �� C Φ kj�1 � xb� a

� �
; 1

� �� P y1 ¼ j; y2 ¼ 0ð Þ
Second, the copula approach can be easily extended to accommodate other marginal models, such as the

logit or any other desired link function (Koenker and Yoon, 2009). A bivariate model with logit marginals is
obtained by letting F(e1, e2) =C[Λ(e1),Λ(e2)], where Λ(z) = exp(z)/(1 + exp(z)) is the cumulative density function
of the logistic distribution. Alternatively, one could estimate the marginals semiparametrically, an approach that
has been explored in other copula applications (e.g., Chen and Fan, 2005).

A further potentially fruitful development explores copula mixture models, where the underlying joint
distribution function of the unobservables is approximated by a finite mixture of parametric distribution
functions that can differ both in their copula specification and in their parameters. Conceptually, this is a
very elegant approach as it dispenses with the need to select single copulas and moreover can in principle
approximate the true joint distribution function to an arbitrary degree. The practical implementation may be
very difficult, however, and related results from a study by Trivedi and Zimmer (2009) are not very
encouraging.
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