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1 Introduction

In trade models where firms matter, selection effects largely determine how falling trade barriers

affect the number of goods and prices available to consumers.1 Quantifying these effects depends

crucially on the shape of the productivity distribution, which is most often assumed to follow

either a Pareto or Log-normal distribution. I explore how well these assumptions match available

micro-level data and, more importantly, what errors they bring to the estimates of the gains from

trade.

It has been well documented in the empirical and theoretical literature that firm-specific character-

istics such as size and productivity often follow a Pareto distribution at least in the upper-right tail

(see Axtell, 2001; Gabaix, 2008; Levchenko and di Giovanni, 2012; Arkolakis, 2015).2Due to the

consistency with the data as well as analytic tractability, Pareto distribution has been the most pop-

ular choice for modelling heterogeneity parameters in different variants of Melitz (2003).3Recently,

however, the plausability of the Pareto assumption has been challenged on the grounds of the

available micro data on firms’ sales, e.g., Head, Mayer and Thoenig (2014) and Freund and Pierola

(2015), specifically by emphasizing that Log-normal provides a closer fit to the data when the en-

tire distribution of sales is considered.4This debate is not unique to international trade and arises

whenever the choice between Log-normal and Pareto is unclear, e.g., Eeckhout (2004) argues that

Log-normal dominates Pareto in matching the city size distribution when the entire distribution

(not just the upper-tail) is considered.

I combine these seemingly conflicting arguments by suggesting that while Log-normal distribution

provides a closer fit to the data on measures of efficiency for a vast part of the support, the upper-

right tail is better approximated by Pareto which calls for a mixed distribution. This is easy to

see in Figure 1, where I plot the empirical probability density function of a productivity measure

consistent with Melitz (2003) for almost one million French firms in 2012 along with the best fitting

Log-normal (red dash-dotted line) and Pareto (green dashed line) models when fitted separately

on the bottom 95 percent (left panel) and top 5 percent (right panel) of the distribution. Looking

at the bottom 95 percent of the observations, one may conclude that Log-normal is a clearly better

approximation. However, the results reverse completely for the top 5 percent where Pareto clearly

dominates.

1For example, using data on French firms Eaton, Kortum and Kramarz (2011) show that the selection effects
account for more than 50 percent of firm entry in different markets.

2Also see Simon and Bonini (1958), Luttmer (2007), Levchenko, di Giovanni, and Ranciere (2011), Levchenko
and di Giovanni (2013).

3Following Baldwin (2005) and Chaney (2008), hundreds of papers assumed either unbounded or bounded Pareto
distribution of productivities. A non-exhaustive list of seminal works in international trade includes Arkolakis,
Demidova, Klenow and Rodŕıguez-Clare (2008), Helpman, Melitz and Rubinstein (2008), Melitz and Ottaviano
(2008), Arkolakis, Costinot and Rodŕıguez-Clare (2012), Melitz and Redding (2014) and many others.

4Yang (2014) and Bas, Mayer and Thoenig (2015), and Fernandes, Klenow, Meleshchuk, Pierola, and Rodŕıguez-
Clare (2015) also use Log-normal distribution in the Melitz (2003) framework. For theoretical treatment on how
assumptions on technology and demand affect the distribution of sales see Mrazova, Neary and Parenti (2015).
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Figure notes: Productivity, φ, is measured as the domestic sales (relative to the mean) to the power of 1/(σ − 1) where σ = 4 is from Bernard,
Eaton, Jensen and Kortum (2003). The data cover 928,569 observations in France in 2012. The Log-normal and Pareto distributions are fitted
using a QQ-estimator that minimizes the sum of the squared distance between (log) theoretical and (log) observed quantiles independently for the
bottom 95 and the top 5 percent of the data in the left and the right panels, respectively.

Figure 1: Empirical and Parametric Probability Density Functions

Perhaps, the most striking implication of Figure 1 is that neither Log-normal nor Pareto is able to

simultaneously match both tails of the empirical distribution which, as it turns out, is extremely

important for the correct calculation of different trade outcomes such as the gains from trade.

I use a workhorse general equilibrium model of trade with heterogeneous firms to show that the

assumptions of Log-normal and (un-)bounded Pareto can generate significant errors in the estimates

of the gains from trade with magnitudes on par with the total gains implied by the empirical

benchmark.

I propose using an alternative distribution model that amalgamates the left tail of Log-normal and

the right tail of Pareto with an endogenous threshold point. I show that this distribution fits the

data well in both tails while still offering the advantages of a well-behaved parametric equation. In

the baseline estimation, I use data on domestic sales of almost a million French firms in 2012 and

show that the bottom 94 percent of observations follow Log-normal and top 6 percent follow Pareto.

I show that the mixed distribution outperforms Log-normal and (un-)bounded Pareto in matching

the data and correctly predicting different trade outcomes relative to the empirical distribution.

The results prove to be robust in a number of dimensions. The proposed distribution dominates

more general classes of Pareto and Log-normal models that feature higher number of parameters.

The results are not sensitive to (i) truncating the sample from the right or from the left, (ii) using

data from different countries and (iii) using different measures of productivity. The proposed mixed

distribution also squares well with the data in an out-of-sample validity check, which suggests that

it may also be of value in other areas of economics when the choice between (un-)bounded Pareto

and Log-normal is not obvious. For example, research on the city size distribution (see Gabaix,
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1999; Eeckhout, 2004, 2009; Levy, 2009) often involves debates about whether the upper-tail follows

Pareto. I employ data from Eeckhout (2009) and show that the mixture distribution outperforms

both Pareto and Lognormal, and find estimates suggesting that around the top 2 percent of the

cities in the United States follow Pareto.

This paper relates to a broad body of work on heterogeneous firms models and the aggregate gains

from trade (Melitz, 2003; Chaney, 2008; Arkolakis, Costinot and Rodŕıguez-Clare, 2012; Melitz and

Redding, 2014; Feenstra, 2014 and many others). I quantify the magnitude of potential errors in the

estimates of the gains from trade that arise in such trade models when most common parametric

assumptions about the shape of the efficiency distribution are employed. This paper is also in the

spirit of the literature that uses micro-level data to estimate the parameters of the heterogeneous

trade models (Bernard, Eaton, Jensen and Kortum, 2003; Arkolakis, 2010; Eaton, Kortum and

Kramarz, 2011) with a particular focus on employing such data for the parameterization of the

productivity distribution. I also relate to Arkolakis (2015) who shows that a two-piece distribution

of productivities can arise as a result of firm selection and growth as well as to Mrazova, Neary

and Parenti (2015) who discuss how interactions between assumptions on demand and technology

shape the distribution of firm-specific outcomes. However, the focus of this work is largely different,

i.e., putting forward and testing the performance of a two-piece distribution in terms of matching

the data on efficiency measures in workhorse models of international trade featuring firm selection.

The remainder of the paper is organized as follows. The next section presents and discusses prop-

erties of a two-piece distribution that mixes the left tail of Log-normal and right tail of Pareto.

In Section 3, I estimate the proposed distribution together with the three alternative models most

frequently encountered in the literature and compare their performance across different dimensions.

I sketch a model of trade with heterogeneous firms in Section 4 and compare the predictions of the

welfare gains from trade in counterfactual experiments implied by different parametric distributions

to the numerical benchmark. Section 5 provides sensitivity analysis, discusses possible extensions

and shows how the proposed distribution and estimation approach can be applied to out-of-sample

data. The last section offers a brief conclusion.

2 Two-piece Distribution: Log-normal meets Pareto

A two-piece probability distribution combines standard Log-normal and Pareto distributions with

the following probability density functions:5

fL(φ) =
1√

2πsφ
e−

1
2 ( lnφ−µ

s )
2

and fP (φ) =
αθα

φα+1
. (1)

I mix the distributions such that the left tail up to a threshold value θ is distributed according

5Two-piece probability distributions that mix Log-normal and Pareto were originally developed in Cooray and
Ananda (2005) and Scollnik (2005). Here, I build on and extend a version originally derived in Scollnik (2005).
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to Log-normal, whereas the right tail beyond θ is distributed Pareto. Under the assumptions

of continuity and differentiability of the resulting cumulative distribution function (c.d.f.) and

probability density function (p.d.f.), I derive a mixture dubbed Two-piece with shape parameter,

α, and two scale parameters, θ and ρ, with values determined by the original parameters in fL and

fP :

f(φ) =


ρ

Φ
(
αs(α, ρ)

) 1√
2πs(α, ρ)φ

e−
1
2 (αs(α,ρ)− ln θ−lnφ

s(α,ρ) )
2

for φ ∈ (0, θ]

(1− ρ)
αθα

φα+1
for φ ∈ [θ,∞),

(2)

and:

F (φ) =


ρ

Φ
(
αs(α, ρ)

)Φ

(
αs(α, ρ) +

lnφ− ln θ

s(α, ρ)

)
for φ ∈ (0, θ]

1− (1− ρ)
θα

φα
for φ ∈ [θ,∞),

(3)

where Φ(·) is the c.d.f. of the standard normal and s(ρ, α) is an implicit function which defines s

given ρ and α according to:

Φ
(
αs(α, ρ)

)√
2π
(
αs(α, ρ)

)
e

1
2 [αs(α,ρ)]2 =

ρ

1− ρ
. (4)

I provide detailed derivations of the Two-piece c.d.f. and p.d.f. in the Appendix. At this point,

f(x) and F (x) are well-behaved functions that satisfy necessary properties and feature two scale

parameters, θ and ρ, and one shape parameter, α. The first scale parameter indicates the threshold

value of the random variable which splits the distribution into two tails. The second scale param-

eter, ρ, has a straightforward interpretation and indicates the share of random variables that are

distributed according to Log-normal. For example, if ρ = 0.95 then the bottom 95 percent of the

observations are distributed according to Log-normal and the top 5 percent – according to Pareto.

For illustrative purposes, I plot the c.d.f. and p.d.f. of a parameterized version of the Two-piece

distribution (blue solid line), where I arbitrarily set θ = 1, ρ = 0.95 and α = 3 in the left and

right panels of Figure 2, respectively. Here, governed by the assumed values of the parameters,

the bottom 95 percent of observations are distributed according to Log-normal up to a threshold

value of unity, and the top 5 percent follow Pareto. For comparison, I also plot c.d.f.s and p.d.f.’s of

Log-normal (red dash-dotted line) and Pareto (green dashed line) that match the first two moments

of the Two-piece such that the mean and variance of φ are identical in all three distributions.

The figure suggests several interesting differences between Two-piece, Log-normal and Pareto dis-

tributions. On the one hand, relative to the Log-normal distribution, the Two-piece distribution

converges to unity at a slower rate (left panel), which translates into a thicker right tail (right

panel). Intuitively, this would mean that when φ is interpreted as a measure of productivity, the

5



0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

φ

F
(φ
)

 

 

0 0.5 1 1.5
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

φ

f
(φ
)

Two-piece Pareto Log-normal

1.5 2 2.5 3 3.5 4

Figure 2: Two-piece, Log-normal and Pareto distributions with identical first two
moments

Two-piece would have a larger mass of firms with relatively high productivities. On the other hand,

in comparison to Pareto, Two-piece has a bell-shaped left tail indicating a larger mass of firms with

relatively low productivity. Hence, the Two-piece distribution can be viewed as a compromise

between the two most popular models of productivity distribution as it is able to capture the bell-

shaped left tail while still having a relatively fat right tail. As it turns out, this feature helps fit

the data much better in comparison to pure (un-)bounded Pareto and/or Lognormal models.

3 Empirical Application

In this section, I use firm-level data to highlight the empirical relevance of the Two-piece distri-

bution in comparison to more popular alternatives such as Log-normal, unbounded Pareto and

bounded Pareto distributions.6The analysis here allows comparing the four distributions along sev-

eral important dimensions: (i) relative size of the residuals across different slices of the data, (ii)

distance of the predicted to the observed quantiles and (iii) distance of the predicted to the observed

densities.

The dependant variable is calculated from the raw data on domestic sales of French firms in 2012

and consists of 928,569 observations. To translate these observations into a meaningful measure of

efficiency along the lines of Melitz (2003), I demean the data and take them to the power of 0.33

which corresponds to the value of the elasticity of the substitution parameter of 4 from Bernard,

Eaton, Jensen and Kortum (2003). I provide more information on how this normalization allows

6Bounded Pareto is employed in Helpman, Melitz, Rubinstein (2007), Feenstra (2014), and Melitz and Redding
(2014).
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me to recover firm-specific productivity measures in the next section. The description and sources

of the raw data are in the Appendix.

I employ a QQ-estimator that minimizes the sum of the squared distance between (log) observed

quantiles of the data and (log) predicted quantiles by each of the four models considered. The

estimator solves the following:7

min
Θ`

{∑
q

(ln [Qe(q)]− ln [Q`(q|Θ`)])
2

}
, (5)

where Qe is the empirical quantile function and Q` is its parametric counterpart with ` denoting

the Two-piece, Log-normal, Pareto, or Bounded-Pareto models. For example, in the case of the

Pareto distribution with shape parameter α and scale parameter xm such that ΘPareto = {α, xm},
the theoretical quantile function is QPareto = xm(1 − q)−1/α which in logs reduces the estimator

in equation 3 to a simple linear regression. For computational purposes, I produce 100,000 ob-

servations for Qe using a 100,000 point grid on the empirical c.d.f. of the original data and their

corresponding values. Since the grid defines the size of increments on (0,1), increasing it further,

though feasible, wouldn’t change the results but simply slow the optimization algorithm.8Standard

errors are bootstrapped using 1,000 draws. I provide full details on the exact functional forms of

all Q` in the Appendix. The estimated parameters along with the standard errors and root mean

squared errors (RMSE) across different slices of the data are reported in Table 1.

Parameters Root Mean Squared Error

(I) (II) (III) All Bottom 1% Bottom 5% Top 5% Top 1%

Two-piece 3.033 1.185 0.938 0.058 0.465 0.221 0.026 0.033

(0.006) (0.005) (0.001)

Log-normal 0.569 -0.701 0.069 0.415 0.194 0.156 0.304

(0.001) (0.001)

Pareto 1.914 0.294 0.236 1.405 0.840 0.344 0.648

(0.005) (0.001)

Bounded Pareto 0.372 0.214 1.438 0.183 1.105 0.582 0.406 0.799

(0.026) (0.001) (0.015)

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and (III) refer
to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II) refer to the scale
and location parameters; in the case of the Pareto, (i) and (II) refer to the shape and scale parameters; in the case of
the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III) to two location parameters. All
parameters are estimated using 100,000 quantile data points.

Table 1: Estimation Results

Table 1 suggests that parameters of the four models are estimated with good precision and that

they fit the data relatively well. However, it is important to note that the Two-piece distribution

7A similar estimator is employed in Head, Mayer and Thoenig (2014). The results are robust to using alternative
estimation methods.

8I have experimented with increasing the grid to the exact number of observations with no changes to the
estimates.
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dominates the other three models in terms of fitting the data when the entire support is considered.

The estimates suggest that about the top 6 percent of the data follow Pareto and that the threshold

value is equal to 1.18. The overall value of RMSE is the lowest among the four models and is equal

to 0.058. The Two-piece distribution also fits the data considerably better in the right tail of the

distribution. The only instance when it is dominated by one of the alternatives occurs in the bottom

5 percent of observations where Log-normal has a slight edge reflected in marginally lower RMSE

on that interval. Unbounded and bounded Pareto perform significantly worse than Two-piece and

Log-normal in every dimension.
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Figure 3: QQ Plot of Two-piece, Log-normal and Pareto vs. Data

The results of Table 1 are confirmed in a QQ-plot in Figure 3 where I plot empirical quantiles

against their predicted counterparts for the four parametric models. The Two-piece distribution

(blue solid line) follows closely the 45-degree line from the top to the bottom 5 percent where it

slowly starts to diverge. However, it performs much better than Log-Normal (red dash-dotted line)

in the upper 5 percent of the distribution and only slightly worse in the bottom 5 percent. The

Two-piece distribution also dominates bounded (green dashed line) and unbounded (black dotted

line) Pareto, which deviates from the data substantially in the left and right tails. Unbounded

Pareto seems to outperform its truncated counterpart in the upper-tail but falls short everywhere

else.

Finally, I compare the predictions of the four models in terms of fitting the empirical probability

density in Figure 4. In the left panel, I plot the predicted density for the bottom 94 percent of

the distribution. Here, both Two-piece and Log-normal distributions closely fit the data whereas

unbounded and bounded Pareto deviate substantially. However, only the Two-piece distribution

is able to match the top 5 percent of the data as suggested by the right panel of Figure 4 where
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I plot the right tail of the empirical probability density function. Log-normal (unbounded Pareto)

tends to underpredict (overpredict) observed frequencies in the right tail.
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Figure 4: Density of Two-piece, Log-normal and Pareto vs. Data

Overall, I conclude that while the Two-piece distribution serves as a good approximation of the

empirical c.d.f. and p.d.f., Log-Normal and (un-)bounded Pareto exhibit substantial deviations

from the data especially in the right tail of the distribution. Such deviations may entail non-trivial

errors in the predictions of the welfare gains from trade in a heterogeneous firms trade model where

the selection mechanism (into operating and exporting) depends crucially on the shape and location

of the productivity distribution. I quantify these errors in a standard general equilibrium model of

trade in the next section.

4 Workhorse Heterogenous Firm Trade Model

In this section, I sketch out a version of the Melitz (2003) model of international trade with

heterogeneous firms. The model is standard and does not notably deviate from the main workhorse

versions popular in the literature. The setup closely follows Arkolakis, Demidova, Klenow and

Rodŕıguez-Clare (2008) and only slightly deviates from Arkolakis, Costinot and Rodŕıguez-Clare

(2012), and Melitz and Redding (2014).9

There are J countries in the world, each country j ∈ J is populated by the Lj measure of homo-

geneous consumers that maximize utility according to the usual CES-type function by consuming

different varieties denoted by φ:

9The version here assumes that the fixed cost of exporting is paid in terms of the labor in the importing country,
whereas it is paid in terms of the domestic labor in Melitz and Redding (2014), and in terms of both in Arkolakis,
Costinot and Rodŕıguez-Clare (2012). The results do not rely on this assumption.
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Uj =

(∑
i∈J

∫
Ωij

qij(φ)
σ−1
σ dφ

) σ
σ−1

.

where Ωij is the set of goods from i available in j, and σ is the usual elasticity of the substitution

parameter. Consumer optimization leads to the following expressions for the demand for each

variety and the CES price index:

xij(φ) =
1

pij(φ)

(
pij(φ)

Pj

)1−σ

Ljwj and P 1−σ
j =

∑
i∈N

∫ φ̄

0

pij(φ)1−σdφ.

Firms are heterogeneous in terms of the productivity parameter φ ∈ (0, φ̄) where φ̄ is infinity

when the productivity distribution is unbounded from the right, and a positive constant otherwise.

They employ domestic labor for production and entry cost, and foreign labor for the fixed cost of

exporting and pay wages wi and wj per unit of labor, respectively. With a slight derivation of the

notation, let me also use φ to denote a productivity parameter such that each variety is associated

with a certain productivity level. Then, firms from i maximize their profit in market j according

to the following function:

πij(φ) =

(
pij(φ)

Pj

)1−σ

Ljwj −
wi
φ
pij(φ)−στijP

σ−1
j Ljwj − wjfij ,

where fij is the fixed cost of exporting from i to j in terms of Lj . Taking the derivative with respect

to pij(φ) leads to the usual pricing equation:

pij(φ) =
σ

σ − 1

wi
φ
τij .

Not all firms in i will choose to export to j but only those that have productivity higher than the

cut-off defined as:

φ∗ij =

(
σ

Lj

) 1
σ−1

(
σ

σ − 1
wiτij

)
P−1
j f

1
σ−1

ij . (6)

Note that in the empirical section, I make use of the expression for revenues of all firms from i in

their domestic market:

rii(φ) = xii(φ)pii(φ) =

(
σ

σ − 1

wi
φ
τii

)1−σ

Pσ−1
i Liwi. (7)

Without loss of generality, let me normalize revenues of an average firm such that its productivity

parameter is unity. Then, dividing equation (7) by the sample average and taking it to the power
1

σ−1 allows calculating efficiency. This is the measure that I use in the empirical section of the

paper.
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Upon paying a fixed entry cost, fei , firms can draw the productivity parameter and decide on

whether to produce and serve certain markets or exit. In equilibrium, the expected profits must be

zero such that the expected revenues exactly cover the entry cost:

∑
j∈J

(∫ φ̄

φ∗
ij

wjfij(φ
∗
ij)

1−σφσ−1f(φ)dφ−
∫ φ̄

φ∗
ij

wjfijf(φ)dφ

)
= wif

e
i , (8)

where F (φ) and f(φ) denote c.d.f and p.d.f. of the productivity parameters. Finally, there is a

labor market clearing condition which says that domestic labor is used up in domestic production,

paying the entry costs and fixed costs by foreign firms:

Ni
1− F (φ∗ii)

∑
j∈J

(
(σ − 1)wj

wi
fij(φ

∗
ij)

1−σ
∫ φ̄

φ∗
ij

φσ−1f(φ)dφ+ fei

)
+
∑
j∈J

Nj
1− F (φ∗jj)

fji

∫ φ̄

φ∗
ji

f(φ)dφ = Li. (9)

Upon the choice of the numéraire , w1 = 1, equations (6), (8) and (9) solve the model. Then, the

welfare of consumers in i can be measured as the ratio of wages to the price index, wi/Pi. In the

counterfactual exercises that follow, I exogenously change τij to some new values τ ′ij and express

change in consumer welfare as:

Welfare Gains = 100%×
(
wi(τ)

Pi(τ)

Pi(τ
′)

wi(τ ′)
− 1

)
, (10)

where τ and τ ′ are J × J matrices of the initial and counterfactual levels of variable trade costs,

respectively.

Note that in terms of the shape and location of the productivity distribution, the model solution

involves two important selection statistics: (i) 1− F (φ∗ij), which measures the probability of firms

from i being active in j and (ii)
∫ φ̄
φ∗ij
φσ−1f(φ)dφ, which is required to calculate total revenues

of firms from i in market j. Note that the third necessary statistics,
∫ φ̄
φ∗ij
f(φ)dφ, which enters

equations (8) and (9) is identical to (i) due to the following:

∫ φ̄

φ∗
ij

f(φ)dφ =

∫ φ̄

0

f(φ)dφ−
∫ φ∗

ij

0

f(φ)dφ = 1− F (φ∗ij).

As selection statistics (i) and (ii) determine the equilibrium outcome, the shapes of F (·) and f(·)
are central in determining the size of the gains from trade under a hypothetical reduction in

variable trade costs. I provide explicit expressions for (i) and (ii) under four considered parametric

distributions as well as full derivation details in the Appendix.

To demonstrate the virtues of the Two-piece distribution relative to the alternatives, I design and

conduct two counterfactual experiments using the described theoretical model. The two exercises

are specifically designed such as to flesh out errors in the estimates of the welfare gains from trade

caused by deviations in the parametric distributions from the actual one in the simplest way. I will

show that, though depending on the underlying economic primitives, Log-normal and (un-)bounded
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Pareto can vary in the magnitudes of the associated errors between each other; they always produce

larger errors than the Two-piece distribution. Without loss of generality, the model’s primitives

are chosen as follows:

Parameter J L1 L2 fe1 fe2 σ

Value 2 100 50 1 1 4

Table 2: Primitives of the model

The parameterization is rather stylized and intentionally so. While extending the analysis to a

multi-sector/multi-country model would be straightforward and would magnify the results consis-

tent with the argument in Ossa (2015), using this simplistic version allows carrying through the

main point in a clear and concise way. The parameters of the Two-piece, Log-normal and bounded

Pareto productivity distributions are taken directly from Table 1. The only exception is unbounded

Pareto as its parameters in Table 1 are such that the shape parameter is lower than σ − 1 which

violates the assumptions of the underlying model. I parameterize it by setting the shape and scale

parameters to 3.2 and 0.001, respectively.

In both experiments, I gradually reduce the level of international variable trade costs, τ12 and

τ21, from 3 to unity while keeping intra-trade costs at unity. For every reduction in variable trade

costs I calculate the true welfare gains given by equation (10) by using selection statistics calculated

directly from the data via numerical methods. The first selection statistics, 1−F (φ∗ij), are calculated

using the function of an empirical c.d.f. which is readily available in any statistical package. The

second selection statistics,
∫ φ̄
φ∗ij
φσ−1f(φ)dφ, are calculated using trapezoidal numerical integration

given observations on φσ−1 and the cut-offs. Given true welfare gains, I can calculate errors implied

by each of the parametric assumptions as the difference between the true and predicted gains.

The difference between the two experiments is in the level of the cost of exporting fij relative to

other primitives of the model. These costs will determine the relative location of the cut-off firms

on the support of φ. Because parametric distributions deviate from the data differently at different

points on the support, e.g., Log-normal approximates the data better than Pareto in the lower

tail and vice versa, the cost of exporting will govern the relative size of the errors implied by each

distribution.

Experiment 1: Falling variable costs and low fixed export costs

In this experiment, I set fii = 0.001 and fij = 0.25 for i 6= j. I plot true welfare gains (− ◦ −)

for the large (country 1) and small (country 2) economies in the left and right panels of Figure 5,

respectively. As usual, the smaller country gains relatively more – a reduction in variable trade

costs of 65 percent increases its welfare by 35 percent in comparison to 12 percent in the large

economy. Next, I plot errors in the welfare gains implied by the Two-piece distribution (blue

solid line), Log-normal (red dash-dotted line), unbounded Pareto (green dashed line) and bounded

Pareto (black dotted line) for both countries.
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First, note that the error term under the Two-piece distribution is negligible for both economies and

that it is not the case under the other three distributions. At a relatively low cost of exporting, the

cut-off value of φ varies along relatively low values when many firms choose to export. Naturally, as

Figure 3 suggested in that interval of the support, the Log-normal and bounded Pareto distributions

fit the data well, whereas (un-)bounded Pareto does not. Hence, the magnitude of the error term

under Log-normal and bounded Pareto is relatively lower, i.e., in the case of the large economy it

amounts to 2.1 and 2.4 percentage points, respectively. This is nearly one fifth of the total gains

from trade predicted by the empirical benchmark. Since the errors are defined as the difference

between the true gains and their predictions, all three distributions significantly underpredict the

actual gains from trade.
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Figure 5: Benchmark welfare gains and errors: Experiment 1

The error implied by unbounded Pareto is about 2.9 percentage points. Moreover, in the case of

the small economy the magnitude of the errors is higher. For that country, at 65 percent reduction

in variable trade costs, assumptions of Log-normal and bounded Pareto entail errors of around 4.6

and 3.9 percentage points, respectively, whereas unbounded Pareto performs even worse with an

error of about 10.4 percentage points. Overall, the results of this experiment suggest that at low

fixed export costs, all distributions but Two-piece produce sizable errors in the predictions of the

gains from trade.

Experiment 2: Falling variable costs and high fixed export costs

In the second experiment, I set fii = 0.1 and fij = 1 for i 6= j such that the fixed exporting costs

are relatively high. Hence, relative to the first experiment, all exporters will operate on the interval

of the support closer to the right-tail. As before, I plot the results for the large and small economy

in the left and right panels, respectively.
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Figure 6: Benchmark welfare gains and errors: Experiment 2

In this experiment, the Two-piece distribution again performs well and produces negligible errors

for both countries. The other three distributions, however, produce considerable errors. In terms of

the gains of the large country, unbounded Pareto now produces smaller errors in comparison to both

Log-normal and bounded Pareto. The reason for this, is that firms now operate on the interval of

the support close to the right tail where Pareto fits relatively better. However, one should note that

consistent with the results in Arkolakis, Costinot and Rodŕıguez-Clare (2012), Pareto predictions

are invariant to changes in fij such that the differences in the error term stem from different

predictions of the true gains from trade. The bounded Pareto performs particularely badly due to

the truncated right tail, i.e., at extremely high levels of cut-offs no firms find it profitable to export

such that no gains from trade are realized.10The assumptions of the Log-normal, bounded Pareto

and unbounded Pareto distributions entail errors of 4.5, 6.2 and 2.3 percentage points, respectively.

The errors are even larger in the case of the small economy. Again, all three distributions produce

errors of significant magnitude relative to the total size of the gains from trade and underestimate

the true gains by a sizable (sometimes by one half) margin.

The Two-piece distribution also performs favorably relative to the alternatives in terms of predicting

other trade outcomes in both experiments. I measure its performance in terms of two additional

trade outcomes: share of intra-trade and share of exporters denoted as λii and χi, respectively.

These two measures encompass intensive and extensive margins of trade that are often of interest

(for example see Hummels and Klenow, 2005). I define root mean squared errors as follows:.

10This is reminiscent of the argument in Helpman, Melitz and Rubinstein (2008).
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MSE`(λ) =

√
1

J

∑
j

(λjj − λjj,`)2
; MSE`(χ) =

√
1

J

∑
j

(χj − χj,`)2
, (11)

where λjj and χj are true trade outcomes implied by the empirical benchmark, whereas λjj,` and χj,`

are their counterparts implied by the ` parametric distribution. I report calculated mean squared

errors for the two outcomes in both experiments in Table 3. For brevity, the results are reported

for four values of variable trade costs ranging between 3 and 1.2. In both experiments and in terms

of both trade outcomes, the Two-piece distribution produces negligible errors in comparison to the

other three distributions.

Variable Share of intratrade Share of Exporters

τij for i 6= j 3.0 2.4 1.8 1.2 3.0 2.4 1.8 1.2

E
x
p

.
1

Two-piece 1.57 2.69 5.02 7.53 0.04 0.08 0.20 1.85

Log-normal 31.38 51.16 78.91 81.65 2.29 7.80 27.77 93.02

Bounded Pareto 12.72 22.06 40.39 63.01 0.51 1.02 2.25 7.20

Pareto 37.30 71.05 121.29 75.83 0.75 1.51 26.44 155.79

E
x
p

.
2

Two-piece 1.49 2.59 4.57 6.67 0.27 0.76 2.41 6.32

Log-normal 21.61 29.11 33.42 22.13 23.66 54.58 126.29 265.54

Bounded Pareto 14.79 25.99 48.96 80.46 1.92 3.88 9.25 23.73

Pareto 35.13 34.51 29.28 16.23 8.67 91.78 197.69 326.43

Table notes: For expositional purposes, due to the fractional nature of the variables the results are reported in one thousandths.

Table 3: Mean Squared Errors in The Share of Intratrade and Exporters

Overall, quantitative evidence analyzed in this section suggests that the Two-piece distribution

accurately approximates the empirical distribution and selection statistics, which allows making

virtually no errors when calculating counterfactual trade outcomes. On the other hand, alternative

distributions such as Log-normal and (un-)bounded Pareto can produce misleading results.

5 Sensitivity Analysis and Extensions

In this section, I test the robustness of the main results in several important dimensions. First, I

ask whether more general specifications of Pareto and Log-normal such as Generalized Pareto and

Three-parameter Log-normal can outperform the proposed Two-piece model. Second, I analyze the

robustness of the results with respect to using alternative data and/or measures of productivity.

Specifically, I ask if the results are driven by (i) a particular choice of the country, (ii) extreme

outliers in the right or left tail of the data, (iii) a particular measure of productivity. As it turns

out the answer to all three questions is no. I also suggest several theoretical and empirical avenues

for extending the proposed approach.
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5.1 Generalized Pareto and Three-parameter Log-normal

So far, I have compared the proposed Two-piece distribution to conventional Pareto and Log-

normal two-parameter distributions. Admittedly, the Two-piece distribution features an additional

parameter in comparison to these two distributions and equal number of parameters relative to the

bounded Pareto case. To check whether the main results are driven by these restrictions, here I

examine the fit of more general parametric models that are infrequently used but have the same

number of parameters as the Two-piece distribution: Generalized Pareto and Three-parameter

Log-normal with the following c.d.f.s:

FGP (φ) = 1−
(

1 +
η(φ− ψ)

ξ

)−1/η

and FTLN (φ) = Φ

(
ln(φ− ν)− µ

δ

)
, (12)

Given expressions for the two c.d.f.s, I derive the associated quantile functions and apply the

QQ-estimator. The results are reported in Table 4. Relative to its two-parameter counterpart,

the Generalized Pareto distribution fits the data significantly better on the entire support as well

as on different intervals of the support. For example, the total RMSE goes down from 0.236 to

0.144. However, it still yields to the Two-piece distribution everywhere and especially so in the

bottom and top 5 percent of the data. The same is largely true for the Three-parameter Log-

normal distribution, i.e., relative to the conventional Log-normal, Three-parameter Log-normal fits

the data better when the entire support is considered and in the bottom 5 percent; however, it

performs worse for the top 5 percent of the data. Three-parameter Log-normal is still unable to

outperform the Two-piece distribution on the entire support and in the right tail.

Parameters Root Mean Squared Error

(I) (II) (III) All Bottom 1% Bottom 5% Top 5% Top 1%

Generalized Pareto 5.399 -0.081 0.424 0.144 1.011 0.512 0.196 0.409

(0.354) (0.006) (0.003)

3 Param. Log-Normal 0.518 -0.608 -0.042 0.067 0.252 0.120 0.195 0.367

(0.004) (0.009) (0.004)

Table notes: (I), (II) and (III) refer to the shape, location and scale parameters. All parameters are estimated using
100,000 quantile data points.

Table 4: Estimation Results (Alternative Parametric Distributions)

Overall, the results in Table 4 suggest that versions of Pareto and Log-normal distributions with

the same number of parameters as the Two-piece distribution are still unable to fit the empirical

distribution well especially in the right tail. Hence, the main results of the paper are also applicable

to the class of three-parameter distributions.
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5.2 Are the results sensitive to the choice of country?

Up to now, I have used data on French firms. However, it is important to check whether the

data from other countries exhibits similar patterns. The data on France is a good starting point

as it is the only country in the ORBIS dataset that has sufficient observations on both domestic

sales and export revenues which allows obtaining clean measures of domestic sales necessary for

calculating measures of efficiency consistent with Melitz (2003). This, however, is problematic

for other countries as observations on export revenues are generally not available. Hence, results

reported in this section are based on total sales (gross of export revenues), which arguably lead to

a noisier measure of efficiency.

Country Parameters Root Mean Squared Error

(I) (II) (III) Two-piece Log-normal Pareto Bounded Pareto

France 2.880 1.057 0.923 0.053 0.070 0.228 0.181

(0.006) (0.004) (0.001)

Hungary 2.710 1.243 0.954 0.048 0.059 0.275 0.192

(0.010) (0.008) (0.001)

Italy 3.820 2.463 0.993 0.068 0.068 0.308 0.191

(0.018) (0.025) (0.001)

Japan 2.723 1.143 0.921 0.043 0.060 0.215 0.143

(0.014) (0.009) (0.002)

Norway 3.842 3.088 0.997 0.064 0.064 0.345 0.182

(0.025) (0.042) (0.000)

Portugal 2.637 0.925 0.885 0.038 0.070 0.198 0.154

(0.008) (0.004) (0.001)

Romania 2.672 1.260 0.954 0.048 0.059 0.283 0.202

(0.010) (0.008) (0.001)

Spain 3.049 1.308 0.952 0.053 0.061 0.247 0.181

(0.008) (0.006) (0.001)

Sweden 3.471 2.035 0.988 0.071 0.073 0.317 0.195

(0.014) (0.015) (0.001)

Ukraine 2.849 1.952 0.986 0.037 0.040 0.340 0.204

(0.020) (0.028) (0.001)

Average 3.065 1.648 0.955 0.052 0.062 0.276 0.182

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and (III) refer
to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II) refer to the scale
and location parameters; in the case of the Pareto, (i) and (II) refer to the shape and scale parameters; in the case of
the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III) to two location parameters. All
parameters are estimated using 100,000 quantile data points.

Table 5: Estimation Results for Different Countries

Following the same methodology as in Section 3, I use data on countries where more than 100,000

initial observations are available. The results are reported in Table 5. Taking results for France as

a benchmark, I see that using total sales instead of domestic sales leads to a lower estimate of the

shape parameter and, perhaps more importantly, to lower values of ρ, which now implies a slightly
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larger Pareto tail. This is not surprising as including export revenues results in a fatter right tail

which the estimator interprets as a higher share of observations following Pareto.

Results in Table 5 suggest several other important insights. First, the Two-piece distribution

performs strictly better than Log-normal and (un-)bounded Pareto for all countries where the

estimated ρ is sufficiently far from unity. However, even in cases when the cut-off point is close to

unity, e.g., Norway and Italy, it still performs at least as good as the next best option. Values of

the parameters averaged across all countries are very close to those employed in Sections 3 and 4

such that the main results are robust to using a larger sample of countries and are not specific to

France.

5.3 How important are data points at the extremes?

One may wonder if the main results of the analysis are driven by relatively rare data points located at

the extremes. To address this possible concern, I repeat the estimation while sequentially removing

1000 data points from the right and left tails of the original data. First, I remove 1000 firms with

the highest measured productivities which constitutes to about 0.1 percent of the original sample.

The results are reported in Table 6.

Parameters Root Mean Squared Error

(I) (II) (III) All Bottom 1% Bottom 5% Top 5% Top 1%

Two-piece 3.338 1.326 0.959 0.060 0.457 0.217 0.073 0.133

(0.023) (0.012) (0.001)

Log-normal 0.564 -0.704 0.064 0.425 0.199 0.113 0.192

(0.001) (0.001)

Pareto 1.945 0.296 0.240 1.411 0.845 0.382 0.755

(0.005) (0.001)

Bounded Pareto 0.274 0.209 1.373 0.177 1.086 0.567 0.378 0.704

(0.025) (0.001) (0.012)

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and (III) refer
to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II) refer to the scale and
location parameters; in case of the Pareto, (i) and (II) refer to the shape and scale parameters; in the case of the Bounded
Pareto distribution, (I) refers to the shape parameter and (II) and (III) to two location parameters. All parameters are
estimated using 100,000 quantile data points.

Table 6: Truncated Distribution (from the right)

Upon excluding the top 1000 observations from the original data, the Two-piece distribution still

dominates the other three alternatives in the overall fit to the data. It yields to the Log-normal

only in the bottom 5 percent of the distribution and dominates (un-)bounded Pareto everywhere.

The estimated parameters are slightly higher than in Table 1.
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Parameters Root Mean Squared Error

(I) (II) (III) All Bottom 1% Bottom 5% Top 5% Top 1%

Two-piece 2.983 1.133 0.930 0.044 0.308 0.156 0.028 0.041

(0.004) (0.003) (0.001)

Log-normal 0.563 -0.698 0.060 0.249 0.122 0.165 0.317

(0.001) (0.001)

Pareto 1.923 0.296 0.224 1.242 0.780 0.339 0.639

(0.004) (0.001)

Bounded Pareto 0.460 0.220 1.479 0.171 0.956 0.530 0.388 0.773

(0.022) (0.001) (0.014)

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and (III) refer
to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II) refer to the scale and
location parameters; in case of the Pareto, (i) and (II) refer to the shape and scale parameters; in the case of the Bounded
Pareto distribution, (I) refers to the shape parameter and (II) and (III) to two location parameters. All parameters are
estimated using 100,000 quantile data points.

Table 7: Truncated Distribution (from the left)

Next, I repeat the exercise but now trim the original sample from the left by removing the bottom

1000 observations. The results are presented in Table 7. Again, the results indicate significantly

better fit of the Two-piece distribution in comparison to the alternatives. The difference is partic-

ularly large for the top 5 percent of available observations. The Two-piece distribution performs

slightly worse than the Log-normal in the left tail which is consistent with previous results. Overall,

fitting different models on truncated data that excludes extreme observations in the right or the

left tails reveals that the general results are not driven by outliers and/or peculiarities of the data

at the extremes.

5.4 Alternative measures of productivities

So far, I have analyzed the shape of the productivity distribution using a measure of productivity

that is consistent with theories featuring heterogeneous firms and constant markups. Though this

particular specification is still the workhorse of quantitative trade theory, there is another important

class of models in which markups are no longer constant (for example see Bernard, Eaton, Jensen

and Kortum, 2003; Melitz and Ottaviano, 2008; Simonovska, 2015; Edmond, Midrigan and Xu,

2015). A large class of models featuring variables markups and heterogeneous firms is analyzed

in Arkolakis, Costinot, Donaldson, Rodŕıguez-Clare (2015). Mrazova, Neary and Parenti (2015)

discuss how conditions on demand and technology shape the distribution of markups and sales. In

these models, normalized relative domestic sales would not yield clean measures of productivity

but rather the ratio of productivity to firm-specific markups:

rii(φ) =

(
m(φ)

wi
φ
τii

)1−σ

Pσ−1
i Liwi, (13)
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where m(φ) is a firm-specific markup. Unfortunately, the data on firm-level markups are rarely

available. However, to check for the robustness of the main results when applied to alternative

trade models, I employ a measure of firm-specific markups that may be noisy but could provide

some insights on the robustness of the proposed approach. I measure m(φ) as a ratio between

firm’s sales and the sum of its cost of employees and materials. As these data are not available

for the whole sample, the procedure leaves me with a sample of 633,640 observations. Given the

estimates of m(φ), I calculate the implied productivity parameters, φ, as before and use them in

the estimation procedure.

I report the results in Table 8 which suggests that the Two-piece distribution outperforms the

alternatives in terms of the predictive power when the entire support is considered. In comparison

to Log-normal, Two-piece performs better overall and in the top 5 percent and worse in the bottom

5 percent which is consistent with the previous results. It also outperforms (un-)bounded Pareto

everywhere except for the top 1 percent. Unbounded Pareto seems to be the best alternative in

terms of matching the top 1 percent as the parameter on the right limit of the bounded Pareto dis-

tribution cannot be precisely identified. This is also reflected in the estimate of the third parameter

of the Two-piece distribution that points to a large (over 22 percent) Pareto tail.

Parameters Root Mean Squared Error

(I) (II) (III) All Bottom 1% Bottom 5% Top 5% Top 1%

Two-piece 1.997 1.224 0.773 0.162 1.491 0.673 0.166 0.362

(0.009) (0.014) (0.005)

Log-normal 0.621 -0.177 0.210 1.319 0.621 0.558 1.154

(0.002) (0.001)

Pareto 1.653 0.457 0.252 2.208 1.056 0.197 0.266

(0.003) (0.001)

Bounded Pareto 1.653 0.457 (2.E+09) 0.252 2.208 1.056 0.197 0.266

(0.003) (0.001) (4.E+09)

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and (III) refer
to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II) refer to the scale
and location parameters; in the case of the Pareto, (i) and (II) refer to the shape and scale parameters; in the case of
the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III) to two location parameters. All
parameters are estimated using 100,000 quantile data points.

Table 8: Measure of productivity under variable markups

Naturally, firms may differ not only in their productivity and markups but also other characteristics

such as wages (for example, see Egger and Kreickermeir, 2009; Helpman, Itskhoki and Redding,

2010; Davis and Harrigan, 2011) or quality of their products (see Verhoogen, 2008; Baldwin and

Harrigan, 2011) and potentially in many other characteristics. While looking at every particular

case is beyond the scope of the paper, it is possible to check the sensitivity of the results by using

measures of productivity based on the cost function. Unfortunately, the data on cost-side variables

are not widely available. The best country satisfying this requirement is Japan with a total of

219,454 observations available in 2012. I use data on total cost of goods sold and total cost of
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employees to calibrate the productivity parameter from the following relationship:

c(φ)q =
w(φ)q

φ
,

where c(φ)q and w(φ)q are the observed total cost of goods sold and observed cost of employees,

respectively. I then estimate the distribution of backed out φ applying the QQ-estimator for four

parametric models. The results are in Table 9.

Parameters Root Mean Squared Error

(I) (II) (III) All Bottom 1% Bottom 5% Top 5% Top 1%

Two-piece 1.085 0.197 0.826 0.216 1.594 0.756 0.384 0.810

(0.004) (0.002) (0.002)

Log-normal 1.228 -2.656 0.314 1.267 0.593 1.053 2.219

(0.003) (0.001)

Pareto 0.853 0.022 0.482 3.366 1.872 0.384 0.264

(0.001) (0.001)

Bounded Pareto 0.853 0.022 3.E+04 0.482 3.366 1.872 0.384 0.254

(0.075) (0.002) (3.E+04)

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and (III) refer
to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II) refer to the scale
and location parameters; in the case of the Pareto, (i) and (II) refer to the shape and scale parameters; in the case of
the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III) to two location parameters. All
parameters are estimated using 100,000 quantile data points.

Table 9: Cost-based measure of productivity

Again the Two-piece model fits the data better than any of the alternative three models when

considering the entire support. It performs slightly worse than Log-normal in the bottom 5 percent

and slightly worse than Pareto in the top 1 percent. This is due to the fact that the true distribution

of the cost-based measure is generally more skewed than the one based on sales. This is also

confirmed by the value of the estimated ρ = 0.8260 which gives a significantly larger weight to the

Pareto tail. Also note that due to the skewness, the upper bound of the Bounded Pareto could not

be estimated precisely and the shape and the lower bound parameters are nearly identical to the

unbounded Pareto. Overall, the main results in this section suggest that the Two-piece distribution

is preferable to Log-normal and (un-)bounded Pareto due to closer fit over the entire support.

5.5 Truncation from the right

Several papers argue that unbounded support usually assumed in the literature is a strong assump-

tion (see Helpman, Melitz, Rubinstein, 2007; Feenstra, 2014; Melitz and Redding, 2015). Though

I have demonstrated that an unbounded Two-piece distribution outperforms bounded Pareto and

does not deviate significantly from the empirical distribution, it may be of value to point out that

the extension featuring a mixed distribution with a truncation from the right is possible. Such an

extension would be straightforward and would require mixing the following two p.d.f.s:
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fL(φ) =
1√

2πsφ
e−

1
2 ( lnφ−µ

s )
2

and fBP (φ) =
αθαφ−α−1

1− θαφ−αh
,

where φh would serve as an upper bound. Applying continuity and differentiability conditions and

following the same derivations as in the case of the unbounded Pareto (described in the Appendix),

one could get a version of a Two-piece distribution bounded from the right.

5.6 External Validity: City Size Distribution

The virtues of the Two-piece distribution can be explored using alternative data sets where the

choice between Log-normal and Pareto is not obvious. Perhaps, one of the most well-known of

such cases in economics is an ongoing debate on the shape of the city size distribution (see Gabaix,

1999; Eeckhout, 2004, 2009; Levy, 2009). Considering this debate through the lens of the proposed

approach can turn out to be particularly fruitful as in many ways it mirrors the current debate

in international trade about the shape of the productivity distribution. I use data from Eeckhout

(2009) to estimate four alternative parametric models and report the results in Table 10.11

First, note that the estimated shape parameter of the Log-normal model is exactly the same as in

Eeckhout (2004) which points to the robustness of the results of the QQ-estimator to alternative

estimation methods. The location parameter is different due to different units of measurement,

i.e., I normalize the data such that the mean is unity. Next, according to the values of RMSE, the

Two-piece distribution outperforms Log-normal when considering the whole support and/or any

intervals on the support. Finally, estimated parameters of the Two-piece distribution suggest that,

indeed, the upper-tail with a measure of 2.22 percent is distributed Pareto.

Parameters Root Mean Squared Error

(I) (II) (III) All Bottom 1% Bottom 5% Top 5% Top 1%

Two-piece 1.205 6.178 0.978 0.089 0.209 0.222 0.155 0.256

(0.034) (0.774) (0.003)

Log-normal 1.751 -1.738 0.099 0.257 0.261 0.191 0.322

(0.001) (0.001)

Pareto 0.619 0.035 0.679 2.909 1.900 1.412 2.728

(0.004) (0.001)

Bounded Pareto 0.126 0.013 5.264 0.354 1.932 1.029 0.868 1.745

(0.006) (0.001) (0.136)

Table notes: In case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and (III) refer
to the scale parameters, θ and ρ, respectively; in case of the Log-normal distribution, (I) and (II) refer to the scale and
location parameters; in case of the Pareto, (i) and (II) refer to the shape and scale parameters; in case of the Bounded
Pareto distribution, (I) refers to the shape parameter and (II) and (III) to two location parameters. All parameters are
estimated using 100,000 quantile data points.

Table 10: Estimation Results for the City Size Distribution

11The data are available at https://www.aeaweb.org/articles.php?doi=10.1257/aer.99.4.1676
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Let me consider exactly this interval on the support in the right tail to flesh out the difference

between Two-piece and Log-normal. I plot the c.d.f.s implied by the respective parameter values

along with the empirical c.d.f. for the top 2 percent of the distribution in Figure 7. The results

are unambiguous – the Two-piece distribution (blue solid line) outperforms the Log-normal (red

dashed line) by a sizable margin.
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Figure 7: City size c.d.f: Two-piece and Log-normal vs. Data

This result lends some evidence in support of the original claim in Gabaix (1999), which is now

based on the entire support of the distribution rather than a particular interval thereof and suggests

that the upper tail of the city size distribution follows a power law.

6 Conclusion

This work has emphasized that the most often used parametric assumptions about the shape of the

productivity distribution fail to come to grips with the data. While the Log-normal distribution

fails to capture the shape of the right tail, (un-)bounded Pareto misses on the left one. I use the

workhorse quantitative general equilibrium model of trade with heterogeneous firms and show that

these deviations from the data can be harmful for the correct calculation of different trade outcomes

including the gains from trade.

As a remedy for these problems, I have proposed using a parametric distribution that models the

left tail as Log-normal and right tail as Pareto. I use micro data from different countries and

estimate the parameters of the proposed model to show that this distribution fits the data better

than the alternatives along the entire support and produces negligible errors in counterfactual
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exercises. I also provide several possible avenues for further extensions that may prove to be useful

in international trade as well as in other areas of economics.
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Appendix A: Derivation of Two-piece distribution

Mixed distributions that combine the Log-normal and Pareto distributions were first developed by
the mathematicians Cooray and Ananda (2005) and Scollnik (2007). The distribution proposed
in this paper builds on and modifies the version in Scollnik (2007). Let a random variable x be
distributed according to the following p.d.f.:

f(x) =

{
κωfL(x) for x ∈ (0, θ]

(1− ω)fP (x) for x ∈ [θ,∞),
(14)

where, κ is a normalizing constant derived in what follows and fL(x) and fP (x) are the Log-normal
and Pareto distributions with the following p.d.f.s:

fL(x) =
1√

2πσx
e−

1
2 ( ln x−µ

σ )
2

and fP (x) =
αθα

xα+1
.

For f(x) to be well-behaved, I impose two conditions: continuity and differentiability. The continu-
ity condition ensures that f(x) is continuous at θ and holds if and only if κωfL(θ) = (1− ω)fP (θ)
which entails:

κω
1√

2πσθ
e−

1
2 ( ln θ−µ

σ )
2

= (1− ω)
αθα

θα+1
⇒ κω = (1− ω)

√
2πσαe

1
2 ( ln θ−µ

σ )
2

. (15)

The differentiability condition requires f(x) to be differentiable at θ and holds whenever κωf ′L(θ) =
(1− ω)f ′P (θ). First, let me derive the derivatives of the Log-normal component:

f ′L(x) =
1

√
2πσ

(
−

1

x2
e
− 1

2

(
ln θ−µ
σ

)2

− e−
1
2

(
ln θ−µ
σ

)2 (
lnx− µ
σ2x2

))
= −

1
√

2πσx2
e
− 1

2

(
ln θ−µ
σ

)2 (
1 +

lnx− µ
σ2

)
. (16)

The derivative of the Pareto component is as follows:

f ′P (x) = −α(α+ 1)
θα

xα+2
. (17)

Then, by combining equations (16) and (17), I can specify the differentiability condition as:

κω
1√

2πσθ2
e−

1
2 ( ln θ−µ

σ )
2
(

1 +
ln θ − µ
σ2

)
= α(α+ 1)

θα

θα+2
,

⇒ κω
1√
2πσ

e−
1
2 ( ln θ−µ

σ )
2
(

1 +
ln θ − µ
σ2

)
= (1− ω)α(α+ 1).

(18)

Next, note that the condition in (15) implies:

κω
1√
2πσ

e−
1
2 ( ln θ−µ

σ )
2

= α(1− ω)

⇒ (α+ 1)κω
1√
2πσ

e−
1
2 ( ln θ−µ

σ )
2

= (1− ω)α(α+ 1),
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which together with the condition (18) leads to the following:

κω
1√
2πσ

e−
1
2 ( ln θ−µ

σ )
2
(

1 +
ln θ − µ
σ2

)
= (α+ 1)κω

1√
2πσ

e−
1
2 ( ln θ−µ

σ )
2

⇒
(

1 +
ln θ − µ
σ2

)
= α+ 1 or ln θ − µ = ασ2.

Plugging this result back into the continuity condition gives the following expression for the relative
weight parameter ω which turns out to be a function of the other model’s parameters:

ω(σ, α, κ) =

√
2πσαe

1
2 (ασ)2

√
2πσαe

1
2 (ασ)2 + κ

. (19)

Finally, to make sure the the overall p.d.f. is well-behaved, I define the normalization condition
concerning κ which makes sure the the integral of the p.d.f. along the entire support is unity:

∫ ∞
0

f(x)d(x) = κω

∫ θ

0

1√
2πσx

e−
1
2 ( ln x−µ

σ )
2

dx+ κ(1− ω)

∫ ∞
θ

αθα

xα+1
= 1,

⇒ κω

∫ ln θ−µ
σ

−∞

1√
2π
e−

1
2 t

2

dt+ κ(1− ω)

(
−θ

α

θα
+
θα

θα

)
= ωκΦ

(
ln θ − µ

σ

)
+ 1− ω = 1,

which puts the following restrictions on κ as a function of θ, µ and σ:

κ =

(
Φ

(
ln θ − µ

σ

))−1

=

(
Φ (σα)

)−1

.

Now plugging back into the equation (19) I get the following:

ω(σα) =

√
2πσαe

1
2 (ασ)2

√
2πσαe

1
2 (ασ)2 + [Φ (σα)]

−1 =
Φ (σα)

√
2πσαe

1
2 (ασ)2

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

.

Combining this expression with an earlier result µ
σ = ln θ

σ −ασ, I can rewrite the original formulation
of the probability distribution in the equation 14 as follows:

f(x) =


1

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

α

x
e

ln θ−ln x
σ (ασ+ ln θ−ln x

2σ ) for x ∈ (0, θ]

1

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

α

x

(
θ

x

)α
for x ∈ [θ,∞),

(20)

which is a function of one threshold parameter, θ and two shape parameters α and σ. Next, let me
derive the c.d.f. of the Two-piece distribution starting with the upper-tail:

F (x|θ ≤ x) =

∫ x

θ

1

Φ (σα)
√

2πσαe
1
2

(ασ)2 + 1

αθα

tα+1
dt = c− 1

Φ (σα)
√

2πσαe
1
2

(ασ)2 + 1

θα

tα

∣∣∣∣x
θ

= c+
1

Φ (σα)
√

2πσαe
1
2

(ασ)2 + 1
− 1

Φ (σα)
√

2πσαe
1
2

(ασ)2 + 1

θα

xα
,
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where c is an integrating constant. Using the limiting condition of any c.d.f. yields that:

c = 1− 1

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

.

Then, the Pareto part of the c.d.f. can be expressed as follows:

F (x|θ ≤ x) = 1− 1

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

θα

xα
.

Next, let me calculate the component of the cumulative distribution function corresponding to the
Log-normal part:

F (x|0 ≤ x ≤ θ) =

√
2πσαe

1
2 (ασ)2

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

∫ x

0

1√
2πσt

e−
1
2 ( ln t−µ

σ )
2

dt

=

√
2πσαe

1
2 (ασ)2

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

∫ ln x−µ
σ

−∞

1√
2π
e−

1
2 z

2

dz

=

√
2πσαe

1
2 (ασ)2

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

Φ

(
lnx− µ

σ

)
,

Then, again using the fact that µ
σ = ln θ

σ − ασ, the c.d.f. may be expressed as follows:

F (x) =


√

2πσαe
1
2 (ασ)2

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

Φ

(
ασ +

lnx− ln θ

σ

)
for x ∈ (0, θ]

1− 1

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

θα

xα
for x ∈ [θ,∞).

(21)

Next, I use the fact that at x = θ, the c.d.f. equals to the following:

F (θ) ≡ ρ =
Φ (σα)

√
2πσαe

1
2 (ασ)2

Φ (σα)
√

2πσαe
1
2 (ασ)2 + 1

.

This expression provides a clear-cut condition for the permissible parameter space of the second
shape parameter σ given α and the two scale parameter θ and ρ, and can be simplified to the
following condition.

Φ (σα)
√

2π(σα)e
1
2 (σα)2 =

ρ

1− ρ
.

Hence, one can express σ as an implicit function of α and ρ, i.e., σ = s(α, ρ). Then, rewriting the
expression for c.d.f. in equation (21) gives:

F (x) =


ρ

Φ(s(α, ρ)α)
Φ

(
αs(α, ρ) +

lnx− ln θ

s(α, ρ)

)
for x ∈ (0, θ]

1− (1− ρ)
θα

xα
for x ∈ [θ,∞),

Finally, the probability density function in equation 20 can be rewritten as:
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f(x) =


ρ

Φ(s(α, ρ)α)

1√
2πs(α, ρ)x

e−
1
2 (αs(α,ρ)− ln θ−ln x

s(α,ρ) )
2

for x ∈ (0, θ]

(1− ρ)
αθα

xα+1
for x ∈ [θ,∞),

where F (x) and f(x) are exact functions used in the main text.

Appendix B: Estimation and data

In Section 3, I use a QQ-estimator to pin down the parameters of the four distributions. Here, I
provide exact functional forms used in the analysis. QQ-estimator minimizes the squared distance
between (log) observed quantiles and (log) predicted quantiles for a given value of the c.d.f., Fq.
Hence, the estimation involves inverting the c.d.f.s as:

QLog−normal = exp
(
Φ−1(Fq)sl + µ

)
,

QPareto = xm(1− Fq)
− 1
sp ,

QBoundedPareto =
(
1− Fq(1− xsbl x

−sb
h )

)− 1
sb+1 x

sb
sb+1

l .

In case of the Two-piece distribution, the c.d.f. must be inverted separately on the intervals [0, θ]
and [θ,∞):

QTwo−piece =


θ exp

(
s

[
Φ−1

(
FqΦ(sα)

ρ

)
− αs

])
for x ∈ (0, θ]

θ

(
1− ρ

1− Fq

) 1
α

for x ∈ [θ,∞).

where s is constrained according to the following:

Φ (sα)
√

2π(sα)e
1
2 (sα)2 =

ρ

1− ρ
.

Note that QTwo−piece distribution is a continuous function. This is easy to check by the identity
that if Fq = ρ then x = θ in both tails.

Before, I explain how the computational procedure works, let me describe the original dataset em-
ployed by the study. The original data on total sales and export revenues come from proprietary
database of Bureau Van Dijk’s Orbis database. The data have been cleaned to keep only unconsol-
idated accounts, and reflect balance sheet data from the latest available report in any single year
for every entity. I also exclude firms classified as operating in financial and insurance sectors. To
calculate domestic sales I subtract export revenues from total sales and keep only those observa-
tions that are non-negative. This leaves 928,569 observations for France in 2012. They are then
normalized described in the main text as to reflect measures of productivity.
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For computational purposes, it is inefficient to calculate Fq for all 928,569 because it (i) significantly
slows down the optimization routine and (ii) does not increase precision of the estimated parameters.
Instead, using original data I produce 100,000 empirical c.d.f. points each associated with an
empirical quantile that numerically cover the interval on the support between 0.00001 and 0.99999.
I then use these 100,000 data points for estimation. The results are completely robust to using
larger (than 100,000 and up to the possible maximum) number of quantiles.

Appendix C: Selection statistics under different distribution models

Here, I derive the two selection statistics that depend on the shape and location of the productivity
distribution and are necessary for calculating different trade outcomes. Note that for the true
values of the two statistics, I use empirical c.d.f. function that computes the value of the c.d.f.
for each variable in the data and is available in most statistical packages such as MATLAB where
this command is ecdf. To calculate the second selection statistics, I take values of productivities
to the power σ − 1 and integrate the resulting distribution from the left, starting with the value
of φ = φ∗ij , by employing trapezoid-based numerical integration. The corresponding command in
MATLAB is trapz.

In terms of calculating selection statistics for parametric distributions, I start with the Two-piece
distribution which gives expression for the first statistics by looking directly at the cumulative
distribution function:

1− F (φ∗ij) =


1− ρ

Φ(sα)
Φ

(
αs+

lnφ∗ij − ln θ

s

)
for φ∗ij ∈ (0, θ]

(1− ρ)
θα

(φ∗ij)
α

for φ∗ij ∈ [θ,∞).

The second statistics is a bit more tricky to get. Let me start calculating the second selection
statistics under for the interval where φ∗ij ≤ θ:∫ ∞

φ∗
ij

φσ−1f(φ)dφ =

∫ θ

φ∗
ij

φσ−1f(φ)dφ+

∫ ∞
θ

φσ−1f(φ)dφ. (22)

The first summand in equation (22) is:∫ θ

φ∗
ij

φσ−1f(φ)dφ =

∫ θ

0

φσ−1f(φ)dφ−
∫ φ∗

ij

0

φσ−1f(φ)dφ (23)

For further simplicity, let me first derive an expression for a generic power r and upper limit u:∫ u

0

1√
2πsx

xre−
1
2 (αs+ ln x−ln θ

s )
2

dx

First, I perform change of variables as follows:

y = αs+
lnx− ln θ

s
, x = θes(y−αs), dx = θses(y−αs)dy.

Plugging this back into the equation above gives the following:
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∫ u

0

1√
2πs

θr−1es(y−αs)(r−1)e−
1
2 (αs+ ln x−ln θ

s )
2

θses(y−αs)dy =

∫ αs+ lnu−ln θ
s

0

1√
2π
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1
2
y2dy

= θr
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s

0

1√
2π
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1
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s

0
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2

∫ αs+ lnu−ln θ
s

0

1√
2π
e−

1
2

(y−(sr))2dy.

The second change of variables:

y − (sr) = v; y = v + sr; dy = dv.

Plugging back into the equation gives:

θre
(sr)2−2(sr)(αs)

2

∫ αs+ lnu−ln θ
s −sr

0

1√
2π
e−

1
2 (v)2dv = θre

(sr)2−2(sr)(αs)
2 Φ

(
s(α− r) +

lnu− ln θ

s

)
I use this result to calculate first part of equation (23)by setting u = θ and r = σ − 1:∫ θ

0

φσ−1f(φ)dφ =
ρ

Φ(sα)
θσ−1e

(s(σ−1))2−2(s(σ−1))(αs)
2 Φ (s(α− (σ − 1))) ,

and to calculate the second part of (23), I set u = φ∗ij and r = σ − 1:∫ φ∗
ij

0

φσ−1f(φ)dφ =
ρ

Φ(sα)
θσ−1e

(s(σ−1))2−2(s(σ−1))(αs)
2 Φ

(
s(α− (σ − 1)) +

lnφ∗ij − ln θ

s

)
Putting two parts together gives the following:∫ θ

φ∗
ij

φσ−1f(φ)dφ =
ρ

Φ(sα)
θσ−1ε

[
Φ (s(α− (σ − 1)))− Φ

(
s(α− (σ − 1)) +

lnφ∗ij − ln θ

s

)]

where an auxiliary constant is defined as:

ε = e
(s(σ−1))2−2(s(σ−1))(αs)

2 .

Next, I calculate the remaining part of equation (23) – integral over the (θ,∞) support:∫ ∞
θ

φσ−1f(φ)dφ =

∫ ∞
θ

(1− ρ)αθαφσ−1−α−1dφ =
(1− ρ)αθα

α− (σ − 1)
θσ−1,

where I make the assumption (supported by data) that α > σ−1. This is necessary for the integral
to converge. Putting two parts together, I get the second selection statistics in case when φ∗ij ≤ θ:∫ ∞

φ∗
ij

φσ−1f(φ)dφ =
ερθσ−1

Φ(αs)

(
Φ (s[α− σ + 1])− Φ

(
s[α− σ + 1] +

lnφ∗ij − ln θ

s

))
+
α(1− ρ)θσ−1

α− (σ − 1)
.

In the opposite case when φ∗ij ≥ θ the left Log-normal-type tale becomes irrelevant and the expres-
sion becomes simply:
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∫ ∞
φ∗
ij

φσ−1f(φ)dφ =
α(1− ρ)θα

α− (σ − 1)
(φ∗ij)

σ−α−1

Selection statistics under Log-normal distribution

Under the Log-normal assumption with shape parameter sl and scale parameter µ, the first selection
statistics is straightforward and can be directly derived from the well-known c.d.f:

1− F (φ∗ij) = 1− Φ

(
lnφ∗ij − µ

sl

)
.

The second selection statistics can be derived as follows:∫ ∞
φ∗
ij

φσ−1f(φ)dφ =

∫ ∞
φ∗
ij

1√
2πsl

φσ−2e
− 1

2

(
lnφ−µ
sl

)2

dφ

First, let me perform change of variables as follows:

y =
lnφ− µ

sl
⇒ φ = exp(ysl + µ) ⇒ dφ = sl exp(ysl + µ)dy.

Plug this back into the integral expression to get:

∫ ∞
φ∗
ij

φσ−1f(φ)dφ =

∫ ∞
lnφ∗

ij
−µ

sl

1√
2πsl

e(ysl+µ)(σ−2)e−
1
2
y2sle

(ysl+µ)dy =

∫ ∞
lnφ∗

ij
−µ

sl

1√
2π
e(ysl+µ)(σ−1)− 1

2
y2dy

=

∫ ∞
lnφ∗

ij
−µ

sl

1√
2π
eysl(σ−1)+µ(σ−1)− 1

2
y2dy =

∫ ∞
lnφ∗

ij
−µ

sl

1√
2π
e−

1
2

(y2−2ysl(σ−1))+µ(σ−1)dy

=

∫ ∞
lnφ∗

ij
−µ

sl

1√
2π
e−

1
2

(y−sl(σ−1))2+ 1
2

[sl(σ−1)]2+µ(σ−1)dy

= e
1
2

[sl(σ−1)]2+µ(σ−1)

∫ ∞
lnφ∗

ij
−µ

sl

1√
2π
e−

1
2

(y−sl(σ−1))2dy.

An additional change of variable is performed as follows:

z = y − sl(σ − 1) ⇒ y = z + sl(σ − 1) ⇒ dy = dz,

which allows reformulating the integral as:

∫ ∞
φ∗
ij

φσ−1f(φ)dφ = e
1
2 [sl(σ−1)]2+µ(σ−1)

∫ ∞
lnφ∗

ij
−µ

sl
−sl(σ−1)

1√
2π
e−

1
2 z

2

dz

= e
1
2 [sl(σ−1)]2+µ(σ−1)

(
1− Φ

(
lnφ∗ij − µ

sl
− sl(σ − 1)

))
.

Selection statistics under Unbounded Pareto

The selection statistics under unbounded Pareto are well-known. The c.d.f. gives the following:

33



1− F (φ∗ij) =

(
φm
φ∗ij

)sp
.

The second selection statistics is calculated as follows:∫ ∞
φ∗
ij

φσ−1f(φ)dφ =

∫ ∞
φ∗
ij

spφ
sp
mφ

σ−1−sp−1dφ =
sp

sp − (σ − 1)
φspm (φ∗ij)

σ−1−sp ,

as long as sp > σ − 1 and φ∗ij ≥ φm.

Selection statistics under Bounded Pareto

The first selection statistics under the bounded Pareto can be characterized as:

1− F (φ∗ij) = 1−
1− φsbl (φ∗ij)

−sb

1− φsbl (φh)−sb
.

The second selection statistics is derived as follows:

∫ ∞
φ∗
ij

φσ−1f(φ)dφ =
spφ

sp
l

1− φspl (φh)−sb

∫ ∞
φ∗
ij

(φ)σ−1−sb−1

=
spφ

sp
l

1− φspl (φh)−sb
1

σ − 1− sb
max

(
φσ−1−sb
h − (φ∗ij)

σ−1−sb , 0
)
.
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