EHzürich

A Panel Data Approach for Spatial and Network Selection Models

Sophia Ding¹, Peter H. Egger² ¹ETH Zurich; ETH Zurich, CEPR, CESifo

1 Introduction

Motivation:

- Common features of economic data: spatial/network pattern (crosssectional interdependence), non-randomly missing observations (sample selection/treatment selection), panel-data
- No model exists to deal with all three simultaneously!
- Neglecting selection and/or spatial/network correlation results in biased coefficient estimates!

	Cross Section				
Non-Spatial/ Non-Network	Heckman (1976, 1979)	Wooldridge (1995)			
Spatial/ Network	McMillen (1995), Flores-Lagunes, Schnier (2012), Doğan,Taşpinar (2017)	This paper!			

Example/Future Application: Export-Wage Premium

- Empirical and theoretical evidence that exporters pay higher
 wage/worker than non-exporting firms (treatment effect of exporter status)
- Exporting decision as well as wage/worker depends on latent export profitability → treatment ≠ random
- Wages may have a spatial pattern due to local labor markets, commuting, etc. → Shocks to wages are correlated across firms!
- Profitability of exporting may have network pattern due to input/output linkages or industry affiliation → Shocks to profitability are correlated across firms!

This paper:

Develop **two-step approach** towards (sample/treatment) selection on unobservables akin to Heckman (1976, 1979) and Wooldridge (1995) but for **panel-data** with **spatial or network interdependencies**. Focus here: **Spatial/Network Treatment Selection Model**

2 Econometric Model

Selection equation

- (1) Fixed Effects/corr. Random Effects (Mundlak 1978, Wooldridge 1995)
- (2) Panel Spatial autoregr. process (Kapoor, Kelejian, and Prucha, 2007)

$$y_{ti}^{A*} = x_{ti}^{A'}\beta^{A} + e_{ti}^{A}, \quad y_{ti}^{A} = 1[y_{ti}^{A*} > 0]$$

$$e_{ti}^{A} = \rho^{A} \sum_{j=1}^{N} w_{tij}e_{tj}^{A} + \bar{x}_{i}^{A'}\delta^{A} + \underbrace{\mu_{i}^{A} + \varepsilon_{ti}^{A}}_{=\xi_{ti}^{A}}$$

$$e_{ti}^{A} = \sum_{j=1}^{N} r_{tij}^{A} \bar{x}_{j}^{A'}\delta^{A} + \sum_{j=1}^{N} r_{tij}^{A} \xi_{tj}^{A}, \quad \text{using} \quad R_{t}^{A} = (I_{N} - \rho^{A} W_{t})^{-1} = (r_{tij}^{A})$$

Outcome equation

• (1) Fixed Effects + (2) panel SAR + (3) joint normality of errors

$$y_{ti}^{B*} = \alpha y_{ti}^{A} + x_{ti}^{B'} \beta^{B} + \sum_{j=1}^{N} r_{tij}^{B} \bar{x}_{j}^{B'} \delta^{B} + u_{ti}^{B}, \quad y_{ti}^{B} = \begin{cases} y^{B*} & \text{if } y_{ti}^{A} = 1\\ y^{B*} & \text{if } y_{ti}^{A} = 0 \end{cases}$$
$$\begin{pmatrix} u_{ti}^{A}\\ u_{ti}^{B} \end{pmatrix} | x^{A}, x^{B} \sim \mathcal{N}\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{\xi^{A}}^{2} \sum_{j=1}^{N} (r_{tij}^{A})^{2} & \sigma_{\xi^{AB}} \sum_{j=1}^{N} r_{tij}^{B} r_{tij}^{A}\\ \sigma_{\xi^{BA}} \sum_{j=1}^{N} r_{tij}^{B} r_{tij}^{A} & \sigma_{\xi^{B}}^{2} \sum_{j=1}^{N} (r_{tij}^{B})^{2} \end{pmatrix} \end{pmatrix}$$

Correcting for Selection Bias

Conditional Expectation

E[ι

$$E[y_{ti}^{B}|y_{ti}^{A}, x^{A0}, x^{B}] = \alpha y_{ti}^{A} + x_{ti}^{B'}\beta^{B} + \sum_{j=1}^{N} r_{tij}^{B}\bar{x}_{j}^{B'}\delta^{B} + \boxed{E[u_{ti}^{B}|y_{ti}^{A}, x^{A0}, x^{B}]}$$

Adjusted Generalized Inverse Mills Ratio

$$\begin{aligned} & {}^{B}_{ti}[y^{A}_{ti}, x^{A0}, x^{B}] = \frac{\sigma_{\xi^{BA}}}{\sqrt{\sigma_{\xi^{A}}^{2}}} \frac{\sum_{j=1}^{N} r^{B}_{tij} r^{A}_{tij}}{\sum_{j}^{N} (r^{A}_{tj})^{2}} \left[y^{A}_{ti} \frac{\phi(z_{ti})}{\Phi(z_{ti})} + (1 - y^{A}_{ti}) \frac{\phi(z_{ti})}{1 - \Phi(z_{ti})} \right] \\ &= \tau \psi_{ti} \lambda^{g}_{ti} \end{aligned}$$

5 Monte Carlo Evidence (Selected Results)

Case 1: Medium Spatial/Network Correlation

			$\tilde{\beta}_1^A$	$\tilde{\beta}_2^A$	$\tilde{\delta}_1^A$	$\tilde{\delta}_2^A$	ρ^A	α	β_1^B	δ_1^B	τ	ρ^B
8		True	0.707	0.707	0.707	0.707	0.5	1	1	3	0.707	0.5
N=250 S	SNTS	Mean	0.732	0.735	0.736	0.734	0.449	1.006	1.002	3.005	0.694	0.494
		Bias	0.025	0.028	0.029	0.027	-0.051	0.006	0.002	0.005	-0.013	-0.006
		RMSE	0.091	0.084	0.198	0.185	0.131	0.207	0.060	0.138	0.146	0.091
	WPS	Mean	0.653	0.670	0.681	0.708		0.849	1.023	3.076	0.873	
Ignore spatial/		Bias	-0.054	-0.037	-0.026	0.001		-0.151	0.023	0.076	0.166	
network correlation	relation	RMSE	0.096	0.081	0.140	0.134		0.257	0.065	0.159	0.231	
	NLLS	Mean						1.379	0.940	2.951		0.528
Ignore sample selection		Bias						0.379	-0.059	-0.049		0.028
		RMSE						0.411	0.082	0.142		0.094
N=500	SNTS	Mean	0.716	0.719	0.721	0.711	0.482	1.004	0.999	3.002	0.698	0.495
		Bias	0.009	0.012	0.014	0.004	-0.018	0.004	-0.001	0.002	-0.009	-0.005
		RMSE	0.055	0.060	0.134	0.140	0.074	0.160	0.040	0.105	0.108	0.055
	WPS	Mean	0.660	0.657	0.686	0.671		1.027	0.995	3.160	0.779	
Ignore spatial/		Bias	-0.047	-0.050	-0.022	-0.036		0.027	-0.005	0.160	0.072	
network correl	relation	RMSE	0.069	0.074	0.098	0.109		0.163	0.040	0.193	0.140	
NLLS		Mean						1.390	0.939	2.938		0.490
Ignore sample selection		Bias						0.390	-0.061	-0.062		-0.010
		RMSE						0.408	0.071	0.117		0.060

Case 2: No Spatial/Network Correlation

			$\tilde{\beta}_1^A$	$\tilde{\beta}_2^A$	$\tilde{\delta}_1^A$	$\tilde{\delta}_2^A$	ρ^A	α	β_1^B	δ_1^B	τ	ρ^{E}
		True	0.707	0.707	0.707	0.707	0	1	1	3	0.707	(
N=250	SNTS	Mean	0.739	0.740	0.743	0.744	-0.114	1.005	1.000	3.006	0.697	-0.009
		Bias	0.032	0.033	0.036	0.037	-0.114	0.005	0.000	0.006	-0.010	-0.009
		RMSE	0.092	0.085	0.193	0.177	0.245	0.112	0.051	0.132	0.106	0.13
	WPS	Mean	0.715	0.716	0.719	0.718		1.000	0.999	3.009	0.706	
Ignore spatial/		Bias	0.008	0.009	0.011	0.011		0.000	-0.001	0.009	-0.001	
network correla	relation	RMSE	0.082	0.075	0.143	0.140		0.112	0.050	0.130	0.106	
	NLLS	Mean						1.350	0.942	2.973		0.06
Ignore sample		Bias						0.350	-0.058	-0.027		0.06
selectio	on	RMSE						0.362	0.076	0.130		0.14
N=500	SNTS	Mean	0.721	0.723	0.730	0.718	-0.066	1.003	0.999	3.002	0.701	-0.00
		Bias	0.014	0.016	0.023	0.011	-0.066	0.003	-0.001	0.002	-0.006	-0.00
		RMSE	0.055	0.059	0.133	0.133	0.176	0.086	0.033	0.099	0.076	0.08
2.5	WPS	Mean	0.709	0.711	0.714	0.706		1.001	0.999	3.002	0.705	
Ignore spatial/		Bias	0.002	0.004	0.007	-0.001		0.001	-0.001	0.002	-0.002	
network corr	relation	RMSE	0.052	0.056	0.102	0.102		0.086	0.033	0.096	0.076	
	NLLS	Mean						1.358	0.942	2.935		-0.01
Ignore sar	nple	Bias						0.358	-0.058	-0.065		-0.01
selectio	on	RMSE						0.365	0.066	0.114		0.09

3 Estimation Strategy (Outline)

Step 1: Estimate selection equation using **Pooled Bayesian Spatial/ Network Error Probit** model to obtain $\hat{\theta}_A = \{\hat{\beta}^A, \hat{\delta}^B, \hat{\rho}^A\}^{'}$ where $\tilde{\beta}^A = \frac{\beta^A}{\sigma_{\epsilon A}}$, $\tilde{\delta}^A = \frac{\delta^A}{\sigma_{\epsilon A}}$

Step 2: Use estimated parameters to construct spatially/network adjusted (generalized) Inverse Mills' Ratio.

Step 3: Add estimated spatially/network adjusted generalized Inverse Mills' Ratio in outcome equation and estimate using **Pooled Non-linear Least** Squares to obtain $\hat{\theta}^B = \{\hat{\alpha}, \hat{\beta}^B, \hat{\delta}^B, \hat{\tau}, \hat{\rho}^B\}$

4 Variance-Covariance Matrix

- Account for **estimated** first-stage parameters: **Murphy-Topel** (1985, 2002) type of **correction** for two-step estimators.
- Corrected VC-Matrix is a function of the truncated variance and truncated covariance of the spatial error components: outline estimation procedure along the lines of Heckman (1979).

References

Doğan, O., Taşpinar, S., 2017. Bayesian Inference in Spatial Sample Selection Models. Oxford Bulleting of Economics and Statistics 80, 90-121.

Flores-Lagunes, A., Schnier, K.E., 2012. Estimation of Sample Selection Models with Spatial Dependence. Journal of Applied Econometrics 27, 173-204.

Heckman, J., 1976. The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models. The Annals of Economic and Social Measurement 5, 475-492.

Heckman, J., 1979. Sample Selection Bias as a Specification Error. Econometrica 47 (1), 153-61

Kapoor, M, Kelejian, H.H. Prucha, I.R., 2007. Panel Data Models with Spatially Correlated Error Components. Journal of Econometrics 140, 97-130.

Mundlak, Y., 1978. On the pooling of time series and cross section data. Econometrica 46, 69-85.

McMillen, D.P., 1995. Selection Models in Spatial Econometric Models. Journal of Regional Science 35 (3), 417-436. Wooldridge, J., 1995. Selection corrections for panel data models under conditional mean independence assumptions. Journal of Econometrics 68 (1), 115-132.