THE IMPACT OF ACTIVE LABOUR MARKET PROGRAMMES ON THE DURATION OF UNEMPLOYMENT IN SWITZERLAND*

Rafael Lalíve, Jan C. van Ours and Josef Zweimüller

This article evaluates the effects of Swiss active labour market programmes on the job chances of unemployed workers. The main innovation is a comparison of two important dynamic evaluation estimators: the ‘matching’ estimator and the ‘timing-of-events’ estimator. We find that both estimators generate different treatment effects. According to the matching estimator temporary subsidised jobs shorten unemployment duration whereas training programmes and employment programmes do not. In contrast, the timing-of-events estimator suggests that none of the Swiss active labour market programmes shortens unemployment duration.

The aim of the present article is to study the impact of active labour market policies (ALMPs) on the duration of unemployment in Switzerland. The new Swiss ALMPs reflect the increasing consensus among policy makers that actively assisting the unemployed in job search is preferable to simply providing them with passive income support. The danger is, so the argument goes, that reliance on passive income support may reduce work incentives and job-search activities and therefore increase the risk of long-term unemployment. ALMPs are seen by many as the key to minimise these risks.

The question how participation in ALMP-measures affects labour market histories of individuals has been the subject of substantial debate. The main problem is that labour market outcomes for participants may be systematically different from non-participants for reasons that are unobservable to the researcher – the selection problem; see Heckman et al. (1999). In Switzerland, like in most European countries but unlike in the US, randomised social experiments are uncommon, so one has to deal with non-experimental data. In theory, several methods can be used to estimate the treatment effects of ALMPs. Each of these methods deals with the selection problem under different assumptions. In the case of unemployment duration as a variable of interest two methods are particularly useful. The first one is the method of ‘matching’, the second one is the ‘timing-of-events’ method.

The main innovation of the present article is a direct comparison between the timing-of-events approach and the matching approach in estimating the effect of ALMPs on the rate by which unemployed individuals find regular jobs. The method of matching is based on the conditional independence assumption. If many variables that influence both labour market outcomes and the selection process are observed, potential outcomes and selection are independent, conditional on the observables. The identifying assumption is that, after accounting for many observable variables (including individual’s past labour market performance), no unobserved heterogeneity correlated with

* We thank without implicating Wolfgang Franz, Michael Gerfin, Lorenz Goette, Michael Lechner, Patrick Puhani, Frank Reize, Viktor Steiner, Gerard van den Berg, Rudolf Winter-Ebmer and two editors as well as three anonymous referees for comments on earlier versions of this article. We also thank M. Curti and J. Gast at the Swiss State Secretariat for Economic Affairs for help concerning the data and information on institutional details, and Jacek Micuta at the centrale de compensation for access to social security data.

[235]
potential outcomes and programme participation is left. Among the many studies that use the matching approach, the studies of Gerfin and Lechner (2002) and Gerfin et al. (2005) are of interest here as they also evaluate the effect of Swiss ALMPs on unemployment duration. Both studies find that employment programmes perform very poorly, vocational training programmes show a rather mixed performance depending on the specific subprogramme considered, whereas temporary subsidised jobs appear to be successful in terms of increasing the chances on the labour market.\(^1\)

The timing-of-events method allows for selection on unobservables in postulating a multivariate mixed proportional hazard model in which both the inflow into an ALMP programme and the outflow from unemployment are specified and allowed to interact. The identifying assumption is that these transition processes can be modelled as a multivariate mixed proportional hazard (MMPH) model. The intuition is that, under this assumption, information on the correlations between the unobserved heterogeneity components in the exit from unemployment and the entrance into ALMPs can be obtained from

(i) the duration until the programme starts
(ii) the duration of unemployment.

Because unobserved heterogeneity components are modelled explicitly, the treatment effect is estimated conditional on observed and unobserved variables taking into account that the unobserved variables may influence both processes. The timing-of-events method is a rather new approach and has been applied in only a few previous studies.\(^2\)

In comparing the timing-of-events approach and the matching approach in estimating the effect of ALMPs, we proceed as follows. First, we compare the matching approach with a proportional hazard approach that both rely on conditional independence. We find that the estimated treatment effects are very much the same. While training programmes and employment programmes have no effect, temporary subsidised jobs have a positive effect on the job finding rate. Second, the timing-of-events approach allows us to introduce potential selectivity in both observable characteristics and unobservable characteristics. If we estimate a MMPH model which allows for selection on unobservable characteristics in addition to observable characteristics none of the treatment effects is positive. So, if unobserved heterogeneity is allowed to influence the inflow into ALMPs the timing-of-events approach and the matching approach find different treatment effects.

The plan of the article is as follows. In the next Section we describe the Swiss labour market policy in more detail. In Section 2 we provide specific information on our data set, a weighted random sample of entrants into unemployment in Switzerland over the four-months period December 1997 to March 1998. Section 3 discusses the modelling

\(^1\) For a further matching study that also looks at the impact of ALMPs in Switzerland see Prey (2000).

\(^2\) Gritz (1993) considers the impact of training on the employment experience of American youths and Bonnal et al. (1997) study the effect of public employment policies set up in France during the 1980s. Van den Berg et al. (2002) study the effects of temporary jobs in the Netherlands and both Abbring et al. (2005), Lalive et al. (2005) and Van den Berg et al. (2004) study the effect of benefit sanctions. Two studies closely related to ours are Richardson and Van den Berg (2001) in which the effect of vocational employment training on the transition rate from unemployment to work is investigated and Crépon et al. (2005) who study the effect of counselling programmes on unemployment duration and recurrence.

© The Author(s). Journal compilation © Royal Economic Society 2008
of dynamic treatment effects in more detail. The results of our analysis are presented in Section 4. Section 5 concludes.

1. Labour Market Policy in Switzerland

In 1997 the Swiss government introduced a reform of unemployment insurance that constituted a change away from passive income maintenance towards active measures. The new law obliged the Swiss cantons to supply a minimum number of ALMP-places per year. Economy-wide, these requirements add up to a stock of 25,000 places. This compares to an average stock of unemployment of about 188,000 individuals in 1997 and about 140,000 in 1998.

The new law increased maximum benefit entitlement and, at the same time, created a close link between unemployment benefit entitlement and participation in an active measure. For a newly unemployed the maximum entitlement period is 104 weeks, up from originally 80 weeks. The benefit entitlement period is divided into two different parts. For at most 7 months the job-seeker can receive unemployment benefits, unconditional upon participation in an active measure. For the remaining 17 months unemployment benefits are paid only if the unemployed are willing to participate in a measure.

Employment service staff decide on participation in ALMPs based on subjective evaluation of the job-seekers employment prospects. Individuals are notified about their participation into a programme one or two weeks in advance. A job seeker is not allowed to refuse participation once he or she is assigned to participate in an ALMP. Refusal to participate results in withholding of benefit payments for a period of 1 to 30 days.

As mentioned by the OECD (1996), the new Swiss unemployment insurance system is an ambitious one. Compared to other countries the Swiss rules are different in at least two important respects. First, the intervention takes place at a rather early stage of the unemployment spell, after seven months. And secondly, for training courses and employment programmes, benefit payments are conditional upon ALMP-participation and this participation does not lead to a new benefit entitlement. In contrast, temporary subsidised jobs lead to a new benefit entitlement. Note, however, that most individuals enter this programme at a rather early stage of the unemployment spell so it is unlikely that individuals use this programme to acquire prolonged unemployment benefits.

The ALMP-measures can be divided into four categories:

1. **Basic Training.** Job courses usually last 3 weeks and aim at improving the effectiveness of individual job search (how to write application letters, how to behave at job talks) and self-esteem. Computer courses last about 3 weeks and refer to basic word processing and spreadsheet calculation. Language courses last about 2 months and include reading and writing skills. Language courses are more likely to be attended by foreigners but native Swiss also attend these courses frequently.

3 The above entitlement regulation holds for an individual who has been employed and has contributed to the insurance system for at least 6 within the last 24 months.
4 See Lalove et al. (2005) for an evaluation of the Swiss sanction system.
5 The average elapsed duration at entry is less than 3 months, see Table 1 which is discussed in more detail below.
2 Advanced Training. Vocational training courses last slightly less than two months and provide vocational training in business administration and related areas. Other courses last about 2 months and concern a heterogeneous group of course types, including specific computer training, business administration, technical training, courses in the tourism and the health sector.

3 Employment programmes. These refer to temporary jobs in the non-profit sector, which last about 5 months. The jobs may be provided by both private sector (NGOs) and public sector (such as communal offices).

4 Subsidised jobs. These are actual low-wage jobs that firms register with the public employment service or that firms offer to an unemployed individual. These jobs are considered to be temporary because the wage in these jobs is below the official minimum of 67% of the previous wage (the ‘reasonability’ limit). The individual is still expected to search for a new regular job. It is not possible for firms to reduce the wage payment for such a job in order to benefit from the subsidy.\(^6\)

Table 1 presents detailed descriptive statistics on the programmes. These statistics, based on the dataset we describe in more detail in the next Section, indicate that in terms of number of participants job training and subsidised jobs are the most important programmes. Unemployed workers enter a programme after about 3 months of unemployment but the variation is considerable as can be seen from the standard deviation of the elapsed unemployment duration at programme entry.

It is worth noting that various programmes also differ in terms of hours spent on the programme. Training courses typically require weekly hours equivalent to a part-

\(^6\) An unemployed individual who accepts such a low-wage job gets 70% or 80% of the difference between the previous wage and the wage in the subsidised job as a wage supplement by the unemployment insurance. Note that temporary subsidised jobs are not part of the official ALMP. However, in terms of their set-up and the way they operate there is no reason to exclude them from the analysis. On the contrary, to analyse the effects of policy interventions in full detail it is necessary to include temporary subsidised jobs.

© The Author(s). Journal compilation © Royal Economic Society 2008
time job, whereas the time-intensity of employment programmes are equivalent to a full-time job. Subsidised jobs can be either full-time or part-time. Individuals are required to search for a regular job while attending a programme. However, job search requirements are reduced for participants in training courses. One should also note that training courses and employment programmes involve costs that go beyond the payment of individual benefits. While training courses and employment programmes involve considerable direct costs, this is not the case for subsidised jobs. As the wage subsidy to the temporary jobs amounts to 70 or 80% of the difference between the previous wage and the new wage, working in a subsidised job increases an individual’s income. (The wage plus wage subsidy amounts to more than the unemployment benefit, at most 96% of the previous wage.) As the unemployment benefit amounts to 70 or 80% of the previous wage, a subsidised job is cheaper in terms of transfer payment from the unemployment insurance system to the individual. As there are no major direct costs, subsidised jobs seem to be a rather inexpensive programme.7

2. Data

The data set from which we drew our sample, covers all unemployment entrants in Switzerland over the period December 1997 to March 1998 and follows these individuals up to the end of May 1999. These data come from administrative records of the State Secretariat for Economic Affairs (AVAM and ASAL database). Among the 70,445 workers who started an unemployment spell during the above period we concentrate our empirical analysis on a subsample of those workers for whom we could match the information of the AVAM and ASAL database with information from social security records (AHV data). The latter provide detailed information on individuals’ earnings and employment histories over the last 10 years prior to their unemployment spells.

We had only limited access to the social security records. The data available to us contain a 50% random sample of the inflow in December 1997 and a 30% random sample of the inflow from January 1998 to March 1998. In the analysis in Section 4 we account for this by weighting each observation by the inverse of the probability of being in the random social security sample. The sample on which our empirical estimates are based contains 15,073 job seekers.8

Figure 1 shows the transition rates from unemployment to regular jobs and from unemployment to ALMPs.9 There is a very strong increase in the probability of entering both regular jobs and ALMPs, from about 5% per month in the first month of unemployment, up to a level of almost 15–20% per month in the third month of unemployment. Thereafter, the transition rates revert to a level of 5% per month and remain at that level from month 6 onwards. The patterns of both transition rates are

7 A Swiss study conducted by BASS (1999) estimates that, in the absence of the subsidised job programme, total expenditures of the unemployment system as a whole would be 4% higher.
8 We removed all job seekers who were not entitled to unemployment benefits, were re-entering unemployment within a period of two calendar years, were aged younger than 20 years or older than 49 years, were disabled or were foreigners with an asylum seeker or seasonal permit.
9 The transition rates account for censoring by the Kaplan-Meier method.

© The Author(s). Journal compilation © Royal Economic Society 2008
very similar. Thus, the process of finding jobs could be affected by similar factors as the process of finding a suitable active labour market programme.

Figure 2 shows the monthly empirical hazard rates for transitions from unemployment in more detail. The direct transition rate to jobs, labelled as ‘no ALMP’ is identical to the one presented in Figure 1. This baseline exit rate serves to establish the effects of the programmes as we discuss in the following Section. Defining \(t_c \) as the duration until entry into an ALMP we distinguish three groups, those that enter in the first three months ‘ALMP: \(t_c < 3 \)’, those that enter between 3 and 6 months ‘ALMP: \(3 \leq t_c < 6 \)’, and those who enter after 6 months of unemployment ‘ALMP: \(6 \leq t_c \)’. Compared to the baseline hazard rate, the exit rate of the ALMP-participants is lower initially, but tends to be higher than the baseline hazard rate after a period of at most 4 months. This suggests that capturing the dynamics of the effect of the ALMP on the hazard rate compared to non-participation may be important.

3. Modelling Dynamic Treatment Effects

This Section discusses our identification strategy. The logic of our approach is simple. We first discuss two important considerations that arise when a programme is dynamically assigned to individuals. Second, we propose two estimators that identify the effects of treatments when treatment assignment is ignorable conditional on the information provided by the data. Whereas the matching estimator just uses the conditional independence assumption, the hazard estimator restricts the hazard rate of the outcome process to follow the proportional hazard restriction. The Section finally discusses the possibility that selection is also based on unobservables.

10 Note that with the exception of the employment programmes, the temporal pattern of the separate programme entry rates is qualitatively similar to the overall ALMP entry rate.
When investigating the effects of ALMPs one has to deal with two questions concerning the start of the programme, i.e. the start of the treatment. The first question is whether unemployed individuals anticipated the start of a programme; the second question is when the potential effects of the treatment can be expected to occur, right from the start of the programme or after the programme has ended.

As Abbring and Van den Berg (2003) indicate in the setting of a timing-of-events analysis unemployed individuals are not allowed to anticipate the start of the programme a long time in advance. Individuals who anticipate the start of the programme may reduce their search intensity prior to the start. In that case the effects of the programme are overestimated. We think that anticipation is not a problem in the Swiss case. As discussed in Section 2 job seekers are notified about actual participation only one or two weeks in advance. Therefore, even if they would have wanted to react they did not have a lot of time to react.\footnote{Furthermore, during our observation period, there was a lack of available ALMP slots so individuals could not anticipate to get into a programme eventually; see Lechner and Frölich (2005). Finally, job seekers were aware of the fact that they could be penalised if they reduced their search efforts in anticipation of programme participation.}

The relevant starting date of potential ALMP effects depends on the nature of the programme. In case of training courses, where programme duration is established in advance, the treatment start stops when the programme ends. For ALMPs with no fixed programme duration, the potential treatment start is the date of exit from ALMP. The starting date of potential ALMP effects depends on the nature of the programme. In case of training courses, where programme duration is established in advance, the treatment start stops when the programme ends. For ALMPs with no fixed programme duration, the potential treatment start is the date of exit from ALMP.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{transition_rate_to_regular_jobs}
\caption{Transition Rate to Regular Jobs, by Treatment Status}
\end{figure}

Notes. \(t_c \) refers to duration until entry. The average duration until entry is 1.7, 4.1, and 9.3 months for the three groups, respectively. no ALMP refers to the transition rate to jobs treating exits to ALMP as censored.

Source. Own calculations, based on Swiss unemployment register data.
advance and participants should follow a particular curriculum, it makes sense to start investigating the effects of the programme after it has finished. Then, as in Richardson and Van den Berg (2001), the length of time intervals spent in a programme is set to zero (i.e. the calendar time clock is stopped) while participants are in the programme. However, in the case of subsidised jobs or employment programmes, participants are expected to find a regular job as soon as possible and should accept any suitable job offer. Then, participants can leave the programme to take a regular job at any time and stopping the calendar time clock (i.e. disregarding the interval during which the individual is in the programme) does not make sense. In other words, whether or not one should investigate the effects on the job finding rate from the start of the programme depends on the nature of the programme. Note, however, that in both cases there is a locking-in effect. In the case of a training programme the locking-in effect is exogenous in the sense that participants are expected to finish the programme and will not start a new job before the programme is finished. In the case of a subsidised job or an employment programme the locking-in effect is endogenous in the sense that it is determined by the search behaviour of the participant. Therefore, for these programmes we investigate the treatment effects from the moment they start. To compare the treatment effects across programmes we do the same for training courses.

3.2. Selection on Observables

3.2.1. Matching estimator

We start our empirical analysis below with a matching estimator that does not restrict the way in which ALMPs affect the exit rate. The estimator recognises that programme participants and non-participants may differ in two important respects. First, programme participants may be a selective subset of the population with respect to observables. A meaningful comparison group is therefore balanced with respect to these variables. The second difference arises due to the fact that the timing of programme participation is a process with a strong stochastic component. This implies that control individuals must be drawn from the set of individuals that have neither left unemployment nor entered treatment at the moment when the treated individual starts treatment.

In the evaluation, we focus on the effects of the first treatment on the duration of unemployment. More precisely, we estimate the effect of a new training ‘sequence’ on the remaining duration of unemployment. If such a sequence consists of participating in two or more ALMPs, information on the occurrence and timing of the second (or third, . . .) spell is disregarded. The various programmes are indexed by $p = 1, . . . , 4$. The transition rate from unemployment to programme p is assumed to have a proportional hazard specification given by

$\begin{align*}
12 \text{ Note that Richardson and Van den Berg (2001) find a positive treatment effect of vocational employment training only if the time spent in these programmes is ignored.} \\
13 \text{ See Fredriksson and Johansson (2005), Gerfin and Lechner (2002), Gerfin et al. (2005), and Sianesi (2004) for evaluation studies in the random programme start setting.} \\
14 p = 1$ indexes basic training, $p = 2$ advanced training, $p = 3$ employment programmes and $p = 4$ subsidised jobs.
\end{align*}$

© The Author(s). Journal compilation © Royal Economic Society 2008
where $\theta_p(t|x) = \lambda_p(t) \exp(x\beta_p)$,

$$
\theta_p(t|x) = \lambda_p(t) \exp(x\beta_p),
$$

where θ_p denotes the transition rate from unemployment to a programme, t is the elapsed duration of unemployment, and x is a vector of individual and labour market characteristics that determine this transition process. The baseline hazard rate λ_p allows for flexible duration dependence by using a step function

$$
\lambda_p(t) = \exp[\sum_k \lambda_{pk} I_k(t)],
$$

where $k = 1,\ldots,5$ is a subscript for time-intervals and $I_k(t)$ are time-varying dummy variables for the following time intervals: 0–2 months, 3–5 months, 6–8 months, 9–11 months and 12 and more months.

The proposed matching estimator works as follows. In a first step we estimate separate transition rates to each of the four programmes. This gives an estimate of the transition rate of individual i to each programme p: $\hat{\theta}^i_p(t) = \hat{\lambda}_p(t) \exp(x_i\beta_p)$.

In the second step we select, for each participant i in programme p, the ‘nearest neighbour’ in terms of the transition rate to programme p. Note that the transition rate to the programme is the instantaneous propensity score. The set of potential nearest neighbours consists of observations that are still ‘at risk’ of entering programme p as their first programme. In other words, these are observations that have neither entered an ALMP nor accepted a regular job before observation i entered programme p. Let T_u denote the random variable that characterises the duration of unemployment until the individual finds a regular job, and let T_p denote the random variable that characterises the duration of unemployment until the start of programme p. We denote by \tilde{T} the random variable that characterises the duration until the individual either finds a regular job or starts her first treatment, so $\bar{T} = \min(T_u, T_1, \ldots, T_4)$. And we denote by \tilde{t} a particular realisation of \tilde{T}. The set of potential control observations for individual i with $T_p = t$ (somebody whose first programme is p) is given by $A_i = \{j|\tilde{t} > \tilde{t}, j \neq i\}$. The ‘nearest neighbour’ is the observation $j \in A_i$ that minimises $\text{abs}(\hat{\theta}^j_p(\tilde{t}) - \hat{\theta}^i_p(\tilde{t}))$.

The final step involves estimating the counterfactual survivor function of the treated observations by using the information provided by control observations. There are two important considerations in this step. First control observations may be treated in the future. Thus, for control observations the remaining duration of unemployment is given by $\min(T_u^i - T_p^i, T_1^i - T_p^i, \ldots, T_4^i - T_p^i)$, i.e. the time remaining in unemployment without participating in any of the four programmes. The counterfactual survivor function can be recovered from information on this remaining duration of control.

15 Specifically, these observables are gender, marital status, number of dependents, age, residence permit (applies to non-Swiss residents), mother tongue, skill level, position in the previous firm, type of job required (in same industry, part-time), previous industry, previous occupation, previous wage, duration of previous job, recent labour market history (1995–7), distant labour market history (1988–94), inflow period, the unemployment rate in the canton of residence of the job seeker in the month prior to entering unemployment (time-invariant), proportion of unemployed in ALMP, voting in a 1997 referendum on benefit cuts and employability.

16 In a sensitivity analysis, we use a very flexible baseline hazard which is allowed to shift every month.

17 The instantaneous propensity score akin to suggestions by Robins et al. (2000), Lechner (2004) and Hirano and Imbens (2004).

18 Similar to Sianesi (2004) we impose a caliper of 0.01 in determining the nearest neighbour.

19 This has led to focusing on the effect of ‘being treated now vs. being treated in the future’ (Fredriksson and Johansson, 2003; Sianesi, 2004).
observations, treating as right-censored all observations going to an ALMP. Second, it is possible that the distribution of the background characteristics of the treated and the matched control is not perfectly balanced. We address possible imbalance by implementing a bias correction along the lines suggested by Abadie and Imbens (2002). We first used the data on matched controls to estimate a proportional hazard model of the transition rate from unemployment to regular jobs in the absence of treatment. Then we use the resulting parameter estimates to predict the probability that each treated individual remains unemployed as a function of the time elapsed since the treatment started. This procedure ensures that potential differences in the distribution of the observed characteristics of treated individuals and their matched controls do not bias the estimates of the treatment effect.

The central identifying assumption that justifies the matching estimator is that conditional on observed characteristics of the individual’s assignment to programme \(p \) is independent of the potential remaining duration without the programme. This conditional independence assumption has been justified by Gerfin and Lechner (2002) by the fact that the Swiss unemployment insurance register is extremely rich in terms of observed characteristics. In particular, the data contain information on employability, a subjective caseworker assessment of the likely labour market prospects of the job seeker filled out at the start of the unemployment spell. Note, however, that the employability variable is a subjective measure and may not contain comprehensive information on the particular problems and handicaps of the individual job searcher. The MMPH model considered below allows for the possibility that this subjective employability information may not be sufficient to remove unobserved heterogeneity. Fredriksson and Johansson (2003) show that when the conditional independence assumption holds, the effect of treatment on the treated can be identified by contrasting the outcomes of individuals who are treated at \(\tilde{t} \) to individuals who have not been treated until \(\tilde{t} \) who have the same propensity to enter treatment at time \(\tilde{t} \). Note that the propensity to enter treatment at time \(\tilde{t} \) is identical to the ALMP entry hazard rate \(\theta_p(\tilde{t}|x) \).

3.2.2. Proportional hazard model

Alternatively, we use a proportional hazard model to identify the treatment effects of the various programmes. Let

\[
D_p(t) = I(t > \tilde{t} \cup \tilde{t} = T_p) \tag{3}
\]

be the indicator function that, after elapsed duration \(t \), the individual has already entered his or her first programme and that this is programme \(p \). This defines 4 treatment indicators \(D_1, \ldots, D_4 \), one for each programme.

Note that because we analyse the treatment effects of the four programmes separately, it is essential to censor unemployment spells for job seekers leaving unemployment for a programme that is not being studied. For instance, when studying basic training the unemployment spell is recorded as right censored for all job seekers who enter advanced training, employment programmes, or subsidised jobs at the time when they enter those programmes. The proportional hazard estimator postulates that the transition rate from unemployment to regular jobs is
\[\theta_u(t|x, D_p(t)) = \lambda_u(t) \exp[x \beta_u + \delta_p(t, \tilde{t}) D_p(t)]. \]

Where \(\theta_u(t|\cdot) \) is the transition rate from unemployment to a regular job at elapsed duration of unemployment \(t \) conditional on individual characteristics \(x \) and the treatment indicator \(D_p(t) \). The treatment effects are specified as \(\delta_p(t, \tilde{t}) = \Sigma_k \delta_{pk} I_k(t - \tilde{t}) \) where the \(\delta_{pk} \) are parameters to be estimated, and \(I_k(t - \tilde{t}) \) are dummy variables that vary with time since the start of treatment \(t - \tilde{t} \) for the intervals 0–2 months, 3–5 months, 6–8 months, and 9 months and longer. The baseline hazard \(\lambda_u(t) \) is again allowed to vary with the elapsed duration of unemployment in the same way as the programme entry hazard rate. In separate estimates, the model estimates four treatment effect vectors \(\delta_{pk} \) one for each programme. We keep the specification flexible and allow treatment effects to vary over time.

The proportional hazard estimator identifies the effect of ALMPs on the duration of unemployment under two conditions. First, it assumes that conditional on observables \(x \), participation in the ALMP is not informative on unemployment duration without the programme, i.e. that selection is based on observables. This is the assumption that is also required for the matching estimator. In addition, the proportional hazard estimator imposes a particular functional form on the hazard rate. The assumption is that the characteristics \(x \) of the individuals shift the hazard rate in a proportional manner irrespective of the time elapsed since the start of the spell.

3.2.3. Comparing the two methods

The focus of our evaluation is the causal effect of treatment \(p \) on the remaining duration of unemployment after the start of the programme. Remaining duration of unemployment is given by \(T_r^p = T_u^p - \hat{T} \), where \(T_u^p \) is the total duration of unemployment with programme \(p \), and \(\hat{T} \) is the duration of unemployment until the first programme starts. The counterfactual is \(T_r = T_u - \hat{T} \), that is, the remaining duration of unemployment without the programme.

We compare the results of the matching estimator and the proportional hazard estimator with respect to the effect of treatment \(p \) on those treated with programme \(p \), i.e. \(E(T_r^p - T_r|\hat{T} = T_p) \). The effect of treatment on the treated is useful in assessing whether programme \(p \) has achieved the goal to foster re-entry of job seekers into regular jobs. Note, however, that the effect of programme \(p \) should not be compared to the effect of programme \(p’ \) because programme \(p \) applies to a different subpopulation than the effect of programme \(p’ \). An alternative parameter is the average effect of treatment, that is, the effect of treatment on the average job seeker. This parameter is useful in discussing the issue of whether the programme should be extended to the entire population of job seekers. We focus on the effect of treatment on the treated because this parameter is crucial in the ex post evaluation of the question whether active labour market programmes are helpful in placing job seekers that were affected by the programmes into jobs.

Since both \(T_r^p \) and \(T_r \) are positive random variables, the effect of treatment on the treated can be represented as follows

\[E(T_r^p - T_r|\hat{T} = T_p) = \int_0^\infty [S_r(t|\hat{T} = T_p) - S_r(t|\hat{T} = T_p)] dt. \]

\[(5) \]
where \(S_p^p(t|\bar{T} = T_p) \) is the survivor function of remaining duration with treatment \(p \), i.e. \(S_p^p(t|\bar{T} = T_p) = 1 - \Pr(T_p^p > t|\bar{T} = T_p) \), and \(S_r(t|\bar{T} = T_p) \) is the survivor function of the counterfactual remaining duration without treatment \(p \). Note that right-censoring of the remaining duration of unemployment implies that the effect of treatment on the treated cannot be recovered from the data. Instead, we base our comparison of the results on the difference in the survivor function with treatment and the counterfactual survivor function without treatment in the first 12 months after the start of the treatment.\(^{20}\)

The matching estimator provides a matched set of treated and control observations. We estimate the unconditional (with respect to \(x \)) survivor function with treatment and the unconditional counterfactual survivor function in three steps. First, we estimate the conditional hazard of leaving unemployment for regular jobs using maximum likelihood. Note that we estimate the conditional counterfactual hazard of leaving unemployment for regular jobs using maximum likelihood.

The proportional hazard estimator gives the conditional (on observables \(x \) and programme entry times \(\bar{l} \)) remaining duration survivor function with treatment \(\hat{S}_p^p(t|x, \bar{l}) = \exp\{- \int_0^t \hat{\theta}_u(\bar{l} + z|x, D_p(\bar{l} + z))dz\} \).\(^{22}\) The conditional survivor function without treatment is obtained by imposing non-participation, i.e. \(D_p(\bar{l} + z) = 0 \) everywhere. The unconditional survivor curves are obtained by taking the average with respect of the distribution of \(x \) and programme entry times \(\bar{l} \) in the treated population of the corresponding conditional survivor functions.

The comparison of the two estimators is based on the difference in the unconditional survivor curves.\(^{23}\) This difference should be negligible if

\(i \) the unemployment exit rate indeed has a proportional structure, and

\(ii \) the proportional hazard model is sufficiently flexible to capture treatment effect heterogeneity and the dynamics of the treatment effect.

Note that even if the empirical results suggest that the difference in the matching and proportional hazard estimates is not statistically different from zero it does not necessarily follow that the proportionality restriction is valid. It appears possible to construct examples where proportionality is violated but the semi-parametric matching

\(^{20}\) Note that the integral with respect to time since the start of this difference gives the 'effect of treatment on the treated in the first 12 months after start'. We restrict attention to the first 12 months after start due to right censoring. Since the average time until the first programme starts is between 3 and 4 months and since the observation window covers at least 14 months (for those entering end of March 1998), censoring is unlikely to affect the results regarding the first 12 months after the start of the programme.

\(^{21}\) Note that we estimate the counterfactual survivor function in order to implement a bias corrected matching estimator as suggested in Abadie and Imbens (2002).

\(^{22}\) Note that \(D_p(\bar{l} + z) = 1 \) since \(\bar{l} \) is the date of programme entry.

\(^{23}\) Note that in performing this comparison, we restrict attention to the set of participants in programme \(p \), for whom we can find a 'nearest neighbour' according to the matching protocol.
method and the proportional hazard estimator nevertheless provide similar estimates. We nevertheless believe that it is instructive to perform this analysis because it documents how strongly the important proportionality assumption is affecting results.

Inference is based on the variability of the difference between the effect of treatment on the treated survivor curve according to matching and the effect of treatment on the treated survivor curve according to the proportional hazard model in 250 sub-samples of the original dataset. While the asymptotic distribution of the proportional hazard estimator are well understood, we are not aware of asymptotic results for propensity score matching estimators that account for variability of the first stage; see the survey by Imbens (2004). Note that bootstrapping leads to biased inference on the asymptotic variance of the matching estimator (Abadie and Imbens, 2004). We therefore use subsampling. Politis and Romano (1994) show that subsampling works if the sampling distribution of the difference in survivor curves converges weakly to the underlying population distribution and the ratio between the sub-sample size b and the sample size n converges to zero as n tends to ∞. Theoretical considerations regarding the choice of b are difficult and beyond the scope of this article. Our choice of b was mainly guided by having the sub-sample size b so large that all models can be calculated in subsamples.24

3.3. Allowing for Selection on Unobservables

The third estimator relies strongly on the assumption of proportionality but it relaxes the assumption of conditional independence. Arguably, even though the Swiss data contain subjective information on job seekers, the case worker’s assessment measure is unlikely to capture all information that is relevant for course participation and labour market exit. Moreover, the subjective evaluation of the case worker is a relatively crude measure that will not capture the specific problems that reduce employability of a particular individual.

The estimator is based on the following mixed proportional hazard specification for the transition rate from unemployment to a regular job

$$
\theta_u(t,x,D_p(t),v_u) = \lambda_u(t) \exp(x\beta_u + \delta_p(t,\tilde{t})D_p(t))v_u.
$$

The term v_u captures heterogeneity that is unobserved to the researcher and is allowed to be correlated with corresponding heterogeneity terms v_p in the transition rate from unemployment to programme p, and v_c in the process that characterises endogenous right censoring when job seekers exit unemployment for other active labour market programmes. The model for the transition rate from unemployment to programme p is

$$
\theta_p(t|x,v_p) = \lambda_p(t) \exp(x\beta_p)v_p,
$$

and the model for entry into other programmes – the endogenous right censoring process – is

$$
\theta_c(t|x,v_c) = \lambda_c(t) \exp(x\beta_c)v_c,
$$

24 Specifically, we fix $b = \text{int}(n^{9/10})$ which is $b = 13,690$. Note that $b/n \to \infty$ as required for sub-sampling to provide asymptotically valid estimates of the sampling distribution of the estimator.
and the unknown joint distribution of the heterogeneity terms is denoted by $G(v_u, v_p, v_c)$.

Abbring and Van den Berg (2003a) prove that the model consisting of (6) and (7) is identified. Because entry into other active labour market programmes is likely to be endogenous, we add the third censoring process (8) to the basic ‘timing-of-events’ model. The treatment effect in this extended MMPH model is identified. The identification proof in Abbring and Van den Berg (2003a, p. 550) has two parts. The first part notes that a model that censors the outcome process at the time of entry into programme p is a basic and well-understood competing risks model with unobserved heterogeneity. This model is identified regardless of the number of processes (Abbring and Van den Berg, 2003b). The second part of the proof shows that the treatment effect is identified. This result does not depend on the number of competing risks process in the MMPH model. It follows that the model consisting of the processes (6), (7), and (8) is identified.25

Estimating the model requires specification of the joint distribution of the heterogeneity terms $G(v_u, v_p, v_c)$. We follow the standard approach in the literature of approximating the unknown joint distribution by means of a discrete distribution using non-parametric maximum likelihood (NPMLE). We assume G to be a multivariate discrete distribution of unobserved heterogeneity. Work by Heckman and Singer (1984) suggests that discrete distributions can approximate any arbitrary distribution function G. We assume that each transition rate has two points of support – $(v_{u,a}, v_{u,b})$, $(v_{p,a}, v_{p,b})$, $(v_{c,a}, v_{c,b})$ – so the joint distribution therefore has eight points of support.

The MMPH model relaxes the assumption of conditional independence of the potential durations from programme participation status. Note, however, that this generality comes at a cost. First, it is necessary to specify a functional form in which heterogeneity enters the hazard rate.26 Second, in single spell data, we have to assume that unobserved heterogeneity is independent of the observables x. Third, as with the PH estimator, the assumption of proportionality needs to hold. If these restrictions hold, a comparison between the PH and the MMPH estimator allows investigating the extent to which the assumption of ‘selection on observables’ affects the estimated effect of ALMPs on unemployment duration.

4. Estimation Results

4.1. Accounting for Selection on Observables

We present results of the matching estimator in Figure 3. The vertical axis measures the differences between the survivor function of the treated and the counterfactual survivor function estimated from matched control observations. For basic training and for employment programmes, this difference is positive over almost the complete year after the programme start. Even one year after programme has started the difference is close to zero or even slightly positive. Taken together this means that basic training and

25 We thank Gerard van den Berg for pointing this out to us.

26 Note that the above specification is more restrictive, however, than some of the models discussed in Abbring and Van den Berg (2003a). For instance, the treatment effect is allowed to vary with respect to observables and unobservables in Abbring and Van den Berg (2003a).

© The Author(s). Journal compilation © Royal Economic Society 2008
employment programmes prolong the duration of unemployment. Both advanced training and subsidised jobs also tend to prolong unemployment initially during the first 4 months (subsidised job) to 6 months (advanced training) probably due to a locking-in effect. As time passes, however, there is a clear negative difference between the survivor function with treatment compared to the counterfactual. This difference is statistically significant 6 months after a subsidised job has started. The difference remains insignificant for advanced training throughout the first year after the programme started. This suggests that in the medium to long run advanced training and subsidised jobs can lead to a reduction in average unemployment duration.

The results presented in Figure 3 can be compared to the results in Gerfin and Lechner (2002) and Gerfin et al. (2005). In these papers, the difference in the survivor curves are also increasing at early durations reaching a maximum after 3 to 5 months after the programme started and then start to decline. In quantitative amount the effects are somewhat different, though. This may be due to two reasons. First, our sample differs from the one used in Gerfin and Lechner (2002). The latter use a stock sample, whereas our sample is an inflow sample. Second, our control group consists of individuals that are not yet treated but may be treated at a later stage of the unemployment spell (in which case the information on the remaining duration after programme start is taken as censored). In Gerfin and Lechner (2002) the control group consists only of individuals that are never treated. Note, however, that in qualitative

Fig. 3. The Effects of Active Labour Market Programme Matching Estimator

Notes. S1 is the survivor curve with treatment, S0 is the counterfactual survivor curve without treatment for the treated. Dashes lines represent 95% confidence interval based on 250 subsamples.

Source. Own calculations, based on Swiss unemployment and social security register data.
terms the dynamic patterns of the treatment effect is very similar. We observe an increase in the difference in survivor rates between treatment and control group at early remaining durations, and the opposite pattern at later durations. Moreover, also in Gerfin and Lechner (2002) subsidised jobs seem to be quite successful.

The second estimator that can be used to identify the causal effects when selection into the programmes is based on observables is the proportional hazard estimator. Table 2 shows how the four programmes affect the transition rate from unemployment to regular jobs as a function of time elapsed since the programme started. There is a significant reduction in the transition rate from unemployment to regular jobs in the first 3 months (0 to 2 months) after the programme started for all programmes except for the subsidised jobs. This ‘locking-in-effect’ is strongest for employment programmes implying a reduction of the hazard rate by 53% (=100*[exp(−0.765) − 1]). The training programmes are characterised by somewhat weaker ‘locking-in-effects’ of the order of 19% for basic training and 24% for advanced training. Exits from unemployment to regular jobs are, however, already slightly higher for the treated compared to the counterfactual situation 3 to 5 months after the programme starts for all programmes except for basic training programmes. The improvement in the hazard rate is, however, only significant for subsidised jobs. During 6 to 8 months after their start, all Swiss active labour market programmes are shown to improve the job chances of participating job seekers. Only for basic training, the positive effect is not significantly different from zero. When 9 and more months have elapsed all programmes significantly improve job chances of job seekers.

It is interesting to know whether the initial negative effect of most of the programmes is more than compensated later on, i.e. whether the net programme effect is positive.

Table 2

The Effects of Active Labour Market Programmes on Transitions to Regular Jobs

<table>
<thead>
<tr>
<th></th>
<th>Basic Training</th>
<th>Advanced Training</th>
<th>Employment Programme</th>
<th>Subsidised Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Baseline Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment effects (after start of programme)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2 months</td>
<td>−0.207 (−4.580)</td>
<td>−0.273 (−2.540)</td>
<td>−0.765 (−7.770)</td>
<td>0.014 (0.370)</td>
</tr>
<tr>
<td>3–5 months</td>
<td>−0.094 (−1.650)</td>
<td>0.144 (1.220)</td>
<td>0.021 (0.240)</td>
<td>0.170 (3.660)</td>
</tr>
<tr>
<td>6–8 months</td>
<td>0.076 (0.990)</td>
<td>0.366 (2.320)</td>
<td>0.339 (2.980)</td>
<td>0.265 (3.940)</td>
</tr>
<tr>
<td>9– months</td>
<td>0.365 (4.270)</td>
<td>0.370 (1.940)</td>
<td>0.340 (2.250)</td>
<td>0.335 (4.160)</td>
</tr>
<tr>
<td>Transition Rate to Jobs</td>
<td>0.079 (3.360)</td>
<td>0.079 (3.063)</td>
<td>0.079 (3.112)</td>
<td>0.080 (3.416)</td>
</tr>
<tr>
<td>Control Variables</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Duration Dependence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>log Likelihood</td>
<td>−23,866.1</td>
<td>−19,626.8</td>
<td>−20,258.9</td>
<td>−25,349.2</td>
</tr>
<tr>
<td>N</td>
<td>15,073</td>
<td>15,073</td>
<td>15,073</td>
<td>15,073</td>
</tr>
<tr>
<td>B. Constant Treatment Effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment effects (after start of programme)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2 months</td>
<td>−0.085 (−2.498)</td>
<td>0.010 (0.144)</td>
<td>−0.215 (−3.518)</td>
<td>0.109 (3.733)</td>
</tr>
<tr>
<td>3–5 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–8 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9– months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Variables</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Duration Dependence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>log Likelihood</td>
<td>−24,712.0</td>
<td>−20,462.1</td>
<td>−21,124.0</td>
<td>−26,186.6</td>
</tr>
<tr>
<td>N</td>
<td>15,073</td>
<td>15,073</td>
<td>15,073</td>
<td>15,073</td>
</tr>
</tbody>
</table>

Note. Coefficients represent effect on log hazard rate with asymptotic z-values in parentheses. **Source.** Own calculations, based on Swiss unemployment insurance and social security records.

© The Author(s). Journal compilation © Royal Economic Society 2008
One way to investigate the net programme effect in the context of a proportional
hazard model is to use time-invariant treatment effects (Panel B in Table 2). Pro-
portional hazard models with a time-invariant treatment effect indicate that the net
effect is significantly negative for basic training and employment programmes. The
net effect point estimate is positive but not significantly different from zero for
advanced training. Subsidised jobs are the only programme with a statistically sig-
nificantly positive effect on exits from unemployment to regular jobs. The results
concerning the subsidised jobs imply that on average these jobs increase the regular
job finding rate with 9.4%.

Figure 4 compares the results due to the matching estimator with the result due to
the proportional hazard estimator. This comparison is important. The matching esti-
mator is just identified if selection into treatment is conditionally independent of
potential outcomes. The proportional hazard estimator also requires exogenous par-
ticipation but, in addition, also imposes a proportional structure on the unemploy-
ment exit rate. A comparison of matching results and proportional hazard results thus
assesses the robustness of our findings to the imposing proportionality of the hazard
rate. Figure 4 reports the difference in the causal effect according to the proportional
hazard estimator and the causal effect according to the matching estimator. A positive
number thus indicates that the proportional hazard estimator is more pessimistic

--

Fig. 4. Comparing Conditional Independence PH Estimator vs. Matching Estimator (Match)
Notes. PH – Match is the difference in the effect (S1 – S0) according to the PH estimator
and the matching estimator. Dashes lines represent 95% confidence interval based on 250
sub-samples.
Source. Own calculations, based on Swiss unemployment and social security register data.
regarding the effects of Swiss active labour market programmes on unemployment duration. Figure 4 also reports the 95% confidence interval on the difference in causal effects estimated by subsampling (see Section 4). Figure 4 shows that the results for the proportional hazard estimator are basically identical to the results for the matching estimator in a statistical sense. There is no statistically significant divergence of results for any of the four programmes considered. Figure 4 thus shows that if conditional independence is valid, the results are not sensitive to imposing a proportional structure on the hazard rate.27

4.2. Allowing for Unobserved Heterogeneity

We study the treatment effects of the programmes in more detail by introducing unobserved heterogeneity into the analysis and estimate MMPH models. Table 3 reports the estimated treatment effects.

As shown, in each of the estimated models unobserved heterogeneity is identified although the number of masspoints depends on the programme investigated. For instance, there are four masspoints for basic training. Conditional on observed characteristics and elapsed duration there is a group of unemployed individuals consisting of 93.0% of the sample that have a high exit rate to a regular job, a high exit rate to a course and a high exit rate to other programmes – the censoring rate. The other groups of 3.3%, 1.8% and 1.9% have different combinations of transition rates but the sheer size of the first group implies that there is a positive correlation between the unobserved components of the job finding rate and the transition rate to courses. There could be several reasons for such a positive correlation. It could result from the incentives of caseworkers. In order to have a favourable placement record, caseworkers may send those unemployed with the highest chances of getting a regular job into basic training. It could also be the case that individuals with the better chances to get a regular job are better motivated to do a course for some intermediate period.

The number of mass points identified ranges from three in the model with advanced training to six in the model with employment programmes while in the case of the model with subsidised jobs three mass points are identified. For each of the models there is a predominant positive correlation between the exit rate to regular jobs and the exit rate to the particular programme. If these positive correlations are not accounted for, the treatment effects will be overestimated. Indeed, as shown in Table 3, once we allow for unobserved heterogeneity the treatment effects of all programmes are either negative or not statistically different from zero.

Panel B in Table 3 reports the net effect of these programmes on exits from unemployment to regular jobs. This net effect is significantly negative for basic training, advanced training, and employment programmes. The net effect is not statistically different from zero for subsidised jobs.

27 Note that this does not imply that the proportional structure is correct. It merely implies that the proportional structure does not bias results in a statistically significant way. Moreover, Figure 4 also does not allow investigating whether assuming proportionality for observed and unobserved characteristics biases results.
To investigate the robustness of our results we perform a variety of sensitivity analyses, one of which is shown in Table 4.28 Recall that the main result for the jobs was obtained in a trivariate MPH model that allows for a shift in the baseline hazard rate after 3, 6, 9, and 12 months respectively. Table 4 shows that the relevant parameter estimates of trivariate MPH models that allow for a shift in the baseline hazard rate after every month, i.e. after 1, 2,...,17 months. Results for the model with a flexible speci-

Table 3
Effects of Active Labour Market Programmes on Transitions to Regular Jobs MMPH Model That Allows for Endogenous Censoring

<table>
<thead>
<tr>
<th>A. Baseline Model</th>
<th>Basic Training</th>
<th>Advanced Training</th>
<th>Employment Programme</th>
<th>Subsidised Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment effects (after start of programme)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2 months</td>
<td>−0.306 (−6.060)</td>
<td>−0.392 (−3.077)</td>
<td>−0.912 (−7.412)</td>
<td>−0.074 (−1.771)</td>
</tr>
<tr>
<td>3–5 months</td>
<td>−0.279 (−4.391)</td>
<td>−0.050 (−0.381)</td>
<td>−0.229 (−1.887)</td>
<td>0.035 (0.661)</td>
</tr>
<tr>
<td>6–8 months</td>
<td>−0.233 (−2.696)</td>
<td>0.064 (0.356)</td>
<td>−0.035 (−0.225)</td>
<td>0.053 (0.688)</td>
</tr>
<tr>
<td>9– months</td>
<td>−0.060 (−0.572)</td>
<td>−0.028 (−0.122)</td>
<td>−0.154 (−0.750)</td>
<td>0.063 (0.624)</td>
</tr>
<tr>
<td>Transition Rate to Jobs</td>
<td>vua = 0.085 (3.032)</td>
<td>0.084 (2.795)</td>
<td>0.084 (2.842)</td>
<td>0.086 (3.104)</td>
</tr>
<tr>
<td></td>
<td>vub/vua = 0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Transition Rate to Programme</td>
<td>vpa = 0.039 (1.985)</td>
<td>0.005 (0.810)</td>
<td>0.023 (1.012)</td>
<td>0.050 (2.077)</td>
</tr>
<tr>
<td></td>
<td>vpb/vpa = 0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Censoring Rate</td>
<td>vca = 0.072 (2.574)</td>
<td>0.110 (3.075)</td>
<td>0.105 (2.969)</td>
<td>0.059 (2.456)</td>
</tr>
<tr>
<td></td>
<td>vcb/vca = 0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Prob(vu = vua, vp = vpa, vc = vca)</td>
<td>0.930 (12.776)</td>
<td>0.931 (26.606)</td>
<td>0.363 (3.175)</td>
<td>0.926 (14.182)</td>
</tr>
<tr>
<td></td>
<td>Prob(vu = vua, vp = vpb, vc = vcb) = 0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Prob(vu = vua, vp = vpb, vc = vcb) = 0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Prob(vu = vub, vp = vpa, vc = vca) = 0.018 (0.171)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Prob(vu = vub, vp = vpb, vc = vcb) = 0.019</td>
<td>0.025</td>
<td>0.022</td>
<td>0.019</td>
</tr>
<tr>
<td>Control Variables</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Duration Dependence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>log Likelihood</td>
<td>−51,101.8</td>
<td>−44,022.0</td>
<td>−45,562.2</td>
<td>−52,629.9</td>
</tr>
<tr>
<td>N</td>
<td>15,073</td>
<td>15,073</td>
<td>15,073</td>
<td>15,073</td>
</tr>
<tr>
<td>B. Constant Treatment Effect</td>
<td>−0.285 (−6.759)</td>
<td>−0.203 (−2.353)</td>
<td>−0.557 (−6.890)</td>
<td>−0.036 (−0.975)</td>
</tr>
<tr>
<td>Control Variables</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Duration Dependence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>log Likelihood</td>
<td>−51,104.6</td>
<td>−44,025.8</td>
<td>−45,583.4</td>
<td>−52,632.4</td>
</tr>
<tr>
<td>N</td>
<td>15,073</td>
<td>15,073</td>
<td>15,073</td>
<td>15,073</td>
</tr>
</tbody>
</table>

Note. Coefficients represent effect on log hazard rate with asymptotic z-values in parentheses.
Source. Own calculations, based on Swiss unemployment insurance and social security records.

To investigate the robustness of our results we perform a variety of sensitivity analyses, one of which is shown in Table 4.28 Recall that the main result for the jobs was obtained in a trivariate MPH model that allows for a shift in the baseline hazard rate after 3, 6, 9, and 12 months respectively. Table 4 shows that the relevant parameter estimates of trivariate MPH models that allow for a shift in the baseline hazard rate after every month, i.e. after 1, 2,...,17 months. Results for the model with a flexible speci-

28 In addition to this we estimated MPH models for sub-programmes. We did separate estimates for job courses, language courses, computer courses, further vocational training, other courses, public employment programs, and private employment programs. This did not change our main conclusions. As an alternative to the discrete distribution of unobserved heterogeneity we tried using a multivariate log normal distribution of unobserved heterogeneity. However, we were unable to find any improvement in the log likelihood compared to the model that does not allow for unobserved heterogeneity. Apparently the multivariate log normal specification is too restrictive.
fication of the baseline hazard are similar to the baseline results. Changing the specification of the baseline hazard does not affect the estimates of the underlying heterogeneity distribution. Moreover, the flexible baseline hazard model also indicates that the treatment effects are negative or not statistically significant from zero.

Table 5 allows for a time-of-entry effect in the causal effect of training programmes.29 From a statistical point of view it may be that unobserved heterogeneity is capturing functional form misspecification in the baseline model. Suppose that programme effects vary with time of entry in the sense that the causal effect of a programme is worse

| Table 4 |
| Sensitivity Analysis: Allowing for Monthly Shifts in the Baseline Hazards MMPH Model that Allows for Endogenous Censoring |
Treatment Effect	Basic Training	Advanced Training	Employment Programme	Subsidised Jobs
0–2 months	-0.454 (9.015)	-0.502 (3.858)	-1.034 (8.930)	-0.209 (5.009)
3–5 months	-0.329 (5.101)	-0.081 (0.605)	-0.323 (2.940)	-0.004 (0.077)
6–8 months	-0.294 (3.314)	0.008 (0.043)	-0.163 (1.167)	0.004 (0.052)
9– months	-0.116 (1.060)	-0.105 (0.422)	-0.326 (1.755)	-0.043 (0.405)

Control Variables: Yes Yes Yes Yes
Duration Dependence: Yes Yes Yes Yes
Unobserved Heterogeneity: Yes Yes Yes Yes
log Likelihood: -50,127.5 -43,176.5 -44,691.8 -51,595.8
N: 15,073 15,073 15,073 15,073

Note. Coefficients represent effect on log hazard rate with asymptotic z-values in parentheses.
Source. Own calculations, based on Swiss unemployment insurance and social security records.

| Table 5 |
| Sensitivity Analysis: Allowing for Programme Start Time Effects MMPH Model that Allows for Endogenous Censoring |
Treatment effects (after start of programme)	Basic Training	Advanced Training	Employment Programme	Subsidised Jobs
0–2 months	-0.157 (2.272)	-0.307 (1.850)	-0.754 (4.856)	-0.001 (0.018)
3–5 months	-0.153 (1.994)	0.024 (0.136)	-0.098 (0.688)	0.089 (1.529)
6–8 months	-0.136 (1.472)	0.128 (0.616)	0.067 (0.403)	0.087 (1.199)
9– months	-0.024 (0.226)	0.024 (0.101)	-0.116 (0.564)	0.059 (0.585)
Treatment effect (programme start time, months)	-0.057 (3.090)	-0.026 (0.647)	-0.050 (1.842)	-0.032 (2.209)

Control Variables: Yes Yes Yes Yes
Duration Dependence: Yes Yes Yes Yes
Unobserved Heterogeneity: Yes Yes Yes Yes
log Likelihood: -51,096.8 -44,022.0 -45,560.3 -52,627.4
N: 15,073 15,073 15,073 15,073

Note. Coefficients represent effect on log hazard rate with asymptotic z-values in parentheses.
Source. Own calculations, based on Swiss unemployment insurance and social security records.

29 We are grateful to a referee for raising this issue.

© The Author(s). Journal compilation © Royal Economic Society 2008
when individuals enter the programme late in the unemployment spell. Neglecting such a time-of-entry effect then might lead to wrongly identifying unobserved heterogeneity because there is a group of job seekers (entering late) with low exit rates and low programme entry rates and another group of job seekers (entering early) with a high exit rate and a high programme entry rate. It is therefore important to assess the sensitivity of our results to allowing for time-of-entry effects. Table 5 shows that time-of-entry effects matter for all programmes except for the advanced training courses. The results indicate that programmes work better when job seekers enter early rather than late. For instance, entering a programme one month later is shown to decrease the effect of basic training programme by 5.5 percentage points \((=100[\exp (-0.057) - 1]) \). Nevertheless, the main conclusion from the baseline model remains unaffected. All Swiss active labour market programmes either decrease the exits from unemployment to regular jobs or their effects are not significantly different from zero because there appears to be genuine unobserved heterogeneity in exits to regular jobs, entry into the programme that is being studied and entry into other programmes (endogenous right-censoring).

5. Conclusions

This article discusses the effect of ALMPs on the duration of unemployment in a dynamic evaluation context. In the empirical analysis we discuss in detail to what extent the functional form assumption of the proportional hazard model and the assumption of conditional independence may affect the evaluation results.

The empirical results of our article come in three parts. First, we use a matching method presenting the treatment effect results in the form of graphs. Though the setup of the matching estimator is different from the one in previous studies on the effectiveness of Swiss labour market policies the results are very much the same. Second, we use a proportional hazard model with time-varying treatment effects. Both approaches lead to the same conclusion that the programme of subsidised jobs is the most promising programme in terms of their positive effects on the transition rate from unemployment to regular jobs. Third, we estimate a bivariate MPH-model where regular jobs and ALMPs are competing destinations. In the context of this model the treatment effect can be estimated accounting for selectivity both due to observed and due to unobserved characteristics. We conclude that after allowing for selectivity even the treatment effect of subsidised jobs fades away. The reason is that the unobserved characteristics in the job finding rate and the programme entrance rate are positively correlated.

From a research point of view our main result is that the matching approach and the timing-of-events approach generate different treatment effects once we allow unobserved heterogeneity to influence the inflow into ALMPs. It is difficult to compare both methods directly as neither of them has a clear economic interpretation and the identifying assumptions are not nested. The method of matching is based on the conditional independence assumption, i.e. the assumption that potential outcomes and selection into programmes are independent, conditional on the observables. If this assumption is valid, the method of matching is to be preferred to other methods since it is just-identified. In the timing-of-events approach it is possible to relax this
assumption and allow unobserved heterogeneity to affect the selection process. However this comes at a cost since it requires assumptions with respect to functional form and independence between unobservables and observables.

From a policy point of view our main result is that the introduction of unobserved heterogeneity substantially affects the estimated treatment effect. This implies that further and more detailed information regarding how job seekers are selected into programmes is crucial before policy recommendations can be made.

References

Fredriksson, P. and Johansson, P. (2003). 'Program evaluation and random program starts', mimeo, IFAU.

