EHzürich

A Panel Data Approach for Spatial and Network Selection Models

 $\left(r_{tii}^{A}\right)$

Sophia Ding¹, Peter H. Egger² ¹ETH Zurich; ETH Zurich, CEPR, CESifo

1 Introduction

Motivation:

- Common features of economic data: spatial/network pattern (crosssectional interdependence), non-randomly missing observations (sample selection/treatment selection), panel-data
- No model exists to deal with all three simultaneously!
- Neglecting selection and/or spatial/network correlation results in biased coefficient estimates!

	Cross Section	Panel
Non-Spatial/ Non-Network	Heckman (1976, 1979)	Wooldridge (1995)
Spatial/ Network	McMillen (1995), Flores-Lagunes, Schnier (2012), Doğan,Taşpinar (2017)	This paper!

2 Econometric Model

Selection equation

• Fixed effects (Mundlak 1978, Wooldridge 1995)

• Panel SAR process (Kapoor, Kelejian, and Prucha, 2007)

$$e_{ti}^{A} = \rho^{A} \sum_{j=1}^{N} w_{tij} e_{tj}^{A} + \bar{x}_{i}^{A'} \delta^{A} + \xi_{ti}^{A}$$

$$e_{ti}^{A} = \sum_{j=1}^{N} r_{tij}^{A} \bar{x}_{j}^{A'} \delta^{A} + \sum_{j=1}^{N} r_{tij}^{A} \xi_{tj}^{A}, \quad \text{using} \quad R_{t}^{A} = (I_{N} - \rho^{A} W_{t})^{-1} =$$

$$= u_{ti}^{A}$$

Selection equation restated: $y_{ti}^{A*} = x_{ti}^{A'}\beta^A + \sum_{j=1}^{N} r_{tij}^A \bar{x}_j^{A'}\delta^A + u_{ti}^A$

Outcome equation

- Fixed effects + panel SAR process
- Correct for selection bias by making use of joint normality assumption of spatial/network error components Spatial/Network Sample Selection

$$E[y^{B}_{ti}|y^{A}_{ti} = 1, x^{A0}, x^{B}] = x^{B'}_{ti}\beta^{B} + \sum_{j=1}^{N} r^{B}_{tij}\bar{x}^{B'}_{j}\delta^{B} + E[u^{B}_{ti}|y^{A}_{ti} = 1, x^{A0}, x^{B}]$$

Spatial/Network Treatment Selection

$$E[y_{ti}^{B}|y_{ti}^{A}, x^{A0}, x^{B}] = \alpha y_{ti}^{A} + x_{ti}^{B'}\beta^{B} + \sum_{j=1}^{N} r_{tij}^{B}\bar{x}_{j}^{B'}\delta^{B} + E[u_{ti}^{B}|y_{ti}^{A}, x^{A0}, x^{B}]$$

 Spatially/network adjusted (generalized) Inverse Mills' Ratio (=Correction Function):

Example: Export-Wage Premium

- Empirical and theoretical evidence that exporters pay higher wage/worker than non-exporting firms (treatment effect of exporter status)
- Exporting decision as well as wage/worker depends on latent export profitability → treatment ≠ random
- Wages may have a **spatial pattern** due to local labor markets, commuting, etc. → Shocks to wages are **correlated across firms**!
- Profitability of exporting may have network pattern due to input/output linkages or industry affiliation → Shocks to profitability are correlated across firms!

This paper:

Develop **two-step approach** towards selection on unobservables akin to Heckman (1976, 1979) and Wooldridge (1995) but for **panel-data** with **spatial or network interdependencies** in both the selection and the outcome equation.

4 Monte Carlo Evidence (Results)

Case 1: Medium Spatial/Network Correlation

			$\tilde{\beta}_1^A$	$ ilde{eta}_2^A$	$\tilde{\delta}_1^A$	$\tilde{\delta}_2^A$	ρ^A	β_1^B	δ_1^B	τ	ρ^B
		True	0.707	0.707	0.707	0.707	0.5	1	3	0.707	0.5
N=250	SNSS	Mean	0.732	0.735	0.736	0.734	0.449	0.999	3.011	0.699	0.487
		Bias	0.025	0.028	0.029	0.027	-0.051	-0.001	0.011	-0.009	-0.013
		RMSE	0.091	0.084	0.198	0.185	0.131	0.095	0.192	0.173	0.109
	WPS	Mean	0.653	0.670	0.681	0.708		0.964	3.038	0.679	
Ignore spat	tial/	Bias	-0.054	-0.037	-0.026	0.001		-0.036	0.038	-0.028	
network corre	elation	RMSE	0.096	0.081	0.140	0.134		0.102	0.192	0.189	
	NLLS	Mean						0.987	2.988		0.421
Ignore sample selection		Bias						-0.013	-0.012		-0.079
		RMSE						0.095	0.189		0.149
N = 500	SNSS	Mean	0.716	0.719	0.721	0.711	0.482	0.999	3.001	0.702	0.497
		Bias	0.009	0.012	0.014	0.004	-0.018	-0.001	0.001	-0.005	-0.003
		RMSE	0.055	0.060	0.134	0.140	0.074	0.061	0.141	0.127	0.061
	WPS	Mean	0.660	0.657	0.686	0.671		0.982	3.222	0.808	
Ignore spat	tial/	Bias	-0.047	-0.050	-0.022	-0.036		-0.018	0.222	0.101	
network corre	elation	RMSE	0.069	0.074	0.098	0.109		0.064	0.264	0.170	
	NLLS	Mean						0.990	2.987		0.508
Ignore sam	nple	Bias						-0.010	-0.013		0.008
selection	selection							0.061	0.141		0.064

Case 2: No Spatial/Network Correlation

			$\tilde{\beta}_1^A$	$\tilde{\beta}_2^A$	$\tilde{\delta}_1^A$	$\tilde{\delta}_2^A$	ρ^A	α	β_1^B	δ_1^B	τ	ρ^B
		True	0.707	0.707	0.707	0.707	0	1	1	3	0.707	0
N=250 SNTS	SNTS	Mean	0.739	0.740	0.743	0.744	-0.114	1.005	1.000	3.006	0.697	-0.009
		Bias	0.032	0.033	0.036	0.037	-0.114	0.005	0.000	0.006	-0.010	-0.009
		RMSE	0.092	0.085	0.193	0.177	0.245	0.112	0.051	0.132	0.106	0.137
	WPS	Mean	0.715	0.716	0.719	0.718		1.000	0.999	3.009	0.706	
Ignore spa	atial/	Bias	0.008	0.009	0.011	0.011		0.000	-0.001	0.009	-0.001	
etwork cor	relation	RMSE	0.082	0.075	0.143	0.140		0.112	0.050	0.130	0.106	
6	NLLS	Mean						1.350	0.942	2.973		0.067
Ignore sa	mple	Bias						0.350	-0.058	-0.027		0.06
selection	on	RMSE						0.362	0.076	0.130		0.148
N=500 SNT	SNTS	Mean	0.721	0.723	0.730	0.718	-0.066	1.003	0.999	3.002	0.701	-0.00
		Bias	0.014	0.016	0.023	0.011	-0.066	0.003	-0.001	0.002	-0.006	-0.00
		DALOT	0.0	0.000	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000

$$E[u_{ti}^{B}|y_{ti}^{A} = 1, x^{A0}, x^{B}] = \frac{\sigma_{\xi^{BA}} \sum_{j=1}^{N} r_{tij}^{B} r_{tij}^{A} \phi(z_{ti})}{\sqrt{\sigma_{\xi^{A}}^{2} \sum_{j}^{N} (r_{tij}^{A})^{2}} \Phi(z_{ti})} = \tau \psi_{ti} \lambda_{ti}$$

$$E[u_{ti}^{B}|y_{ti}^{A}, x^{A0}, x^{B}] = \frac{\sigma_{\xi^{BA}} \sum_{j=1}^{N} r_{tij}^{B} r_{tij}^{A}}{\sqrt{\sigma_{\xi^{A}}^{2} \sum_{j}^{N} (r_{tij}^{A})^{2}}} \phi(z_{ti}) \frac{y_{ti}^{A} - \Phi(z_{ti})}{\Phi(z_{ti}) [1 - \Phi(z_{ti})]} = \tau \psi_{ti} \lambda_{ti}^{g}$$

RIVISE	0.055	0.059	0.155	0.155	0.170	0.000	0.055	0.099	0.076	0.007
Mean	0.709	0.711	0.714	0.706		1.001	0.999	3.002	0.705	
Bias	0.002	0.004	0.007	-0.001		0.001	-0.001	0.002	-0.002	
RMSE	0.052	0.056	0.102	0.102		0.086	0.033	0.096	0.076	
Mean						1.358	0.942	2.935		-0.016
Bias						0.358	-0.058	-0.065		-0.016
RMSE						0.365	0.066	0.114		0.093
	Mean Bias RMSE Mean Bias	Mean 0.709 Bias 0.002 RMSE 0.052 Mean Bias	Mean 0.709 0.711 Bias 0.002 0.004 RMSE 0.052 0.056 Mean Bias Bias	Mean 0.709 0.711 0.714 Bias 0.002 0.004 0.007 RMSE 0.052 0.056 0.102 Mean Bias Bias Bias	Mean 0.709 0.711 0.714 0.706 Bias 0.002 0.004 0.007 -0.001 RMSE 0.052 0.056 0.102 0.102 Mean Bias 0.002 0.005 0.102 0.102	Mean 0.709 0.711 0.714 0.706 Bias 0.002 0.004 0.007 -0.001 RMSE 0.052 0.056 0.102 0.102 Mean Bias 0.001 0.002 0.002	Mean 0.709 0.711 0.714 0.706 1.001 Bias 0.002 0.004 0.007 -0.001 0.001 RMSE 0.052 0.056 0.102 0.102 0.086 Mean 1.358 Bias 0.358	Mean 0.709 0.711 0.714 0.706 1.001 0.999 Bias 0.002 0.004 0.007 -0.001 0.001 -0.001 RMSE 0.052 0.056 0.102 0.102 0.086 0.033 Mean 1.358 0.942 Bias 0.358 -0.058	Mean 0.709 0.711 0.714 0.706 1.001 0.999 3.002 Bias 0.002 0.004 0.007 -0.001 0.001 -0.001 0.002 RMSE 0.052 0.056 0.102 0.102 0.086 0.033 0.096 Mean 1.358 0.942 2.935 Bias 0.358 -0.055 -0.065	Mean 0.709 0.711 0.714 0.706 1.001 0.999 3.002 0.705 Bias 0.002 0.004 0.007 -0.001 0.001 -0.001 0.002 -0.002 RMSE 0.052 0.056 0.102 0.102 0.086 0.033 0.096 0.076 Mean 1.358 0.942 2.935 Bias 0.358 -0.058 -0.065

3 Estimation Strategy (Outline)

Step 1: Estimate selection equation using **Pooled Bayesian Spatial/ Network Error Probit** model to obtain $\hat{\theta}_A = \{\hat{\beta}^A, \hat{\delta}^B, \hat{\rho}^A\}^{I}$ where $\tilde{\beta}^A = \frac{\beta^A}{\sigma_{\epsilon A}}$, $\tilde{\delta}^A = \frac{\delta^A}{\sigma_{\epsilon A}}$

Step 2: Use estimated parameters to construct spatially/network adjusted (generalized) Inverse Mills' Ratio.

Step 3: Add estimated spatially/network adjusted (generalized) Inverse Mills' Ratio in outcome equation and estimate using **Pooled Non-linear Least Squares** to obtain $\hat{\theta^B} = {\hat{\beta}^B, \hat{\delta}^B, \hat{\tau}, \hat{\rho}^B}$, or $\hat{\theta^B} = {\hat{\alpha}, \hat{\beta}^B, \hat{\delta}^B, \hat{\tau}, \hat{\rho}^B}$.

References

Doğan, O., Taşpinar, S., 2017. Bayesian Inference in Spatial Sample Selection Models. Oxford Bulleting of Economics and Statistics 80, 90-121.

Flores-Lagunes, A., Schnier, K.E., 2012. Estimation of Sample Selection Models with Spatial Dependence. Journal of Applied Econometrics 27, 173-204.

Heckman, J., 1976. The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models. The Annals of Economic and Social Measurement 5, 475-492.

Heckman, J., 1979. Sample Selection Bias as a Specification Error. Econometrica 47 (1), 153-61.

Kapoor, M, Kelejian, H.H. Prucha, I.R., 2007. Panel Data Models with Spatially Correlated Error Components. Journal of Econometrics 140, 97-130.

Mundlak, Y., 1978. On the pooling of time series and cross section data. Econometrica 46, 69-85.

McMillen, D.P., 1995. Selection Models in Spatial Econometric Models. Journal of Regional Science 35 (3), 417-436. Wooldridge, J., 1995. Selection corrections for panel data models under conditional mean independence assumptions. Journal of Econometrics 68 (1), 115-132.