B Supplementary Material for “Climate Change, Directed
Innovation, and Energy Transition: The Long-run Con-

sequences of the Shale Gas Revolution”

B.1 Additional Proofs for the Baseline Model

B.1.1 Proofs of Propositions A.1 and A.2

To prove these results, we start by defining the function I (s) = (¢ —1)(1 —s) TV sl —
enn—B and characterize its zeros in the following two Lemmas.

B
Lemma B.1 Assume that € > 2'™%. Over the interval ((%B)l_w , 1), the function I (s) has:

-r 1B 1.
1. no zero lfT <z

2. one zero with % < %B < 211_#, and this zero satisfies I’ (s*) < 0;

1\Y
3. no zero i 137—B> st and i) € > 2 or i) Z’—B> %(1+(£—1)¢) ;
1\¥ . .
4. two zerosilel_w < %B < %(1 + (e — 1)¢) and € < 2, the first zero satisfies I’ (si‘) >0

) 1 ¥
and the second zero satisfies I (52) <O0.

Proof. Differentiating I (s), we obtain
I'(s)=(s"=(e—1DA-5)")A—9), (B-1)
") ==y (s ¥ T+(-1DA-s)Y")Q—y)<o.

Therefore the function I is concave in s and always decreasing in s for s large enough
(since I’ (1) = —o0).

Further, at the boundaries of the interval, one gets:

()" )=en | (-(2)7) )

1

and we get that I ((Z—B)l_w) > 0 if and only if %B < 507. In addition I (1) =1— 82}—3,

1

and we obtain that I (1) > 0 if and only if %B < 1. Since £ > 2'7Y, we get that

_1
IM)>0=>1 (%B)HP) > 0. As I is concave, it has no zeros for ¢ < 1/2'"%. This

establishes part 1 of Lemma B.1.



a1
Assume now that 1 < ”B < 57, thenT ((%B)W) > 0but I (1) <0, since I is concave,

_1
then I has only 1 zero over the interval ((%B)Hp , 1) and this zero features I’ (s*) < 0.

This establishes part 2 of Lemma B.1.

_1
Consider now the case where %B > 211,¢, sothatI (1)< Oand I ((%B)l_w) < 0. Then

either I has 2 zeros (one for I increasing and one for I decreasing) or I has no zero. First,

o a
note that I is decreasing on ((%’3) - 1) if I’ ((%B) 1—¢) < 0. In that case, we have

((_)—) . o@(gﬁ_@_l)(l_(%ﬁ)‘”’”<o

P—1

= 7;73 (1+(8—1)¢)

-1

Y 1\y—1
If € > 2, then zl—w > (1+(€—1)¢) so that ”B > 21 5 = 7’7’3 > (1+(g—1)w)

Then, I has no zero over the interval ((717—3) v s 1). This establishes part 3i) of Lemma B.1.

1\Y
We now consider the case where ¢ < 2, and %B < (1 +(e— 1)31) , then I has a
maximum, which is reached at s =5, where 5 solves I’ (s) = 0. Using (B-1), we get

s= [1 +(e— 1)%]_1 and

1(@:(1+(8—1)%)¢—g%.

Therefore,

1(5)>0e 18 o
n

(1+(£— )w)
We note that when ¢ < 2, % (1 +(e— 1)%)1/} < (1 +(e— 1)$)¢_1, o) thatZ]—B < %(1 +(e— 1)%)11)

Y—1

immediately implies %B < (1 +(e— 1)$) . Therefore, if I (s) > 0, then I will have
two zeros, the first one when I is increasing and the second one when I is decreasing.
This establishes part 4) of Lemma B.1. Finally, if instead, I (“) < 0, then I (s) will have

P
no zeros, establishing part 3ii) of Lemma B.1. Note that 21 5y < (1 +(e— 1)1#) for all

¢ with strict inequality unless € = 2, therefore the interval (21 =i (1 + (e — 1)“#) )
non-empty for € #2. =
We establish a similar Lemma for the case ¢ < 217¥.

Lemma B.2 Assume that € < 2'V. Over the interval ((%B) =, 1), the function I (s) has:

I. no geros if 2

=gy

—w < ”B <z L and this zero satisfies I' (s*) > 0;
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1\Y . s
3. two zeros if% < %B < %(1 +(e— 1)¢) , the first zero satisfies I/(ST) > 0 and the
second zero satisfies I’ (s;) <O0.

Y 1 1\,
4. no zero i FB>E(1+(€—1)‘/) ;

1
Proof. The proof is similar to the previous case. With ¢ < 217% T ((7;—3) lw) >0=>

I(1) > 0. Since I is concave, it has no zeros for %B < zll_w, which establishes part 1.

1
Assume now that 21%1# < %B <1 thenI ((%B)l_w) < 0butI(1)> 0, since I is concave,
1

then I has only 1 zero over the interval ((%B)m , 1) and this zero features I’ (s*) > 0.

This establishes part 2.

Consider now the case where 2 > % As in the previous proof, I(1) < 0 and

n

_1
I ((%ﬂ)w) < 0, so I has either 2 zeros (one for I increasing and one for I decreasing)

e -
or I no zero. I is decreasing on ((’L—B)l_w , 1) if I’ ((%B)HP) < 0, which is equivalent

1N\Y . . ~ 1771
to %B > (1 + (e — l)i) . Otherwise, I has a maximum s = [1 +(e— 1)11P:| and we
1\Y .
still get that I(s) > 0 < "n—B < %(1 +(e—1)¢) . With ¢ < 217Y, then we always
1\¥ 1\y—1 .
have that %(1 +(e— 1)¢) < (1 +(e— 1)11') . We can then consider two cases:
1\¥ 1Y
1< L o< %(1+(8—1)3ﬁ) and 2 > %(14—(8—1)&’) . In the former case, I has 2
zeros, in the latter I has no zero (since either I decreases or its maximum is negative).
This establishes parts 3) and 4). =
We now establish Propositions A.1 and A.2. To do that, we derive the respective

conditions under which each type of asymptotic equilibrium exists. Using (20), the
allocation of innovation follows:

Y sAa—l
Sgt Kegfgt
(Si) - 1 1 1 _f ) 1 1 1\ ¢ (B-2)
€
O - B Ct )
Corner Asymptotic Steady State with Clean Innovation. In an asymptotic steady
state where Sge = 1, the (B-2) grows without bonds, which in turn confirms the corner
allocation for innovation. Therefore such a steady state is always possible and occurs

whenever A, is sufficiently large relative to the fossil-fuel technologies.

Corner Asymptotic Steady State with Fossil-Fuel Innovation. Alternatively, consider a
steady state where spe— 1. Then (B-2) implies that:

-1
(sﬁ )w 0 A
St A%Kngt + thiBft '
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The LHS tends toward o and the RHS tends toward o only if B}, /A., grows without
bound (knowing that B, /A, behaves similarly). This occurs if eng > 7. Therefore, we
get that for n;/n < 1/¢, an asymptotic steady state where all innovation occurs in the
fossil-fuel technologies cannot exist. In contrast, such an asymptotic steady state occurs
for ng/m > 1/¢ provided that A is sufficiently small.

Interior Asymptotic Steady State. We now analyze whether an interior asymptotic
steady state is possible. There are three possible cases: A,, grows faster, at the same rate
or less fast than B,,.

Assume first that A,, grows less fast than B, (that is, 1 (sj’tt) < mp Where s%_ is

the limit of s¢¢). Then (B-2) implies that

s* Y KEAE™ 1
8 g gt
o ~ a1, . e—1,.e" (B-3)
s} Al KEHAL Ky

ft

The RHS can only converge asymptotically to a constant if A,, and A, grow at the
same rate in the long-run. This is possible only if sp =5, =1 /2, which combined with

. 1=y . _ o .
condition 7 (s}k t) < 1, requires that nz/n > 2¥71. In addition, if Ag(i—1) is shocked
in such a way that the RHS in (B-3) increases, then St should increase as well: so that
the interior asymptotic state can only exist in a knife-edge case and it is unstable.

The case where A., and B,, grow at the same rate follows the same logic since in that

case (B-3) still holds up to a constant. We must then have sp=1 /2 and 1 (sj; t) v Mg,
which can only occur for n; = n2¥7!. Again this interior steady state will always be
unstable.

Consider now the case where A, grows faster than B,, (that is n (s;‘; t)l_w > ng).

Then (B-2) implies that
* P s e—1
‘E ~ gAgt
Sjét ngBgt _KngEt’

which is possible only if the RHS tends toward a constant. This implies that s

+, must also

satisfy I (s t t) = emy/m. An interior steady state will therefore exist if I ( St t) =0 has a
1

solution in the interval ((%B)m , 1). That steady state will be unstable if I’ (sji I) <0
since then a shock leading to a temporarily higher s, is associated with permanently
higher s;,. The steady state will be stable if I’ ( ) > 0.

Lemma B.1 immediately characterizes the conditions under which this case occurs
for ¢ > 2"¥ and we get that:

1) There is no interior asymptotic steady state if "B <z 2

2) There is one unstable interior asymptotic steady state 1f < and i) e>2orii)
e<2and 2 ¢ (5L ¢,€(1+(e—1)¢))

3) There are two unstable interior asymptotic steady states and one stable interior
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asymptotic steady state if 1 < Beg<2and e (21_1,,, - (1 +(e—1)¥ ))

Similarly, Lemma B.2 charactenzes the condltlons under which I (s? t) =0 has a

_1
solution in ((%B)Hp , 1) for ¢ < 21 and we get that:

1) There is no interior asymptotic steady state if 717—3 < 5175

2) There is one unstable interior asymptotic steady state if 211,1# < %B < % and a stable

interior asymptotic steady state;
1\Y
3) There are two unstable interior asymptotic steady states if% < %B < % (1 +(e—1)v )
and a stable asymptotic steady state;
. . . . :r NB 1 1N\
4) There is one unstable interior asymptotic steady state if s (1 +(e— 1)¢) .

Conclusion. Bringing together the three cases establishes Propositions A.1 and A.2.

B.1.2 Complement to Proposition 5

the
s sufficiently large that ¢; is

In this Appendix, we complement Proposition 5 by showing that when A,
Y

gO’

natural gas boom decreases welfare provided that
small and that ¢, is large as mentioned in the text.
Proof. In that case, the economy is on a green path whether the boom occurred or
not. From Proposition 4, however, we get that emissions are lower without the boom for
t large enough. Therefore, if the stock of carbon depends mostly on current emissions
(which is the case when ¢, is sufficiently small and ¢ is sufficiently large enough), then
S, is lower without the boom for t large enough (though in both cases, S, tends toward a
constant). In addition, since innovation is reallocated away from clean technologies, A,,
is lower with the boom than without. Therefore, for t sufficiently large, we obtain that
Cg, is also lower with the boom than without. As a result, for t large enough output is
lower with the boom than without.
For T large but finite, Y, grows approximately at the rate y" — 1. Using (A-4), we can
then write the change in welfare following (a small) boom as:

dU
TZ‘E 1 dy)"’ i Y (Ynu—ﬂ))(f—” VAICI1d In Gy, rds

: + —¢ds, |.
SA+p) 1-9  ZH@+p)' \1+p (1— )AL 4 AR

As argued above, for T large dS, > 0. Furthermore, d InCy, ~# dInA,, =>,"_ n(1— P)s,dsg,

where all ds,, <0, so that dInCg, is negative and bounded away from o. Therefore,
Y

the second sum becomes arbitrarily large if is sufficiently close to 1. The latter

condition is met when p is sufficiently small and 1? < 1 for instance. m
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B.1.3 Proof of Proposition 6

Anticipating that the social planner allocates labor symmetrically within intermediates
and that she maintains the equality E;, = Q;,, we can write the social planner problem as
maximizing - Yl—ff‘

;:(1 Py 1—v (B-4)
subject to the final good equation (2) with Lagrange parameter A,, the energy equation
(3) with Lagrange parameter Ag,,

Aie t By = Gy Ly,

where for this equation and the following ones the term before the : is the associated
Lagrange parametet,
Ape : Yp =Ap,Lp,

ApeiLeg+ L+ Lo+ Lp =1L

R oA st d . _ s
Ut 'Act =Y f Ac(t—l)a Uy 'Ast =Y f As(t—l) an Augt 'Agt =r"e Ag(t—l):

Xe SpetSge =1,

Wpy - chct + gsEst = Pt’
t+T

wg 1 S, =§+Z(LPL +(1=¢)eo(1—¢g)) P

s=0
The first order condition with respect to Y, imposes that A, be equal to the marginal
value of consumption at time ¢,
Y—l?

(1+p)"

The first order condition with respect to Y,, ensures that aY‘

t =

_ e —
= = = pp,, where the ratio

Ap. /A, is the shadow price of the production input. Slmﬂarly, the first order condition
ayt AEt _

with respect to E, implies v = = pg.- The first order condition with respect to E,,
Agt
implies AEtW = Ag¢» SO that aEf = 5% = pg,. The first order condition with respect to
gt
Y., gives
JE, JE,
A’Et 3ch = Act + gcht == aTCt = D¢t + gcTt’

with p., = 4., /A, being the shadow producer price of coal-based energy and 7, = wp, /A,
being the shadow price of emissions. Similarly, we have

O,
OE,

=Ppse T &7,
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First order conditions with respect to L;, for i = c,s, g yield p;,0E;,/OL;, = A, /A, =

w, which is the shadow wage and similarly, py,0Y,,/dLp, = w,. Therefore, and

unsurprisingly, the static optimal allocation is identical to the decentralized allocation

provided that there is a carbon tax given by 7,. Note that there is no monopoly distortion

to be addressed because all sectors are equally affected and there is no roundabout

production (yet the shadow wage differs from the decentralized wage by a constant).
The first order condition with respect to S, yields

ws, = ALY, (B-5)

whereas the first order condition with respect to P, implies:

Wpe = Z(SDL +(1=9) po(1—94)) Wspys-

s=0

We can rewrite this as

Y7 (B-6)

t+s

e (pr (A=) 0o (1—9))
Tt_Yt ; (1+p)s C

If 0 = 1, we obtain the closed form solution of Golosov et al. (2014), namely 7, =
1—
L0 (2 + 305
The first order conditions with respect to A;, for i = c, s yield

C..\? 1—y
Wie = Ag (A_lt) Ly + 7" iy
it
Multiply by A;, and iterate forward to get
G = Cirss
WiAie = Aithit +Ait+1nu’i(t+1) = Z A’it+sLEit+s'

it s=0 it+s

p

The first order condition with respect to A,, gives

1—)
augt = A’gtLgt + Ynsg(tﬂ):u'g(t+1):

which similarly leads to

MgiAge = Z AgirsEgtrs:

s=0

The first order conditions with respect to s;, and s,, imply

(1-Y)In (Y)S;Zp (UeAcr + UsAs) = 2. = (1—1)In (Y)S;tw.ugtAgt-
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Therefore the innovation allocation obeys

oo 1 Cc(t+s) Ccs(t+s)
(s'f_t)w = PeAc T PUseAst — Zs:O s (AC(erS)pC(HS)EC(HS) + As(e+s) ps(t+s)Es(t+s))

[SS) 1 5
Sgt 'U’nggt Zs:O 1+r[,t+spg(t+S)Eg(t+S)

where r, ., = A,/A,,—1 is the shadow interest rate between t and t +s. At the optimum,
the allocation of innovation depends on the ratio of the social values of innovation in
each sector. These social values are equal to the discounted sum of the marginal benefit
of innovation in all future periods. This contrasts with the decentralized economy where

the allocation of innovation is given by:

>

Cet o
(sft)w _ ,q_ctpctEct + EpstEst

Sgt pgtEgt

including in the presence of the carbon tax (since p, and p,, are pre-tax producer
prices of energy). The optimal scientist allocation can be decentralized through research
subsidies.

In the quantitative analysis, we add an exogenous path of emissions from the rest of
the world PfOW and direct disutility costs from carbon concentration on utility (to capture

the effect of climate change on the rest of the world), see (24). The former does not
D'(S,) Y. — V(Se)
(D) T ()

so that we get T, = Y7 > (‘p”(l_gfzg’s(l_%)s) (¢vL?—/(S,,,)) instead of (B-6).

affect our analysis, whereas the latter simply turns (B-5) into wg, = A

B.1.4 Proof of Proposition 7

We prove Proposition 7 and also establish that the shale gas boom decreases welfare
Yn(lfv?)

1+p
sufficiently large.

provided that is sufficiently large, that ¢; is sufficiently small and that ¢, is

Proof of Part 1). With ¢ > 2, Proposition A.1 applies and establishes that for n; < n/e,
the economy converges toward a green path, so thats,, — 1 and ¢, must be finite.
We then show that from t,,,., onward, green innovation increases over time. Using the
notation f, introduced in Appendix A.4, we get:
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Assume that s, > 1/2 and that ns}:w > 1y then

fra1 (sgt)

gt

Y*nsjlc:w Y*m}rw Ynsjlc:w AN Y*m}:w ans}:‘/’ Y"S}:w AN
K¢ + + K¢ +
o 1y A1) e\ A B Age-1y) S\ A Byt S
Y(s—l)n(s}tw—sl 1l)) c8t

< f; (sgt) =1,

therefore s,(;,1) > s,
1—
Assume now that s,, > 1/2 but that 'Y)Sftw < ng, then:

A1) € Ac(e-1) Ber As(e-1) S As(e-1) > (sgt )w

KeCE Zns;w(e—l)

1— 1— —€ 1— 1— —€
—ns —ns —ns -ns
y Jt el L ft + L 41 st el L ft + L
- 1—4p Ac(tfl) c Ac(tfl) Bct As(tfl) S As(tfl) Bst
< sts—nsft —n(e—1)sg,

ft+1(sgt) =yt

We wish to establish that eny — ns};w —n(e— 1)52?’ < 0. To do so, we define h(s) =
eng—nst™¥—n(e—1)(1 —s)l_"b. Twice differentiating h, one gets h” (s) > 0, so that h is
convex. Furthermore h(0) = enz —n (e —1). Since € > 2, E;—l > %, so that :’7—3 < % < E;—l,
which ensures that h (0) < 0. In addition, h (%) =¢ (T)B — n2¢_1) < 0since nz/n <1/e
and ¢ > 2 > 217¥. Therefore, en, — ns};w —n(e— 1)s§:¢ < 0 when s, > 1/2. This
ensures that f, (sgt) <f (sgt) so that sy(;41) > S, This establishes Part 1).

Proof of Part 2). To prove Part 2, it suffices to show that an increase in B, leads to an

increase in s,, as long as t < t;,;..;- We define

—E€

Kiy =1 ! 1
Sw AcO AcO Bct
A Bo)= "
ft SgtsSg(t—1)s-++»Sg1>Ds0) = ¢ L1y 1—y —€ >
n(e-1) X512 w25 ax
1.9 g e T 1
Kscsolsf =1 _I_Ksy 1
¢ 2
g8 \ Aso Aso B

B-9



so that the equilibrium innovation allocation is still defined byﬁ (Sgt)sg(t—1)7 s Sg1s Bso) =

1 with ﬁ increasing in s,, and in By,. We obtain for 7 € [1,t —1)

_ - . -
LS 0 U U D RN
ct (Act + Bco) (1 8% %)
x: (1 1\°¢ g
—~ = | = - _ st
) h’lft +Ast (Ast + Bso) (1 8/%4-35% —p )
s | 77 v s e (TS | sgn(1—y)lny.
 la(mre) ()
Yet, if t < t5i¢cn, then sgz = 5,7, so that
~ k(1 1\ K 1\ ¢!
dInf, E(A—JB—J +r;(a+a) o
e STt e e, e | S (U= ) ny
8 A_C(A_+B_) +A_S(A_+B_)
ct ct ct st st st

Therefore % <0ife>2.
g7
Therefore, the natural gas boom reduces f, leading to a lower value for s,;. It then

reduces )?2 both directly and because of its negative effect on s,,, leading to a lower value

gl
for s,,. By iteration, the natural gas boom will reduce all s, at least until the switch

toward green innovation occurs.

Three Useful Lemmas. We establish three lemmas which are useful to prove part 3.

Lemma B.3 Consider a small increase in B,. Denote by t, the smallest t such that
dInA;,, <0 and assume that t, < 0. Then dInA,,, > dInA,,,.

Proof. Noting that

t t
InA,, =InA,,+n(lny) Zs}?p and InA;, =InA,,+ n(Iny) Zs};w,

=1 T=1

we obtain

t
dInA, =dInA, =n(1—y)(ny) > s, ds;.. (B-7)
=1

By definition of t,, dInA.,,_1) > 0 and dInA,,, < 0, so that we must have ds;, < 0.
Since dsg, > 0 for ¢ < t;,;,c, it must be that t, > tg,;.,- We can similarly write

t
dInA, =—n(1—y)(ny) > s, ds.. (B-8)
=1
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Using (B-7) and (B-8), we get

ta
dInA,, —dInA,, =n(1—)(Iny) (Z (s;;p —sg_;p) dsff) .

=1

We know that ds;, > 0 for t < ., and that ds;,, < O, therefore ds;, must change
A

sign as t increases at least once. We index the times where ds;, switches signs by ¢,,

and t,,,,, such that ds;, becomes negative at t,,,,; and positive at t,, and p is a weakly

positive integer in the integer set {0, ..., P — 1} with P > 1. We denote by t, = t,,;;, and

top =ty + 1. We get:

dlnA;, —dInA,,, (B-9)
Lswitch— 1
Z ( S_w) deT
= n (1 - 1/)) (]'n Y) pP—1 t2p+1 1 ==t t2p+2 —1
Z( Z ( ;l’ gr)dsf’r_'_ Z (f —S 1p)dsf*r)
=0\ 7=ty T=t2pt1
Cswitch—2

_4# _
721 (sz —sgf)dsz
= ’I’)(l—lp)(ln}’) p—1 [ top+1—1 P top+a—l P
(8 (-5 )sras S (15 )sves

0 T=tp T=typ41

§¥
Using that s . fr Vs ;" < O0for T < tyien, that sf - is decreasing for T > t,;,.; (as established

87

in the Proof of Part 1), that ds;, > 0 only on intervals [tzp, topr1 — 1], we get

11’ topra—1
dInA, —dInA, <n(1— v,b)(ln}f)z 1— ftzp“ > s dsy.
gt2p+1 T=typ

A
By definition t, is the smallest t such that Zs_wdsff < 0, therefore for any t, < t,, we

have Zs ds;. > 0 and Z 5. ¥ds. < 0. Therefore, we get that

T= tX+1
P—1 ft topso—1
2p+1
Z 72 dsy
p=pP=2 gf2p+1 T=typ
5}pt topo—1 e S}pt ta "
— 2P—3 2P—1 —
il 2. spdsy k1= PIERLUS
8tap3 J T=tap4 gtop_1 ) T=top_s
s}pt t '
2P—3 —
< | 1- ” Z Sta dsg..
Sgtyp s ) T=tap 4
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Iterating, we get

ta

’l/)
dlnAstA—dlnAgtA<n(1—1p)(lny)(1—ﬁ) > s tdsp. <o.

Sgtl T=Uswitch

Therefore dInA,, > dInA

We establish a symmetric lemma:

st,e W

Lemma B.4 Consider a small increase in B,. Denote by t, the smallest t such that
dInA,,, > 0 and assume that t, < 00. Then dInA,, > dInA;,

Proof. The proof starts as for the previous lemma: dInA,,, > O requires thatds;,, <0,
which implies t,4 > ¢, and that ds;, switches sign an odd number of times. We use
(B-9) to write:

dInA;, —dInA

gta
tswitch_l
Z (sf;p —s;/’) dss.
= n(1—vy)(ny) tzpﬂ—l N topra—1

P
(ng ) Ydspo + D (5“ )s;”dsff)
T=ty, T=lp41 5
pP— topa—1
&tapt1 —
< n(l—w)(lnY)Z( _ ) ST s dds,

0 ff2p+1 T=typ

ta
following the same logic as before. By definition ¢, is the smallest ¢ such that ). sg_;l’ dsg. >

tx
0, then for any ty < t,, we have >;s ¥ds,. <0 and Z s;0dsg, > 0. As ds,. = —dsy.,
=1 T= tX+1
ta
then >, 1s;fdng < 0. Using the same reasoning as before, we get dInA;,, —dInA,,, <
T=tyx+

0. m
We can then derive:

Lemma B.5 For Iny small, the shale gas boom increases A, A, and decreases A,,.

Proof. We prove this result by contradiction. Assume that A,, does not decrease for
all ¢ following the shale gas boom. Denote by t, the first time that dInA,, > 0, then if
Iny is small enough, it must be that dInA,,, ~ dInA,, _; ~ 0. According to Lemma B.4,
dInA,, > dInA;, , therefore either d lnAst ~0ordlnA;, <O0. Log differentiating f, ,
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one obtains:

1 .ece
Ast S TSty st
dinf, = —(e—1)dInA + - “edInB
g(ta—1) 1 1 st
A A IrtAKgccetA + AS—tAK?ngtA BstA 4

1 C 1 C
—KeC* ((96—”*—1)+—K’EC‘s (85—“—1)
Aty € cty Acty Ase,y s T sta Asty dl
LKSCE + LKgce nAS(tA—l)'
Aoy Netety T A KsSsty

Assume that dInA,,, ~ 0, then for Iny small dInAy,, ;) ~ 0, and we get dInf, ~

1 _.epe
K
AstA s Ustp CstA
_1 ece 1 ..ec¢ B
Acty Ko CctA+A5tA K§ Gty Psta

to increase, it must be that d Ins;, has been negative for a number of periods before t,,

edInB, . Following the shale gas boom d InB; > 0, in order for A,,,

CstA

5 is bounded

. . C . .
which requires that £ < 1 for a number of periods. This ensures that
ct sta
1 £reE
Astp Ks Cstq CstA
above, so that ——*——— By

ActA ccty AstA s sty
dlIns;, > 0 which contradicts the fact that dInA,, > 0> dInA,, ;.
A 8ta 8ta
Similarly, assume now that A;, decreases at some point. We denote by t; the first time
at which dInA.,, <0 (t5 could be equal to t,). Since dInA,,,_ >0>dInA,, then for

Iny small, we have dInA.,,  ~dInA ~ 0. Using Lemma B.3, we get dInA,(,,_1y <0

¢ is not too small. As a result, dInf, > 0 so that

or dInA,, ~ 0. Following the same reasoning as above, we get that d Ins;, > 0, which
>0>dInA,,.
Therefore, it must be that A ., A,, increase for all t and A,, decreases for all t. =

contradicts d InA

ctp—1

Proof that Emissions Increase Asymptotically. We now show that emissions increase
asymptotically. Log-differentiating (A-3), we get:

dInP, (B-10)
KECE £ kECE
= g( z c ct - dlnCct+ ; s st - dlnCst)
chicct + EsKSSCst ‘ScKicct + gstCst
N (1 . A—1)(A—»)1A? ) (KﬁCft_ld InC, +«C'dInC,, + KZAfg_tld lnAgt)

AA— — A—1 — —1 —1 -1
VARICH + (1= ) ALY KECE! +KeCT + KA,

As sge — 1, we get:

dInP ( Kl g *5% e ) (B-11)
n ~ £ n + n -IT1
; ERCL+EXSC, T EKeCL+ERICE

A-A)a—ntar?
—e—1+— — dInA,,.
VATICHT + (1= )" AR



We can rewrite this expression as:

(1-2)Q—»AL?

dlnp, - —|e—1+ P dInAg,
AA—1_."e=1 AA—1 A Ar—1
VAT KT A (1 —v) AT
CC[ CS
gCKECCel‘A_Ct +£SK§CS€t1IEdl A 5K§Cs€t CStdl
+e C° 1 FreCt nA., +¢ C° 4 FniC B nB,.
chc ct gsks st chc ct gsKs st st

Since A,, decreases and A, and A;, increase, emissions increase asymptotically following

the natural gas boom.

Proof that Gross Output Decreases Asymptotically. Using (A-4), we can write output
gross of climate damages Y, =Y,/ (1—D(S,)) as:

~ ~ 1
Y, =((1—») ALt + v A e ) L.
Log-differentiating, one gets

AFA—1 A1
VAR Che

A AN— TA— —
(1— )AL+ AL ICA!

dInY, = d1nCg,. (B-12)

In return, log-differentiating Cy, yields:

K atdInA, + K52 dInAg + K gt d InBy, +x6CE 7 d InAy,
dInCg, = — . (B-13)
CEt

Plugging (B-7) and (B-8) in (B-13) and using that A, grows exponentially but C;, and
C., do not, we get for t large enough:

dIn Cg,
o i
~ n(1=)(ny) zt: (%s;ﬂs;ﬁ — l)s;‘l’dsﬁ
=1 Kgcgt
Further, use (20) to get:
dInCg, (B-14)

Cct ct
t -1 € Zct € Zct
C (KcAct +K )

~ n(1—y)ny) | D ==

e—1 (e S ¢ Se
7=l Cgt (KC Acr T KS Acr

— -
L |sg, dss.

We want to establish that d InC, < 0, but since ds,. may not be positive for all 7,
we cannot show that directly. As above, we index the times where ds;. switches signs by
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ty, and t,,,q, such that ds;. becomes negative at t,,,; and positive at t,,. The first sign
switch occurs after t;,;,., and we also define t, = t,;;,- We assume that at t, ds;, is
negative and denote t = t,p —1 (the reasoning extends easily to the case where ds;, > 0).
We can then decompose:

dInCg,
n(1—+)(ny)

tap41—1 sgr sre\¥ dss.
tswitch_l S S w ds p—1 Z (sf_fg) o 1 51/J
() )iy "

P topra—1 WP
S — Sor S ds
g7 p=0 8T °ft _ fr
+ Z ((sz Sgt 1 Y

i s
T=top+1 8

7=1 SfT ng

Using that ds;, < 0 on [typ_;, t,p — 1] and that ;‘j’—z is increasing after t,,;,.,, We can write:

dInCg,
n(1—)(Iny)

tswitch_l 1!’ 1!’
<% (_L) _(L) hds,.
— SfrSgt Sftopy Sgt

=1
P—2 (tap+1—1 topia—1

SS ((_L)“’ [t L)“’) I ((_L)“’ (e L)“’) s
p=0 \_ T=ty, SfrSgt Sftyp_s Sgt sfgpr SfrSgt Sftyps Sgt ngr

T=lp41
top_1—1
~ SST Sft v ngzp—l Sff v — sgfzp—l Sff v d lnAgf
ol [E I I 1) Y P |
T=typ_o SfrSgt Sftopy Sgt Sftypq Sgt n (1 - 1/)) (ln Y)

where we use (B-8). Reiterating the same procedure, one gets:

dInCg,
n(1—1)(ny)

sft 1# tswitch_l S w S : il’
: : T —
Sgt = St ity

Y [ tyy—1 Y (Sgtz”” )w - (sm—"”)w dlnA
< Spe | & Sgr v Sgtypin dss. Sftapts Sftaps1 8tapra~l
D DI et e e +

st n(1—v)(ny)

p=0 sgt T=typ SfT Sf tap+1

Y top_1—1 P P "
+(m) ZZI (Sg_f) _(Sgtzp—1) S_wds + 1_(58f21)—1 Sf_t) dll’lAgt
St Spr Sfip gr T Sten Se) ) n(1—4p)(iny)

T=lap—2

The first term is negative because t; > ty,;.ch, SO Sg¢, > Sg¢, While for T < £y, Sgr <Sfr

top+1—1 W 5ot P
and ds;; > 0. The terms in > ((5“5—7) - (M) )sg‘j’dsfT are negative because over

Sfr Sfe
T=ty, f ftap+1

Y s
. . .. . Ser
such intervals ds;. > 0 and since t > t;,;.cp, Sg, 1S increasing so (sj_f) — (%) <0.

Sftapt1
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In addition, we have established in Lemma B.5 that dInA,, < O for all t’s. Therefore
we get that for t large enough d InCy, < 0. This ensures that gross output decreases
asymptotically.

Proof that Welfare Decreases. For T large but finite, we can write the change in welfare
as:

dU
1 d (e—gsfi)l—ﬁ
~ Z (1+p) 1-9

7=0
~ —g~ (7—T) ~
= (+p) I+p (1—v)* AT+ Al et °)

As emissions decrease exponentially, S. is bounded above, so that e ¢(=")5: remains
bounded away from o. For T large and if the stock of carbon depends mostly on current

emissions (which is the case when ¢, is small enough, potentially o, and ¢ large enough),
VA
dS, > 0. Furthermore, dInCy, < 0. Therefore, as Ry ey

(1+g§)1_ﬁ
1+p

tends toward a

constant, the second sum becomes arbitrarily large if is sufficiently close to 1.

The latter condition is met in particular when p is low enough and ¥ < 1.

B.2 Proofs for the model with endogenous innovation in extraction

Proof of Proposition A.3. Assume first that we have asymptotically positive growth
in fossil-fuel power plant technologies A, and A.,. We first establish that there must
be growth at the same rate in either B,, or B.,. Assume instead that both extraction
technologies grow more slowly than A;, and A.,. Then using (A-5), we get

P epe—1 Y epe—1
sBct ~ Kcht and SBst Ks Bst
s Bt eepel 4 e B et S B geepgel 4 geBupe-1’
Aft At s Ay st Aft A s Ay st

cct cct

Assume without loss of generality that %Bft_l grows at least as fast as %Bft_l, then we
ct St

Y
(Sﬂ) :O(&)
Saft B.,)’

so that s4;, — 0. This leads to a contradiction as it implies that B, cannot grow more

get

slowly than A;,. Hence at least one of the two extraction technologies must grow at least
as fast as A,.
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Assume now that B,, grows faster than A_,, then (A-5) implies

Y epe—1
(SBct) ~ Act KcAct <

e—1 Cst pe—1 —
Saft Beo kAT +xE21C

>

ct

oo

ct

As a result, sz, tends to o, which is, again, a contradiction. Therefore, extraction
technologies cannot grow faster than A_, on a fossil-fuel path, and at least one extraction
technology must grow at the same rate as A,.

Without loss of generality, assume that B,, grows at the same rate as A., (while B, grows
weakly less fast), using (A-6) we get:

Y e—1
(s’ﬂ) -0 (’h) .
Set Agy
Then, if A, grows faster than A,,, s,, — 0. In contrast, if A, grows more slowly than
A, thens;, — 0, which contradicts the assumption of positive growth in the fossil-fuel
sector. Therefore, there is path dependence in innovation and (except for a knifed-edge

case) innovation is asymptotically entirely in the fossil-fuel sector or entirely in the green
sector.

Proof of Proposition A.4. Log-differentiate (A-5) for the natural gas sector (assuming
that one can ignore the dependence of the right-hand side on the allocation of innovation)

to get:
C Cet e e—1
A c ct
Ydlnsy, —pdIns,, = e—= o —1 |dInB,,. (B-15)
’ e By, %Kgccgt_l + ,%K;gcsgt_l N

Log-differentiating the ratio of the two equations in (A-5) gives:

C
Ydlnsg —pdlnsg = (sB—“—l)dlnBst. (B-16)
St
Log-differentiate the ratio of (A-5) for natural gas and (A-6) to get:
Cst
YdlInsg —1pdlns,, = sB——l d InB,,. (B-17)

st

Log-differentiating the scientists market clearing condition gives:

Spsed Insp, + 84 dInsyp, + 55, dInsg, +s,,d1Ins, = 0. (B-18)



Take the difference between (B-15) and (B-17) to get:

1—y Cst e re—1
$ e(1—-vY)C A, K C

dln %w = ( Q/))_Stc A Af_ls ct —dInB, (B-19)
Sare ¥ By 3k, CE A+ FEKECS,

which establishes that a natural gas boom redirects innovation away from green tech-
nologies relative to fossil-fuel power plant technologies.
Plugging (B-15), (B-16), and (B-17) in (B-18) implies:

Cet .6 re—1
1 C A Kbt C
dlnsg, = — |su, | 6=2 = —1 |+ (g +s g——1||dInB,,.
st Y f ¢ B, %Kgccgt_l N %K’gcﬁ_l ( ct gt) B,, st

Then (B-17) gives:

Cst .6 re—1
1 Cst Cst A_sth st
dlnsgt:_@ Shst 8B——1 +5AfteB— PR C— dInB,,.
st st ATKC Cct + A_sth Cst

. . . C
Therefore a natural gas boom decreases green innovation if £3* —1 > 0.
st

B.3 Additional Proofs for the Extended Model

B.3.1 Equilibrium energy production

This section derives the energy production in equilibrium, E,, which requires solving for
the labor allocation. To do that, we first note that the price of the production input is
given by pp, = yw,/Ap,. Therefore, as in the baseline model, relative demand by the
final good producer leads to

E ~ \A— vC A
Yp, (1—7)Ap,
Using that E;, = C;.L;, for i =c,s in (A-14), we get that

kI(1+7.)°Co 'Ly, kI (1+7) 7 CI Ly,

= and L., = .
kO(1+7)°CT +ke(1+7)°CTH st kO(1+7)°CT +xe(1+7)°CTH
(B-21)
Therefore, from (A-13), we get that Ef = Eftht with Eft defined in (A-19). Similarly,

ct

using this expression with E,, = C,,L,, in (A-16), we get:

~—1
Lft C;tcft

s xe(147,) Ct
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which directly leads to (A-18). We then plug (A-18) and Y,, = A, Ly, in (B-20) and

obtain: e
Ly, (A5)" crct

Et "Et

— ) (B-22)
Lp, (1- V)AA%?I

Together with labor market clearing equation, this equation implies (A-20). Note that

we recover (14) when T, =7, =7, =0.

B.3.2 Proof of Proposition A.5

We can decompose the change in the emission rate as:

(o Cc[ )0 (o ( Cst )U)
dln&y _ G0 In(Cy./Cr.) N 0In (k¢ ((1+%c)cff LT o
dInB,, dInB,, dIn(B,,) '
Sub,: substitution effect away from green Subg: substitution within fossil fuels

The substitution effect away from green electricity is naturally positive:

K€ A e—1 K C o—1 C
Sub, = e—% ( £ ) = ( = ) =, (B-23)
Ci \1+7, o 1+7, B,

where we use the fact that

e—1

all’lcff _ Kg ( Cye )0_1 Cye alnCEt _ Cft Gy

= = — an = .
oInB,  C7\1+7, B, dInB,  C;'By

(B-24)

Combining (A-15) and (A-14), we get that the tax-inclusive expenditure share of gas
electricity in fossil-fuel electricity obeys:

(1+TS )pS ES K.? CS o1
Oype = =1 = (B-25)
pftEft Cft 1+ 7,
The tax-inclusive expenditure share on clean energy, using (A-16) is given by:
-1
o — (1+ Tgt)pgtEgt _ Ky ( Agi )8
8 pEtEt C:Egt_l I+ %g
Then, we can rewrite (B-23) as
Cse
Sub, = e®gt95ftB—. (B-26)

st



Further, we have

Subf = —0O

where

o
P _ Seke ((1+rc)cft) (B-28)

o e (i) + e (i)
is the pollution share of coal based electricity Therefore the substitution effect within
I +T holds. Combining (B-26) and (B-27),
and using (B-25) and (B-28), we obtain equation (27).

fossil-fuel is negative as long as é'c o > 55
To compute the scale effect, we log differentiate (A-18) and get:
dInE, =dInCy, +dInLy,. (B-29)
Log-differentiating (A-20), we get:

L -
dmmhzi?ﬁdmcﬂ—dmcm) (B-30)

As long as d InCy, ~ d InCy,, then an increase in B,, is associated with a decline in labor
in the energy sector Lg,.
From (B-29), we then obtain the change in total energy production:

L L ~
dlnEt=-i?xdlncgt+-i?d1an“ (B-31)

which is positive (as long as d In Cy, is not largely negative).
Using the definition of Cj, in (A-19), we get:

c—1x°(1+7)°¢Cco?
( )] ( )Gy )dlnCst

dinC;, = | 00y, —
fe ( S ke (147) T CT ke (1+7) TG

Using the definition of ﬁEt in (A-18) and plugging in the previous expression, we can

express the change in the productivity variable Cy, as:

~_ (c—1)x7(1+7,)77Cco™
Ci.Cr ((o—s)@sft— = = S )

—_ k9 (1+7,.) 7 Co ko (1+7,) 7 Cq
dInC,, = | €0©,, + — — dInC,,. (B-32)
Et st e S_1 . _ € e st
CLCrl+re (147,) AL
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For 7,7, and 7 small, we get
dIn 5Et|%g,?c,ﬂ?sz0 ~dIn 6Et =0,dInC,, (B-33)

which, using (B-31), leads to the same scale effect as in the baseline:

2 InE, o Lo+ ALy G

|7E T, TR0 Y st
d1nB,, et L B,,

(B-34)

The overall effect on emissions is then given by the sum of (27) and (B-34), which we

can rewrite as

dlnP C,
S =it [0 )0 -0, +
st

1-A)L P
O=Dlng, o],
L P,

For &,/&. small, the term %‘ is small, given that o > € and A < 1, then emissions decrease
following the natural gas boom.
B.3.3 Proof of Uniqueness and Maximal Growth Rate

We show that the equilibrium is unique for Iny small enough. Using (A-25) and defining

Sfe =S¢ + S5, We can write:

1
1 (k(1+A.)Cs | xx?(14A,)CI\ ¥
(1—gq,)? ( ( ) () ) Sfe

(1+%c)oAct (1+;Es)o.A5t D )
Sct - 1 (D 35
(1— )% xxe(14A.)Cs | ko (1+A,)C \ ¥ - )% ko (1+A.)CS n xxo (14A,)Cq \ ¥
qc (1+7.)°A., (117, As, ds (17 A, (117.)°A,,
_ _ 1
a UA xx?(14A)Cs kI (1+A,)CS \ ¥
q.) (1+7.)°A,, a+7.0°4, ) Sft
Sse = 1 L-
(1— )% xx¢(14A.)Cs . ko (1+A,)CS \ ¥ +(1— )% ko(1+A)CS . xxo(1+A)CS\ ¥
qe T2 Aq 7,7 Ay ds 7.0 Aq (47,074,

For Iny small enough, we can ignore the dependence of the RHS on s, and s,, so that
the previous equations define s., and s,, as increasing (and nearly linear) functions of
s¢.. We then get that the numerator in the LHS (A-26) is decreasing in s;, (as for Iny
small, we can ignore the dependence of C;, and A;, on innovation). The denominator
is increasing in s;, as s,, = 1 —s;, (and again ignoring the dependence of C,, on the
innovation allocation). Therefore the LHS decreases from infinity to o in s fes and the
equation defines a unique solution.

We show that the maximal growth rate that can be achieved on a fossil-fuel path
1

¥
1+ w) . .. .

corresponds to the growth rate }fnf ( ¥7) —1. The growth rate of Cg, is maximized if

the growth rate of C;, is maximized which occurs if the growth rates of either C;, or C,

are maximized. Without loss of generality, assume that A, grows faster than A,,. Then,
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the growth rates of C., and that of A, are maximized when sclt_ vy )(sslt_ ¥ is maximized,
1
which occurs if s, = s,/ (1 + )ﬂ). In that case, B,, and B,, grow faster than A;,, and

(B-35) gives s, — 57,/ (1 + )(%) for q. = q,, so that this optimal growth rate can be

1\
~ ¥
achieved. We then get that Cg, and Cy, grow asymptotically at the rate ynf (Hx ) —1.

B.3.4 Proof of Proposition A.6

Log differentiating (B-35), and assuming that In y is sufficiently small that we can ignore
the dependence of A;, on s;,, we can write:

7(1+A.)CS 1 (1+A,)CS ¢
1_X2)Kc(~; a5 U5 )0 S 710 B
o SSL' ( (1+Tc) Act (1+Ts) Ast Bst st

P s, (Kg(1+KC)cg 4 ;<g(1+Ks)c;;) ( ke (1+A.)CS, Kg(1+Ks)c;{)

A+7. A, X T(+7, Ay (+507 4, (+5 )4,

dlIns, ~dlIns;, — , (B-36)

o k7(1+A.)cg x? (1+A,)CS ¢
O s (1-°) Tyas areya. #dInB
Y S, (Kg(1+Kc)cg n Kg(1+Ks)c;{)( K9 (1+A)CS Kg(1+KS)cg)

(14+7.)%A.; (147,)° Ay, (1+7.)%A.; (147,)° Ay

dIns, ~dIns;, + . (B-37)

This directly implies that the ratio s,, /s, increases with B,,. Log-differentiating (A-26)
and using (A-25) and (B-24) (and Iny small) leads to

((;(2'1'1) Kg (1+KC)C5 ) KSU (1+XS)CSO£ ) K?(lJrKs)CSOt-
(1+

Cst
700 Act +5:)°  Ast (17,04 O By, d1n By

k& (1+Ac)Cs | w7 (14+As)cS \ [ «& (1+Ac ), 7 (1+As)CS;
2( i+ )( (i e ) ~ 0
(L) ey Y qlns,, — Ld1 d1
+(£_0)f oF 5.dInB, —dlIns, —dlns, +1dlns,,
Noting that d Ins,, = —2Xd Ins,, and plugging in (B-36) and (B-37), we get:
& gt = T3, 41nsy, and plugging g
dlns;, (B-38)
Kg(1+K5)CsO; Sst 2 Sct K?(H'KC)Cgt K?(H-KS)Cs(i
Sgc | (e—0)kICT™ (7. Ay ((s? tx s?) (7074, T X (@74, C,.dInB,,
x — +0 — — — —
Yolcrta+ )t ( XK?(HAJC& K.?(HAS)Cs‘i) (KS(HAC)cz + K3(1+As)c;z) B,
(1+7)° Ay (1+7,) Ay, (1+7)° A, (1+7,)7 Ay

The second term in the brackets is positive whereas the first term is weakly negative since
¢ < 0. Therefore if € ~ o, then the first term is small and the shale gas boom increases
the mass of scientists in fossil-fuel innovations and decreases green innovation. When
o > ¢, then green energy is more complementary to natural gas than coal is, this creates
a force that pushes toward more green innovation following the shale gas boom.
Combining (B-37) with (B-38), it is also immediate that for ¢ ~ o, an increase in B,,
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leads to an increase in natural gas innovation. Combining (B-36) with (B-38), we get:

dlns,,
k9 (1+A)CS 9 k7 (1+A.)CS K9 (1+A,)CS
sg(e—0)k?CT O A, ([_Sst X (Sgt +55c) ] A, TSeeX Greya, C,.dInB,
Ct(1+7)7 ( o2 )c Kf(le;)Cs‘I) (K‘Z(ljxé)cﬁ K;’(le;)C:i) VB,
(1+7.)° A (1+7)7 A, (1+7.)7 A (1+7,)7 Ay

The effect of an increase in B;, on s, is ambiguous even for € = o: the second term in
brackets is positive if y is close to 1 but negative for y close to o. This establishes Part i).
Assume now that y =1, then (B-38) gives:

o) ( Cst )0._1 K;’(1+K~‘)Csat-
S 1+7 —_— C
gt s +7 (1+7,)°A t
dinsg|,o;, ~ — |(e—0) — —+o — — —dInB,,
Y KU( Cy )‘7 +KU( Cor )0 x¢(1+A)cg | xe(1+A)Cq | By,
c 147, s \ 147 (1+7.)%A.; (1+7,)° Ay

_ ~ — x?(1+A,)CS ¢,
Sgi [H (0 —e)k7Co™ (1_(1+TS)(1+AC)Astcctﬂ ) G dnB,

(1+7)7 eyt (1+7)(1+A,)AC,, ) | xe(r)cs | we(1A)cs

(147.)% A (147,)° A,

2
|

(14A,)Ce  (1+A)Ce
(1+:Es)Ast - (1+:Ec)Act

) is not too negative).

s¢. increases following the shale gas boom when y =1 provided that
(1+7)(1+A )As Cey
(1+7)(1+A; )Ac Gt

(or more generally as long as (o —¢€) (1 —

B.4 Complementarity between Natural Gas and Renewables

In this Appendix, we present and solve the model sketched in Section 5.3. To capture the
notion of greater complementarity between natural gas and renewables, we now assume
that energy is produced according to:
1 el = e=1\ 71
E, = (KCEC; + 1 Eogy + 1 E ey + 14, ) . (B-39)
E,, is a hybrid energy which uses gas (sb) and green (gb) as inputs according to the
Cobb-Douglas technology E,, = E} “E% . E

sbt “gbt* s
technologies which are used “alone” (e.g., nuclear power).

« and Eg,, represent natural gas and green

In the following, we solve for the competitive equilibrium and derive the effect of
the natural gas boom on emissions. Then, we solve for the dynamic equilibrium and
derive the effect of the boom on innovation. The effect is theoretically ambiguous, but
we quantify the model and show that for reasonable parameter values, the shale gas
boom still decreases green innovation.
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B.4.1 Competitive Equilibrium

To solve for the competitive equilibrium, we follow the same strategy as for the baseline
model. The Cobb-Douglas structure within the bridge technology implies that the
effective productivity of the bridge technology is given by

l—a,ra
Cst Cgt

(1—a) *as’

Cpe (B-40)

so that the price of the bridge technology is given by p,, = E—ZV[ Total energy production is
still given by E, = Cg,Lg, and the price of energy is pp, = yw/Cg, with Cz, now given by
1

_ _ _ —1\&1
Cre = (ke s rEC x5 C) T (B-41)

Similarly to (12), we get

C.e \* Co \°
Ec,t - KZ: (CCt) Et 9 Esa,t = K;: (C“ ) Et’
Et Et

C,\° C..\¢
Egor = K, (_gt) Et;EthKZ(i) E..
’ $\ Cp, ’ Cge

Using that the bridge technology is produced in a Cobb-Douglas way, we have p,,E,;, =

(1 —a)pyEy, and pg,Egp, = apy,Ey, so that

aC t (1 - (Z) C
Egb,t = —gEbt and Esb,t = —HEbt-
Cbt Cbt

The aggregate clean and natural gas energy productions are then respectively equal to:
C.\° aC C..\¢
Egt = ¢ (_gt) + ng.eb (i) Et
g CEt Cbt CEt

C..\* 1—a)C Cp \°
and E,, = (Kj (—”) + d=a)C K (i) )Et.
CEt Cbt CEt

Total emissions are given by P, = £,E,, where the emission rate is now:

(C X (C (1—a)Cy ,(Co )
comoi(2) va (w(8) - 42%(2))
Et Et bt Et

Labor allocation is still given by (14).
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B.4.2 Emission Effects of a Natural Gas Boom

As before we derive the effect of a natural gas boom on emissions (at a constant level of
extraction technologies). We get that:

dlnP  JdIn&;dInC + JInE J1nC;
dlnB, dInC,dInB, dInC, dInB,’

glln? represents the substitution effect and is given by:

dln&; palncEtJrg&(l_alncE)Jr dln(c,ce™?) _,2ng
dlnc, P dInC P d1nC, p d1nC, d1nC,
Py P,y alnCE_
= EP +(1+(1—a)(e 1))P EalnC’

S

where

KECE™ 1 e re—1
alncE _ C +(1_ )Kbe — pst sat (1 a)pthbt pstEst

dlnC, Cg ! cit peE peE e,

=0

s

where as before ©, denotes the revenue share of natural gas in the energy sector. We
then get that the substitution effect is determined by:

3ln§E_( Py Py )
aInC. €3 +(1+(1—-a)(e 1))P €o; |,

which, for given revenue share and pollution share of natural gas, is lower than in the no

bridge technology case. Since glligf = O,, the scale effect is still determined by:

OInE, JInCgLg,
dlnc,  dInC,

=0,(A+(1—-2)Q).

Therefore, one gets:

dlnP C, psa+wpsb
B (8( 5 -0, |+6,(A+(1—-2)Q2g) |,

B

S S

which is lower than in the baseline case for given observables (©; Q; and P,/P). We get:

Proposition B.1 When there is some degree of complementarity between natural gas and
the green technology, a natural gas boom leads to a larger reduction in emissions.

Intuitively, an improvement in the natural gas technology improves the bridge
technology which is less polluting than natural gas alone, this tends to make the
substitution effect more negative than without the bridge technology.
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B.4.3 Innovation Effects of a Natural Gas Boom

We keep the same structure for innovation as in the baseline model, so that again
the direction of innovation depends on relative profits from innovating in the various
technologies. We now have that expected profits from clean innovations obey:

B 1
I = nsgtw (1 - ;) (pgtEgat +pnggbf) ’

and expected profits from fossil-fuel innovations obey:

(. 1Y(C. C.,
Hft = 'nsft 1-— ; Iq_pctEct + 14_ (pstEsat +pstEsbt) .
c st

The revenue share of green technologies alone is given by:

e e—1
PgtEqgar _ Kgcgt

PecE; Cét_l

and the revenue share of green technologies within the bridge technology is given by:

Cl—aca e—1
E ece-l  aKy | —ma
Pgtlgpe  appEp, K, Cp ™ 770\ (1-0)'%ae

PecEs PecEy CEgt_l Cgt_l

With similar expressions for the revenue shares associated with natural gas, and using
that I[1,, = I1;, in equilibrium, one gets:

—arra _1
" &Ksce—l + Cst Ksce—l + (1 _ a) KE Cslt Cgt ¢
(sft) A, e et Agt s st b\ (1—a)™%ac

chgt—l + ak; (%)E 1

To look at the effect of the natural gas boom on the innovation allocation at t = 1, we
log differentiate the right-hand side of this expression with respect to B;. If that derivative
is positive (and Iny is sufficiently small that the innovation allocation is unique), then a
natural gas boom leads to an increase in fossil-fuel innovations and a decline in green
innovations. We get:

l1-ara

B e—1
%[K?Cﬁ[lg-k(l—a);(g(ﬂ) ((8—1)(1—a)+1):|

(1—a)l—2qa

s\ Ce g i1y Gs - ey T
31n(sgt) B ARECEHZE | KECT (- | T d1InC,,
- cl-aca e=1 ‘
g lnBSt (s—l)(l—a)akf)(( . 13 ) 2 lnBst

1—a)l—¢qa

- l-aca -1
Cst Cgt
| g8t b\ (1—a)l—2qa .

ke CE Lokt
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This expression is not necessarily positive, so that the natural gas boom could lead to
an increase in green innovation. Intuitively, the natural gas boom leads to an increase in
the hybrid share, which can in return boost innovation. This effect may dominate when
the coal technology is very advanced relative to the natural gas and hybrid technologies
(C., is large so that the first term is arbitrarily small): in that case, since most of the
revenues of the fossil-fuel power plant sector come from coal, the natural gas boom has a
small effect on the incentive to introduce fossil-fuel innovations.

Therefore, one gets

din s 1| 2[eE+e-Da-a9+DE]e, (¢—1)(1-w)E, | amc,

dInB;s,, /%@C T j_zes E dInB,,’

8

where the approximation comes from the fact that we ignore the dependence of the A’s
on the current innovation allocation. In contrast, without the hybrid technology, the
corresponding expression is

o)

dIn sft ~ 1 ﬁ@st Blncst

_| =0~ )
dInB;s, P %@ct + %@H d1nB,,

which is larger for given observables (the revenue shares). However, rearranging terms,
we get that the natural gas boom still increases fossil-fuel innovation provided that:
€..€ ne—1pe—1
KoK, C;.C

e (- D- )+ DK Cy (B-42)
b~ bt

+[e—(e—1)1—0a)] aKjCSSt_l +a(l—a) KZC;:I

A, C
> (e—1)(1—a)a=2L=kcce .
( )( ) C. A NG

We then obtain:

Proposition B.2 When there is a hybrid technology, the increase in fossil-fuel innovation
following the natural gas boom is smaller, though it is still positive when (B-42) is satisfied.

Intuitively, a drop in the price of natural gas may incentivize clean innovation through
its effect on the hybrid technology. This counteracting force may dominate if the natural
gas and the hybrid shares are small compared to the coal share. In that case, the natural
gas boom has little impact on the returns to fossil-fuel innovation (which are dominated
by coal), but some positive effect on the returns to clean innovation (through the hybrid
technology). For this effect to dominate, however, the coal share needs to be very large
(as stipulated in (B-42)) and we now show that for reasonable parameter values, this
does not occur so that the natural gas boom still reduces green innovation.
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B.4.4 Quantification

This section presents a quantification of the model with complementarity in order to
investigate whether condition (B-42) holds in the data. To map (B-39) to the data, we
assume that all solar and wind generation is in the hybrid nest E;,, whereas all other
green base period generation (e.g., nuclear, biomass) is in the stand-alone green category
E,q.- To begin, we solve for the Cobb-Douglas exponent a based on the equilibrium price
of the renewable-gas bundle:

Py "Pg

B (1—a) ™ae’

The University of Chicago Energy Policy Institute (EPIC) has produced recent estimates

Pt (B-43)

of the levelized costs of renewables backed up by natural gas for both (onshore) wind
(pp; = $54/MWh) and solar photovoltaic energy (p,, = $61/MWh) (Greenstone and
Nath 20271). The corresponding EIA’s Annual Energy Report posits levelized costs without
backup for onshore wind (p,, =$34/MWh), and for solar (p,, =$33/MWh)." Combined
with EPIC’s estimate for the levelized cost of natural gas generation (p,, = $42/MWh),
we can use (B-43) to back out the implied value of a for wind generation (& = 0.8457)
and solar (@ = 0.7561). We take the generation-weighted average between wind and
solar for 2011, yielding o = 0.8446.

Next, in order to calibrate the distribution parameters in (B-39), we must specify
the remaining base year quantities. For natural gas, we proxy stand-alone generation
E,,, through combined-cycle plant output, and treat all combustion or steam engine gas
generation as in the nest with renewables (E,;,). This distinction is motivated by the EIA’s
observation that combined-cycle plants are “often used as baseload generation” whereas
combustion and steam turbines are “generally only run during hours when electricity
demand is high.”’Importantly, this approach almost surely overstates the amount of
natural gas that is complementary to renewables since many areas may rely on gas peaker
plants to deal with demand fluctuations even in the absence of renewable generation. In
2011, combined cycle accounted for 82% of utility scale net generation from natural gas,
with combustion and steam turbines accounting for the remaining 18%.°

Applying these assumptions to our base period data (2006-10) and using E;, =

EgbOEsl,;)“ to compute the initial E;, (equal to 0.3343 tril. KWh) enables us to back out

'For consistency we utilize levelized cost estimates based on the same year assumptions to calibrate a.

2U.S. Energy Information Administration, “Today in Energy,” Dec. 18, 2017. URL (accessed September
2021): https://www.eia.gov/todayinenergy/detail.php?id=34172#tabl.

SEIA “Electricity Power Monthly” Table 1.7.C., Utility Scale Facility Net Generation from Natural
Gas by Technology: Total (All Sectors), 2011-October 2021. URL (accessed Septembre 2021): https:
//www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_1_07_c
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the x’s in (B-39) via the standard profit-maximization conditions,

1 —=
—z £
Poo  KE Pgo KeEeio  Peo _ kEy

Dso KE ¢

) 10 109

Do KpE, o Pvo  x,E

_1 —
50 bo

and the condition that 1 = k +k, + K}, + k,. We note that, in order to ensure time period
consistency, we back out the price of the hybrid bundle relevant for the base period
(2006-10) based on (B-43) instead of using the aforementioned EPIC estimates. We also
note that we now assume the within-fossil nest elasticity of substitution value from the
extended model o = 2 as value for ¢ since intermittency concerns that were motivating
driving the lower benchmark value of ¢ =1.8561 in the benchmark are now explicitly
accounted for. However, the results below are completely robust to using ¢ = 1.8561
here as well. Solving these four equations in four unknowns yields x, = 0.25, k, = 0.30,
Ky = 0.14, and x, = 0.31.

In order to evaluate (B-42), it remains to solve for initial technology levels consistent
with equilibrium in the modified model. We do so by solving a modified version of
benchmark system of equations (A-11), with equation (B-40) for C,, added and with
(B-41) replacing the benchmark condition for Cg,. As inputs to this computation, we also
calculate the modified model’s E, from (B-39), py, based on the equilibrium condition

1 1 ~
that p., = k.E.  pg.Ef, and Ap, from (A-10) which remains valid. The results are very
similar to the benchmark:

Ago Aco As o Beo B, o Cho Crpo Apo wo Lgg

100.25 46I1.69 449.66 337.14 1I19.44 152.95 32.69 4.7318e+03 6.8676e+03 1.258%

Finally, we evaluate the innovation inequality (B-42), yielding:
594.7 >>> 2.9.

These results imply that condition (B-42) holds easily, suggesting that the impact of the
shale gas boom is to increase incentives for fossil innovation even after accounting for
the possibility of complementarity between renewables and natural gas.
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