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Abstract

Digital platforms are transforming services by making the physical distance
between provider and user less relevant. I quantify the potential gains this
flexibility offers in the context of digital primary care in Sweden, harnessing
nationwide conditional random assignment between 200,000 patients and 150
doctors. Central to the extent of gains from service-provider reallocation is the
extent of skill-risk complementarity between providers and users, which has
been challenging to evaluate due to sorting. I evaluate skill and risk variation
as well as causal effects of matching patients of varying risks to doctors with dif-
ferent skills and assess counterfactual policies compared to random assignment.
Matching patients at high risk of avoidable hospitalizations to doctors skilled
at triaging reduces avoidable hospitalizations by 20% on aggregate — without
affecting other adverse outcomes, such as counter-guideline antibiotics prescrip-
tions. Conversely, matching the best triaging doctors to the richest patients
leads to more avoidable hospitalizations, since the most vulnerable patients are
often the poorest. Hence, remote matching could sever the link between local
area income and service quality in favor of a needs-based assignment, poten-
tially improving the effectiveness and equity of service provision.
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1 Introduction

A range of services is moving online — including healthcare, banking, and education?.
In many countries, digitalization started before the pandemic, and has been acceler-
ated by it. A direct implication is that geographical distance no longer by necessity
factors into which service provider meets which user — these services could be defying
distance. This creates new opportunities to transform how services are provided by
improving the matching between service providers and users to make better use of
variation in provider skills.

This paper asks: to what extent can matching patients to online primary care
physicians improve healthcare outcomes? In particular, the matching policy I consider
is on doctor task-specific skill and patient outcome-specific estimated need or risk.
This will involve estimating the extent of skill-risk complementarities in healthcare,
which is of independent interest. I consider a setting in which the first doctor you see
when contacting primary care can be based anywhere in the country, instead of nec-
essarily being drawn from the smaller pool of local in-person primary care providers.
This setting is ideal to study the upper bounds of impacts from technology-enabled
matching, as primary care is the front line of healthcare with the largest patient pool
and the most heterogeneous patients and tasks. Given this heterogeneity, physician
specialization and division of labor have the potential to increase output (Smith,
1776). I measure causal effects of doctors in different outcomes, and show that there
is specialization even among generalist primary care providers. Hence, improvements
from patient-doctor matching drawing on physician specialization could be feasible,
and this is a low-cost policy when geographical distance is less of a constraint.

In some settings, geographical distance still matters, as patients at times need to
visit in person or take a test. In many settings however, including the one studied
here, tests and blood work can be done at a local pharmacy or even at home (even in
an in-person setting, testing is usually not carried out by your doctor but by another
member of staff). Moreover, even in the cases where an in-person visit is required, this
paper can shed light on the improved within-region matching that could be achieved,
instead of the status quo matching based mostly on shortest local distance.

In order to overcome the endogenous selection between in-person primary care

'Within education, this includes but is not limited to after-school tutoring, worker training pro-
grams and some university courses. Other services moving online are, e.g., therapy and counselling,
exercise classes, real estate, financial advice and home improvement.



providers and patients, which normally confounds causal effects of doctors on pa-
tients, I assemble a novel dataset of consultations, patients and doctors in digital
primary care, available across an entire country — Sweden — in 2016-2018. The anal-
ysis data sets cover approximately 200,000 patients and 150 doctors and come from
Europe’s largest digital primary care provider. The key feature of the digital care
analysis sample is that the allocation of doctors to patients is random, conditional
on time and date. This is a by-product of the first-come-first-served assignment pro-
cedure of patients to doctors, and neither party has the ability to intervene in this
digital process. This is in contrast to the doctor assignment process within in-person
primary care, which is tightly constrained by geography.? To enable the analysis of
healthcare outcomes in the rest of the (in-person) healthcare system, and to include
patients’ prior healthcare histories in in-person care, the data above are merged at
the individual patient level with in-person healthcare data from the Swedish universal
healthcare system. In these comprehensive healthcare data, patients are followed over
six years, both before and after their utilizaiton of digital care, which allows me to
measure both outcomes and patient pre-existing risks in terms of past diagnoses and
healthcare utilization history. Finally, the data are matched at the individual patient
level with detailed socioeconomic and demographic variables from Statistics Sweden,
to enable the study of redistributional effects of doctor reallocation across the income
distribution.

I compare counterfactual skill-need matching policies to the most relevant other
policies. These benchmarks are, first, the status quo of online time-conditional ran-
dom matching between doctors and patients. Second, I simulate a second benchmark
of positive assortative matching on patient income and one dimension of doctor skill
to approximate real-life existing healthcare inequalities in in-person care. I provide
descriptive evidence of income-quality correlations in in-person primary care. Large
location-based differences in healthcare outcomes persist within countries (see, e.g.,
Finkelstein, Gentzkow and Williams 2021) — even in countries with universal public
health insurance such as Sweden (Chen, Persson and Polyakova 2022) and England,
where contemporaneous work also shows that cardiologist mortality prevention skill

for heart attack patients is lower in rural and more disadvantaged areas (Stoye 2022).?

209% of Swedish inhabitants live within 20 minutes from their closest primary care clinic
(Tillvaxtverket, 2011), and a majority are registered with the closest clinic available, which is the
default in many regions.

3Heckman and Landerso (2021) illustrate the sorting of educated families into areas with better



I also study the redistributional effects of doctor skill-patient need matching poli-
cies along the patient income distribution. I provide evidence that doctor-patient
matching with the aim to improve aggregate healthcare outcomes can allow us to ad-
dress healthcare inequality as a by-product, by severing the link between the quality
of local area service provision and patient income. Given that I find that primary care
doctors have different task-specific skills, and high-risk patients for certain adverse
outcomes have disproportionately low income, the assignment that minimizes these
adverse outcomes assigns those doctors more to low-income patients. This does not
mean that higher-income patients get bad doctors — they get doctors with a different
task-specific skill.4

Estimating doctor ability in primary care has been challenging, as important
patient outcomes are often ambiguous, rare, or delayed. Moreover, primary care
physicians have multiple tasks, which opens the question of whether a single ability
measure governs performance in all tasks, or whether doctors specialize. 1 address
this by creating observable output measures of primary care physicians in three key
dimensions of their work: (1) identifying patients who have dangerous conditions and
preventing imminent adverse outcomes (2) providing guideline-consistent treatment
for common conditions to minimize externalities and (3) leaving the patient informed
and satisfied so that they do not seek additional, costly, care more than necessary.
The first of these is the main outcome and is measured through (less) avoidable
hospitalizations, which is defined in the medical literature as hospitalizations that are
preventable by primary care.’

I measure the outcomes in each task by negative patient outcomes: in the case of
providing guideline-consistent treatment, I measure whether the patient has received

a counter-guideline antibiotic.® For the third doctor task, I measure whether the

public school teachers in Denmark, a welfare state like Sweden where teachers are paid equal amounts
across areas. According to Heckman and Landerso (2021), this results in similar intergenerational
mobility as in the U.S. as more advantaged families are better able to access universally available
programs. In the present paper, I quantify potential changes in total outcomes and in inequality if
geographical sorting could be removed in primary care.

4Other risk factors, for instance the risk of having a counter-guideline antibiotics prescription are
not negatively correlated with income.

5Mortality is the least ambiguous outcome, but the most rare and delayed as the conditions that
people seek care for in primary care are often less serious. The main outcome I use (avoidable
hospitalizations) can be seen as a proxy of mortality that is more commonly observed. Moreover, it
can be seen as a preferable outcome to mortality as it is also more closely linked to the work of the
primary care doctor.

6This is a slightly different type of guideline than those evaluated in recent economics literature,



patient has sought additional in-person primary care in the week following the digital
care visit, for a subsample where this is measurable. For each of these outcomes, I
estimate patient risk. To measure risk for avoidable hospitalizations, I generate a
risk score using pre-determined demographic and healthcare variables, such as age,
a disease index of chronic diagnoses, and previous hospitalizations. These are vari-
ables available to the doctors in the patients’ medical records, meaning that the
re-assignment algorithm does not use additional data.

I implement a novel empirical method that allows for both the measurement of
doctor task-specific skill and estimation of doctor-patient match effects, where the
latter uses the measures of doctor skill interacted with patient risk. This method
avoids overfitting in two ways: first, it is based on a split-sample strategy, where I split
the conditionally randomly assigned data into two samples: Sample 1 and Sample 2
(the “main sample”).” Sample 1 is used to estimate physician effectiveness in each task
with a value-added framework. Sample 2 is used to estimate the complementarities
between different patient risk types and doctors of varying estimated ability in each
outcome. The doctor ability was estimated on different patients, so that it can be
verified. This approach has the important benefit of being plausibly implementable
by healthcare providers, by first testing doctors through a relatively small set of
randomly assigned patients, and then assigning them patients suited to their skills.
The second step that I take to reduce the noise in the doctor skill estimates is to
shrink them using an empirical Bayes method.

In all outcomes, I find large and statistically significant differences across physi-
cians in their task-specific effectiveness. For instance, a 1 standard deviation better
doctor at following guidelines prescribes 28% less counter-guideline antibiotics. How-
ever, the evidence is not consistent with a single latent ability variable governing all of
the skills, meaning that doctors even within general practice have individual “special-

izations” .®These specializations are usually not taken into account in the organization

as it is not only intended to help the doctors make the best treatment decision for the patient at
hand, but also to make the doctors factor in externalities of their treatment decisions, in this case in
the form of antibiotic resistance. All doctors are allowed to deviate from the guidelines in rare cases,
and I compare doctors who deviate a little to those who deviate a lot with similar sets of patients,
and consider the latter to be worse.

"I verify the conditionally random assignment of patients to doctors in both samples.

8This could be due to different ability, for instance some are better at speaking with patients and
reassuring them, while others are better at being strict with antibiotics guidelines even if a patient
argues that they want antibiotics.



of primary care, as a primary care doctor is expected to deal with all types of tasks.
As parts of primary care is now reorganized in the digital age, these task-specific skills
can be taken into account.

The next step is to quantify how much physician-patient matching matters for
patient outcomes, given the empirical heterogeneity in patient characteristics. Indeed,
the gains from matching are driven by another fact that I establish, using a separate
data set of patients’ healthcare history: that patients have predictable needs for
different dimensions of doctor skills. In Sample 2 (the “main sample”), T estimate
the effect of matching doctors with high skill in a task with patients who have a
high estimated need for that task. One main result of this paper is that if we match
a doctor who is among the top 10% at reducing avoidable hospitalizations, with a
patient who is predicted to be among the top 1% risky for such adverse outcomes,
we could reduce their number of such adverse outcomes by 90%. At the same time,
patients who are not predicted as “risky” for this outcome have effects that are
indistinguishable from zero from seeing a doctor among the top 10% at reducing
avoidable hospitalizations. I will call this a complementarity between doctor and
patient types. Avoidable hospitalizations are a sign of low-quality primary care and
are most common among low-income individuals.’

To increase the relevance of the causal treatment effects of some doctors on some
patients, I assess the aggregate impacts of counterfactual policies of reallocations be-
tween doctors and patients, adapting a conceptual framework developed by Graham,
Imbens and Ridder (2014). This framework enables us to answer different questions
than the common question (what would the effect be of increasing a certain input?).
In particular, we can ask: how can we reallocate existing inputs to get an output im-
provement? This question is especially relevant in healthcare, where the lengthy and
costly education of doctors means these inputs are difficult to increase in the short
term. The conceptually simple framework relies on conditionally random matching
to estimate an average match function (the average outcome for each doctor type
when they meet each patient type), and then uses this function to evaluate effects
of counterfactual reallocations. The framework takes into account the externality on
the patient from whom a task-specific high-skilled doctor is moved in a reallocation.

The outcomes depend on the distribution and correlation of risks for each outcome

9This type of complementarity also exists for the other outcomes, which are more common and
where the patient need is not correlated with income.



in the patient population; the distribution and correlation of doctor skills; and the
within-patient and within-doctor correlation of risk and skills across the different
outcomes.

A counterfactual simulation shows that we could reduce avoidable hospitalizations
in the aggregate by 20% by matching doctors and patients, compared to random al-
location. This reallocation does not negatively affect other main outcomes. The
outcome is achieved by only reallocating of 2% of patients, since I show that we can
accurately predict who the patients at risk for avoidable hospitalizations are using a
limited set of past healthcare data, and they are a small fraction of all patients. Re-
ducing avoidable hospitalizations on aggregate reduces costs to the healthcare system
or insurer, and saves lives among the risky patients, who are mostly low-income, thus
reducing health inequality as a by-product.

Matching without moving people geographically is a resource-neutral policy that
affects outcomes. However, its efficiency compared to resource-intense policy alterna-
tives such as hiring and training, remains a priori ambiguous. To shed light on this,
I compare counterfactual doctor skill-patient risk matching policies to counterfactual
physician hiring and selection policies, where doctors who have above median skill
in three important tasks expand their hours of work at the expense of doctors with
below median skill in these tasks. Even if these doctors expand their hours by as
much as 70%, the gains are considerably smaller than from doctor-patient matching
policies, and would moreover be more difficult to implement. Matching has larger ef-
fects because (1) patients in primary care have heterogeneous needs, and these needs
can be identified with prior healthcare data, and (2) doctors have different skill sets
that are important for some patients’ outcomes but not to others.!?

Matching of service providers to users is an under-utilized policy tool, which could
be welfare-improving at low cost if distance is defied by digital services. The costs
would be a small increase in waiting time for some patients, and the costs of importing
data and developing the matching algorithm. Matching across distances may not be
feasible across all types of services, or across any distances, but this paper shows that

in a setting where it is feasible across an entire country, there are large potential gains.

10Tn the case of avoidable hospitalizations, it is also the case that the patients at risk are a very
small subset of the total amount of patients. These patients are at risk for dangerous and costly
complications, which is why focusing on them is important. The patients at risk for counter-guideline
antibiotics are a much larger share of the total patient pool, and I still find that matching has large
effects (10% reduction on aggregate) for that outcome.



Other settings where it could be feasible include treatment of chronic conditions or
one-off simpler primary care needs in settings such as Amazon Health (a prescription
service) in the U.S.; or in many integrated health systems in Europe and Asia. Algo-
rithmic allocation means that machine prediction is used as a complement to human
skill, as opposed to substitute.!! The algorithm allocates patients to doctors, but
the doctor makes the triage, diagnosis and treatment decisions. This could make the
policy less subject to “algorithm aversion” — that individuals trust recommendations
from an algorithm less than from a human (Dietvorst et al. 2015, Yeomans et al.
2019). In fact, versions of matching are already being developed and used by digital
platforms, including in digital primary care, without facing as much criticism as for
instance artificial intelligence triaging. This paper establishes the potential impacts
of such matching, and suggests new measures relevant for matching, such as doctor
task-specific skill and patient risk.

The results on doctors’ varying effects on heterogeneous patients have been of
independent interest also in in-person healthcare. The main reasons I focus on digital
care are, first, that the policy of doctor-patient matching is feasible in digital care,
due to the easing of shared location constraints.Moreover, in digital care matching
can be done at an instant by algorithms that quickly access patient and doctor data.
Finally, digital services can be viewed as a “lab”, which helps overcome endogeneity
challenges endemic in in-person primary care which have made the evaluation of causal
effects of doctors challenging. This is because, at least initially and in some of digital
care, doctor-patient assignment has been time-conditionally random. In regular in-
person primary care, patient-doctor sorting confounds causal effects and all doctors
do not meet all types of patients, meaning there is a lack of common support for
match effect estimators. The methods and conclusions of this study could speak also
to other sectors, where the allocation of service providers, such as teachers, bank
advisors, etc., to external clients could be key for effective production.

Digital provision of services has become widespread in many sectors. This is the
first paper to study nationwide digital service provision outside of a pandemic'? This

is also the first study the potential new types of matching that digital services could

HTf a substitute, the algorithm would make the medical decision. For a setting testing judges’
predictions against algorithms, see Kleinberg et al. (2018).

12Zeltzer et al. (2021) study the effects of telemedicine adoption on costs and quality in Israel
during the pandemic in 2020. Their aims are different, as they focus on providers that the patient
already had a location-based relationship with.



enable. In addition, I bring a new source of conditionally random matching of service
providers and clients to the literature of estimating provider skills and provider-user
match effects. This complements the nascent empirical literature on reallocation and
matching as mechanisms to improve outcomes instead of input augmentation (Aucejo
et al. 2022, Bergeron et al. 2022, Fenizia 2022, Graham et al. 2021).' These papers
study teaching, tax collection and bureaucracies. I contribute by developing the ideas
to a setting where there are lower obstacles and costs to matching on a large scale:
digital service provision. Moreover, I add to this literature by studying matching in
a medical setting, where provider skill is challenging to evaluate, and where there
is policy-relevant inequality in current resource allocation in many countries. I im-
plement average reallocation effects (Graham, Imbens and Ridder 2020) in a setting
without pre-existing estimates of patient need or doctor skill.

This paper also contributes to the literature on medical decision making and
physician performance, by studying not only doctors’ overall ability, but also task-
specific skill.'* Moreover, the focus on skill-risk complementarities between doctors
and patients that I evaluate here is also new to this literature. Alsan et al. (2019),
Cabral and Dillender (2021) and Hill et al. (2018) study the effects of patient-doctor
homophily on specific characteristics — gender and race, while the present paper is
to the best of my knowledge the first to estimate causal effects of doctor skill on
heterogeneous patients in several dimensions.

Recent work (e.g., Mullainathan and Obermeyer 2022; Chan, Gentzkow and Yu
2022) has studied physician errors in decision-making. This study builds on that
work in recognizing that physicians’ error rate may be heterogeneous, both across
physicians, and across tasks within physician. The physician-patient matching model
I propose incorporates potential heterogeneous physician error and assigns the pa-
tients, for whom errors are predicted to be most consequential, to the doctors who

make the least errors in that dimension. That is, I focus on physician-patient skill-risk

13Cowgill et al. (2022) contribute with a slightly different perspective, by showing the conditions
under which centralized assignment of workers is preferred compared to workers choosing positions
within firms.

14Gee, e.g., Fadlon and van Parys 2020; Cutler et al. 2019; Currie and MacLeod 2017; Abaluck
et al. 2016; Doyle, Ewer and Wagner 2010. Currie and Zhang (2022) also focus on specializations
by exploiting the Veteran Administration’s first-come first served assignment within clinic and find
that physicians’ abilities are correlated in dimensions that are closely related, such as avoidable
hospitalizations vs. hospitalizations for circulatory conditions and deaths. However, they find that
compliance with mental health screening guidelines is negatively associated with effectiveness in
preventing hospitalizations, but in their setting the differences in screening propensity are small.



complementarities.

Matching on platforms becomes more and more important. In many contexts, such
as online retail, reviews are the only source of information on match quality, but they
are at best a very noisy signal, and often missing or open to manipulation (Fradkin
2017). On online job boards, it is often hard to track even if a hire occurred, and even
harder to follow tenure and satisfaction at the job. In this paper, I contribute to the
platform matching literature by linking the matches that occurred on the platform
to Swedish administrative data on medical outcomes. This means that match quality
can be evaluated by the econometrician, and in the long run optimized by firms as
data on outcomes can be tracked with linked electronic health records. Another way
to think about the results is in terms of how much a society would loose from not
linking administrative and private data, as well as not allowing matching across a

larger market.

2 Institutional background

2.1 Primary Care in Sweden

Sweden has a tax-financed universal public health insurance. Health expenditures
accounted for 10.9% of GDP in 2016-2018.> Healthcare is provided by a mix of
public (organized by 20 regions) and private providers. Only a small share of citi-
zens — 6% in 2017 (Glenngard 2020) — have an additional private health insurance,
mainly provided by employers. Private health insurance accounts for less than 1%
of health expenditures (Glenngard 2020). Compared to other OECD countries, few
people in Sweden (3.9%) skip a consultation due to cost (OECD 2017). Yet, patients
complain of long waiting times for appointments in surveys, and the national goals of
limiting waiting times are often unmet.!® In the few primary care outcomes that are
measured and compared across countries, such as hospital admissions for asthma or
chronic obstructive pulmonary disease, and congestive heart failure (related to avoid-
able hospitalizations), Sweden is above the OECD average on one of the indicators
and below on the other (OECD, 2017).

15This a is slightly higher share than the OECD average, but lower than in the US.

16Tn January 2019, 33% of patients could not see a doctor in person the same day across the
country SKR (2022), and for some of the worst clinics, half their patients could not see a doctor
within 3 days. More information is available in the Waiting times Section in the Online Appendix.



Primary care is the front line of healthcare, where the initial evaluation of a pa-
tient’s condition, as well as cost-effective prevention takes place. In primary care in
particular, patients are heterogeneous, as are the tasks facing primary care physi-
cians/general practitioners (PCPs/GPs), but the variation in doctor effectiveness
with different patients has been difficult to study. This is partly due to the endemic
sorting between providers and patients in standard, in-person primary care — sorting
and selection is more prevalent in primary care, where centers have smaller catchment
areas than hospitals.!”

Primary care physicians are institutionally positioned as a gatekeeper to access
healthcare. They are perhaps even more important in countries with universal health
insurance, where access to specialists is more restricted, but they are central also in
the US system (Fadlon and Van Parys 2020).'®

Digital primary care, provided through smartphone video consultations, became
widely available in Sweden in 2016. Digital primary care is not suitable for all condi-
tions normally handled in primary care, since some conditions require physical exam-
ination or testing. However, many common conditions treated in primary care can
be diagnosed and treated digitally. In Sweden, this is provided by private companies
that are reimbursed by the regions, which are in turn responsible for the provision of
healthcare from the universal public health insurance. Just as in in-person primary
care, which is provided by a mix of private (40%) and public providers (60%), doctors
working in digital primary care are not paid fee for service but an hourly wage. The
reimbursement level from the universal public health insurance to companies provid-
ing digital consultations has changed several times, while the fee paid by patients has
remained at the level of fees for in-office primary care consultations during the study
period 2016-2018. For children (under 18) and elderly (over 84 years old), the service
is free from co-pay, just as in regular in-person primary care.

The results of meeting an online and an in-person doctor are compared using

I7Previous research has exploited plausible randomization between doctor teams and patients in
hospital care (e.g., Doyle, Ewer and Wagner 2010) to evaluate doctor effectiveness. Some sophisti-
cated designs exist in recent research on primary care, with Currie and Zhang (2022) exploiting the
Veteran Administration first-come first served assignment within clinic, and Fadlon and Van Parys
(2020) and Ginja et al. (2022) utilizing doctor exits.

18The primary care institutional setting varies both within and across countries. For instance,
referrals from the primary care provider to a specialist take place in 3% of consultations in our data.
This is comparable to the lower end of GP referrals in the UK in-person primary care setting, where
in a meta-analysis, they range from 1.5% to 24.5% (O’Donnell 2000).

10



an instrumental variables design, in a similar institutional setting as this paper, in
Dahlstrand et al. (2023). Online care does not result in significantly more avoidable

hospitalizations or prescriptions.

2.1.1 How patients choose in-person primary care providers

Regular (in-person) primary care is provided at primary care centers. Most patients
are registered with one such clinic, but not registered with an individual doctor.
Patients have the possibility to choose their clinic.!® 99% of Swedish inhabitants
live within 20 minutes from their closest primary care clinic (Tillvixtverket 2011).
However, research indicates that a lower proportion (16% in 2011) of individuals with
low education chose another center than their assigned default (compared to 29%
among those with higher education) (Bendz 2011). These results are in line with
research showing that e.g. lower income students are less responsive to quality when
choosing schools and need a larger quality increase to choose a school further away
from them, than richer students (Bau 2022).

2.1.2 In-person care sorting

In Table 1, [ study in-person primary care data from the region where I have such data,
Skane. Table 1 shows that patients have a more negative experience with primary
care in areas with a higher deprivation index.?’ Moreover, in more deprived areas,
patients are also less satisfied with the information they receive in in-person primary
care. There is also a marginally significant negative relationship between deprivation
and the share of patients who get to see a doctor instead of another profession (e.g.,
a nurse) when they visit primary care (Column 3). Column 4 measures one aspect
of objective quality of care: whether patients diagnosed with diabetes also receive a
lipid-lowering treatment. Here, there is no significant correlation with the deprivation

index.

19Tn some regions, e.g. Stockholm, patients can remain unregistered with any clinic if they do not
make an active choice, while in others, there is a default choice.

20The outcome variable in Columns 1 and 2 are from the National Patient Survey, Nationell
Patientenkdt (NPE), 2019, and the variables in Columns 3 and 4 are from Region Skane’s publicly
reported data. The deprivation index is used by the Region and is a weighted average of the variables
(1) born outside EU (2) unemployed 16-64 year old (3) single parent with child under 18 years old
(4) low education 25-64 years old (5) over 65 years old and in a single household (6) person over 1
years old who has moved into the area (7) age below 5 years old.

11



To make sure these relationships are similar across the entire country, I use ag-
gregated public data. Appendix Table 6 indicates that patients across the country
are less satisfied with their primary care in areas with lower income and higher share
first-generation immigrants.?! In contrast, Figure 1 shows that the shares of patients
across the income deciles who meet good doctors in the 3 outcomes in digital care are
similar.2? The reason that the shares of patients who meet doctors in the top 10% in
the three skills is different from 10% is that they work different total hours. Patient

income is the income of adult patients in 2017.

Table 1: Quality measures of physical primary care centers, patient-reported (1,2)
and objective (3,4) regressed on winsorised deprivation index

(1) (2) (3) (4)

Positive  Satisfied with Met physician rather Recommended treatm.

experience information  than other profession for diabetics
Deprivation index -10.60 -6.26 -0.02 -0.14
(2.15) (2.022) (0.01) (3.17)
Constant 89.61 80.26 0.42 63.39
(2.21) (2.02) (0.011) (3.11)
N 120 120 149 115
R? 0.17 0.07 0.02 0.00

Robust SEs in parantheses. Sample is primary care centers in Skane. Source: NPE and Region Skane.

2.1.3 Sorting patterns into online care

I assemble and analyze proprietary data from one digital primary care provider, which
is Europe’s largest digital care provider in visit volume. This provider contributed
with a majority of all such digital visits in Sweden during the study period. Patients
sort freely into using the digital primary care service, and this is not the only option
for primary care or digital primary care. When the service was started, advertise-
ments were made on e.g. public transport, informing about the service and potential
reasons to use it. To compare the sorting patterns into digital primary care to the

sorting patterns into in-person primary care, I study one Swedish region where I have

21Table 6 covers most of Sweden, resulting from a matching between municipality and 4-digit
postcode-level observations, and the outcome variable is a patient-reported primary care clinic score
from the national patient survey (NPE, 2019).

22Gatisfaction in the digital service actually decreases with income, opposite to the in-person
results. Result available on request.
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Proportion meeting good doctor over patient income deciles

.25

B AH
B cGP
[ Double visit

.05

Proportion who meet top doctor in different outcomes

Figure 1: This figure shows what proportion of patients across income deciles who
meet a doctor who is classified as top 10% in reducing avoidable hospitalizations
(AH), in reducing counter-guideline prescriptions (CGP) and in preventing double
visits. All income deciles have different than 10% proportion of top doctors for the
different outcomes, which is because doctors who are good at different things work
a different amount of consultations during the sample period. The patient income is
the total labor and self employment income of adult patients in 2017.

the universe of in-person primary care data.?® This is Region Skéne, which is the
southernmost region in Sweden, containing both rural areas and the third largest city
in the country. Around 10% of the digital care users are from this region.

Using the same index of low socioeconomic status among the patients registered at
the clinic as in Table 1, I find that the deprivation index is similar among digital users
and non-users (Appendix Figure 8(b)) (extensive margin). However, on the inten-
sive margin (not comparing digital and in-person anymore), individuals with higher
deprivation index who use the digital service have more appointments in the digital
service (Appendix Figure 7(a)). This is corroborated when looking at individual in-
come: lower-income users use the digital service more intensively (Appendix Figure
7(b)). Figure 8(a) shows that digital care users are younger than non-users. There

is a similar level of prior disease among digital users and non-users who are under

23Primary care data is not collected by the national body (the National Board of Health and
Welfare) which contributes with the rest of the in-person healthcare data to this study. To get
access to in-person primary care data in the entire country, separate applications and reviews have
to be made to the 20 regions. I do not have data on individual socioeconomic variables of the
patients in the region who do not use digital care, only their age.
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60 years old (Figure 9), measured by the sum of comorbidities from the Elixhauser
index, a commonly used measure for summarizing disease burden (Elixhauser et al.
1998).24 For users over the age of 60, non-users seem to have less prior disease.
Patients take up the service freely, and are not obliged to change their relationship
with their regular in-person primary care clinic. Using data on in-person primary care
from Region Skane, I find that around 4% of digital care users have a nurse contact

in in-person primary care the week after their digital care visit.2

2.1.4 The digital care provider

The healthcare provider contributing with proprietary, de-identified data for this
study (in collaboration with Statistics Sweden) provides on-demand primary care via
video consultations with certified medical doctors. The physicians may have different
specialties, but all are acting as primary care providers/general practitioners (GP),
and GP is the most common specialty. During the study period, the healthcare
provider employed or contracted with around 500 doctors, but many of them were
new or had not done many consultations.

Patients access healthcare appointments by downloading the company’s smart-
phone application and log in via Sweden’s electronic identification system (Bank ID)
which is used for all digital bank and governmental agency interaction. Adult pa-
tients access the system via their own Bank ID, while child patients need one of their

parents or guardians to log in via the parent or guardian’s Bank ID.

2.1.5 Randomization

A key feature for this study is that doctors and patients are as good as randomly
assigned to each other, conditional on calendar date and time of day. This has not
been the primary purpose of the service, but is a by-product of the aim to minimize
and equalize waiting times nationally. Doctors can choose their time shifts, and often
choose them around 2-3 weeks ahead. During their shifts, when they are not busy

with a patient or with follow-up work (such as writing prescriptions), they are in

24Tn this sorting analysis, the comorbidities are based only on data from primary care for both
digital users and non-users, since I do not have data on other care for the digital non-users.

25This is consistent with evidence in Gabrielsson-Jirhult et al. (2019), who find that 3.6% of
digital care users in a different region (Jonkoéping) have an in-person visit at a primary care centre
within a week of using a digital care service.
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the roster of available doctors.?® Patients who enter the system can choose between
two tracks: meet the first available doctor (“drop in”), or meet a specific doctor at a
specified time. Patients who choose the first track (82%) are effectively randomized
to a doctor within this time period. One exception to this is that if there is a doctor in
the roster of available doctors who has a pediatric specialty, then this doctor will be
more likely to be matched to a child patient if such a patient is in the line. Therefore,
I remove all pediatric specialists and the patients they are matched with (see further

below in the definition of the analysis sample).

2.1.6 Doctors’ incentives and work pattern

Doctors who work for the service almost invariably work part time from home and also
work for other healthcare services, such as public or privately run hospitals or clinics.
Doctors are recruited across the spectrum of experience, with the conditions that
they (1) have a certification as MD (legitimerad lékare) in Sweden from the National
Board of Health and Welfare (Socialstyrelsen) which requires that they have finished
the 18-21 months of intern period/residency (Allméntjénstgoring, “AT”) after medical
school (2) that they have at least done 6 months of their intern period/residency (AT)
in a Swedish GP clinic/primary care center or have at least 6 months of experience
at a Swedish GP clinic after the intern period/residency (AT).

Table 2: Descriptive Statistics of Doctors

(1)

mean sd min max count

Specialist 0.31 047 0 1 143
In specialty training 0.36 048 0 1 143
MD + residency only 0.33 047 O 1 143
doc_speaks_noneulb_lang 0.36 048 0 1 143
GP specialist 0.40 049 0 1 143
Age 369 7.25 28 57 61
doctor_female 0.38 049 O 1 138
Employed rather than contractor 0.38 0.49 0 1 52
Observations 143

26Data from a later period may not be randomized to as large an extent since the healthcare
provider after the study period started experimenting with matching, a process which this study has
been informative for.
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Doctors are paid per hour and there is no fee-for-service for the doctors, or bonus
payments. Table 7?7 describes the characteristics doctors who are included in the
study sample as they have worked at least 600 randomized consultations for the
service.

Around 50% of doctors are employed and the rest are hired as contractors, billing
from their private company. Doctors can choose either of these methods when starting
working for the digital care company. There are benefits to each option, with different
tax liabilities, paperwork and pension contributions. The costs for the company are
similar: around USD 70-95 per hour. Most doctors work part-time, and most also
work in another type of healthcare provision, for instance in a public hospital.

Doctors are evaluated yearly on key performance indicators, and good perfor-
mance can lead to a pay increase. The main performance indicators are patients per
hour, fraction of patients who are ’helped’, and patient satisfaction. That a patient
is "helped’ means that the doctor has resolved the patients issue without redirecting
them to other care. Hence, doctors have an incentive not to over-refer or redirect ex-
cessively to more care. Moreover, all doctors practicing in the country can be subject
to disciplinary investigations if they engage in neglect or malpractice with adverse
consequences for the patient. Hence, doctors also have an incentive to minimize

adverse events for patients.

3 Data

3.1 Definition of analysis sample

The sample definition proceeds in three main steps. First, I start from the universe
of patients who has had at least one digital consultation with the largest provider
of digital healthcare in Sweden, from the start of the service in mid-2016 to the
end of 2018.27 1 keep only the first visit for each patient, as these consultations are
conditionally randomized, and I want to avoid any concern of endogeneity in following
visits in terms of particular patients selecting in to a second visit. Hence, each patient
has only one observation in digital care. I restrict the sample to “drop in” visits, that

is visits where the patient had no way of specifying which doctor they want to meet,

27Tt is by far the largest in terms of patient volumes in 2016-2020. By its own account it is also
the largest digital care provider in Europe, operating in several other countries, often with national
health insurance contracts.
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but rather meet the first available doctor. This is 82% of the first visit sample, and
this is the sample where time-conditional randomization holds. Moreover, I remove
pediatricians and the small children who are more likely to see a pediatrician (where
randomization does not apply).?®

Second, I match this data to official registry data from Statistics Sweden on so-
cioeconomic and demographic variables and data from the National Board of Health
and Welfare (NBHW/ Socialstyrelsen) on diagnoses, consultations, hospitalizations
and prescriptions from specialist, acute and inpatient care across the Swedish health-
care system in the three years preceding digital primary care, 2013-2015, and from
the period concurrent to digital primary care, 2016-2018. Moreover, I match with
data on prescriptions from all primary care nationwide in 2013-2018.2° In addition, I
include data on in-person primary care (2013-2019) from one Swedish region (Skane),

30" Finally, I keep only

which matches for around 10% of the digital care sample.
doctors who have done >600 consultations and their patients, which leaves around
200,000 patients and 143 doctors. 3! Table 5 in the Online Appendix shows summary
statistics of the two main samples. Patients are on average 30 years old, and 60% are
female. Around 10% are born outside of Sweden, compared to almost 20% nationally.
Around 6% are second-generation immigrants, which is similar to the share in the

country as a whole.

3.2 Measurement of outcomes

Estimating doctor performance in primary care has been challenging, as important
patient outcomes are often ambiguous, rare, and/or delayed. Mortality and quality
of life may be the most important outcomes, and these suffer in measurement from
being delayed or rare (mortality) and ambiguous or subjective (quality of life). Other
important outcomes are limiting costs to the rest of the healthcare system, as primary
care physicians serve as gatekeepers, and limiting health externalities, such as the

spread of contagious diseases through vaccination, and the limiting of antibiotics use

28These small children (born after 2012) also do not have the full set of pre-data which starts in
2013.

29Prescriptions data is the only data from primary care that is collected nationally.

30Swedish in-person primary care is devolved to 20 regions, which means that all data from primary
care is not included in national registries.

31Many doctors are excluded as they have only done a few randomized consultations, many of
them under 100. Common reasons are that they had a trial only, or were hired late in the sample
period. For more details on the sample definition, see the Online Appendix.
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leading to resistance.

Primary care physicians have multiple tasks, which opens the question of whether
a single ability measure governs performance in all tasks, or whether even in general
practice doctors are in fact specialized. I address this by creating observable output
measures of doctors in three key dimensions of a primary care physician’s work:
(1) identifying risky patients and preventing serious adverse events (2) providing
guideline-consistent treatment for common conditions that limit externalities, and
(3) leaving the patient informed and satisfied so that they do not seek additional,
costly, care more than necessary. I measure the outcomes in each task by negative
patient outcomes. In the case of risk prediction, the negative outcome is an avoidable
hospitalization, defined as a hospital admission that could have been avoided with
sufficient primary care. In the case of providing guideline-consistent treatment, I
measure whether the patient has received a counter-guideline antibiotic. For the third
outcome, I measure whether the patient has sought additional in-person primary care

in the week following the digital care visit, for a subsample.

Avoidable hospitalizations (AH) The main outcome I use is defined in the medi-
cal literature since the 1990s as a hospital admission that could have been avoided with
sufficient primary care, and the diagnoses for which a hospitalization is regarded as
avoidable are listed by medical research independently from this study. This outcome
can be seen as a proxy of mortality that is more commonly observed.?? Avoidable
hospitalizations can even be seen as a better outcome measure than mortality, as AH
are more closely linked to the work of the primary care doctor. Mortality could be
due to factors outside of the control of a primary care doctor, such as a car accident,
while AH are defined to be preventable by primary care.

Avoidable hospitalizations are rare events: 0.2% of all patients have an avoidable
hospitalization in the 3 months following the digital consultation (but 6% of patients
defined as risky have an avoidable hospitalization in the same time period). Yet,
this is the most high stakes outcome of those which are measurable in the data and
relatable to doctor inputs. The need to measure and understand rare and high-stakes

events has been emphasized not least by the literature in financial economics (Bond

32Currie and Zhang (2023) show that primary care practitioners who are better at reducing avoid-
able hospitalizations are also the best doctors at reducing deaths. Their choice of term is "hospital-
izations for ambulatory care sensitive conditions’, which is the same concept as AH.
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and Dow 2021) and the economics of disasters (e.g., Barro 2009).>* Another reason
to focus on this outcome is that one of the main tasks of a primary care doctor is to
sort the rare and seriously ill patients from the vast majority with minor complaints.

Bacterial pneumonia, urinary tract infection and congestive heart failure account
for 77% of the AH costs in the US (Rocha et al 2020). Avoidable hospitalizations
are dangerous, both because of the inherent risks when a condition has worsened
unnecessarily, and because hospitalization in itself has risks such as hospital-acquired
infections and risks from invasive procedures. It is estimated that 1.1 potential life
year is lost from every AH (Rocha et al 2020). In both the United States and Sweden,
AH decrease with income (McDermott and Jiang 2020), so reducing them could have
an impact on health inequality.

Avoidable hospitalizations are also costly. In the US in 2017, 3.5 million adult
AH (13% of hospitalizations) cost hospitals $33.7 billion (9% of costs for all adult
non-childbirth hospital stays) (McDermott and Jiang 2020). In Sweden, avoidable
hospitalizations cost an estimated SEK 7.1 billion ($820 million) each year, and this
represents 7% of all costs for inpatient curative and rehabilitative care.

As an outcome of a digital consultation, I use avoidable hospitalizations that take
place within 90 days of a digital consultation. Most of the avoidable hospitalizations
within 90 days happen quite early after the digital consultation, and the mean is 33
days. I conduct several checks to determine whether the avoidable hospitalization
can actually be considered as preventable in the digital consultation, available in the

Online Appendix.

Counter-guideline prescriptions (CGP) Widespread non-adherence to medical
guidelines contributes to hospitalizations, deaths, and spending (Neiman 2017). Such
non-adherence has recently been studied with growing interest in economics, see, e.g.,
Abaluck et al. (2021), Cuddy and Currie (2020), Finkelstein et al. (2022) and Frakes
et al. (2021). While recognizing that non-adherence could be due to superior skill or
access to richer information, and thus lead to better outcomes, several of these papers

show that non-adherence leads to higher costs or worse outcomes for the patient at

33Barro (2009) estimates the risk for disasters as 2% per year and shows that they have large
welfare costs: society would be willing to reduce GDP by 20% each year to eliminate these rare
adverse events. An avoidable hospitalization involves not only the event per se, but can have large
negative consequences as it is a negative health event that may lead to prolonged loss of productivity,
and some risk of death.
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hand.

Non-adherence to antibiotics prescription guidelines is particularly interesting
since excessive antibiotics prescriptions lead to the negative externality of bacterial
resistance. Hence, this is an example of another of the doctors’ skills in a primary care
system such as the one studied, namely to minimize externalities. I have chosen this
particular type of guideline for three reasons. First, it adds to the literature on guide-
line adherence by studying a guideline that explicitly incorporates the benefit of other
people, and hence does not only serve to maximize outcomes for the patients while
minimizing pecuniary costs. Second, it is a guideline where consistent non-adherence
is a clear signal of lower skill, if we take the policymakers’ weighting of the externality
vs. patients’ benefit to be the correct one.?* Third, it is measurable in my data as
other guidelines particular to online care were not yet developed, but this was one
that policymakers prioritized. 1 code non-adherence to 16 guidelines from Swedish
strategic programme against antibiotic resistance on digital care (Strama 2017, 2019).
More details on the variable creation can be found in the Online Appendix.

Bacterial resistance means that the antibiotics that are usually effective in treat-
ing a bacterial infection will no longer work, which can lead to prolonged infection
and mortality. The guidelines serve to limit the use of antibiotics to where the benefit
outweighs the social cost of using them. Bacteria adapt under pressure and if there
is less prescription of antibiotics, it is possible to decrease the number of resistant
bacterial infections (Bergman et al. 2004). Antimicrobial resistance is estimated to
lead to more deaths annually worldwide than either HIV /aids or malaria (Murray et
al. 2022).3° The non-adherence measured in my sample is quite low (4%) by interna-
tional standards, as is common in Scandinavia. The Centers for Disease Control and
Prevention (2019) estimate that 28% (47mn courses) of all antibiotics prescribed in
doctors’ offices and Emergency Departments in the United States are for infections

that do not need antibiotics.

34Many patients want antibiotics and push for it, and the primary care physician’s role here is
to limit the use of antibiotics for the common good. Physicians are allowed to prescribe above the
guideline in a small number of cases where they have more information, but if a physician consistently
over-prescribes with a balanced set of patients, then this is a sign of low skill in resisting the patients’
pushing, or low awareness of the guidelines.

35Global deaths associated with antimicrobial resistance are estimated to be 5 million/year, of
which 1.2mn are deaths for which antimicrobial resistance can be held directly responsible. This is
more than HIV/Aids (0.86mn) or malaria (0.64mn) (Murray et al. 2022).

20



Contacted in-person care within a week after the digital consultation This
outcome will be less emphasized as it is only available in 10% of the sample, i.e., for
patients in the region which delivered full in-person primary care data. It is an
outcome which is important for primary care costs and for patient satisfaction. If
a patient contacts an in-person primary care clinic in the week following the digital
care consultation, this may indicate that they were not satisfied with the digital care
consultation or the information given. This incurs additional costs to the universal
health insurance in cases where the digital care consultation incurred a payment
(which is not the case if the visit was deemed inappropriate for digital care by the
doctor).

4 Conceptual framework

This section has two objectives. First, it presents the econometric framework for
estimating match functions between patients and doctors, and counterfactual effects
from reallocations. I follow Graham et al. (2020) with some modifications. This
framework takes seriously that healthcare resources can be rival.*¢ I take into account
the “externality” on the patient from whom the a doctor, who is highly skilled in
some task, is moved. I also add a consideration of opportunity costs in terms of other
outcomes when doctors are multitasking and skills are potentially correlated.

The second objective of this section is to illustrate the matching problem of the
healthcare planner. There are two main reasons to view this problem from the per-
spective of a planner. First, it could be a realistic setting not only in a public health-
care system. Cowgill et al. (2022) theoretically cover the circumstances under which
centralized assignment by firm leaders leads to higher productivity, accounting for the
effect on retention rates, compared to self-organized matches where worker preferences
are expressed through for instance deferred acceptance. They also show empirically
that within one example large firm, planner-dictated matches are more valuable than
preference-based matches.

Second, healthcare is fraught with real externalities, which a planner may inter-

nalize more than in a decentralized system. However, models studying physician

36 A number of studies consider covering more people under insurance or changing incentives which
could lead to more utilization, without explicitly recognizing that, e.g., medical doctors are a scarce
resource and could be considered fixed at least in the short run.
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behavior often choose settings which are free from those to focus attention on other
features.®” I have included at least one outcome which has externalities: counter-
guideline antibiotics prescriptions.I have chosen to take the perspective of a planner
who has the same views as the Swedish governmental agency on antibiotics: i.e., [
take the guidelines as striking the correct trade-off. Abaluck et al. (2020) show that
there is large variation in adherence to other guidelines where there are no externali-
ties, and physicians do not incorporate more information that is relevant to treatment
effects. They also show that promoting knowledge about the guidelines does not go
all the way in optimizing physician behavior. In this paper, I instead consider a plan-
ner who could reassign the doctors who are better at adhering to guidelines to the
patients who need that.

This study is complementary to the literature on mechanism design in matching
markets where strategic incentives of agents are taken into account when studying
matching problems. In this paper, I do not study strategic incentives of patients and
doctors over whom they match with. There are two main reasons for this. First, in
some settings (such as the new digital assignments in several markets), agents have
little control over who they match with. Second, as Graham (2011) points out, the
study of the effects of alternative assignments is the first step in a more complete
policy formulation — before deciding if mechanism design of a decentralized system to
implement a desired outcome is relevant, we need to know if there are large benefits

to alternative allocations.

4.1 Econometric framework

Consider D doctors and N patients. Doctors have observable characteristics W,
which measure doctor skill or effectiveness in different tasks, and patients have ob-
servable characteristics X; which measure patients’ need for different doctor inputs,
and is predicted from patients’ healthcare history. One of the reasons that doctors dif-
fer in skill in certain tasks could be different rates of prediction errors (Mullainathan
and Obermeyer 2022). This source of difference in skill is particularly pertinent in the
case of determining which patients are at risk for adverse outcomes such as avoidable

hospitalizations. Another reason that doctors differ in effectiveness in some tasks

37See, e.g., Abaluck et al. (2020) who study physician guideline adherence in the allocation of
a drug, which has close to zero marginal cost, and whose only downsides occur within the patient
themselves.
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could be differences in communication skill, which is particularly relevant for making
the patient satisfied and not seeking unnecessary repeat care for the same issue. A
third difference is how confidently doctors are able to counter patient demands for
unnecessary antibiotics, or how much weight they put on the externality. Patients
also have unobserved attributes V; and doctors have unobserved characteristics U;.
The potential healthcare output (healthcare outcome Y;;) when patient i matches

with doctor j is:

The research design is based on on random assignment (conditional on time) of

3 Randomization of doctors to patients ensures that the joint

patients to doctors.
density of patient observed characteristics X;, unobserved characteristics V; and doc-

tor observed characteristics W; and unobserved characteristics U; can be factorized:

in,‘/uWi,Ui(x? v, W, u) = in,‘/i (IE, U)fWi,Ui (w7 U) (1)

Under restriction (1) on the joint distribution of the characteristics of patients
and doctors, the conditional mean of the outcome Yj; is called the Average Match
Function (AMF):

EYi|Xi =2, W; =w] = //[g(x,w,v,u)f‘/i|Xi(v|x)ij|Wj (u|w)]dvdu = Bz, w)

The AMF, 5(z,w), provides information on how match output varies across different
types of agent pairings, when both doctor and patient are random draws from their
respective subpopulations z and w. Figure 10 in the Online Appendix shows an
example of how the AMF looks in this context. The AMF is the main building
block for conducting counterfactual analyses. Consider a counterfactual assignment

of doctors to patients, i.e. a conditional distribution of doctor types WW;:3

38The framework will omit the conditioning for simplicity, see Graham (2011, p. 989) for identi-
fication conditions under conditional random matching. The conditioning is on time of day (shift)
and date of joining the queue for a consultation.

39W, has an equal marginal distribution to W (due to the feasibility condition) but the distribu-
tion conditional on patient attributes will differ.
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ij|X,-(w|x)

which satisfies the feasibility condition (this will later be relaxed):

[ F (ko) o) = fw)

for all w € W. The distribution of patients is kept fixed, i.e. fx,(z) is left unmodified.

Average healthcare outcomes under a counterfactual patient-doctor assignment equal:

B[7] = [ | st wlotu] £ (o) 2)

which can be calculated with knowledge of the AMF. The Average Reallocation
Effect (ARE) from the reallocation f is Y relative to the average outcome under the

status quo allocation, Y57

ARE(f) =E M —E[7™] (3)

Since everything to the right of the equality in equations (2) and (3) is identified,

so is the Average Reallocation Effect (Graham et al. 2020). To calculate this, I first
compute the expected outcome for each type of patient (e.g., X; = x) given their
new doctor assignment (e.g., to type W; = w — the inner integral in equation (2).
I then average over the status quo distribution of X;, which is left unchanged (the
outer integral in equation (2)). This yields average patient outcomes under the new

assignment of doctors to patients.

4.2 Problem: Reallocation of Fixed Healthcare Resources

The objective of this problem is to improve healthcare outcomes, under the constraint
that resources are fixed.*® Here, the fixed resources are the doctors, including their
abilities and number of consultations. As a first step, I assume that in the relatively
short run I am considering, it is not possible to hire more doctors or increase their
abilities. In an extension of the analysis, I consider selective hiring policies where I

extend the working hours of the doctors who have above median skill in several tasks.

40Tt can be interpreted as a problem of a social planner, or of a planner of healthcare provision who
cares about externalities, either in a healthcare system such as Medicare or a national healthcare
system, or a planner in e.g. a Health Maintenance Organization.
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I will make one main simplification: to focus on one outcome k at a time, e.g.,
reducing avoidable hospitalizations. This is reasonable as it is unclear how a planner
would weigh the different outcomes against each other. Instead, I will study what
happens to other outcomes when I reallocate to improve one outcome. In fact, it
turns out that doctor skills are not positively correlated across outcomes, so there are
no important trade-off between the different outcomes.

To be realistic, I assume that the planner does not observe U; or V;, hence I
am restricted to consider only reallocations where unobserved traits are randomized.
From now on, I let W; and X; be discretely-valued. This is motivated by the fact
that I will reduce the dimensionality of doctor and patient types to binary, good or
bad, needy or non-needy.

Suppose we know the AMF f(w, x) V(w, z) € W x X (up to sampling uncertainty),
and the marginal distributions of doctor and patient characteristics: p = (pu, ..., pp)’
for pg = Pr(W; = wy) and A = (A, ..., Ap)’ for A\, = Pr(X* = z,). The planner
chooses the assignment function m;; = Pr(W = w;, X = ;) to minimize a negative

healthcare outcome £ such as avoidable hospitalizations:

I J
mmek(ﬂ) = Z ﬁk(flf“ wj)'frij (4)
i=1 j=1
subject to feasibility constraints:
Y Nymy=N, VreX (5)
jed
(each patient gets 1 doctor)
Z N™(z,w) = Nggo(w) Yw e W (6)
reX
(same workload as in Status Quo (SQ)).
where N, = total number of patients, N, = number of patients of type z,

N™(z,w) = number of patients of type x that doctor w meets in any assignment
7, Nig(w) = total number of patients that doctor w are assigned to in the status quo
(SQ). This problem is similar to those found in Graham, Imbens and Ridder (2020)
and Bergeron et al. (2021).

The difference between a candidate assignment and the completely random match-
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ing (i.e., the status quo situation where both observed and unobserved characteristics

are randomized) is given by:

N
,_.
._\

ARE =Y (x)=Y (z"%") = Blwy, xr)—=B(wy, z:)—[8(w;, vr)—B(wj, z;)])

=1 j5=1

<.

where the last term is a measure of the average local complementarity between W
and X.

Outcome-maximizing assignments will tend to be assortative in regions of comple-
mentarity [B(wy,z1) + B(w;, x;)] — [B(wy, z;) + B(w;, xr)] > 0 (Becker 1973, Graham
2011). I will show evidence of complementarities and evaluate average reallocation
effects (ARE) of assortative matchings. The ARE takes into account the externality
on the patient from whom the high-skilled doctor is moved. For each counterfac-
tual reallocation, I will not only compute the ARE for the main outcome which was
intended to be improved with this reallocation, but also compute AREs for other
outcomes. The latter will shed light on the opportunity costs of reallocation in terms

of other outcomes when doctors are multitasking and skills are potentially correlated.

5 Empirical strategy

The empirical strategy has two building blocks. The first is nationwide time-conditional
random assignment between patients and doctors in digital primary care. This gen-
erates variation in patient types that each doctor meets — in geographic location, age,
socioeconomic status, previous healthcare utilization, etc. The conditionally random
allocation allows for causal identification of doctor effects, in contrast to the usual
patient-doctor sorting in primary care.

The second building block of the empirical strategy is a split-sample approach to
avoid overfitting and to create an implementable strategy. In particular, I evaluate
doctor effectiveness using a value added method in a separate sample of randomized
digital care (Sample 1, 40% of consultations). In Sample 2 (60% of consultations),
I use the estimates of doctor skill to estimate causal match effects with patients.
This creates the average match function: the expected adverse outcomes conditional
on the doctor and patient types. It is also in Sample 2 that I estimate the effects of

counterfactual assignments. The samples are completely disjoint and no patients exist
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in both samples (see Figure 5). Both samples have conditional random assignment
between doctors and patients. I choose each doctor’s first 600 randomized visits
because that is how the procedure could be operationalized: It gives the employer ~3
months of work by the doctor as a sample to evaluate the doctor.*! The employer can
then assign the doctor to different patients, and I show how results would look from
that in a sample which does not contain the same patients as in the doctor evaluation
sample.

Who should doctors skilled in a certain task be matched with? I predict patient
risk factors (X;) in another separate sample (Sample 0), which consists of pre-digital
(in-person) healthcare data in 2013-2016 — the period preceding digital care. I find
logical ex ante patient characteristics which indicate need for doctor input related
to each outcome Y*. For avoidable hospitalizations, I predict the risk with a simple

linear method.*?

Balance The identifying assumption both for estimating doctor skill and match
effects is that within a time period (defined as a 3-hour shift, unique for each date),
the allocation of doctors is orthogonal to any patient characteristics which affect the
outcomes. To test this for observables, I regress doctor characteristics on patient
characteristics when controlling for shift-by-date (randomization strata) fixed effects.
Table 7 shows that characteristics are balanced. Another balance test is reported in
Table 8, which shows that patient predicted risks for avoidable hospitalizations (AH)

are uncorrelated with doctor AH skills in the main estimation sample.

Estimating doctor skill - in Sample 1 Primary care physician skill is challenging
to evaluate for several reasons: (1) pervasive sorting between primary care physicians
and patients, (2) a lack of linked patient-provider datasets followed over time, (3)
multitasking and the ambiguity of many measurable outcomes, (4) the delayed nature
of the outcomes, and (5) the co-production of healthcare with the patient, where
patient adherence, motivation and understanding are key. To overcome (1) and (2),

I use the unique nationwide conditionally random patient-doctor allocation in digital

41The median number of randomized appointments/doctor/calendar day is 10, and I assume 60
working days in 3 months.

42T have also predicted risk with a random forest algorithm using much more of the data, but this
does not improve much out of sample on the simple linear regression using sparse data. I therefore
use the simple linear rule using only 6 variables, since would be easier to implement and also more
transparent for patients.
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primary care. I also match this with rich pre-digital care administrative data on both
healthcare use and socioeconomics to validate the random assignment mechanism
to doctors in digital care. For (3), I recognize that multitasking is at the core of
possible specialization, and define several doctor tasks which stand in direct relation
to measurable patient outcomes.

To deal with the delayed nature of many important primary care outcomes, (4), I
use a variety of shorter-term outcomes, ranging from frequent and lower-stakes, to rare
and high-stakes, but all of which are measurable within 3 months. I address (5) by
specifically studying the varying effectiveness of different doctors with heterogeneous
patient types. The co-production of healthcare with the patient is important for
possible complementarities, and I use a set of outcome measures that are at varying
proximity to the locus of control of the doctor.

In a sample consisting of doctors’ first 600 randomized consultations (40% of the
sample), I estimate the doctor effect for each task as the average of the effect across
all the patients.

Yij = ZI1 + N\ +wj + €5

where w; = WJEB is estimated as the Empirical Bayes shrunk random effect of doctor
5.4 This regression is estimated separately for all the outcomes k. \; capture date-
shift fixed effects (randomization strata) and Z; is a vector of patient characteristics.

Given a large enough sample size (creating common support in patient types for all
doctors) and random allocation, all doctors have a similar patient pool conditional on
time.** I perform an Empirical Bayes shrinkage procedure for the doctor estimates,
which results in a best linear predictor of the random doctor effect (Morris 1983).
The noisy estimate of doctor quality from a value added regression is multiplied by
a measure of its reliability, which in turn is the ratio of signal variance to signal
plus noise variance. Similar shrinkage is common in studies of teacher value-added
(see e.g. Kane and Staiger 2008; Chetty et al. 2014). It introduces a bias but this
is preferred the main goal is to study the distribution of doctor skills, for instance

in counterfactual reallocations, rather than the individual doctor effects. Table 15

43A Durbin Wu Hausman test between fixed and random effects does not reject random effects:
Prob > x? = 0.16. Results with fixed effects instead of random are similar and are available upon
request.

44Year by month by day by time shift fixed effects are always included. In the sample of doc-
tors’ first 600 randomized consultations, >95% of doctors have met a patient with an avoidable
hospitalization in the past 3 years.
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in the Appendix shows the regression estimating the doctor effects for avoidable

hospitalization skill.*®

Defining patient types I define patient types based on risks for the various neg-
ative events that define the outcomes. There is a tradeoff between choosing the best
prediction of which patient is at risk (which would generate larger benefits from re-
allocation) and keeping the prediction simple. The benefits of keeping the prediction
simple are twofold: first, the exercise becomes more realistic if we use only a small set
of variables that are also available to the medical provider, which means the procedure
could be implemented in practice. Second, the procedure becomes more transparent
and thus politically feasible if instead of a black box sophisticated prediction, we use a
simple linear rule that defines a cutoff between who will get a higher skilled doctor in
each outcome. To be conservative, I have chosen the simple rule instead of a machine
learning prediction that could generate larger reallocation gains.*6

For the rare outcome avoidable hospitalizations, I create a risk score based on the

lagged outcome variables from data before digital healthcare (2013-15):

where P; is the past number of avoidable hospitalizations and C; are 6 demographic
and healthcare-related variables. In particular, I have chosen variables that are not
gameable by the patient, which minimises concerns that a patient could try to strate-
gically affect their risk score to get assigned to another doctor.” I do not include
any variables about the current state or symptoms, which also means that a patient
would be assigned to the same type of doctor over time, and thus continuity could be
achieved with patients meeting the same doctor over time. Instead, the healthcare
related variables that I include in the risk prediction are for instance the Elixhauser

comorbidity score, which measures the number of serious diseases that a patient has

45Table 15 shows that this estimation has the outcome “negative number of avoidable hospital-
izations”. The outcome variable is negative to ensure that the random effect is higher for a better
doctor, for ease of exposition later on.

461 have also done the prediction of patient risk with a random forest, and the prediction improve-
ment compared to the linear regression is not very large.

47The variables included are Elixhauser disease index, gender, age, immigration status and num-
ber of hospitalizations 3 years before the online visit excluding avoidable. Table 20 in the Online
Appendix shows versions of the regression also including other socioeconomic characteristics, and
with a sparser set of regressors.
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been diagnosed with over the past 6 years, a variable which is arguably not very
gameable.

To define patient types X;, I generate a prediction P, for each i, as the patient
risk variable. Table 19 in the Online Appendix reports the regression used to create

the risk score for avoidable hospitalizations.*®

Creating binary types for avoidable hospitalizations To reduce reliance on
the exact estimate of both patient risk and doctor skill, and to make fewer assumptions
about the nature of complementarities in the match function, I collapse patient types
to a binary variable measuring high and low risk. Since around 1% of patients have
an AH each year nationally, I characterize 1% of patients as risky (X; = 1) based
on the rank of the risk score P;. To make a waiting time constraint less binding, I
characterize 10% of doctors as highly skilled in preventing avoidable hospitalizations
(W = 1) based on the rank of VAVJ%B.49

Figure 12(a) illustrates that the groups created based on the risk score are closely
related to the number of past avoidable hospitalizations of the patient. A patient
in the risky group has had on average 0.35 AH in the past 3 years, while a patient
classified as not risky has had on average 0.01 AH in the same period. Figure 12(b)
shows that the risk groups (defined only based on past healthcare records and demo-
graphics) are highly predictive of future avoidable hospitalizations: virtually 0% of
patients who are classified as non-risky have an avoidable hospitalization within the
3 months after the online consultation, while 6% of the risky patients have it, despite

the online consultation reducing some hospitalizations.

Match effects: In Sample 2 By interacting doctor effectiveness with the rele-
vant patient characteristic (X;) in a second step, I estimate individual sensitivity to
doctor input. Again, this is estimated in a different sample (Sample 2) from that
where T estimated W%? (Sample 1). Sample 2 is each doctor’s first visit randomized
consultations after the 600th.

I estimate the effect of a top 10% doctor on top 1% risky patient:

48This is done with a linear probability model, but robustness checks with ordered logit do not
change the results.

49This will give a lower effect of the interaction effect than if I had also picked the top 1% of
doctors in this skill, but since I do not want to make patients wait too long for the best doctor for
them, I pick 10% so that there is a wider choice of good doctors in this skill in each time period.
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Yij =a+ BiW; + B52Xi + BsW; X + A + €5

where ); is date-time-shift (randomization strata) fixed effects. Standard errors are
clustered on doctors. The main coefficient of interest is 3. In addition, 5 measures
how different the patient group as I defined it is in the outcome variable on average.

Table 8 in the Appendix shows evidence of random assignment: that patient risks

are uncorrelated with doctor skills in the main estimation sample (Sample 2).

Reallocation procedures and costs The simplest reallocation procedure I carry
out is to reallocate the top 10% doctors randomly to top 1% high-risk patients and let
them swap doctors with some non-risky patients. The reallocation procedure where
I use continuous measures of patient risk and doctor skill, is positive assortative
matching (PAM): allocate the highest effectiveness doctors to the highest need/risk
patients. Costs of reallocations are small in the digital setting compared to the in-
person setting where geographic distances play a big role. One cost that also applies
to the digital setting is longer waiting time for patients to get a more suitable doctor.
These costs are small as we are only reallocating 2% of consultations (= the top 1%
risky patients and the patients they swap doctor with) in the reallocation mentioned
above. Moreover, among these 2%, 55% of patients can be reallocated to a doctor
within the same time shift, meaning there is a negligible additional time cost for them.
Hence, any additional waiting from the reallocation procedure would occur only for

0.9% of patients, and only half of them are high-risk patients.

6 Results

6.1 Reallocation results

The first part of the results covers counterfactual simulations: the Average Reallo-
cation Effects (ARE). The following section relates this to defying distance, and the
section after that presents results on what drives these effects in terms of causal match
effects and stylized facts about skills. Finally, I study healthcare production more in
detail to clarify the mechanisms in terms of doctor actions.

The first set of Average Reallocation Effects are derived from the optimization

problem in Section 4.2. This problem takes existing resources in terms of doctor
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skills and time worked as given, as it might be difficult and costly to increase all doc-
tors’ skills at several different tasks, and there are constraints to hiring new doctors.
Moreover, retraining in (and thus emphasizing) some skills may lead other skills to
suffer in a multitasking setting. I consider reallocating doctors according to patients’
risk for each outcome variable, as described above. I will focus here on reallocations
to reduce the adverse outcome avoidable hospitalizations — other reallocations can be

found the overall comparison Figure 4.

ARE from reallocation to minimize
avoidable hospitalizations, with 95% CI
l Proportion meeting top 10% doctor over income deciles
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(a) Average Reallocation Effects with confi- (b) Proportion of patients across income deciles
dence intervals from a Bayesian Bootstrap of who meet a doctor who a top 10% in reducing
the entire doctor-patient allocation procedure. avoidable hospitalizations.

Figure 2: Reallocation with binary match function where a good doctor is defined as
a top 10% in the AH outcome. Panel (b) compares to the random allocation that
actually took place in the digital service.

The first result (Figure 2 a) is that avoidable hospitalizations (AH) decrease by
20% when matching doctors and patients on doctor AH-prevention skill (skill in risk
prediction/triaging) and patient AH risk as described in Section 5.5. At the same
time, the aggregate number of counter-guideline prescriptions and double visits (con-
tacting in-person primary care the week after the digital visit) do not change. Hence,
the positive outcome (reducing AH) has been achieved without increasing other neg-
ative outcomes. For other objective functions, Figure 4 shows that reallocating the
doctors who are best at following antibiotics guidelines to patients who are inten-
sive users of antibiotics reduces counter-guideline prescriptions by 10%, potentially
contributing to the global battle against bacteria becoming resistant to antibiotics
through externalities from over-prescription.

There are also effects on healthcare inequality from the reallocation to minimize

aggregate avoidable hospitalizations. Before reallocation, the probability of meeting
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a top 10% doctor in risk prediction/triaging was similar across patients’ income dis-
tribution (Figure 2 b).° After the reallocation, the chance of meeting a top 10%
doctor in risk prediction/triaging increases by 31% for the bottom patient income
decile (from 11.3% to 14.8%). This is because the risk for avoidable hospitalizations
is highest in the lowest income decile. More information on the correlation between
avoidable hospitalization risk and socioeconomic variables can be found in the Online
Appendix in Table 12.

Figure 3 (a) presents another way of understanding the income-health gradient
aspect of doctor-patient matching. This figure shows Average Reallocation Effects
from a reallocation where the highest-skilled doctors in reducing avoidable hospital-
izations are matched with the highest-income patients. This reallocation is compared
to the random real-life digital assignment, and shows that aggregate avoidable hos-
pitalizations would be around 5% worse if the highest-income patients were matched
with the highest-skilled doctors in preventing avoidable hospitalizations.?!

These results can be interpreted in light of the results from the descriptive analysis
earlier in this paper about a positive relationship between patient area-level income
and perceived quality of local primary care, as well as results from other studies
which indicate that higher-income patients get access to better doctors in in-person
care (Stoye 2022; Agency for Healthcare Research and Quality 2020). If this also
applies to risk detection and triage skill for in-person care doctors, Figure 3 (a)
suggests that avoidable hospitalizations after primary care could be lowered by up to
5% if patient-doctor matching changed to a random matching from an income-based
sorting. Moreover, if we add together the results from Figures 2 (a) and 3 (a), they
suggest that moving to an needs-based allocation on avoidable hospitalizations from
an assortative matching on patient income and doctor skill could reduce the number
of avoidable hospitalizations by around 25%.

The gains from matching are much larger than the gains from a more selective
doctor hiring policy, which I simulate by increasing the work hours of the doctors
who have above median skill in all three outcome measures, and commensurately

reducing the hours of the remaining doctors. However, Figure 3 (b) illustrates that

50All income deciles have a higher than 10% proportion of top doctors in AH prevention in the
random allocation, which is because the top doctors work more consultations than other doctors.
Patient income is the income of adult patients in 2017.

51The figure also shows that counter-guideline prescriptions would remain unchanged compared
to the random allocation, which is expected given the zero correlation in those skills within doctors.
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