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Abstract

We study competitive equilibria in a signaling economy with heterogeneously informed
buyers. In terms of the classic Spence (1973) model of job market signaling, firms have
access to direct but imperfect information about worker types, in addition to observing
their education. Firms can be ranked according to the quality of their information, i.e.
their expertise. In equilibrium, some high-type workers forgo signaling and are hired by
better informed firms, which make positive profits. Workers’ education decisions and firms’
use of their expertise are strategic complements, allowing for multiple equilibria that can be
Pareto ranked. We characterize wage dispersion and the extent of signaling as a function
of the distribution of expertise among firms. Our model can also be applied to a variety of
other signaling problems, including securitization, corporate financial structure, insurance

markets, or dividend policy.

1 Introduction

We study competitive markets with the following features: sellers are privately informed about
their own type; they can take a publicly observable action that is differentially costly for different
types; buyers can directly observe imperfect information about sellers’ types; and the quality
of this information is heterogeneous across buyers. The first two features define a standard
signaling environment.! Our objective is to move beyond the special case, studied extensively,
where buyers are completely uninformed and rely exclusively on the public signal to form beliefs
about sellers’ types. Instead, we investigate the effect of adding the third and fourth features,

buyers’ heterogeneous direct information, on equilibrium prices and allocations.

*Email: kurlat@usc.edu, florian.scheuer@uzh.ch. We thank Adrien Auclert, Alex Bloedel, Gabriel Carroll,
Veronica Guerrieri, Patrick Kehoe, Guido Menzio, Nick Netzer, Venky Venkateswaran as well as numerous
seminar and conference participants for helpful comments and suggestions.

!'Throughout, we refer to a signaling rather than a screening problem. Traditionally, which term is used
depends on which party proposes contract terms. Since in our setup there are markets for all possible contracts,
the distinction vanishes.



Our running example is an extension of the canonical Spence (1973) model of job market
signaling: workers have private information about their own productivity; education is purely
wasteful but is more costly for less productive workers so it can be used to signal; and firms have
heterogeneous expertise in directly assessing workers’ productivities, in addition to verifying
their education. For instance, firms have access to such direct information through tests,
interviews, referrals or trial periods, and differ in their ability to extract accurate predictions
from them. We ask how differences in recruiting expertise across firms affect the equilibrium:
what wages do more- versus less-expert firms offer, which workers do they hire, how much profit
do they make, what education levels do they require, and what are the implications for social
welfare?

While we present our setup and results in terms of this application, our model is general and
can be used to answer these basic questions for many signaling and screening problems. How
do investors’ abilities to directly assess a company’s profitability affect IPO prices, incentives
for insiders to retain undiversified shareholdings, and the payment of dividends? What are
firms’ incentives to engage in costly brand-building or to offer warranties if consumers have
heterogeneous ability to find out about product quality directly, e.g. by studying product
reviews? How does the use of different risk assessment models across insurance companies affect
equilibrium deductibles and premiums? What are the effects of asset managers’ heterogeneous
pricing techniques on the design and tranching of asset-backed securities?

Returning to labor markets, we focus on the most parsimonious setting with two worker
types and consider configurations for firms’ direct information that allow us to rank firms
by their expertise, i.e. their probability of making mistakes: the “false positives” case where
firms may observe good signals from low-productivity workers and the opposite case, with “false
negatives.” We assume that each firm hires a single worker; such capacity constraints are crucial
to rule out trivial solutions where the most-expert firms hire all workers.

Our first task is to define a notion of competitive equilibrium that applies to this environ-
ment. We assume that each combination of a wage and an education level defines a separate
market. Any worker is allowed to apply for a job in any market (provided he acquires the
level of education prescribed by that market) and any firm can recruit in any market. For
workers, markets are partially exclusive: naturally, they commit to a single education level but
can apply for jobs at many different wages. When hiring, firms need not hire randomly from
the pool of applicants: they can reject some applicants and only hire from among those they
find acceptable, but only to the extent that their own direct information allows them to tell
workers apart. Markets do not necessarily clear: in any given market, workers can apply for
jobs and not get them and firms may not find acceptable workers. Equilibrium requires that
workers’ expectations of their chances of finding work in each market and firms’ beliefs about

what workers they will encounter in each market be consistent with each other and with firm



recruiting and worker education decisions.

As is common in signaling models, the set of equilibria depends on what beliefs agents
can entertain regarding markets where in equilibrium there is no trade. A crucial technical
contribution of this paper is to construct restrictions on these out-of-equilibrium beliefs that
deliver a unique and plausible equilibrium in the familiar uninformed-buyers benchmark, yet still
guarantee equilibrium existence and tractability in the general case of heterogeneous expertise.
We propose the following conditions: First, for any market where a firm has well-defined beliefs
about what acceptable workers it would encounter, these beliefs can only place weight on
workers who would find it (weakly) optimal to apply to that market. Second, if a firm does
not have well-defined beliefs about acceptable workers it would encounter, we impose that any
workers that would be acceptable to the firm must expect that, if they were to apply for a job
in that market, they would get one for sure.

For the benchmark where firms have no direct information, our definition ensures that the
least-cost separating allocation is the unique equilibrium. Our refinement implies that pooling
is inconsistent with equilibrium: at slightly higher education levels than a putative pooling
allocation, firms must believe that they will only encounter high type workers because they are
the ones most willing to choose higher education, and therefore firms could profitably deviate.

For the false positives case, the following “partial signaling” pattern emerges. Low worker
types get no education and high types get either no education or enough education to fully
separate. Firms with sufficiently accurate information recruit zero-education workers at a wage
w? that leaves high-productivity workers indifferent between signaling and not signaling, and
make positive profits. These firms face both high- and low-productivity applicants, so they can
only profit if they are able to reject a sufficient proportion of low types. Firms with less accurate
information recruit either educated workers at a wage equal to the high types’ productivity,
or zero-education workers at a wage equal to low types’ productivity, and make zero profits in
either case. Two simple conditions summarize any equilibrium: an indifference condition that
requires the marginal firm to make zero profits by hiring zero-education workers at wage w?,
and a market clearing condition requiring high-type workers who forgo education to indeed find
jobs at wage wf'. This tractable structure allows us, for instance, to study comparative statics.
We find that signaling decreases if the cost is higher, if the demand for workers increases or
if firms’ expertise improves, intuitive properties that, somewhat unappealingly, do not hold in
the standard signaling model with uninformed firms.

Our model features strategic complementarities between high-quality workers’ signaling de-
cisions and firms’ recruiting decisions. If enough high productivity workers forgo education,
the pool of applicants in zero-education markets will improve. This induces less-expert firms to
recruit zero-educated workers, which in turn allows more high type workers to forgo education.

As a result, the model may feature multiple equilibria, each with different proportions of high



types choosing to forgo education. The least cost-separating allocation, where all high types get
enough education to separate, is always one of these equilibria: if all high types signal, there is
no hope to hire them without requiring the signal, and therefore firms’ expertise is useless—an
extreme form of coordination failure. More generally, when there are multiple equilibria, they
can be Pareto-ranked. The signal is a pure deadweight cost, and the equilibrium with less
signaling is preferred by everyone.

One feature of the classic signaling and screening model that has been criticized is a dis-
continuity as the buyers’ prior becomes degenerate. The symmetric information case involves
no signaling, but in the presence of even a minimal mass of low types, the high types must
emit a non-trivial signal to separate. Our model offers a natural way to smooth out this stark
property: there always exists an equilibrium that continuously approaches the full information
limit, both as the share of low types vanishes and as buyers’ direct information becomes perfect.
A similar discontinuity arises in the standard signaling model when the signaling costs of the
two types converge: whenever the costs differ, there is a discrete amount of signaling, but no
signaling when they are equal. We show that our model overcomes this discontinuity as well.

Finally, we characterize equilibrium in the false negatives case, which we show to be essen-
tially unique. Productive workers now make different choices depending on how transparent
they are, that is, how many firms are able to identify them as high types. Those most easily
identified forgo education and are paid their productivity. Less transparent workers also forgo
education but now earn a range of lower wages. They are hired in part by non-selective firms in
markets where low types also apply, so wages must be low enough to allow these non-selective
firms to break even on whatever pool of applicants they face. The least transparent productive
workers instead resort to education in order to separate from low types. Therefore, our model
provides a novel theory of wage dispersion among equally productive (and educated) workers
based on how easy it is to evaluate their productivities. It also predicts that higher demand for
workers leads to polarization in signaling: fewer high types signal, but those who signal do so

more intensely.

Related Literature. This paper introduces heterogeneous expertise among buyers into the
canonical competitive signaling and screening environments due to Spence (1973) and Roth-
schild and Stiglitz (1976). To this purpose, we develop a notion of equilibrium that builds on
concepts proposed by Gale (1996), Guerrieri et al. (2010), Guerrieri and Shimer (2014) and
Kurlat (2016), all of which are based on the idea that different prices define different markets
and the probability of trade is the market-clearing variable. This allows us to naturally incor-
porate capacity constraints among buyers and to study the extensive margin of trade, which is
crucial in many relevant settings, such as labor or financial markets.

The way in which we model heterogeneity of information on the buyers’ side—and hence



their ability to distinguish between sellers based on their own direct assessment rather than
just the publicly observable signal or screening device—is borrowed directly from Kurlat (2016).
However, Kurlat (2016) studies a single-dimensional environment, where the set of contracts
is just the set of prices, so public signaling is ruled out. Our paper instead incorporates a
second dimension, allowing us to capture signaling or screening through, for example, education,
underinsurance, equity retention, dividends or advertising. On a technical side, incorporating
signaling requires us to model buyers’ beliefs associated with off-equilibrium actions, a challenge
that we tackle here but that is not present in Kurlat (2016). Similar to our paper, Gale (1996)
and Guerrieri et al. (2010) also allow for general, multidimensional contracts. Relative to them,
however, our contribution is to relax the assumption that buyers are completely and uniformly
uninformed, by introducing heterogeneous information for buyers.

The refinement on beliefs that we impose is closely related to the D1 criterion proposed by
Cho and Kreps (1987), the condition for a refined equilibrium proposed by Gale (1996), and
the conditions on beliefs imposed by Guerrieri et al. (2010) for contracts that are not traded
in equilibrium. It is based on the idea that, in markets with zero supply in equilibrium, buyers
anticipate that, if they were to place demand there, they would only attract the sellers (among
those they do not reject based on their direct assessment) who are willing to accept the low-
est probability of trade. This is the natural generalization of the infinite-tightness condition
imposed by Guerrieri et al. (2010) to our framework with heterogeneous information. The
refinement eliminates the traditional reasons for multiplicity that emerge in signaling games
when out-of-equilibrium beliefs are left unrestricted. By contrast, the multiplicity we find in
the false positives case is due to an entirely orthogonal force, namely the strategic complemen-
tary between signaling and the use of expertise, which vanishes in the classic no-information
benchmark.

More broadly, our work relates to the literature that followed Rothschild and Stiglitz (1976)
on competition in multidimensional contracts with asymmetric information (see e.g. Miyazaki,
1977; Wilson, 1977; Dubey and Geanakoplos, 2002; Bisin and Gottardi, 2006; Netzer and
Scheuer, 2014; and Azevedo and Gottlieb, 2017). Similarly, there is an extensive literature
that has applied the Spence (1973) signaling model to various settings, including corporate
finance (Leland and Pyle, 1977; Ross, 1977), dividend policy (Bhattacharya, 1979; Bernheim,
1991), security design (DeMarzo and Duffie, 1999; DeMarzo, 2005), and brand-building (Nel-
son, 1974; Kihlstrom and Riordan, 1984; Milgrom and Roberts, 1986), to name a few. None of
these two strands of literature, however, have attempted to move beyond the polar case where
sellers are informed and buyers are uninformed. Our paper provides a general analysis of how
heterogeneous information affects equilibrium in all these situations.

Daley and Green (2014) also study an environment where the possibility of signaling coexists

with direct information (“grades”), and find conditions such that the equilibrium features either



partial or complete pooling. They assume that grades are equally observable by all firms, so they
have no role for expertise on the firm side. Feltovich et al. (2002) also consider an environment
with (homogeneous) direct information in addition to signaling, and find that—in a model with
three types—the highest types may refrain from signaling to distinguish themselves from the
medium types, a behavior they refer to as “countersignaling.” A similar feature emerges in
our model in the false negatives case, where some high types separate through signaling while
others pool with low types in terms of the signal they emit, relying instead on expert buyers
to identify them. Fishman and Parker (2015), Bolton et al. (2016) and Kurlat (2019) study
environments where buyers can differ in the quality of their information but where sellers do
not have a way to signal. Their focus is on the efficiency of buyers’ information acquisition
decision.

Board et al. (2017) share our interest in the idea that firms differ in their ability to tell apart
high- and low-quality job applicants. In their setup, however, workers do not make any decisions,
so whether or not they know their own productivity does not matter. This rules out any way
in which workers may signal their private information, or be screened other than through firms’
direct assessment of them. Instead, in our model, workers can emit a publicly observable signal,
such as education, that can be used to convey information about their productivity. In addition,
Board et al. (2017) assume that firms’ direct information is independent across firms, whereas
we work with a nested information structure where more-expert buyers know strictly more than
less-expert ones.

The rest of this paper is organized as follows. Section 2 introduces the model and briefly
illustrates a number of well-known applications. Section 3 provides our equilibrium definition
and Section 4 shows that it gives rise to a unique equilibrium in the standard signaling envi-
ronment where firms are uninformed. In Section 5, we characterize the set of equilibria with
false positives and in Section 6 the case of false negatives. Finally, Section 7 concludes. Various

extensions and all proofs are relegated to the Appendix.

2 The Economy

Our model is intended to capture a generic signaling setting. For clarity, we present our
results in terms of Spence’s original job market signaling model. However, the only critical
assumptions are perfect competition, heterogeneous information, and the existence of some
action (the signal) that is inefficient from a first-best point of view but involves different costs
for different sellers. Our results therefore apply to any setting with these features, and we

provide some alternative interpretations of the model below.



2.1 Job Market Signaling

There is a unit measure of workers indexed by ¢, uniformly distributed in the interval [0, 1].

Each worker is endowed with a single unit of labor. Worker ¢’s productivity is

with ¢, < qg. Workers with ¢ < XA and ¢ > \ are low and high types, respectively. A worker’s
index ¢ is private information. Workers of the same type but different indices 7 all have the
same productivity; they differ only in terms of how easy it is for firms to identify them, as
specified below.

Workers can choose a publicly observable level of education e, which has no effect on their

productivity. If worker ¢ chooses a level of education e and gets a job at a wage w, his utility

Cy, ife <A

is w — ¢ (i) e, where
c(i)= {

We assume ¢, > ¢y, so low types experience a higher utility cost of obtaining education.

Up to here, the model coincides with the Spence (1973) signaling model. Our innovation
is to introduce firms’ heterogeneous information about the workers they encounter. Formally,
there is a continuum of firms of measure greater than one, indexed by 6 € [0, 1]. The measure

of firms over [0, 1] is denoted by F. When firm # analyzes worker i, it observes a direct signal

0 ifi<é
. 0) = 2
z(0.6) {1 ifi > 6. 2)

If & = )\, this signal allows the firm to perfectly infer the worker’s productivity. If 8 < A, the
firm makes “false positive” mistakes: it observes positive signals from a subset of the low type
workers. If § > A, the firm makes “false negative” mistakes. We assume that firms can be
perfectly ranked by their expertise, so one of two cases applies: either F' has support in [0, ] or
it has support in [A,1]. For instance, firms can be interpreted as being “bold” in the first and
“cautious” in the second case.? Clearly, (2) is a restrictive model of how well informed firms
are: in general, firms could make both kinds of mistakes in arbitrarily correlated ways. This
formulation has the advantage of providing a natural measure of a firm’s expertise since the
closer 0 is to A, the better the firm is at correctly identifying a worker’s productivity.

Each firm can hire at most one worker. Equivalently, we could assume that buyers have
limited funds (and are unable to borrow) to leverage their expertise, which may be more natural

in some of our financial market applications sketched below. Either way, some form of capacity

2See Farboodi and Kondor (2018) for a model that links these two cases to the business cycle.



constraints are needed to keep the problem interesting by preventing the best-informed buyers
from implementing all trades. If a firm hires worker i at wage w its profits are ¢ (i) — w.
Thus, our key innovation compared to the canonical signaling model is that buyers have ac-
cess to direct, even though imperfect, information about sellers, rather than relying exclusively
on self-selection. Moreover, the quality of this information is heterogeneous.® For example,
some managers have better judgement in assessing the talent of job applicants, as in Board
et al. (2017), or recruiters may run tests or interviews (see e.g. Guasch and Weiss, 1980, and
Lockwood, 1991). Another channel of direct information about workers is through referrals. For
example, Beaman and Magruder (2012) and Burks et al. (2015) show empirically that better
employees make more and better referrals, and that firms differ in the degree to which their

employees can predict the performance of their referrals.

2.2 Other Interpretations

As is common to signaling models, the crucial feature is that the signal e is costly and satisfies a

single-crossing property. For the job market signaling application, single crossing can be verified
Ou(e,w)/de
" Qule,w)/ow

¢ (i), which is higher for low types. There are many other signaling settings that are formally

by letting u (e, w) = w — ¢ (i) e and computing the marginal rate of substitution:
isomorphic to our baseline model. We briefly describe four of them.

Securitization. Consider first the security design problem of DeMarzo and Duffie (1999). A
continuum i € [0, 1] of originators each own a pool of assets that generate future cash flow
y. The distribution of these cash flows is privately known to the originators, and given by
Gr(y) ifi < Xand Gg(y) if ¢ > A\, where Gy first-order stochastically dominates G, and they
have common support. The originators prefer receiving cash over holding their risky assets,
for instance because they have access to other profitable investment opportunities, or because
they have superior ability in valuing assets and therefore want to raise cash to fund new asset
purchases. Formally, they value future cash flows from their unissued assets at discount factor
a < 1. They face a pool of small, heterogeneously informed, buyers who do not discount, so
the efficient allocation calls for selling all assets. Of course, due to their private information,
the originators face a lemons problem when selling their assets. To raise cash, they therefore
issue a limited-liability security backed by their assets. DeMarzo and Duffie (1999) show that,

under general conditions, it is optimal to sell a high-quality, senior claim to the assets (i.e.

3Whenever there is no heterogeneity across firms (so the support of F is concentrated at a single value of
6), our model collapses back to the standard signaling problem. If § < A, then all workers ¢ € [0,0) are fully
identified as low types, and all ¢ € [0, 1] look indistinguishable to all firms. Hence, the former group of workers
get their first-best outcome, and a standard signaling model without expertise applies to the latter population,
with a share of low types equal to (A—6)/(1—8). Similarly, if 6 > A, we obtain a standard signaling environment
where the share of low types is A/6.



debt) and retain the remaining, risky equity tranche as “skin in the game,” i.e. a signal of
asset quality. Let Y denote the upper bound of Gy, k = L, H; let Y — e denote the face value
of the debt tranche, and w denote its price per unit of face value. Then issuer i’s payoff is

ule,w) =Y —e)w+a [max{y+e—Y,0}dGy (y), with k = L ifi < Xand k= H if i > \.
Ou(e,w)/de _ w—a[l-Gg (Y —e)]
Ou(e,w)/ow Y—e :

dominance (FOSD), this is higher for low types and therefore satisfies single crossing. Finally,

The marginal rate of substitution is — By first-order stochastic

suppose each buyer demands one unit of face value of the asset-backed security. Then the buyer’s

payoff is gz (e) —w just like in our baseline model, where gx(¢) = [ min {nye’ 1} dGY (y), because
each unit of the security has face value Y — e, so buying one unit of face value means buying
1/(Y — e) securities.

Our model thus captures the equilibrium in this classic tranching problem with the addi-
tional feature that buyers are heterogeneously informed about the quality of the asset-backed
security. This may involve differential knowledge of aspects of the underlying asset pool or,
more importantly, special expertise in the pricing of these securities (such as proprietary pricing
models). For instance, Bernardo and Cornell (1997) provide empirical evidence for significant
variation in valuations of mortgage-backed securities (with the winning bid exceeding the me-
dian bid by over 17% on average) even though all buyers were sophisticated investors or inter-
mediaries. They conclude that this variability is due to differences in pricing technology (see
also Eisfeldt et al., 2019). Mattey and Wallace (2001) document heterogeneity of this variability
across different mortgage-backed securities, suggesting that some securities are easier to price

than others.

Financial Structure of Firms. Our next example is a variant of the corporate finance prob-
lem studied by Leland and Pyle (1977). Each entrepreneur i owns a project whose future payoff,
privately known, is given by (1). As in the previous example, entrepreneurs are impatient, so
their own valuation for their project’s return is aq (i), and they wish to sell their project to
heterogeneously informed investors. To signal the quality of their project, entrepreneurs can
publicly announce that they will retain a fraction e of the equity of their firm. If an entrepreneur
sells a fraction 1—e of his firm at a price per unit of w then his utility will be w (1 — e)+aq (i) e.
du(ew)/de _ w—aqi)

The marginal rate of substitution is — ulew)/ow — 1-¢ which, again, is higher for low types.

If an investor buys one unit of firm ¢ at a unit price w his profits are ¢ (i) — w. Heterogeneous

information among investors could be the result of differential experience in this particular
industry, differential contacts with company insiders, or differential access to analyst reports,

which make some investors better than others at distinguishing good from bad projects.?

4Leland and Pyle (1977) model the cost of retention as risk-bearing by a risk-averse entrepreneur, rather than
reduced investment by an entrepreneur who can reinvest his proceeds from selling the project at an above-market
rate of return r = 1/a — 1 > 0, as we do here following DeMarzo and Duffie (1999). Though the interpretation
is similar, the mechanics in Leland and Pyle’s model are therefore closer to the Rothschild and Stiglitz (1976)



Insurance. Our model can also be mapped into the Rothschild and Stiglitz (1976) insur-
ance problem. A continuum i € [0, 1] of risk-averse households each have wealth X and
will suffer a loss of d with probability 1 — ¢ (i). ¢ (i) is given by (1) and is privately known
to the household. They face a pool of small, risk-neutral, heterogeneously informed insur-
ance companies, so the efficient allocation calls for households to be fully insured. Insur-
ance companies offer policies that cover the loss d minus a deductible e, in exchange for
an up-front premium (1 —w) (d — e), so that 1 — w is the implicit probability of loss that
makes the insurance contract actuarially fair. If a household gets contract (e, w), its utility
isule,w) =q(X—(1-w)(d—e))+(1—-qv(X—(1—w)(d—-e)—e), where v (-) is the
household’s von Neumann-Morgenstern utility function. The marginal rate of substitution

-1
. Ou(e,w)/0e v/ (X —(1—w)(d—e)—e . .
is —%é&% = ﬁ (w —q (q +(1—9q) 7)(’)((X£1(1—1)11()(d—)e)) )> ) It is straightforward to show

that this is decreasing in ¢ and therefore satisfies single crossing. If an insurance company
covers one unit of losses from household i at an implicit probability 1 — w, then its profits are
1—w—(1—¢q(i)) =q(i) —w.” Heterogeneous information among insurance companies could
be the result of some of them having larger actuarial databases or more sophisticated predictive

models that allow them to tell apart riskier from safer types.

Dividend Policy. Finally, consider the dividend puzzle, which observes that firms pay div-
idends even though their tax treatment is less favorable than that of share repurchases. The
dividend signaling hypothesis (going back to Bhattacharya, 1979) explains this corporate payout
policy by viewing dividends as a costly signal to convey private information about profitability
(see e.g. Bernheim and Wantz, 1995, for empirical evidence). Formally, suppose a continuum
i € 10,1] of firms will each produce a random, i.i.d. stream of cash flows {y;},~,. The distri-
bution of y is privately known to the incumbent shareholder and given by G (y) if ¢ < A and
Gy(y) if i > A\, where Gy first-order stochastically dominates G;. The conditional means are
E; (y) = rq (i), where r is the interest rate and ¢ () is given by (1). The incumbent shareholder
announces a dividend e to be paid at ¢ = 1 and then sells all its shares (cum-dividend) to
heterogeneously informed outside investors. Dividends are taxed at a rate 7. Furthermore,
following Bhattacharya (1979), if the cash flow y; is less than the announced dividend e, the
incumbent agrees to provide the firm with a loan to finance the shortfall, at a cost (e — y1).
Letting w — Te denote the price paid by investors, the payoft for the incumbent shareholder is
u(e,w)=w—7e—f [ (e —y)dGy (y) with k = L if i < X\ and k = H if ¢ > A. The marginal
rate of substitution is —2uew/o _ o4 g (e). By FOSD, this is higher for low types and

Ou(e,w)/ow
thus satisfies single crossing. An outside investor’s profit is given by the net present value of

insurance application we sketch below.
5Since each contract covers d — e losses, covering one unit of losses means that the insurance company enters
into 1/(d — e) contracts.

10



the firm’s cash flows ¢ (7) minus the dividend tax Te minus the price paid w — Te, for a total of

q (1) — w, just like in the benchmark model.

3 Equilibrium

We adopt a Walrasian approach similar to the notion of competitive search equilibrium. There
are many (nonexclusive) markets open simultaneously, each defined by a required signal e € R
and a wage w € [0,qy|, and there is no guarantee for either workers or firms of finding a

counterparty in a market they visit.

3.1 Worker’s Problem

Worker i first chooses a signal e and then applies for jobs. This aligns well with the natural
timing, where education is determined before entering the labor market. Similarly, in the
corporate finance applications, it corresponds to situations where the design of the security
(the size of the junior tranche), the financial structure of the firm (the retained equity) or the
amount of dividends to be paid out are determined first, and then the securities or firm shares
are offered, potentially in multiple markets with different unit prices.

A worker is allowed to apply to all the markets that require his chosen signal e. We assume
that, for any given signal e, markets at different wages clear sequentially, starting from the
highest wage, as in the “buyer’s equilibrium” studied by Wilson (1980). Therefore a worker
starts by applying to market (e, qy) and, as long as he hasn’t been hired, continues to apply
to all markets. Eventually, he gets hired in market (e, w), and does not apply to markets with
lower wages. The worker understands that each choice of e is associated with some probability
distribution over wage offers, with c.d.f. denoted by u (+; e,4). The worker’s problem is therefore:

max w (e,i) —c(i)e

where w (e, 1) = [wdu (w;e, i) is the expected wage. We denote the choice of worker i by e;.

3.2 Firm’s Problem

When a firm observes applicants, it may use its information to select which ones to hire, to the
extent that it can tell them apart. A feasible hiring rule for firm 6 is a function x : [0,1] —
{0,1} that is measurable with respect to its information set, that is, x (i) = x (') whenever
x(i,0) = x(¢,0). A firm will reject applicants with x (i) = 0 and hire workers (which we
describe as x-acceptable) from the set I, = {i € [0,1] : x ({) = 1}. Let X denote the set of

possible hiring rules.

11



A firm must decide what market to hire from and what hiring rule to apply (it is without
loss of generality to assume the firm hires only in one market and uses only one rule). To make
this decision, the firm needs to form beliefs G (+; e, w, x) about what workers it will be drawing
from should it choose to hire in market (e,w) with hiring rule x. If the firm thinks it will
find x-acceptable workers in market (e, w), then G (-;e,w, x) is a probability measure on I;
otherwise beliefs integrate to zero: G (I;e,w,x) = 0. Let g denote the density or p.m.f. of G,

which we assume is well-defined. Firm 6’s problem is:

67w7x

max/ [q (i) —w]dG (i5e,w, x)  s.t. x feasible for 6.

Note that a firm has the choice not to hire workers by simply directing its search to a mar-

ket /hiring rule where G (I,;e,w, x) = 0. We denote the choices of firm 6 by (eg, wg, xs)

3.3 Consistency of Wage Distributions

We define demand as a measure on the set of wages, signals and hiring rules [0, gg] xRt x X.
For any set of wages Wy C [0, qy], signals Ey C RT and hiring rules Xy C X, demand is the

total number of firms who make those choices:
D (Eo, W, Xo) = / L(es € Eo) T (wp € Wo) I (xo € Xo) dF (). (3)

We then impose the following consistency condition on firms’ hiring and the distribution of

wage offers received by workers:

Condition 1.

ploe)ie=e) = [ glsedn)aDledn)  foralewi
w<w, X

The indicator I (e; = e) takes the value 1 if worker i chooses signal e and zero otherwise;
i (w; e, i) is his probability of getting a wage at most w. Hence, the left-hand side of Condition 1
is the total number of i-type workers with signal e who will obtain wages at most w. Moreover,
since beliefs are rational, a firm imposing hiring rule x in market (e, w) will hire g (i; e, w, x)
workers of type 7. Adding these hires across all hiring rules and wages below w results in the
right-hand side of Condition 1, which is the total number of i-type workers hired in markets
with signal e and wages up to w.%

Condition 1 simplifies when i-type workers choose signal e (so I(e; =€) = 1), and they have

SNote that Condition 1 implicitly rules out a situation with excess demand for a type of worker because it
would imply a job-finding probability higher than one.
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strictly positive probability of finding a job at wage w, so the c.d.f. © makes a discrete step of

size dp(w;e, ). Then Condition 1 can be written as:

dp(w; e, i) = /Xg(i; e, w, x)dD(e, w, x). (4)

This can be interpreted as a simple rationing rule by which the probability du for an i-type
worker of finding a job at wage w is equal to the number of ¢-type workers hired in that
market. The more general formulation of Condition 1 also deals with cases where p may
increase continuously over some interval of wages, so the probability of being hired in any
single market is zero but there is an associated probability density. Both situations will occur

in the equilibria we find below.

Example 1. To illustrate the meaning of equations (3) and (4), consider the following example.
There are three types of workers i € {A, B,C'} who choose signal e, and three of firm types
0 € {a, B,7v} who hire in markets that require e. The measures of each type of firm, the wage

at which they recruit, their hiring rules, and beliefs are:

Firm 0 Q 15} ol
Measure f(0) 05 1 15
Wage Wy wy wg  wg
Yo (A) I
Hiring Rule Xo (B) 0 1 1
Xo (C) 0O 0 1
g(A; e, wg, Xa) 1 05 0
Beliefs g(B; e, wy, Xo) 0 05 1/3
g9(C; e, wy, xo) 0 0 2/3

Firms of type a and [ hire at wage wy. Type-a firms only hire i = A workers while type-3
firms hire type ¢ = A and ¢ = B workers. Type-y firms hire at wage wy, and they accept

everyone. Using (3) and (4), workers’ probabilities of being hired at wages wy and wy, are:

d:u (vaevA) = \g(A;e,U)H,XaZ.\D (e7wH7Xa)J+g(A;e7wH7Xﬁ)D (eawH7X6> =1

7 0 O G
d:u (wH;eaB) :g(B;evav)(och (e7wH7Xa)/+g(B;eawHaXB)/D(eawH>XB)J: 05
0 0.5 0.5 1

dp (wp;e, B) = g (B; e,wL,XWZ\D (e,wL,Xﬁ,l =05

~
1.5

w\»—A<

d:u (wL7 670) =g (Ca eawL7X’y)lD (eaw[nX’y) =1

J/

-

1.5

win
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so type-A workers get hired for sure at wage wy, type-B workers get hired with probability 0.5

at wage wy and probability 0.5 at wage wy, and type-C workers get hired for sure at wage wr.

Condition 1 imposes no constraints on p when I(e; =€) = 0, i.e. no constraints on i-
workers’ chances of being hired in markets where there are no i-applicants. For theses markets,

we impose the condition:
Condition 2. u is weakly decreasing in 1

Condition 2 says that higher-i workers expect higher wages in a FOSD sense. This rules out
low types being more optimistic than high types about the wages they would obtain for some
off-equilibrium signals, which would be inconsistent with any rational conjecture about what

firms might be doing in off-equilibrium markets.

3.4 Consistency of Beliefs

Consider a firm that hires in market (e, w) with hiring rule x. The pool of workers available for
hire in this market includes i-type workers only if they choose education e and are not hired at
higher wages. Therefore it includes 1 (e; = e) u (w; e, ) i-type workers. If firms simply chose at
random from the y-acceptable subset of this pool, then Bayes’ Rule would imply that rational
beliefs should be:

, I(e;=r¢€)x(2) p(w;e,i
R S CED oM ®
However, if firms with different hiring rules hire sequentially in the same market, firms that hire
earlier skew the pool that later firms face, so rational beliefs depend on the order in which firms
hire within a market. Kurlat (2016) assumes that there exist separate markets for each wage
combined with each possible way of ordering rules, and firms and workers choose which markets
to trade in, making the order endogenous. He shows that under “false positives” information,
less selective firms hire first. This implies that no one’s sample is skewed by earlier firms, so it
is as if all firms were drawing from the entire pool of y-acceptable applicants, and (5) applies.
Indeed, Example 1 has this feature: all beliefs satisfy Bayes’ Rule, and in particular the beliefs
of firms a and § about market (e, wy) follow (5). Instead, under “false negatives” information,
Kurlat (2016) shows that there may be markets where more selective firms hire first, and (5)
does not apply. However, this possibility only arises among firms who only accept high types.
Therefore, even if early firms skew the pool, later firms still hire only high types, just as if they

had been the first in line. Therefore, the following weaker condition still holds:

Condition 3. If [[I(e; =€) x (i) u(w;e,i) di > 0, then

) (= ) x () (wie,i) d
/iq(z)dG(z,e,w,X)— [ T(e; =e)x (1) p(w;e,i)di
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Condition 3 says that beliefs must be such that the average productivity that firms expect
to get if they hire in market (e, w) with hiring rule y must be the same as if they were drawing
from the entire pool. For the false positives case, it holds because it is implied by (5). For
the false negatives case, it holds because the only cases where (5) might not hold are when
firms only accept high type workers. Rather than explicitly allowing for endogenous ordering
of firms’ trades and re-deriving these results, we incorporate them directly into our definition
of equilibrium by imposing Condition 3.

Condition 3 only applies to markets where the denominator is positive, i.e. where there
are y-acceptable workers. The key challenge in constructing a tractable equilibrium notion is
how to discipline firms’ beliefs in markets that are empty of y-acceptable workers. We propose
a refinement which guarantees equilibrium uniqueness in the no-information benchmark, and
at the same time preserves equilibrium existence throughout.” For markets in which no -
acceptable workers apply, there are two possibilities: either the firm nevertheless believes it
could find y-acceptable workers and G (-; e, w, x) is a well-defined probability measure, or the
firm believes the market is empty and G (I,; e, w, x) = 0.

For the first case, we require that beliefs only place weight on y-acceptable workers that
would in fact be willing to look for a job in market (e,w). In other words, a firm can never
expect to find in market (e, w) a worker who could obtain higher utility by choosing a different
signal, or who can find a job for sure with the same signal but a higher wage. Formally, we

require:

Condition 4. For any i in the support of G (-;e,w, x):
1. x(1)=1
2. e solves worker i’s problem
3. p(w;e i) >0

The alternative is that a firm is certain that it cannot find y-acceptable workers in market
(e,w). We impose that a firm can only reach that conclusion if guaranteeing y-acceptable
workers a job with a wage at least w is not enough to persuade them to choose signal e.

Formally, we impose:
Condition 5. If G (I;e,w,x) =0, then p(w;e,i) =0 for all i such that x (i) = 1.

Conditions 4 and 5 are closely related to the infinite-tightness condition in Guerrieri et al.

(2010) and Guerrieri and Shimer (2014). In their setup, for every market there either is at least

"This issue does not arise in Kurlat (2016). He only studies unidimensional contracts, where the price is
the only contract dimension. This rules out signaling, and thus there are no markets corresponding to off-
equilibrium signals, and no need to specify how beliefs react to these off-equilibrium signals. In his setup, beliefs
must satisfy Condition 3, but there is no equivalent to the condition we impose in the following.
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one worker type who finds that market optimal, or the market tightness is infinite. In the first
case, this allows firms to have well-defined beliefs about which workers they would encounter; in
the second, workers would match for sure. Conditions 4 and 5 generalize this idea by imposing
it separately for each y-acceptance group. For each Y, it has to be the case that either some
x-acceptable worker finds visiting this market optimal (in which case this worker can be in the
support of well-defined beliefs) or all y-acceptable workers are guaranteed jobs. Within a given

market, which of these possibilities applies can be different across different hiring rules y.

3.5 Equilibrium Definition
We summarize the above discussion in the following equilibrium definition:

Definition 1. An equilibrium consists of (i) a signal e; for each worker 4; (ii) a hiring decision
(eg, wp, xo) for each firm @; (iii) wage distributions pu (+;e,7); and (iv) beliefs G (-; e, w, x) that
satisfy:

1. Worker optimization. e; solves worker i’s problem, taking p as given.
2. Firm optimization. (eg,wy, Xg) solves firm €’s problem, taking G as given.

3. Consistency. p, G, (eg,wg, xg9) and e; satisfy Conditions 1 to 5.

4 Pure Signaling

We now characterize equilibrium for the case where F' is a point mass at # = 0 (or equivalently
at @ = 1), i.e. when all firms are completely uninformed. This corresponds to the classic
signaling environment. For this case, the least-cost separating allocation emerges as the unique
equilibrium. In this allocation, low types get no education, high types get just enough education

to separate with:
6* _ (:ZH - QL7 (6)
Cr

and each type is paid their own productivity, as illustrated in Figure 1.

Proposition 1. If F' is a point mass at 8 = 0, there is a unique equilibrium, given by:

1. Worker decisions: 0 ifi<A\
€, =
e ifi >\

2. Firm decisions:
e=¢e"w=qy,x (@) =1 for ameasure X of firms

e=0,w=gqr,x()=1 for a measure 1 — X of firms
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Figure 1: The least-cost separating allocation.

3. Wage distributions:

p(w;e, i) =T(w > min{qr + cre, qug + cg (e — €*)}) (9)

4. Beliefs: $I(i < A) ife <e',w>qL+cre
glize,w,x) =4 5I@E>N) ife>e,w>qu+cy(e—e) (10)

0 otherwise

The equilibrium is constructed by setting the distribution p as a point mass at the lower
envelope of the indifference curves of both types, which makes low types indifferent between
any e € [0,e*] and high types indifferent between any e > e*. Therefore, e = 0 for low types
and e = ¢e* for high types is indeed optimal. This is then sustained by firms’ belief that in
the range [0, e*] they will only encounter low types above the lower envelope and no one at all
below, and similarly for high types above e*. Hence there are no profits in any market, and
firms are trivially optimizing. A measure F'(1) — 1 remain inactive, for instance by choosing a
market with e = 0 and w < ¢, (and selection rule (i) = 1 for all 7).

The key step in establishing uniqueness is to rule out pooling, i.e. markets with positive
supply of both high and low types. This follows the standard logic based on single-crossing. If
there was pooling at a level of education €', then high types would require a lower wage than
low types to be willing to choose e = ¢ + €. Hence firms that consider hiring in a market
with e = €/ 4+ ¢ and a wage that leaves high types indifferent must believe that they will only
encounter high types, which for small € must be more profitable than hiring at ¢’.

The types of deviations to pooling contracts that may lead to non-existence of a pure-

strategy equilibrium in Rothschild and Stiglitz (1976) are not profitable because each firm
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perceives itself to be small.® A job with e = 0 and w = qy — cye* + € is strictly preferred to the
equilibrium by all workers and if a firm was large and could hire the entire population it could
break the equilibrium by offering to hire everyone in this market, which would be profitable for
low values of A. Here, if a small firm tries to hire in this market, it will not attract any high
types, because they know that they will be competing with all the low types for an infinitesimal
chance to be hired and will have to settle for w = ¢y, if they are not. Formally, this is captured
by the assumption that beliefs do not depend on whether a firm decides to recruit in a particular

market. This is the same logic that leads to existence and uniqueness in Guerrieri et al. (2010).

5 False Positives

We now consider the case where I has full support on [0, A] and is continuous. We start by
characterizing the equilibrium when workers don’t have a way of signaling (“no signaling”).
Next, we characterize a class of possible equilibria (“partial signaling”) that involve signaling
by a fraction of the high types. We then show that any equilibrium must be either the pure
signaling equilibrium described in Section 4, a no signaling equilibrium or a partial signaling

equilibrium, and find conditions for each of them to arise.

5.1 No Signaling

We now characterize the equilibrium for the case where workers are constrained to choose e = 0,
which is the case studied by Kurlat (2016). Let ¥ and w” be defined as the solutions to:

/mdF =1. (11)

— (Aqr + (1 = X) qn)
wh — qr

N
oy =Y (12)

In equilibrium, all high-type workers (and some low-type workers) are hired at a wage w?, and

the low-type workers who fail to find a job at wage w®

are hired at a wage qr..

If firm 6 hires at wage w” and imposes hiring rule x, (i) = 1(i > ), it hires randomly from
the interval [0, 1]. Therefore it ends up hiring a low type with probablhty and a high type
with probability 1—_’9\. Its expected profits will be: II(0) = % — w!. Profits are
increasing in #; firms whose information enables them to screen out a higher proportion of low
types will be hiring from a better pool of workers. Only firms that are sufficiently confident in

their ability to tell workers apart will be willing to hire in this market; they will make profits

8Rosenthal and Weiss (1984) and Dasgupta and Maskin (1986) show that mixed-strategy equilibria do exist.
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if and only if they are above the cutoff #V defined by equation (12).

For all 1 — X\ high-type workers to be hired at wage w’, it must be that there are enough
firms in the range [HN ,)\} to hire all of them. Given that in expectation firm 6 hires %
high-type workers, this means that 6~ must satisfy (11).°

The following result, proved by Kurlat (2016), establishes that this is the unique equilibrium.
Proposition 2. If workers are constrained to choose e = 0, there is a unique equilibrium where:

1. Firms with 6 > 0~ hire at wage w™ and other firms are indifferent between hiring at wage

qr, or not hiring.
2. High types are hired at w™ with probability 1.
3. Beliefs follow (5) for all w > qr, and are zero for lower wages.

Conditions (11) and (12) are the analogues of conditions (19) and (20) in Kurlat (2016).
There are four minor differences. First, Kurlat (2016) assumes that assets are divisible and
the law of large numbers applies, so he has exact pro-rata rationing instead of probabilistic
rationing. Under risk neutrality, this distinction does not matter. Second, he allows some
sellers to have a positive value for retaining the good, while we assume it to be zero so workers
sell all their labor endowment in equilibrium. Third, Kurlat (2016) assumes ¢, = 0, so the
one-price equilibrium he finds is equivalent to the two-price equilibrium we have, where some
low types trade at price ¢r. Finally, he models buyers’ capacity constraints in terms of dollars
rather than in terms of quantities, so the price appears in the market-clearing condition.

Note that as F' approaches a point mass at § = 0, then equations (11)-(13) imply that
0N — 0, w — Aqr + (1 —\) gy and du (wN;i) — 1. If firms are uninformed and workers
cannot signal, then all workers get hired for sure at a wage equal to the average productivity.
This is the pure Akerlof (1970) outcome: all workers have the same reservation wage (zero) so

there is no adverse selection at the pooled price.

9Note that low-type workers do not guarantee themselves a job at wage w” since some of the firms hiring in

this market will reject them; only firms 6 € [GN , Z] hire in market at wage w’¥ and accept worker i. Therefore,
his probability of finding a job at wage w?" is
/ 1
dp (wN54) = /—dF (0) forie [0V, A]. (13)

1-6
oN

This probability is increasing in 4 since higher-i low types mislead more firms into hiring them at wage w”. It

is equal to zero for workers i < #V since no firm that would accept them hires at wage w'.
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5.2 Partial Signaling

In a partial signaling equilibrium, low-type workers choose e = (. They are hired with some

probability in at wage w’, defined by:
w’ = qy — cye*. (14)

and otherwise at wage ¢. High-type workers choose either e = 0 (and are hired for sure at
wage w’) or e = e* (and are hired for sure at wage ¢, which gives them the same utility).

Let 77 be the fraction of high types that choose e = 0. If firm 6 hires in market (O,wp )
7P (1-X)

with hiring rule xg (i) = I[i > 6], it will hire a high type with probability TPy SO its
profits will be I1 (0) = (’\_f)_q(jf::((ll__g\))qf’ —w?”. This defines a cutoff 87 such that firms can make
profits in market (0,w”) if and only if § > 67:
P P g —w”
0" =\ — 1—X) ——. 15
A-n B (19

Firms with 0 < 0 are indifferent between hiring in market (0,qr) (with low-type applicants
only), in market (e*, qy) (with high-type applicants only), or not hiring at all, since they make
zero profits in any case.

The calculations above assume that some high types are indeed willing to apply to market
(0, wP). For this to be true, it must be the case that they are sure they will find a job, since
they can always guarantee themselves the same utility by choosing e = e* and getting a job
that pays w = gy. This means that there must be enough firms above 8% to hire all 7 (1 — \)
high types who forgo education and apply to market (0, w? ) By the arguments above, each

firm 6 > 6% hires % high types, so in equilibrium we need

A
1
/)\_9+7TP(1_>\)dF(9):1. (16)
9P

By the same reasoning as in the no-signaling case, low types are hired in market (0, wl ) with
probability du (wP; O,z’) = fgp mdﬁ’ (9) .

The indifference condition (15) and the market clearing condition (16) define two relation-
ships between the cutoff firm #” and the fraction of high types 7¥ that forgo signaling. Both
of these relationships are downward sloping, as shown in Figure 2.

The indifference condition (15) is downward-sloping because if more high types decide to
forgo education, they improve the pool of workers available for hire in market (O, w? ), allowing
less-informed firms to earn profits. The same is true for the market clearing condition (16)

because if more high types decide to forgo education, they can only find jobs in market (O, w? )
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Figure 2: Indifference and market clearing conditions for the false positives case.

if additional firms decide to hire there. In other words, entry into market (0, w? ) by firms and
high-type workers are strategic complements. The more high types forgo education, the more
profitable it is for any given firm to hire in (O, w? ); the more firms hire in (0, w? ), the more
attractive it is for high type workers to refrain from signaling.

The strategic complementarity implies that there can be multiple intersections of (15) and
(16), and possibly multiple partial signaling equilibria. This source of multiplicity is different
from the forces that may lead to multiplicity in Akerlof (1970) (where adverse selection de-
pends on the price) or in canonical signaling models (where different off-equilibrium beliefs can
be self-sustaining). Indeed, with our refinement on beliefs, the uninformed-firms benchmark has
a unique equilibrium (Proposition 1), as does the no-signaling case (Proposition 2). The multi-
plicity we identify here relies on the presence of both signaling and heterogeneous information
among firms.

Note that a no-signaling equilibrium corresponds to a situation where the market clearing
condition is above the indifference condition at 7 = 1, as in Figure 2. This means that if
7 =1 (no high types signal) there are more firms willing to hire at w” than the total mass of
workers they would accept. As a result, high-6 firms “bid up” the wage to w" > w’, leading
some firms to drop out until the number of firms willing to pay this wage equals the number of
high-type workers. Moreover, a pure signaling equilibrium is a special case of a partial signaling
equilibrium, with 77 = 0 and 67 = \. Figure 3 shows which markets are active in each class of

equilibrium.
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Figure 3: Active markets in each class of equilibrium.

5.3 Candidate Equilibria

The following result establishes that any equilibrium must belong to one of the three cases

described above.
Proposition 3. Any equilibrium is of one of the three following types:
1. Pure signaling. Low types choose e = 0 and high types choose e = e*.

2. No signaling. All workers choose e = 0. Firms hire in market (O,wN) if and only if
6 >0N. 0N and wV satisfy (11) and (12); and wV > w?.

P of high types choose e = 0 and

3. Partial signaling. Low types choose e = 0; a fraction w
the rest choose e = e*. Firms hire in market (O,wp) if and only if 0 > 07, ©F and 6F

satisfy (15) and (16).

The key to proving Proposition 3 is to establish that high and low types cannot coexist at
any level of education other than e = 0, so there is no pooling at positive signaling levels. The
logic is similar, though somewhat subtler, to that in the uninformed-firms benchmark.

Suppose that low and high types coexisted in some market (e, w) with e > 0, as illustrated
in Figure 4. With differentially informed firms, the standard argument that rules this out by
considering market (e’,w’) does not go through. Some firms hiring in market (e, w) may be
screening out low types, so low types’ expected wage with signal e could be lower than that of
high types. Thus, it is possible that both high and low types find (¢/, w’) more attractive than
(e,w). Instead, we can rule out pooling in market (e, w) by contradiction, as follows. There are
two possibilities: either the highest firm that hires in market (e,w) has 6 = X (i.e., it can tell
workers apart perfectly), or the highest firm to hire in this market has # < \. In the first case,
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Figure 4: Ruling out pooling at e > 0.

we arrive at a contradiction by considering the beliefs of firm # = A about market (0, w"”). This
firm’s beliefs can only include high types so it only cares about the wage it pays. Therefore this
firm finds market (0,w") preferable over market (e, w), leading to a contradiction. If instead
the highest firm that hires in market (e, w) has 8 < A | then any low type worker in the range
i € (0, \) has the same chance of getting a job in market (e, w) as a high type. If this is so, then
firm 6 can apply the standard cream-skimming deviation by hiring in market (¢/,w’). Firm 6
can reject all low types who prefer (¢/,w’) over (e,w), so it can guarantee itself high types by

hiring in this market, which contradicts the premise that it hires in market (e, w).

5.4 Existence

So far we have described the possible candidates for equilibrium but we have not proved that
any of them is actually an equilibrium. We now show that the candidate equilibria described
above may or may not actually be equilibria. We construct a class of possible deviations and
derive an easy-to-verify condition to determine whether these deviations are profitable. We
then show that checking this condition is sufficient to establish an equilibrium, and prove that
at least one equilibrium always exists.

Consider first a candidate partial signaling equilibrium. Define (69D , w ) as the lowest-wage
market where equilibrium requires that the beliefs of firm 6 € (9P , )\) only include high types.
A necessary condition for equilibrium is that firm 6 cannot increase its profits by recruiting in
market (ef, wf’) instead of market (0,w").

The location of market (eGD , Wi ) is illustrated in Figure 5. Worker ¢ = 6 is the lowest-i

low-type worker that firm 6 cannot filter out. In equilibrium, this worker obtains expected
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Figure 5: Beliefs for firm 6
utility:
9 _ 0 1 P
u(0) = qr+ [,r i wwritld () (w” —qr) (17)

by getting a wage of either w? or ¢; with the equilibrium probabilities. For small but positive
levels of education e, it is consistent with equilibrium for firm 6 to believe that it will only
encounter low types in e-markets. The reason is that since u () < w”, worker i = 6 will be
willing to choose e for a lower wage than high types would. Hence one can specify beliefs such
that firm 6 does not want to recruit at education level e. However, for large e that is no longer
the case because education is more costly for low types. (€9D , wP ) is defined by the intersection
of the equilibrium indifference curves of worker ¢ = 6 and high types. At education levels higher
than e?, firm 6 can only believe that it will encounter exclusively high types, because high types
would be willing to choose these education levels for a lower wage than worker ¢ = 6.

Hiring in a market like (¢}, w}’) is similar to the cream-skimming deviations that are used to
break putative pooling equilibria in Rothschild and Stiglitz (1976) and related models, including
the uninformed-firms benchmark of Section 4. In candidate equilibria where some high types
choose e = 0, they end up being hired in market (O, w? ), where they are pooled with low types.
Just like in the benchmark, the possible deviation involves peeling off high types by requiring
an action that is more costly for low types than for them. However, there are two important
differences.

First, unlike in the Rothschild and Stiglitz (1976) model, purely local deviations do not
work. A firm cannot cream-skim the high types off a pooling contract by requiring a small
amount of signaling. Since low types are hired from the (0, w? ) pool at lower rates than high
types, they obtain lower utility. Therefore, they find deviations more attractive than high types

as long as they involve only a small amount of extra signaling. In order to repel the low types,
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the deviating firm must require a sufficiently larger signal.

Second, in order to profit, the deviating firm must use both sources of information in com-
bination: direct assessment and signaling. A completely uninformed firm cannot profitably
deviate because in order to repel the lowest-i low types (who cannot get jobs at (O, w? ) at all)
it must require e = e* and therefore pay at least gy to attract high types, at which point the
deviation is no longer profitable. In order to profitably deviate, a firm must possess sufficient
expertise to be able to reject the lowest-i low types directly and then rely on the signal to screen
out the higher-i low types.

A candidate partial pooling equilibrium can only be an equilibrium if, for every 6 € (67, \),
the profits firm # can obtain in market (ef’,wf’) by hiring only high types are weakly lower
than those it obtains in market (O,wP ) by hiring a mixture of workers at a lower wage. A
similar logic applies to the case of a no-signaling equilibrium. The following result determines
when this condition is satisfied in either case and establishes that checking against this possible

deviation is a sufficient condition for equilibrium existence.

Proposition 4. 1. The pure signaling candidate equilibrium described in Proposition 3 part

1 1s always an equilibrium.

2. Suppose OV and w > w? satisfy equations (11) and (12) for a no-signaling candidate
equilibrium. Then the worker and firm decisions described in Proposition 3 part 2 are

part of an equilibrium if and only if:

A—06 CH 1—A 1 N

< dF (t noe(0,N). 1

1—9_CL—CH1—¢9N/1_t (t) fora 6( ’ ) (18)
9

3. Suppose ¥ and OF satisfy equations (15) and (16) for a partial signaling candidate equi-
librium. Then the worker and firm decisions described in Proposition 3 part 3 are part of

an equilibrium if and only if

A
A—10 Cg 1
<= F PoX). 1
AN +A—0 cL/wP(l—)\)Jr/\—td (t) forall6 € (0%,3).  (19)
0

In sum, the pure signaling equilibrium, which coincides with the no-information benchmark,
always exists in our model. The reason is that 7 = 0, 6© = X always satisfies equations (15)
and (16) and condition (19) holds for § = A. Depending on parameters, additional equilibria
may exist where firms use their expertise.

It is easy to construct examples where a partial or no-signaling equilibrium does exist. Figure

6 shows an economy with multiple candidate equilibria. For the candidate equilibrium (ﬁf ,oF ),
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Figure 6: Candidate equilibria that do or do not satisfy condition (19).

condition (19) holds, so it is indeed a partial signaling equilibrium. Instead, for candidate

equilibrium (73", 6%), condition (19) fails for some 6 > 6%, so it is not an equilibrium.°

5.5 Properties of the Equilibrium

Equilibrium Regions. Figure 7 illustrates what type of equilibrium arises in different regions
of the parameter space. As we change parameters, the possible outcomes of the model span
the range between pure signaling, through partial signaling, up to the no-signaling allocations
from Kurlat (2016).

Both panels plot the equilibrium regions as a function of a parameter A on the vertical axis
that shifts the distribution of firms F' towards more expertise.!! We know from Proposition 4
that the pure signaling equilibrium always exists, and it is indeed the only equilibrium for low
enough levels of expertise as captured by the parameter A. As the distribution of expertise
improves (in a FOSD sense), holding the other parameters fixed, first a partial signaling and
finally a no-signaling equilibrium emerges in addition. Hence, as firms become better informed,
less costly signaling is required. Moreover, we show formally in Appendix A that, in the
region with a partial signaling equilibrium, the share of high types 1 — 7¥ who signal also

decreases with a FOSD shift in expertise. Better tools for directly evaluating job applicants,

0The example uses gy = 1,qr = 0.4, cgy = 0.9, ¢, = 0.15,A = 0.6, f () = 0.5[sin(13.3 (0 — \)**+2.27) +1]2%.
HSpecifically, we use the linear density f(6) = A(6 — \/2) + B/, so the total measure of firms always equals
B, with B =1.2.
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Figure 7: Types of equilibria depending on parameters

firm shares, asset-backed securities or insurance applicants reduce the need to signal through
education, dividends, retained equity tranches, or high deductibles, respectively. In this way,
direct information substitutes for traditional signaling.

A FOSD increase in F' is isomorphic to an increase in demand where each firm hires A
workers instead of just one. This is because making firms more expert is equivalent to letting
the more expert firms hire more workers.'? Our model thus generates the plausible prediction
that more high types forgo signaling through education (or that the amount of retained equity
falls) in boom times (see Gee (2018) for descriptive evidence of this effect). This intuitive
property is absent when buyers are uninformed: in that case, pure signaling is always the only
equilibrium independent from demand. It is also absent in the no-signaling equilibrium where
higher demand just translates into higher wages.

The left panel shows that increasing the relative cost of signaling ¢y /cy, has the same effects
as improving expertise on the type of equilibrium we find, holding the other parameters fixed
(including A)."* Moreover, we show in Appendix A that, within the class of partial signaling
equilibria, the amount of signaling 1—7" decreases with signaling costs. Hence, as signaling gets
more expensive, fewer high types signal. Note that the no-information benchmark, somewhat
unappealingly, does not have this property: all high types choose e = e* and e* does not depend
on cy, so high types do not respond to a higher cost of signaling by signaling less. Allowing
for heterogeneously informed firms overturns this counterintuitive feature: equilibrium forces
do lead workers to respond on the extensive margin.

Finally, in the right panel, we vary the share of low types on the horizontal axis. To do so in
a clean way, we reparametrize the model by assuming that the mass of low-type workers is 5\,

distributed uniformly in the interval [0, ], with a density %; correspondingly, the mass of high

12Mechanically, this is because condition (16) becomes A fel\P )\T_MlmdF (0)do = 1.
13The example in the graph uses gy = 1,q;, = 0.4, A = 0.55 in addition to the linear specification of f(f)
from above.
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typesis 1 — 5\, distributed uniformly in the interval [A, 1] with a density ﬁ Changes in )\ have
the interpretation of changes in the fraction of low types, leaving their relative detectability in
the eyes of firms constant. We see that reducing the share of low types this way moves the
equilibrium from pure signaling to partial equilibrium and finally to no signaling.!* Indeed, we
show formally below that, as the share of low types becomes sufficiently small, a no-signaling

equilibrium must always emerge.

Continuity in the Symmetric Information, No-Signaling and No-Information Limits
One counterintuitive feature of the uninformed-firms benchmark is that it is discontinuous in
the buyers’ prior. If all workers have the same productivity there is no information asymmetry
and no signaling in equilibrium. However, as soon as there is even an infinitesimal mass of
low types, high types will signal enough to separate. The following result shows that this
unappealing property vanishes in our model, as in Daley and Green (2014) where the presence

of exogenous information also avoids the discontinuity.

Proposition 5. 1. For low \ there is a no-signaling equilibrium with lim;_, w = qpy.

2. Let F* be a mass point at 0 = \. For any continuous F' sufficiently close to F* (under the

total variation distance), there exists a no-signaling equilibrium, and limp_, g« wY = qg.

One way to approach the symmetric information limit is by taking A > 0, since A =0
implies symmetric information. As A= 0, there is always a no-signaling equilibrium, and
w" — gy. Hence, this equilibrium smoothly approaches the symmetric information outcome.
Pure signaling is also an equilibrium for any positive 5\, so the discontinuity does not go away
entirely, but the set of equilibria is lower hemi-continuous in A. A second direction to approach
the symmetric information limit is making the distribution F' approach a mass point at 6 = A,
since that limit also implies symmetric information. Again, a no-signaling equilibrium always
exists sufficiently close to the limit, so the set of equilibria is lower hemi-continuous in this
dimension as well.'?

A second form of discontinuity in the uninformed-firms benchmark arises with respect to the
cost of signaling. For any cy/cy < 1, high types will signal enough to fully separate, whereas
when ¢y /c, = 1 the signal does not allow high types to separate and pooling allocations result.
The current model, instead, is lower hemi-continuous as c¢g/c;, — 1. In the opposite limit, as

signaling becomes cheap, the model reduces to the uninformed-firms benchmark.

1 The example uses qi = 1,qr, = 0.4, A\ = 0.55, ¢z = 0.1, ¢, = 0.3.

15By contrast, in the degenerate case where F has full mass at some 6 < ), a no-signaling equilibrium never
exists. The right-hand side of (18) is zero at 6 in this case, so there is always a profitable deviation. Intuitively,
when all firms are equally well informed, our model collapses to standard signaling model and only the pure
signaling equilibrium exists. Hence, heterogeneity of information is crucial to obtain the continuity results in
this section.
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Proposition 6. 1. For cy/cp sufficiently close to 1, there is a no-signaling equilibrium.
2. For cy/cy, sufficiently close to 0, only the pure signaling equilibrium ezists.

Part 1 of Proposition 6 establishes that if signaling is sufficiently expensive, there is an
equilibrium with no signaling, where all workers pool at e = 0. If within this limiting case
one takes the limit as F' becomes degenerate at 0 (meaning firms have no information), then
this reduces to the pooling allocation in Akerlof (1970). Conversely, part 2 establishes that if
signaling is sufficiently cheap, then the only equilibrium allocation is the benchmark least-cost

separating allocation and firms’ expertise is not used.

5.6 Welfare

The only reason why allocations in the model are not first-best efficient is that signaling is
socially wasteful. This does not immediately imply that equilibria with less signaling are Pareto
superior: expected wages for different workers are different across equilibria so it is possible that
there could be winners and losers from shifting from one equilibrium to another. The following
result establishes that partial signaling equilibria can indeed be Pareto-ranked against each
other (and against the pure signaling equilibrium), but cannot be Pareto-ranked against a

no-signaling equilibrium if it exists:
Proposition 7. 1. Suppose there is a partial signaling equilibrium with =1 > 0.

(a) It Pareto dominates the pure signaling equilibrium in the same economy.

(b) If there is another partial signaling equilibrium with 78 > w1 in the same economy,

the first equilibrium Pareto dominates the second.
2. Suppose there is a no-signaling equilibrium.

(a) It Pareto dominates the pure signaling equilibrium in the same economy.

P

(b) If there is also a partial signaling equilibrium with ©™ > 0 in the same economy,

neither equilibrium Pareto dominates the other.

In comparing partial signaling equilibria, it is straightforward to show that firms are better
off in the higher-7? equilibrium, since wages are the same and there is a better pool of workers

P The critical step is

at (0, w? ) High-type workers are indifferent because their payoff is w
to show that low-type workers are also better off. They gain from the fact that more firms are
hiring in market (O,wP ), which (other things being equal) increases their chances of earning
w? but lose from the fact that there are more high-type workers looking for work at (0, wb ),

which lowers their chance of being hired by any given firm. However, using the fact that in both
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equilibria high types must be hired for sure it is possible to show that the first effect dominates,
so low types also prefer the higher-7? equilibrium.

A no-signaling equilibrium (if it exists) cannot be Pareto ranked against partial signaling
equilibria. Since the wage is higher and the cutoff firm is lower, workers are better off in the
no-signaling equilibrium. However, the best firms are worse off since they have to pay higher
wages and their accurate signals mean they benefit little from the improved pool of workers.
Intermediate firms with 6 € (9N ,6F ) are better off in the no-signaling equilibrium while they
would make zero profits in the partial signaling equilibrium.

The model also makes it possible to ask, assuming there is a technology for firms to choose
6 at some cost, whether they have the right incentives to invest in acquiring expertise, such as
improving assessment models for job applicants, risk scoring models in insurance markets or
pricing models for stocks and financial derivatives. In Appendix B, following the approach in
Kurlat (2019), we show that in general the answer is ambiguous: firms may have incentives to
either over-invest or under-invest in expertise. We also provide a simple formula to quantify
the ratio of the social and private returns to expertise based on observable properties of the

equilibrium.

6 False Negatives

We now turn to the case with “false negative” mistakes, where F' is continuous with support
[\, 1]. Higher-i workers are relatively transparent, since most firms can tell (with certainty)
that they are high types, while lower-i high types are relatively obscure, since they can only be
identified as high types by the smarter, lower-6 firms. For expositional purposes, assume that
the density of firms f () is strictly increasing, meaning that there is a higher density of less
informed firms. The general case, which involves an “ironed” density, is treated in Appendix D.

Unlike the false positives case, firms face a nontrivial decision as to what hiring rule to use.
There may be markets where a firm 6 observes x (i,0) = 0 for all the workers that apply (so if
it insisted on hiring only workers with a positive signal it would not be able to hire at all) but
it knows that in equilibrium some high-type workers with i € [\, 6) do apply, so it may want

to hire from the pool of all applicants. We refer to this as non-selective hiring.

Description. In equilibrium, only the less transparent high-type workers signal. Letting uj,
denote the low types’ payoff, there is a cutoff ig such that workers in the interval i € [\, ig]
signal by choosing;:

eg = w7 (20)

cr
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while everyone else chooses e = 0. Signaling markets with e = eg are straightforward: all
the applicants are high types, so less informed firms compete for them and hire them (non-
selectively) at a wage w = qy.

No-signaling markets, with e = 0, are more interesting. Define 15 by:
flig) =1. (21)

Since f (0) is assumed to be increasing, this means that for all 7 > iy there are more firms who
can detect high-type workers than there are workers. Hence, firms compete for them and hire
them (selectively) at wage w = qp.

Conversely, for i € (ig,ip), there are more workers than firms who can identify them as
high types. Therefore, some of them have to be hired non-selectively, at wages sufficiently low
to attract non-selective firms. At each wage w € (qr, qy) where there is active hiring, two types
of hiring take place: some workers are hired non-selectively, and in addition all the highest
remaining i-types are hired selectively and thus drop out of subsequent, lower-wage markets.
Let w (0,4) be the wage such that all worker types above i have already been hired. The pool
of applicants at w (0,7) consists of all the low types plus high types in the interval (ig, ] who
have not been hired non-selectively at higher wages. As a result, non-selective firms break even

at a wage of:!0

(i — is) qu + AL,

w0 =" A

(22)

Firms with 6 = i hire f (i) workers selectively in this market since it involves the cheapest
wage at which they can identify high-type workers. Therefore, it must be that the remaining
1 — f (¢) workers of type ¢ were already hired non-selectively at wages above w (0,4). Since this
is true for any ¢, the probability density for any worker of being hired non-selectively in market
(0,w (0,4)) must be f’(i). Hence, the expected utility obtained by worker i is:
iH
w@) = F w0+ [wO.)d @), (23)

i

This defines a cutoff worker i* who is indifferent between signaling (which gives a payoff gy —

cpes) and not signaling:

16 Accordingly, the nonselective firms’ beliefs are given by

(i < X\) +1(i € (is,i" (w)])
A+i"(w) —ig

g(i;0,w, x) =

for x(i) = 1Vi, where i"(w) is the inverse of w(0, 7).
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£ w (0,0 + / w (0,4)df (i) = gt — cxes. (24)

i*

Market (0,w (0,7*)) is the lowest-wage market at which there is a chance of being hired non-
selectively. Low-type workers who have not found a job at or above this wage end up getting
hired at w = q;,. Therefore, the expected utility of low types is
iy
un = @+ [wl0.0)d @), (25)

7:*

Replacing (20), (22) and (25) into (24) and simplifying gives the following indifference condition

for the marginal worker ¢*:

(i, is) = f (") (C—H - ;) 1 (1 - C—H) /H 1 i =0 (20)

Equation (26) defines a positive relationship between ¢* (the worker who is indifferent be-
tween signaling and not signaling) and ig (the cutoff for actually signaling). In general, i* and
ig are not equal; there is a range of workers i € (ig,i*) who are indifferent between signaling
and not signaling but choose not to. It is straightforward to show that ¢* is increasing in ig.
Workers who signal do not apply for jobs in e = 0 markets. Higher ig (more signaling) means
the pool of applicants for non-selective firms worsens, so in order to maintain zero-profits the
wage must fall (equation (22)). In turn, this means that the utility of both high- and low-type
workers falls (equations (23) and (25)). It falls more for high types because low types sell a
fraction of their labor in market (0, ¢y ), where the wage is unaffected by higher ig. Hence, other
things equal, higher ig makes signaling more attractive, so the indifferent type ¢* rises.

A fraction 1 — f (i*) of workers in the range ¢ € (ig,i*) are hired at wages above w (0, %),
so the remaining f (i*) (i* — ig) workers must be hired at wage w (0,¢*). For any i € (ig,i*),
the measure of firms who are capable of identifying i as being a high type is F' (i), so we need

f(@*)(i —ig) < F(i). By monotonicity of f, this is implied by the market clearing condition:

F @) = f0") @ —is). (27)

Equation (27) defines another positive relationship between ig and *. If more of the obscure
workers decide to signal, then the most informed firms will work their way up to hire slightly

less obscure workers. Figure 8 summarizes the equilibrium signals, wages and hiring decisions.

Corner Equilibrium. Equations (26) and (27) hold for an interior equilibrium where some

range of workers are indeed hired by non-selective firms. However, it is possible that all workers
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Figure 8: Signals, wages and hiring decisions in an interior equilibrium.

below iy prefer to signal rather than being hired at a wage low enough to attract non-selective
firms, which would result in a corner equilibrium with ¢* = 7y. For this corner equilibrium,
the market clearing condition (27) and definition (21) imply ig = iy — F (ig). Also, in this
corner equilibrium, there is no non-selective hiring, so u;, = q;, and eg = e¢*. This will be an
equilibrium if workers just below iy indeed prefer to signal:

Fig)qun + A\qr

qy — cge’ >

F (i) + A
—— ~
utility of signaling wage for non-selective firms to break even
so, using (6), -
Chy F (2 H
- lin) (28)

e, T Flig)+ N
which is equivalent to I' (ig,ig — F (ig)) < 0. The following proposition summarizes these

results:
Proposition 8. There exists a generically unique equilibrium:
1. All high types i € [ig, 1] choose e =0 and are hired at w = qg.
2. Fori € 0,iy), the equilibrium takes one of the following two possible forms:

(a) An interior equilibrium where ig and i* solve (26) and (27) and:
i. A measure ig — \ of high types with i € [\,i*) choose e = eg, given by (20) and
are hired at w = qp.
ii. All other high types with i € [\, i*) choose e = 0 and are hired at w € [w(0,7*),w(0,iy)].
iwi. All high types with i € [i*,ig) choose e = 0 and are hired at w € [w(0,7), w(0,i)].
iv. All low typesi € [0, \) choose e = 0 and are hired at w = qr, orw € [w(0,7*), w(0,ix)].
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(b) A corner equilibrium where I(ig,ig — F(ig)) < 0 and:

i. A measure F(ig) of high types with i € [\,ig) choose e = 0 and are hired at
w = w’.
it. All other high types with i € [\, ig) choose e = e* and are hired at w = qp.

iti. All low types i € [0, \) choose e =0 and are hired at w = qr,.

The proof is in Appendix D, which also describes all firms’ decisions. Moreover, we show
that the equilibrium behaves continuously in the symmetric information and expensive signaling
limits, and we deal with the general case in which the density of firm types f(#) is not necessarily

monotone.

Properties. This model generates dispersion in expected wages among workers who are
equally productive and educated, depending on how transparent they are. In particular, the ex-
pected wages of high types i € [i*,iz), who all select ¢ = 0, are increasing in i.!” Similarly, the
model can explain, for instance, different prices for asset-backed securities for which both the
structure of tranches and the underlying cash flows are similar, but which differ in how many
buyers have access to accurate pricing models to evaluate them. Interestingly, this dispersion
is driven by break-even conditions of firms that are not making use of expertise.

The structure of equilibrium is similar to the pattern of signaling and “countersignaling”
(Feltovich et al., 2002): it is the hard-to-identify high types who must use the costly signal
in order to differentiate themselves from low types. By contrast, the most obvious high types
can be confident that expert buyers are able to tell them apart, thus eliminating the need
for signaling. The setup in Feltovich et al. (2002) features three different levels of worker
productivity; in our two-type model, countersignaling instead emerges because high types differ
in their transparency. Moreover, our model generates the intuitive prediction that expected
wages of those high types who “countersignal” increase in their transparency.

We can also ask how the intensive and extensive margins of signaling, measured by eg
and ig — A respectively, depend (locally) on parameters around an interior equilibrium. In
Appendix A, we show that an increase in the ratio ¢y /cy, reduces signaling along both margins.
For example, an increase in dividend taxes leads to both a smaller fraction of firms paying
dividends and a lower dividends per dividend-paying firm. We also show that an increase in
demand leads to polarization in signaling: fewer workers choose positive education but those

who do choose a higher quantity.

I"Tn contrast, in the partial or no-signaling equilibria in the “false positives” case there is dispersion in expected

wages among low types depending on their chances of being hired at w® or w® versus qr..
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7 Conclusion

We have developed a general theory to analyze competitive equilibria in economies where buyers
possess heterogeneous information about sellers and contracts are multidimensional, specifying
both a price and a signal. These information and contracting patterns are the feature of many
markets, including labor, asset and insurance markets, as we have illustrated through a series
of examples. Our notion of equilibrium allows us to obtain strong results: we prove that
an equilibrium always exists, it may not be unique in the false-positives case but is generically
unique in the false-negatives case, and it may not be efficient. Moreover, we uncover a tractable
structure to characterize it in both cases, based on the intersection of an indifference and a
market clearing condition. This allows us to provide results on comparative statics. Our model
predicts intuitive and continuous equilibrium responses to, for instance, changes in the prior,
demand, signaling costs or expertise that cannot be generated in the canonical model with
uninformed buyers.

We expect that our framework can be extended to study other structures of buyers’ direct
information, including ones where firms cannot be perfectly ranked by their expertise, such as
when both false positive and negative errors occur. In this case, we conjecture the equilibrium
to feature a combination of the two pure cases we have analyzed: high types are hired in
a similar way as in the false-negatives case, except that those in [ig,ig) are partly hired by
selective false-positive firms, because those firms have an advantage over non-selective firms by
being able to screen out some low types.

Our model may also be a useful starting point to study a number of richer environments.
First, a market for information may arise, where better informed firms sell their information to
less informed ones (e.g. in the form of analyst reports), instead of just trading on it themselves.
To prevent the price of information from dropping to zero, some form of capacity constraints
would again be required, which would effectively change the distribution of expertise in our
model. Second, many of our applications have a dynamic aspect, where the costly signal
involves a delay in trading. Our approach could be used to consider settings where some direct
information is revealed to buyers gradually at heterogeneous rates, and one could explore how

this affects the timing pattern of trades. These issues are left for future research.
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A Comparative Statics

A.1 False Positives
We compute how the amount of signaling 1 — 7 in a partial signaling equilibrium depends on param-
eters. We focus on cases where the locus of the market clearing condition (16) is steeper than of the

indifference condition (15), which corresponds to a heuristic notion of stability of the equilibrium.
Proposition 9. 1. Signaling decreases with the cost ratio cgr/cy,.
2. Signaling decreases with a FOSD increase in the expertise distribution F' or an increase in the

demand for workers A.
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3. Signaling does not change with productivities qr and qr,.

The logic of part 1 is as follows. The ratio c¢gr/cy, governs how much utility high types obtain if
they separate by choosing e* . Since w’ is the wage that makes them indifferent, higher cg/c;, means
a lower wage. This attracts lower-6 firms, so more high types can forgo signaling and still find a job.
As for part 2, a FOSD increase in the distribution of 8 means that firms are able to screen out more
low types, and therefore hire more high types (and an increase in A has the same effect). Therefore,
more high types are able to forgo education and still find a job. Finally, productivities have no effect
on equilibrium signaling. The wage w’ is a weighted average of gy and q;. Therefore, no matter
what these productivities are, the indifferent firm 8% will be the one whose pool of acceptable workers
includes a proportion of exactly cg/cr, low types. If, say, the productivity of low types was lower, the
wage w adjusts exactly so as to leave firm ¥ indifferent and the fraction of high types who signal
unchanged.

Proof. Using the reparametrization of the model where each firm demands A workers rather than just
one, it is straightforward to show that equations (15) and (16) become

QH—wP

oF =x—a"(1- 29
(-3 (20)
; A

dF (0) = 1. 30
/()\—0)+7TP(1—)\) (©) (30)

oFr

Replacing (6) and (14) into (29), the indifference condition reduces to:
1
0" =X —7" (1= X) o (31)
e

Let 67 (7TP , p) and M (7rP , p) represent the solutions to (31) and (30) respectively, where p is a param-
eter. The equilibrium value of 7% is given by a solution to the equation 67 (7TP , p) — oM (7rP , p) = 0.
Using the implicit function theorem, the derivative of 7¥ with respect to parameter p is given by:

P o0M 90!

dr  “op ap (32)
dp 000 _ oM
onP onP

By assumption, the denominator of (32) is positive, and equation (31) implies that gﬂi; is negative.

1. (31) implies that ! is decreasing in cg/cr, whereas cr/cr, does not appear in equation (30).
Using this in equations (32) gives the result.

2. The distribution F' does not appear in equation (31). Rewrite equation (30) as

A
1(6> 0P
O/(A—9)+WP(1—A)dF(9>_1'

The term inside the integral is an increasing function of . Therefore a FOSD increase in F
implies that the left-hand side of (30) increases, so #7 must rise to maintain equality. Using this
in equation (32) gives the first part of the result. (30) implies that 8™ is increasing in A, and A
does not appear in equation (31). Using this in equation (32) gives the second part of the result.
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3. This follows because neither gg nor g7, appear in equation (32).

A.2 False Negatives

We compute how the intensive and extensive margins of signaling depend on parameters around an
interior equilibrium.

Proposition 10. 1. Both the intensive and extensive margins of signaling decrease with the cost
ratio cg/cr.

2. The intensive margin of signaling increases but the extensive margin decreases with the demand
for workers A.

3. The extensive margin of signaling is invariant with respect to productivities qg and qr; the
intensive margin eg increases with qg — qr,.

Higher cp/cr, makes separation more costly, so fewer high types signal. This improves the pool
of workers in no-signaling markets, so non-selective firms pay higher wages. This raises the utility of
low types, so less intense signaling is required to separate from them. An increase in demand means
that at every level of expertise there are more selective hires, and therefore fewer non-selective hires,
S0 it is harder for low types and obscure high types to get hired nonselectively. This makes low types
worse off; therefore a more intense signal is needed to successfully separate, so fewer high types do so.
As in the false-positives case, g and ¢, drop out of equations (26) and (27), so the extensive margin
is unchanged. However, a greater gap between qy and gy makes it more attractive for low types to
mimic high types, so separation requires a more intense signal.

Proof. Let i*! (ig,p) and i*M (ig, p) represent the solutions to (26) and (27) respectively, where p is a
vector of parameters. The equilibrium value of ig is given by a solution to the equation i*/ (ig,p) —
i*M (ig,p) = 0. Using the implicit function theorem, the derivatives of i* and ig with respect to
parameter p are given by:

ai*M ai*l

diS op Op

—= =2 ___F 33)
(97,*[ al*JVI (

dp Jis  Oig

di* ot 0i dig (34)

dp — 9p ' dis p
The denominator of (33) is negative, and equation (26) implies that %Z‘Z.Z is positive. Furthermore, the
implicit function theorem implies that

I Or'(i* is;p)
0i _ (35)
Op aF(ia*yis;p)
Z*

and equation (26) implies that w is positive.

1. Using (26),

O (i ig; <L) . o , oy L ) = (@)
e f(z)+)\/i* T ) 2 F ) A

>0
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< 0 and

CH

< 0. Since alm = 0, using this in (33) and (34) implies that
CL

°L

so using (35) 2 o
CL
< 0. In turn, (25) implies that:

815
CL
ou ey 0FF
e =~ () g (w(0,i) —q1) >0
crL cr,

and (20) then implies that 865 < 0.
cL

2. Introducing variable demand A leaves equations (26) and (27) unchanged except that equation

(36)

(21) generalizes to Af (i) =1, so

din| __ 1
OA [A_y f' (i)
Therefore
8F(i*,i5;A) 8ZH A /. CH A cH
_— = — l1-—)]=—(1- = 0
O0A A—1 O0A iH—is—i-)\f (ZH) cy, g —15+ A Cr, >
(33) and (34) implies 85 <0and 2 g <.

so using (35)
Now assume towards a contradiction that eg falls. This implies that the utility of the marginal
given by u (i*) = gy — cgeg, must rise. Equation (23) generalizes to:

high type ¥,
u (i) = Af (i) w(0,7) + /Aw (0,4") df (¢'),

so evaluating at ¢* and taking the total derivative with respect to A yields
du (i*) :Gu(z ) 8u< *) 0i* (37)
dA 0A o1 0A
with
du (%) 7 oi
w (i . . . . i . . »
:f(z)w(O,z)—i—/w(O,z')df(z) H w (0,ig) f (ig) = —[w(0,ig) —u(i*)] <0
0A : ant
(using (36) to replace %—g), and Ou (%) /0i* = f (i*) Ow (0,7*) /0i* > 0. Replacing in (37) and
using the assumption that ( ") > 0, this implies
w (0, ) 9i* O _ w(0,ig) —u(i*)
_ — _ >

which contradicts the first part of the result
3. The fact that ¢* and ig do not depend on gy and g7, follows because neither gg nor qr appear

in equations (26) and (27). Using (20), (24) and (25):
_qH 4L ;e U s
€5 = cr, f(z)i*—is-f-)\’
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which is increasing in gy — qr..

B Expertise Acquisition

Following the approach in Kurlat (2019), we ask whether firms have the correct incentives to acquire
expertise. Consider an individual firm j and suppose it could invest in becoming better at screen-
ing workers. This will affect its profits and also, by affecting the equilibrium, the economy’s total
deadweight cost of education. Denote by 6; the level of expertise that firm j chooses to acquire.
Let
A=0)a+m"(F)A-Nar  p (39)
X—0; + 7P (F) (1 —\) v
denote the individual firm’s profits, where we have made explicit that these depend on the firm’s choice

6; and the distribution of expertise of all other firms F', which this firm takes as given. Furthermore, let
W (0, F) denote the equilibrium total payoffs (ignoring their distribution across workers and firms):

1 (6;, F) =

W (0;,F) =X, + (1= N gu — (1 =X (1 — 7" (F)) cye*. (39)

W depends on §; because firm j’s choice of expertise affects equilibrium allocations.

Assume the firm’s cost of acquiring its screening technology is ¢; (0;), where ¢; (-) is increasing and
sufficiently convex such that II(6;, F') — ¢; (6;) is concave in #;. The function ¢; (-) can be different
for different firms, leading to different equilibrium expertise choices. Taking the equilibrium as given,
firm j will invest until the marginal cost of better screening equals the marginal benefit: c;» 0;) =
Ol (6;,F) /06;. A social planner interested in minimizing deadweight costs would instead want the

firm to invest up to the point where ¢; (0;) = OW (6;, F') /00;. Using the model, we can compute the

J
oW (05, F) /00;
~ Ol (6;.F) /06;

If r(6;) > 1, the marginal social value of better screening is greater than the marginal cost, which
would provide a rationale for subsidizing investments expertise. Conversely, if r (6;) < 1, there would
be a case for taxing those investments.

The following proposition provides a formula for r(6) that relates it to equilibrium objects which,
in principle, could be measured, and places a lower bound on it. Denote by

ratio

7 (6;)

(40)

i onP
ol A |\ g

n (41)

the elasticity of the share of high types who do not signal (in a partial signaling equilibrium) with
respect to an increase in demand.

Proposition 11. 1. The ratio of social to private marginal value of expertise is v (0;) = i—;’n.
2. The elasticity i is greater than 1.

First, Proposition 11 establishes, perhaps surprisingly, that = (6;) does not depend on 6;. One
might have conjectured that the misalignment of incentives would be different for firms that, e.g. due
to different cost functions ¢; (), choose different 6 in equilibrium. Yet, it turns out that, if the market
under- or over-provides incentives to improve direct screening, it does so uniformly for all firms.
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Second, Proposition 11 shows that r can be written as the product of the signaling cost ratio and
the demand elasticity of 7”. The ratio cg/cy, enters the formula because, by equation (39), it governs
the deadweight cost of signaling for a high type that chooses e*.

To understand the role of the elasticity of 7F with respect to demand, observe that, again by (39),
OW (0, F) /00; crucially depends on how the equilibrium 7P changes in response to an individual
firm’s screening technology ;. If a firm improves its screening technology, it will reject more low type
applicants and therefore hire more high types, so the market clearing condition shifts outwards. Recall
from Section 5.5 that demand affects the equilibrium through exactly the same channel: by producing
an outward shift in the market clearing condition. Hence, i precisely summarizes the effect of a firm’s
expertise on 7¥. In particular, we show in the proof of Proposition 11 that the overall effect on 7¥
depends on the size of the shift to the market clearing condition and on the difference between the
slopes of the indifference and market clearing conditions. For example, when these slopes are very
similar, 77 will respond strongly to a firm’s expertise and 1 will be large.

Overall, the result implies that it is desirable to encourage investments in direct screening if the
cost of signaling is relatively similar for high and low types (which makes the deadweight cost of
signaling high) and if the signaling decisions of high types are highly sensitive to demand (which would
make them highly sensitive to improved screening as well). For example, higher dividend taxes make
the signaling costs of different types more similar, thereby making an underinvestment in expertise
more likely. Moreover, the cost ratio and the demand elasticity of 7% are sufficient to determine the
magnitude of . Conditional on these two statistics, knowledge of other parameters, such as the shape
of the cost function ¢(-), are not required. As usual with sufficient statistics though, 7 is of course
endogenous to the equilibrium.

The second part of Proposition 11 establishes a lower bound of 1 on the elasticity n, which in turn
implies a lower bound of ¢y /cy, on r. To understand this, suppose there is an increase in demand
of A%. If the mix of workers in market (0,w”) remained constant, each firm in [HP , A] would hire
A% more high types, implying an elasticity of 1. However, precisely because 77 increases, the mix of
workers available in market (0,w”) improves, so each firm increases its hiring of high types by more
than A%. Furthermore, higher 77 means that marginal firms enter market (0,w?"), further increasing
demand. The strength of this last effect depends on the density f (HP ) of firms near the cutoff 4.
Since this density could be very high (to the point where the slopes of the indifference and market
clearing conditions are the same, leading to an unbounded response of 7% to A), there is no upper
bound on 7.

The magnitude of r depends on the relative importance of the various externalities from a firm
choosing its screening technology. First, in an interior partial signaling equilibrium, improved screening
always helps other firms, since it leads more high types to forgo education and improves the mix of
workers available at (0,w’). Second, it is neutral for high type workers since they get a payoff of w”
regardless. Third, the effect on low types with ¢ > 6 is also positive. In principle, there are offsetting
effects: these workers benefit from having more firms hiring in market (0,w’) and lose from having
more high type workers looking for work in (0, w’). However, just like when one compares across
equilibria, the market clearing condition implies that the first effect dominates. Lastly, for low types
with ¢ < 0 the effect is ambiguous, because better screening increases their chances of being rejected.
If this last effect is negative and strong enough, the sum of the externalities could be negative, which
would lead to r < 1.

If instead of being in a partial signaling equilibrium the economy is at a no-signaling equilibrium,
it is immediate that improved screening has no marginal social value, since no worker is signaling. It
would still have a positive marginal private value, so r = 0. In this region, better screening by one firm
has a negative effect on other firms, since it does not improve the pool of workers in market (0,w")

but drives up the wage w” .
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Proof. 1. Using (38) yields

Ol (0;, F) P (1—-X)
_ — 42
and using (39) B
ow (0;,F) B Lom

Around a partial signaling equilibrium, equations (15) and (16) imply

Sensitivity of market clearing to expertise of one firm
-

(A= 6P) +xF (1= )

ol A —0; + 7P (1= )% f(67)
9 [ (1=N[A=0) +xF (1 =N] 2dF (0) [(A—0F) +7F (1= N)] 1
P - (1= L _
f(0") e
Slope of market clearing Slope of indifference
(44)
Replacing (42), (43) and (44) into (40), we obtain
r(6:) = A CH/CLz £(67) . )
P [ B[ ) + 77 (1= N 2F (6) = oo
cH

Applying formula (32) and definition (41) yields

A =0" + 7" (1= N)]/ [xPf (67)]

TN+ (- N AE ) [ 07) 7P (L 0]/ 67) — (1) /(5 -

cH
(46)
Replacing (46) into equation (45) and simplifying gives the result.
2. Rearranging (46) and using that f (HP) > 0:
1
n (47)

7P (1= X) [ [(A—0) + 7P (1—\)] > dF ()
Now rearrange the market clearing condition (16) as

A

/[wp(l—)\)]l (A= 0)+ " (1 N]

QP

1 -1

dF (0) = [77 (1 = \)]
Since [(A —0) + 77 (1 — )] s increasing in 6, this implies
A
=P (1— )\)/ (A= 0) + 7P (1) 2dF(9) <1
oFr
Replacing in equation (47) gives the result.
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C Omitted Proofs

Proof of Proposition 1

1. The proposed {e;, (eg, wy, xp), pt, G} is an equilibrium.

(9) implies that low types are indifferent between any e € [0, e*] and high types are indifferent
between any e > e*, so education decisions (7) solve the workers’ problem. (10) implies that firms
can make zero profits by hiring in market (0,qr) (where there are only low types) or (e*,qpy)
(where there are only high types), and any other market has either G (I,;e,w, x) = 0 or results
in losses. Therefore (8), which places demand only in markets (0,qz) and (e*,qy) and yields
zero profits, is an optimal choice. Furthermore, (8) implies that no firm hires more than one
worker. Replacing (8) in (3) implies that demand is:

A ife=0,w=qg
D(e,w)=< 1—-X ife=e*",w=qy (48)
0 otherwise.

Equations (7), (9), (10) and (48) imply that Condition 1 holds. Condition 2 is trivially satisfied
because (9) is independent of 7. Finally, (7) and (9) imply that beliefs (10) satisfy Condition 3 in
nonempty markets. Since low types find e € [0, e*] optimal and high types find e > e* optimal,
(9) implies that beliefs satisfy Condition 4 when they are well defined, and G(I;e,w,x) = 0
only at wages where u (w;e, i) = 0 for all ¢, so Condition 5 is satisfied as well.

2. The above equilibrium is unique.

(a) In any equilibrium, each firm makes zero profits. If there was a firm that made strictly
negative profits, it could increase profits by setting x(i) = 0 for all 7. On the other hand,
suppose there is a firm that makes strictly positive profits in some market (e, w). Recall
that F(1) > 1, so there must exist a strictly positive measure of firms that do not hire.
Any such firm could increase its profits by directing its search to market (e, w), so it cannot
be optimizing.

(b) In any equilibrium, there does not exist a market (e, w) such that I (e; = e) p (w;e,i) > 0
both for some i < A and some i’ > \. Otherwise, consider a market (¢/,w’) with ¢’ = e+ ¢
and w € (w (e,i') + cye, qu). Suppose type i < A is in the support of G (-;€’,w’, x). This
requires

w (e',i) — cre’ > w(e,i) — cre.

Rearranging gives w (¢/,i) — w(e,i) > cpe. Since firms cannot discriminate, it follows
that w (e,4) is the same for all 7. Also, since p(w’; e, i) must be weakly decreasing in i by
Condition 2, w (¢/,4) is weakly increasing in i. Therefore:

w (e',i') —w (e,i') > cLE,
which implies w (¢/,4") — @ (e,i’) > cye. This contradicts the premise that type i’ finds
e optimal. Hence, no ¢ < X can be in the support of G (:;€¢/,w’, x). If the support of

G (:;¢/,w', x) only includes ¢ > A, then firms could make profits by hiring in market (¢/, w'),
which contradicts part (2a). Therefore it must be that G (I;¢e/,w’, x) = 0. This implies
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that u (w'; €’,4") = 0 by Condition 5, which in turn implies w (¢’,i") > w (e, i") 4+ cgre, which
contradicts the premise that type i’ finds e optimal.

(¢) In any equilibrium, all low types obtain a payoff of q;. Suppose that they obtained a
payoff ¢; > gr. This implies that they are hired with positive probability in a market with
w > qr,. By part (2b), the supply in this market only includes low types, which implies
negative profits for firms, contradicting part (2a). Suppose that they obtained a payoff
¢; < qr, and consider a market with e = 0 and w € (¢}, qr). If G (I;e,w,x) > 0, then
firms can make profits by hiring in this market; otherwise, u (w;e, ) = 0, which means low
type workers can obtain a payoff w > ¢} by choosing e = 0.

(d) In any equilibrium, all high types obtain payoff gi7 — cge*. Suppose first that they obtain a
payoff uyy > qi —cpe*. If they do so by selecting e’ < e*, then this implies w (¢’,i) —cye’ >
g — cge®, which in turn implies w (¢’,i) — cre’ > qr, and since w (¢, 1) is the same for
all 7, this implies that low types can obtain a payoff higher than ¢z, contradicting part
(2¢). If instead € > e*, this implies they are hired with positive probability at a wage
w > gqg and hence strictly negative profits for firms, contradicting part (2a). Second,
suppose they obtain a payoff uy < qg — ce*. This means that for any ¢ > A it must be
that w (e*,7) < qu, and therefore w (e*,7) < gy for ¢ < A as well. Consider a market with
e =¢€" and w € (ug +cpe*,qu). G(I;e*,w,x) > 0 because otherwise p(w;e*,i) = 0
by Condition 5, so high types can obtain a payoff of at least w — cge* > ugy by choosing
education e*. But the support of G (+;e*,w, x) cannot include low types because choosing
e* implies a payoff of w (e*,i) — cpe* < qg — cpe® < qr, contradicting part (2c); and the
support of G (;€*,w, x) cannot include only high types because then firms could make
profits by hiring in market (e*,w), contradicting part (2a).

(e) Step (2¢) implies that all low types select e = 0 and get hired for sure in market (0, qr).
Step (2d) implies that all high types must select e = e* and get hired for sure in market
(e*,qm). This determines (7) as well as (9) and (10) in these markets. It also requires that
there is total demand A in market (0, ¢,) and demand 1 —\ in (e*, ¢gr), thus (8) must hold.
For all other markets, (9) and (10) then follow from Conditions 1 to 5.

Proof of Proposition 3

We first show that, in any equilibrium, all low types choose e = 0 and get hired at least at wage w = qr..
Some fraction m € [0, 1] of the high types choose e = 0 and find a job for sure at wage w = w’ (if
7 <1)orw>w" (if 7 =1). The rest of the high types choose e = e* and get hired with certainty at
wage w = qr. We prove this claim based on the following sequence of steps:

1. By the same argument as in the proof of Proposition 1, all firms make non-negative profits.

2. Firms’ profits must be weakly increasing in 6. To see this, suppose that 8’ > 6 but firm 6 makes
strictly higher profits than #’, and consider the market and hiring rule (eg, wy, xg) chosen by
firm 0. By hiring in market (eg,wy) and setting xq/ (i) = I(i > '), firm 6’ could make profits at
least as high as firm 6 since it accepts all the high types but rejects more low types than firm 6
possibly can.

3. There exists some @ such that all firms # < 6 make zero profits, and F() > 0. To see this, recall
that at least a measure F'(1) — 1 > 0 of firms do not hire, which implies zero profits. The claim
then follows from the monotonicity of profits in 6.

4. In any equilibrium, low types obtain a payoff of at least ¢r,. Suppose that they obtained a payoff
¢7 < qr, and consider a market with e = 0 and w € (¢},qz). If G (I,;0,w,x) > 0, then firms
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6 < 6 can make profits by hiring in this market; otherwise, x (w;0,7) = 0 by Condition 1, which
means low-type workers can obtain a payoff w > ¢} by choosing e = 0.

. In any equilibrium, high types obtain a payoff of at least wf = gy — cye*. Suppose they
obtained a payoff uy < g —cge*. This means that for any ¢ > A it must be that w (e*,7) < ¢,
and therefore w (e*,i) < qg for i < X as well. Consider a market with e = e* and w €
(ug + cue*,qu). G (Iy,;e*,w,xp) > 0 for all § because otherwise p (w;e*, \) = 0 by Condition
5, so high types can obtain a payoff of at least w — cye* > upy by choosing education e*. But the
support of G (+;e*,w, xp) cannot include low types for any 6 because choosing e* implies a payoff
of w (e*,i) — cpe® < qg — cre* = qr; and the support of G (+; €*, w, xp) cannot include only high
types for § < 6 because then firms 6 < § could make profits by hiring in market (e*, w).

. For any i > X and any e, p(-;e,7) has a point mass at a single wage. To see this, consider two
wage levels w’ > w and suppose that high types are hired with positive probability in both of
them if they choose e. Let 6" be the highest-type firm that hires at wage w’. Conditions 1 and
3 imply that the expected productivity of workers that firm 6" will find in markets (e, w’) and
(e,w) is the same, and therefore it cannot be optimal for firm 6 to hire at wage w’. Therefore
it must be that all high types are hired at the same wage, which implies that u (-;e,?) is a step
function for every 1.

. In any equilibrium, all low types get education e = 0. To see this, assume to the contrary that
some i < A chooses e = € > 0. By step (4), we have that w (€,i) > qr + cr€ > qr. Together with
step (1), this implies that in every market (w, €) with w > ¢;, where type i has some chance of
being hired, there are also high-type applicants, because otherwise firms would make losses by
paying more than gr. Step (6) implies that there can be only one such market; label it (€, w).
Letting ug be the utility obtained by high types in equilibrium, this implies @ = ug + cgé. Let
0 be the lowest firm type that hires in market (é,w) and 7wg be the measure of high types that
choose e = é. Using the fact that all high types that choose e = € are hired in market (€, w), the
probability that type i < A is hired in market (€, w) is bounded above by f; %dF (#). Since not
being hired in market (€, w) implies getting a wage qr,, this implies that the payoff from choosing
e = é is bounded above by:
7
ui (€) = qr + /

(2]

1 - -
—dF (0) (w —qr) — cré,
TH
which is lower than g; for ¢ sufficiently close to 6. Let i be the lowest worker type such that
there is a ;1 > 0 such that all workers i € [i,7 + d1] choose e = é&. We know that i > 6.

Assume that some firm 6 € [0, i] prefers to hire in some market (¢”,w”) # (€, w). This implies

firms 6 € <9~, 1) also prefer (¢, w") over (&,w), since they hire from the same pool of workers

as firm 6 in market (& @) but from a more selected pool in other markets. But then the fact
that worker i = 6 does not choose é implies that worker 7 does not want to choose é either, since
he obtains the same payoff as worker ¢ = 0 upon choosing € but weakly higher in every other
market. This contradicts the assumption that worker i chooses €. Therefore it must be that all
firms in the interval [, 7] hire in market (€, w).

Since there are no workers with ¢ < ¢ in market (€,w), then upon hiring in market (€, w), any
firm @ < { hires from the entire pool of applicants, without rejecting any. Since this hiring rule
is available to all firms, part (3) implies that all § < i firms must make zero profits by hiring
in market (é,w). For this to be true, it must mean that they cannot make profits in any other
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market, including any markets with e = 0. But any firm with 8 > i will be able to reject some
workers in the interval [i,i + §], which implies it can make strictly positive profits by hiring in
market (&,w). Therefore, all firms in the interval (i,7 + 6;] hire in market (€,w). This in turn
implies that if worker 7 is willing to choose €, then worker i+ 46 strictly prefers €, since, compared
to worker ¢, he has a higher chance of being hired in market (€, @) and the same chance of being
hired in any other market. By continuity, this implies that there is a number do > 1 such that
all workers in [i,7 + d2] choose e = €. Repeating the same reasoning, this implies that there is a
strictly increasing sequence {d,} such that all workers in [i, d,] choose é. Therefore all workers
i € [i, A] choose e = é.

Let 6 be the highest firm type that hires in market (¢, @).

(a) Assume 6 = X . Consider market (0,ug +¢€). If G <Ix9~§ 0,up + e,xé) > 0, then they can
only include high types because firm 6 only accepts high types. For sufficiently small €, this
implies that firm 6 could make higher profits in market (0,u + €) than in market (€, w),
a contradiction. Instead, if G (Ixé;O,uH +¢€,x5) = 0, this requires w(ug +€0,7) =0
for all ¢ > A, which implies that e = 0 is a better choice than € for high types, again a
contradiction.

(b) Assume instead that 6 < X. This implies that all firms that hire in market (¢,@) ac-

cept workers i € [é, )\] Since high-type workers are hired for sure in market (€, w), this

implies that workers ¢ € [é, )\} are hired for sure as well, and therefore obtain utility
ug — (e, — cg) é. Now consider a market with ¢/ = €+ € and v’ € (W + cye, @ + cre).

Suppose type i’ € [é, )\} is in the support of G (-; €/, w’, xp). This requires:

w (e',i’) —cre >ug —(cp —cy)é = w (e/,i’) — [ug + cgé] > cre.
Since w (€’,4) must be increasing in i by Condition 2, for any high-type worker "

w (e',i") — [ug +cpél > cre = w (e',i") — [ug + cpé] > cpe,

which contradicts the premise that ¢” finds € optimal. Hence, no ¢ € [é, )\} can be in the

support of G (:;¢/,w’, xg). If the support of G (:;¢/,w’, xg) only includes i > )\, then for
small enough e, firm 6 would find it more profitable to hire in market (¢/, w’) than in market
(é,w). Therefore it must be that G (Iy,; €', w’, xp) = 0. This implies that p (w';€’,7") =0,
which in turn implies that high types prefer ¢’ to €, a contradiction.

8. In any equilibrium, the high types select either e = 0 or e = e*. If some types selected e > e*,
then by step (5) this would require paying them w > gy and therefore involve negative profits
for firms. On the other hand, suppose some high type i’ sets ¢’ € (0,€*) and let w be the highest
wage such that p(w;e’,i’) = 0. For any w > w, beliefs can only place weight on high types
since by part (7), no low types choose €’. This implies that if w < gg, any firm, including those
with 6 < 6, could make profits by hiring in market (¢’, w), which contradicts part (1). Therefore
we must have w = ¢g. Note that this implies that there can only be a single ¢’ € (0, e*] such
that e; = ¢’ for some 7 > X since otherwise the high types would only select the lowest such
e. Let m be the fraction of high types who choose e = 0 and 1 — 7 the fraction who choose
e = €. Since they must be indifferent, it follows that high types who choose e = 0 get a wage of
w’ = qy — cye’. Since all low types choose e = 0, firms will find it profitable to hire in market
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(e =0,w =) iff
T(1=XN) g+ (A—0)qr
T(1—X)+(A—96)

This defines the cutoff firm 6" such that firms with # < 6’ make zero profits. Furthermore, this
implies that all workers with ¢ < 6" do not get hired in market (0,w’) and therefore obtain a
payoff of gr,. Let © C [0,0'] be the set of firms who hire workers in market (¢’,gp). Since all
high types who choose €’ get a job at w = qp it follows that F'(©) = 1 — 7. Suppose worker
i’ < ' chooses e = ¢’. His chance of finding a job at wage ¢y will be given by:

> qg — cge’.

F©no,7]) F©N]|0,])

L= plquie i) = —F——— = F(0)

Since F is continuous, then for ¢’ sufficiently close to ' , u (qm;€’,4") will be arbitrarily close to
0, and therefore (since €’ < e*), (1 — u(qu;€’,7))qu — cre’ > qr. Thus, there is a low type who
would prefer e = €’ to e = 0, which contradicts step (7).

To complete the proof, let ug be the equilibrium payoff of high types.

1. If uy > w®, then it must be that all high types choose e = 0 and get hired at a wage w = ug.
Firms will find it profitable to hire in this market if

1=XNaga+X—0)qr
I—N+r—0

>uyg

This defines a cutoff , so (12) holds. Furthermore, since all high types must be hired at this
wage, (11) must hold.

2. If ug = w’, then high types are indifferent between choosing e = 0 and getting hired at wage
w® and choosing e = e* and getting hired at a wage q7. Let 7 be the fraction that choose e = 0.
Firms will find it profitable to hire in market (0, wh ) iff

T(L—=XNaqgg+A—0)qr - WP
T(1=X)+(A—-0)

This defines the cutoff 6, so (15) holds. Furthermore, since all high types who choose e = 0 must
be hired at w, (16) must hold too.

Proof of Proposition 4

Partial Signaling Equilibrium.

1. Necessity of condition (19).

Let w (e, i) be the wage that would make worker i indifferent between their equilibrium payoff
and choosing education e, given by:

o { w(i)+cre ifi< A (49)

w(e,7) = u (i) +cge ifi > A

where u(i) is given by (17). Suppose firm 6 considers hiring in market (e,w). For it to believe
that it will find xg-acceptable low types, i.e. workers with ¢ € [#, \), it must be that:

w(e,0) <wl(ei)=w(ei) <w(e,\) <w(eA). (50)
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The first inequality follows from the fact that u (i) and therefore w (e, %) is increasing in 7. The
second step follows from Condition 4: if beliefs place weight on type 4, then ¢ must be indifferent
between e and his equilibrium choice. The third follows from Condition 2, which implies that w
is monotonic in i. The last inequality follows from the fact that otherwise worker A could exceed
his equilibrium payoff by choosing e. By Condition 4, the only markets where firm 6 can place
beliefs on yg-acceptable low types are those with education levels that worker ¢ = 6 is willing to
choose for weakly lower wages than high types.

Moreover, for firm 6 not to have well-defined beliefs about market (e, w) it must be that:

w < w(e0), (51)
since otherwise Condition 5 requires u (w;e, ) = 0, so some xg-acceptable worker could exceed
his equilibrium payoff by choosing e.

Together, conditions (50) and (51) imply that for any market (e, w) such that w (e, \) < @ (e, 0)
and w > w (e, A), firm ’s beliefs G (-; e, w, xp) can only place weight on high types.

Denote by (69 , Wy D) the lowest-wage market where firm 6’s beliefs are guaranteed to only include
high types, which satisfies

weD:ﬂ)(egD,)\):w(eé),Q).

Using (6), (14), (17) and (49) and rearranging, the profits that firm 6 can obtain by hiring in
market (e, wP) are

0
1
1P (g) — _D:CH/ F —q1).
0) =am —wy =~ | gy ga—git @l —ar)
or

By (38), profits in market (e}, w}’) exceed those that firm @ obtains in equilibrium if condition
(19) is violated, which implies it cannot be an equilibrium.

2. Sufficiency of condition (19). We construct the equilibrium objects {e;, (eg, wg, xo), i, G}.

(a) Worker decisions:

o ifi<Aa+TP(1=)
6’_{6* ifi > A+al(1-)) (52)
(b) Firm decisions:
(0,w?, x(3) =1(i > 0)) for 6§ > 6F
( )= (0, qr, x(7) = 1Vi) for a measure A — ! of firms § < 0
€0, We, Xo) = (e, qm, x(i) = 1Vz) for a measure (1 — \) (1 —7%) of firms § < 67
(0,0, x(i) = 1Vi) otherwise
(53)

where

A—0
sOPZ/7r1°(1—A)+A—edF(9)

oF
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(c) Probabilities:

1 ife=0,w> w?
1% (w, e,i) = 1-— QII;III{’L,)\} md}? (0) if e = 0, wP >w > qrL (54)
I (w > min{w (e, i),w(e,\)}) otherwise

where we used (49).

(d) Beliefs: for selection rule x(i) = I(i > 0),

1(i€[0,0)+7FI(i>N)
7P (1=X)+)—0
I(i€[0, M) p(wse,i)

f(;‘ u(w;e,i)di

ife=0,w>w?

if e =0,w" >w>qr

g(ise,w,x) = I(i = ) if e € (0,ef),w > 1w (e,0) (55)
% iereQD,wzﬁ)(@a)\)
\ 0 for any other (e, w)

and for selection rule (i) = 1V,

I(G <) +aPI(E>N) . .
W ife=0w>w
_p(wiei) . p
. N fol H(w;el;i)di ife= O’w >w > qr )
g (ise,w,x) = u<z§§ ) if e € (0,e*),w > (e, 0) (56)
H(lli))\\) if e > 6*,11) > 0 (6, )\)
N 0 for any other (e, w)

We now verify that {e;, (es, wg, x9), i, G} satisfies all the equilibrium conditions from Definition
1. (54) implies that low types i € [0, A) are indifferent between any e € [0, eP )} and high types
are indifferent between any e > 0, so the education decisions (52) solve the workers’ problem.
The beliefs (55) and (56) together with the fact that condition (19) holds implies that firms
6 > 0 maximize profits by hiring selectively in market (0,w’). All other firms make zero
profits by hiring non-selectively either in market (0,qz) or (e*,qg), and any other market has
either G (I,,; e, w, xg) = 0 or results in losses. Therefore the demands (53) are an optimal choice.
Furthermore, replacing (53) in (3) implies that demand in market (e,w) for a set of selection

rules Xo (0) ={x (i) =1(i>0): 0 €[0,0]} is:

A —of ite=0,w=qr
D(e,w, Xy (0')) =< max{F (¢') — F (6"),0} ife=0,w=uw"
(1 —7P)(1 = N) ife=e*,w=qy

Together with (55) and (56), this implies that Condition 1 holds. Condition 2 is satisfied because,
by (54), p(-;e,i) is weakly decreasing in i. Finally, (52) and (54) imply that beliefs (55) and
(56) satisfy Condition 3 in nonempty markets. Since low types i find e € [0, eP )] optimal and
high types find any e > 0 optimal, beliefs satisfy Condition 4 when they are well defined, and
G(Iy;e,w,x) = 0 only at wages where p (w;e, i) = 0 for all ¢ such that x(¢) = 1, so Condition 5
is satisfied as well.

Pure Signaling Equilibrium. The above analysis applies for the special case with 77 = 0.

o1



No-Signaling Equilibrium. Necessity and sufficiency of condition (18) are proved by the same
steps as for the Partial Signaling Equilibrium. For completeness, we state the equilibrium objects
{ei, (ea; wo, x0), 1, G}

(a) Worker decisions:

e; = 0 Vi (57)
(b) Firm decisions:
(0,0, x(3) =1(i > 0)) for 6 > 0N
(eg, wg, x9) = (0,qr, x(i) = 1Vi) for a measure 1 — F'(\) + F(6V) of firms § < 6V
(0,0, x(2) = 1Vi otherwise
(58)
(c) Probabilities:
1 ife=0,w>uw"
plwiei)=q 1= PV LAR ) ife=0, 0V >w>qp (59)
I(w > min{w (e,i),w(e,\)}) otherwise

(d) Beliefs: for selection rule x(i) = 1I(i > 0),

( % ife=0,w>wV
1(:€[0,\]) p(w;e,i)

. N
= >
2 p(wiesdi ife=0,w" >w>qg

g(ize,w, x) = I(i=0) ifeec (0,eD),w>ile0) (60)
H(fi)\‘) if e > el w> (e, N\
0 for any other (e, w)

and for selection rule (i) = 1V,

1V if e = 0,w>wh
_pwied) g N
T e ife=0,w" >w>qL
. _ i<
g (ise,w,x) = H@;i) if e € (0,eN),w > 1w (e,0) (61
H(lf‘_ig\\) if e > eV w >0 (e, \)
0 for any other (e, w)

with eV = (w™ —qr)/(cL — cr)

Proof of Proposition 5
1. Using the reparametrization of the model in terms of 5\, equation (12) generalizes to
(A=) da+ (1= 4) an

i (=M 3+(1-1) (62>
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For \ low enough, w” > w’ so there is a candidate corner equilibrium. Condition (18) generalizes
to

A=A+ (1-8) o, [ |
(/\_0))‘[()\—9)§+(1—5\)}>CL—CH<1_>\> Q/(A—t)§+<1—5\)dF(t) 7

which cannot hold for sufficiently low ), so the candidate equilibrium is indeed an equilibrium.
Furthermore, taking the limit in (62) we obtain lim;_,, w" = qg.

. Equation (11) implies that limp_,p« Y = X, which implies, using (12), that limp_,p+ w" = qg

for F' sufficiently close to F*, so a candidate equilibrium with the desired properties exists.
Furthermore, as #~ — A, condition (18) cannot hold so the candidate equilibrium is indeed an
equilibrium.

Proof of Proposition 6

1.

Using (14) and (6):

cH cH
w” = (1 - > qa + —4ar,
cr, cy,

and therefore limey w? = qp. Using (12) we have w”™ > w’, so there is a candidate corner

equilibrium. Furthermore, as ¢y /cr, — 1, condition (18) holds so the candidate equilibrium is
indeed an equilibrium.

. Taking the limit, limey ,,w? = gy. Using (15), this implies #” — A, so condition (16) cannot
°L

hold for any ¥ > 0.

Proof of Proposition 7

1.

2.

It is sufficient to prove claim (b) because claim (a) is a special case with 7f = 6 = 0. By
equation (38), firm profits are increasing in 7P, and since w’ is the same across equilibria, firms
are better off in the higher-7¥ equilibrium. High-type workers obtain a payoff of w! in both
equilibria, so they are indifferent. Using (17), workers with i < 6% get a payoff of g in both
equilibria, so they are also indifferent. Workers with i € (9%D , 9{3 | get g1, in the first equilibrium
and more than ¢z, in the second, so they are better off in the second. For workers with i € (61, \),
their payoff is:
i
1
) = dF (0) (wf —
wi) =a+ | =T O (" )
9P

A
:wp_/wP(l—Al)H—adF(e)(wp_‘“)

(2

P

where we used (16). This is increasing in 7', so they are also better off in the second equilibrium.

(a) In the first equilibrium, all firms make zero profits, so they are better off in the second
equilibrium. Low-type workers get a payoff of ¢, in the first equilibrium, but those with
i > 0N get more in the second equilibrium. High-type workers get a payoff of w’ in the
first equilibrium but w? in the second, so they are also better off.
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(b) By equation (38), for 6 sufficiently close to ), firm 6’s profits approach gz —w, so w? < w
implies they are higher in the first equilibrium. High-type workers get a payoff of w’ in
the first equilibrium but w® in the second, so they are better off in the second.

D False Negatives

Uniqueness in case f (f) is strictly increasing

Proposition 12. If condition (28) holds, the system of equations (26), (27) has no solution. Otherwise,
it has a unique solution.

Proof. Solving (27) for ig and replacing in (26), a solution requires:
H

A (%) = £ () [CH ) (1;((;)) +A>_1] _ <1_ i’j) / — +)}(i*)+)\df(i) =0 (63)
it

L )

Taking the derivative and rearranging:

UGk (1—)\<?((Z)) +)\)_1> o\
(=) [ (g ) e (FRE)
1 2

(
> f(i*) (1—)\ (F(Z)) +)\)

CL

() [ (e S ) oo ((RE) (R )|
where the inequality follows because i > i*. If i* satisfies (63), then:
2t (10 (5 ) oo (o)1= 282)

f ()
e (53 | () G )]
= \f (i") <I;((Z:)) + /\)_2 >0

so the function A (i*) is increasing at any ¢* such that A (*) = 0. Condition (28) is equivalent to
A (ig) < 0. Furthermore,

AN =— (1—2) [f()\)Jr/in ?df(z’)] <0

Therefore, if (28) holds, there can be no i* € [\, ig] that satisfies A (i*) = 0 because A(A) < 0
and A (i) < 0 and A must be increasing at any solution. Instead, if condition (28) does not hold,
A (ig) > 0, so by continuity and using the fact that A is increasing at any solution, there is exactly
one i* € [A,ig] that satisfies A (i*) = 0. O
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Continuity in the Limit

Proposition 13. 1. limsg_, w(0,7) = qu, lim;_,i* = A, and lims_,,is = A, for all i € [i*,ig).
2. Let F* be a mass point at @ = X\. limp_pxig = A.
3. limew ,yis =

Proof.
1. Letting the fraction of low types be A, equations (21), (22) and (26) generalize, respectively, to:

1= A ._ii(i—is)QH%-S\QL
f(Z )_ﬁ’ M(O’Z)_ %(1—25)4—5\ 7and (64)
r *’ _07H * _5\<1_C[I> [ _ 1 _ d AN *5\ _ 1 A:O
(i is) = (i) 2 / S| YOO
(65)

while the market clearing condition is unchanged. The first statement follows directly from
equation (64), the second from equation (65) and the last from equation (69).

2. Since the measure of firms is assumed to be greater than 1, for F' sufficiently close to F*, then
f(7) > 1 for all i, which implies iy = A.

3. Equation (26) implies limey _; i*—ig = 0. Using this and equation (27), we have limey | F' (i*) =
c CL
0, which implies limey _; * = A and therefore limey ;i = .
L L

O

By part 1, as the fraction of low types goes to zero, nobody signals and everyone is paid qg. Part 2
says that as firms become fully informed, again nobody signals and all high types are paid ¢qf. Finally,
part 3 shows that if signaling is sufficiently expensive, no workers signal in equilibrium. In all cases
the equilibrium allocations are continuous in the limit.

General Case

For the case where f (i) is not monotone, the argument in Section 6 needs to be modified. Consider
two workers, 7 and i’ with i* < i < ¢/ < iy and assume f (i) > f (i'). The argument above, unmodified,
implies that any worker will be able to sell a fraction 1 — f (¢’) of his labor to non-selective firms at
wages above w (0,4"). This means that only f (i) of i-workers will be available for hire in market
(0,w (0,7)), which is less than the f (i) workers that firms with § = i want to hire. Realizing this, firms
would bid up the wage, displacing non-selective firms. To characterize exactly what will happen, it is
useful to define F(6) as the convex hull of F(#), i.e. the highest convex function on [, 1] such that

F(0) < F(0):

F®) = min {wF(6)+ (1 —-w)F(f)}

w,01,02

s.t. we[0,1], 01,02 € [\, 1] and wb; + (1 —w)hy = 6.
The corresponding density f(6), which is weakly increasing, is the “ironed” version of the original

density f(f). We now show how the analysis in Section 6 extends to this general case, replacing F’
with F. Let ig be defined as
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i = mi i f(i) > 1),

=gyt i0 =
This generalizes the definition of if in (21), allowing both for the possibility of ironing and the case
where f(i) > 1 for all ¢ (in which case trivially iz = X). Let the reservation wage for type i € [i*,ip)
be given by

(' —is)qm + Aqr st. F(i) = F). (66)

w(0,4) = AT is+ A

Hence, when f is strictly increasing, this coincides with (22), but in a flat region (due to ironing),
w(0,4) equals the value for the top of the ironing range. In other words, in intervals [ig,i1] where
the ironed density f is constant, there will be “bunching:” all remaining workers who are not hired
non-selectively at higher wages are hired at the same wage w (0,41) by firms 6 € [ig,i1]. Based on the
same steps as underlying (26) but using (66) instead of (22), we obtain

T(i,is) = f (i) <ZIZ - W) ) <1 - Z’) /H Z,,_;Jr)\df(i’) (67)

where i®(i) = max {¢’ : f(i') = f(i)}. Let i* and ig solve

it = ZIQI[l)l\Ih {i:T(i,i5) > 0} (68)
and F(i*) = f (") (i* —ig). (69)

Equation (68) generalizes the indifference condition (26) to account for the fact that, with bunching,
the reservation wage function (66) and hence I'(7,ig) can be discontinuous in i. Note that, by (68),
whenever ¢* falls into a bunching region, it corresponds to the lower end of it.

These definitions allow us to state the following general existence and uniqueness result, of which
Proposition 8 in Section 6 is a special case.

Proposition 14. There exists a generically unique equilibrium:
1. All low types i € [0,\) choose e = 0.
2. All high types i € [ig, 1] choose e = 0.
3. Fori € [\ ig), the equilibrium takes one of the following two possible forms:

(a) An interior equilibrium where ig and i* solve (68) and (69) and:
i. A measure ig — X\ of high types with i € [\,i*) choose e = eg.
i1. All other high types with i € [\,i*) choose e = 0.

(b) A corner equilibrium where T(ig,ig — F(ig)) <0 and:
i. A measure F(ig) of high types with i € [\, if) choose e = 0.
ii. All other high types with i € [\,if) choose e = e*.

The corner equilibrium is of the same form as described in Section 6. If the equilibrium is interior,
the proposition encompasses two cases. Either there is no bunching at ¢*, in which case our previous
analysis goes through: the indifference condition I'(i*,ig) = 0 implies that type i* is just indifferent
between signaling or not, and all high types below ¢* who do not signal are hired at least at wage
wg = w(0,7*). The other case allows for i* to be in a bunching region. Because there is a discontinuity
in u(i) at ¢* in this case, i* is given by the smallest 7 that still prefers choosing e = 0 over signaling (so
u(i*) > qu — cges and hence I'(i*,ig) > 0). All high types i < i* are indifferent between signaling or
not. The wages at which workers are hired and all firms’ decisions are specified in the proof below.
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When there is bunching at the bottom (i.e. on the interval [A,i*]), the market clearing condition
(69) implies ig = A, so there is no signaling whatsoever in equilibrium. This occurs when there is a
high density of precisely informed buyers relative to less informed ones.

We now provide a proof of Proposition 14, establishing first the uniqueness and then the existence
of the stated equilibrium.

Uniqueness. We prove uniqueness based on the following sequence of steps:

1. By the same arguments as in the proof of Proposition 3:

(a) all firms make non-negative profits
(b) profits are decreasing in 6
(c) all firms 6 > @ make zero profits in equilibrium, with § € [\, 1) and F(1) — F() > 0
(d)
)

(e) high types obtain a payoff of at least w’ = qi — ce*.

low types obtain a payoff of at least gy,

2. Because all low types are indistinguishable for all firms, all low types must obtain the same
utility. Denote this by up.

3. Utility for workers is weakly increasing in ¢. This follows immediately from Condition 2.

4. In any equilibrium, all low types choose e = 0. Suppose some low types choose ¢’ > 0. By step
(1d), we have w (¢/,4) > qr, + cre’ for all i < \. Consider all markets with e = ¢’ and w > qr,
where low types are hired with positive probability. For low types to be hired, in any such market
there must be firms that hire non-selectively, setting x (i) = 1 for all 7. By step (1la), there must
be high-type applicants in all these markets.

Let w’ be the highest wage where anyone choosing €’ is hired with positive probability. Suppose
first that some high types ' > X are hired in market (¢/,w’) by selective firms 6 < i’ setting
selection rule xp(¢) = I(¢ > 6). The equilibrium payoff of these high types must be v/, < w'—cge’.
Consider a market (0,@) with w € (w' — cge’,w'). Then G(I,,;0,w,xg) > 0 since otherwise
p(w;0,4") = 0 by Condition 5, so type ¢ could obtain a payoff of at least w > u/; by choosing
e = 0. The support of G(+;0,, xg) can only include high types by construction of xy. But this
would imply that firm € could increase its profits by hiring high types in market (0, @) instead of
market (¢/,w") at wage w < w’. Hence, everyone in market (¢’, w’) must be hired by non-selective
firms. Since this is feasible for any firm and by step (1a), all firms must make zero profits in
market (e’,w’). This implies w’ < qp.

Because all firms hire non-selectively in market (¢/,w’), u(w';e’,i) = u' is the same for all i.
Suppose first that g/ > 0. Consider a market (¢, w’ — €). Then for sufficiently small € > 0, the
applicant pool is the same in markets (¢/,w’ — ¢€) and (e’,w’). Since profits are zero in market
(¢/,w'), all firms could make positive profits by hiring in market (¢/,w’ — €), contradicting step
(Ic). Hence we must have p/ = 0. This implies that the equilibrium payoff of the low types is
uy = w' — cre’ and the equilibrium payoff of those high types who choose €’ is vy = w' — cge’.

Consider a market (e”,w”) such that ¢’ = ¢/ +¢€ and w” € (W' +cpe,w' +cre). Suppose x(i) =1

for all i. Then G(Iy;e”,w”,x) > 0 since otherwise p(w”;e”,i) = 0 for all 4, so all high types

who choose €' could obtain payoff w” — cye” > w' — cye’ = vy, a contradiction. The support
of G(-;€”,w”, x) cannot include low types since w” — cre” < w' — cpe/ = ). The support
of G(-;e”,w",x) cannot include only high types since then any firm § > 6 could make strictly
positive profits in market (e, w") for e € (0, (g —w’)/cr). This delivers the final contradiction.
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d.

10.

11.

Any high type who chooses e > 0 is hired with probability 1 at w = qg. Suppose otherwise,
then there exists a market (e, w) with w < ¢g such that there are high-type applicants. Since
there are no low types in market (e,w) by step (4), any firm 6 > # could then make positive
profits by hiring non-selectively in market (e, w), contradicting step (1c).

. No firm hires high types selectively at any e > 0. Suppose there was a high type ¢ > A who

is hired in market (e, qpy) with e > 0 by a firm 6 < i that sets selection rule x4(i) = I(i > 6).
Consider market (0,w’) with w’ € (¢ — cge,qm). Then G(Iy,; e, qm, x9) > 0 since otherwise
w(qm,0,i) = 0 by Condition 5, so type i could obtain a payoff w’ > gy — cge by choosing
e = 0. Since by construction the support of G(-;e,qm, xp) only includes high types and since
w’ < qp, firm @ can increase its profits by hiring high types in market (0, w’) rather than (e, qg),
a contradiction. Hence, all high types selecting e > 0 are hired by firms using selection rule
x(i) =1 for all 1.

If any high types choose some education eg > 0, it must satisfy qg — cres = uy. Suppose first
that some high types choose e € (0,eg). By step (5), they are hired at wage ¢ and by step (6)
they are hired by non-selective firms. However, this implies that the low types, by choosing e,
could obtain g — cre > up, a contradiction. Suppose next that some high types choose e > eg.
Consider some market (eg,qg — €) and selection rule x(¢) = 1 for all ¢, which is feasible for
all firms. For sufficiently small €, G(I,;egs,qu — €,Xx) > 0 since otherwise u(qu — €;eg,7) = 0
and those high types choosing e could do better by choosing education eg. By Condition 4, the
support cannot include low types because gz —cre < ur. Hence, firms § > 6 could make strictly
positive profits in market (eg, gz — €), contradicting step (1c).

Define

wWs = qy — cges = <1 — CH) qH + CiuL. (70)
CL CL

There exists a cutoff i* such that: for i < ¢*, high types’ utility is u (i) = wg and for i > i*,

utility is u (i) > wg and e = 0. Steps (5) and (7) imply that high types who choose e > 0 must

obtain utility equal to wg. Therefore the only possible way to obtain higher utility is to choose

e = 0. The result then follows from step (3).

. For workers i > i* (who choose e = 0) the minimum wage in their support w(0,7) is weakly

increasing in ¢. This follows from the fact that w(0,7) solves p(w;0,7) = 0, and p(w;0,7) is
weakly increasing in w and weakly decreasing in ¢ by Condition 2.

If some type ¢ > 0 who chooses e = 0 is hired by a selective firm, this can only occur at the
minimum wage in worker i’s support w(0,4). To see this, consider a market (0, w) where a high
type ¢ > A is hired by a selective firm 6 < i setting xg(i) = I(¢ > ), and suppose pu(w;0,7) > 0.
This implies that there are i-type applicants in some market (0,w —¢€). As a result, firm 6 could
increase its profits by shifting demand to market (0, w — €) using the same selection rule.

There does not exist a market (0,w) with w > gz where all firms hire non-selectively. Suppose
there were such a market and let (0,w) be the highest-wage market where all firms hire non-
selectively. All firms must make zero profits in (0, w) and p(w;0,7) = i for all <. Suppose i > 0.
Consider a market (0,w — €). For sufficiently small ¢ > 0, the pool of applicants is the same
in markets (0, w — €) and (0, w). Then all firms could make positive profits by hiring in market
(0,w — €), contradicting (i). Hence we must have fi = 0. This implies that there can only be a
single such market (0,w) where all firms hire non-selectively, and that all workers must obtain
utility of at least w in equilibrium. Let 7 denote the highest i € [\, 1] that applies to market
(0,w). By zero profits and w > qr, we must have ¢ > . To ensure that no firm wants to hire
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12.

13.

selectively in market (0, w), all firms 6 < 4 must at least make profits gz — w in equilibrium, i.e.
they must hire high types in some market (¢/,w’) # (0,w) with w’ < w. However, because all
workers obtain utility of at least w, there cannot be any supply of workers in market (¢/,w’).

All types ¢ > ip, who select e = 0 by step (8), must be hired with probability 1 at w = qg.
They cannot be hired with positive probability above gg because no firm would hire at such a
wage. Suppose some ¢ > i is not hired with probability 1 at w = ¢gg. This implies that all
firms 0 € (z H ;) maximize profits by hiring selectively at the lower bound of the support of the
wages of worker ¢ = 6, which is below gz by step (9). The total number of workers these firms
would hire is F' (;) — F(ig) > F (E) — F(ig) > 1 —ig. The first inequality follows from the
fact that F'(6) > F () for all § by construction of F, and F (ify) = F (ig) by definition of iy.
The second follows from the fact that f(6) > 1 for all § > iy. Moreover, generically the second
inequality is strict. By Condition 1, this implies p (w;0,7) < 0 for some worker ¢ in this interval,
a contradiction.

Consider first the case where the equilibrium is interior with i* < ¢y and let ig — A denote the
measure of high type workers who choose e = eg. For all other i € [\, ig], the lower bound on
their wage distribution wg must satisfy:
Fys + [ w0.1)df6) = ws ()
i

*

with the cutoff i* defined in step (8) given by (68).

Suppose first that there exist workers in [\, ig] with lower bounds on wages lower than those
defined by (71), and let 7 be the highest worker such that for some € > 0, the lower bound is
higher for all 7 € (’L — €, Z) .

(a) Ifi € (i*,ig] is in a region where f (i) is strictly increasing, let @(0, i) be the lower bounds on
the wages of i € (i—e¢,1). Define markets M (5) = {(e,w) :e=0,w=w(0,i),i € (i—e¢i)}.
Firms 6 < i — € can find high types in markets with wages below @(0,i — €), so they don’t
want to hire selectively in any market (e,w) € M (E) Therefore total selective hiring in
markets (e,w) € M (i) will be [ . dF (i). By construction of i, all workers i + ¢ for € > 0
have lower bounds on wages w (0,%—1— 8) given by (66). By step (11), a fraction f(g + 6)
of them are hired by selective firms, and step (10) implies that the selective hiring occurs
at the lower bound of their wage w(0,7 +¢). (Since 7 < iy, we have f(i +¢) < 1.) Taken
together, this implies that a share 1— f (% + 5) of workers i+& must be hired by nonselective
firms at or above w(0,74¢). Continuity of f then implies that a fraction 1— f (E) of workers
of type 7 will be hired by nonselective firms at wages at or above M(O,g). Suppose first
that @(0,1) is strictly increasing in (i — €,7). For each i € (i — ¢,1), all workers 7/ > i
have lower bounds on wages w(0, 1), so the supply of workers in market (0,@(0,7)) includes
i —ig high types and A low types. Therefore (66) and the fact that @w(0,47) > w (0,¢) imply
that no firms want to hire non-selectively in any market (0,w(0,1%)). Alternatively, suppose
@(0,4) is flat in (7 — €,1) at level w(0,1). Since a fraction 1 — f (i) of workers of type ¢ will
be hired by nonselective firms at wages at or above w(0,17), the same must then be true
for all i € (i — €,4]. In both cases, the total measure of workers in (i — ¢,1] not hired at
wages at or above w(0,7) by nonselective firms is f (;) €. Since f (i) is strictly increasing,
f(%) € > ff_g dF (i), which implies that u(@(0,);0,4) > 0 for some workers i € (i — €, 1),
and the lower bound on wages must be lower than w(0, 7).
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(b) If 4 € (i*,iy] is in a region where f (i) is constant or if i < i* then this implies that the
lower bound on the wages of worker 4 is higher than that of some worker ¢/ > 7, which
would violate step (9).

(¢) If i = i*, this would imply that some workers i € [\,4*] have a lower bound on their wage
w(0,7) > wg. This can only occur without violating step (9) when ¢* corresponds to the
lower end of a bunching region and wg < w(0,7*). Let i’ be the lowest i € [\, *] such that
w(0,7) > wg for all ¢ > ¢'. We must have i > X since otherwise no one signals by (71). No
firm @ < ¢/ wants to hire any type i > 4’ since they maximize profits by hiring in market
(0,wg). Hence, total selective hires in (i’,i*) are given by F(i*) — F(i') < F(i*) — F(i') <
i* —1'. The first inequality follows from the fact that, since +* is the lower end of a bunching
region, we have F(i*) = F(i*). The second follows from the definition of iy and the fact
that ¢* < ipg. Since there is no non-selective hiring (if there was, step (13a) would apply),
this implies that u(w(0,7),0,7) > 0 for some workers i € (i’,7*), and therefore the lower
bound on wages must be lower than @w(0, 7).

Suppose next that there exist workers with lower bounds on wages lower than those defined by
(71), and let ¢ be the highest worker such that for some € > 0, lower bounds on wages are lower
than those defined by (71) for all i € (i —€,17).

(a) If i € [i*,iy] is in a region where f (i) is strictly increasing, take some i’ € (i — ¢,4) with
a lower bound on wages w' < [(i' —ig)gy + Aqr] /[’ —is + A] and consider the market
(0,w’). The supply of workers in this market includes all low types (a measure \) and at
least the high types i € [A,i'] who do not signal (a measure at least ' — ig). Therefore, a
firm that hired non-selectively in market (0,w’) would make profits of at least

(i —is)qm + A\qr W >0
i —1g+ A '

Since this is feasible for all firms, it contradicts (1c).

(b) If i € [i*,ig] is in a region [ig,41] where f (i) is constant, then a fraction 1 — f (i) of all
workers i < i1 are hired by non-selective firms at wages at least w (0,41). The measure of
firms in (i,1) is F (i) — F (i9) > F(i) — F(i9) = f(i1) (i — o), with strict inequality in
the generic case where the original density f is not exactly constant and equal to f (i1).
For all these firms, it is profit maximizing to hire selectively at the lower bound on wages
of worker ¢ = 6, which implies that u (w;0,7) < 0 for some ¢ in this interval, and which
therefore cannot be part of an equilibrium.

(c) If i < 4* then equation (68) implies that the utility of all workers i < 7 is below wg. By
(71) and (70), they would be better off choosing e = eg.

14. In any interior equilibrium, the cutoff i* defined in step (8) must also satisfy (69). To see this,
observe first that not all workers i € [\, *] can possibly signal. If this were the case, consider the
beliefs of a firm 6 € [A,4*) in a market (0, wg+e¢). Then G(I,,;0,wg+¢, xp) > 0 since otherwise
w(wg + €;0,4) = 0 for ¢ € [A,7*) by Condition 5, so these workers could get payoff in excess of
wg by choosing e = 0 instead of signaling. Moreover, the support of G(-;0,wg + €, xg) cannot
include high types since otherwise some firms could increase their profits by shifting demand to
market (0, wg + ¢) for € sufficiently small. Hence, for all firms 6§ € [A,i*), it is profit maximizing
to hire selectively in market (0,wg), so total selective hires will be F (i*) = F(i*), where the
equality follows from the fact that, by (68), if ¢* falls in a bunching region, it corresponds to the
lower end of it. On the other hand, the measure of workers who are not hired by non-selective
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firms at higher wages is f (i*) (i* —ig). Hence, if F(zj‘) > f(z*_)(z* —1ig), then p (wg;0,7) < 0 for
some ¢ in this interval, which is a contradiction. If F'(i*) < f(:*)(i* —ig), then u(wg;0,7) > 0
for some ¢ in this interval, so wg cannot be the lower bound on wages.

15. For the case of a corner equilibrium, note first that T'(ig, iy — F(ig)) < 0 implies w(0,ig) < w’,
where we used f(ig) = 1 (abstracting from the trivial case iz = ), which is fully characterized
by step (12)). Together with steps (le) and (9), this means that there cannot be any non-
selective hiring. Hence, ur, = qr, and eg = e*. Moreover, since there are only F'(if) firms with
0 < ip that can hire selectively at e = 0, this immediately implies that at least a measure
is — A =1ig — XA — F(ig) of workers must signal. All other workers in [\, 5] must have a lower
bound on wages w?. The bound cannot be lower than w? by step (le). Suppose for some
workers the bound is higher and let i’ be the lowest i € [\, iz) such that w(0,i) > w’ for all
7 > 1'. We must have i’ > X since otherwise no-one would signal. No firm # < ¢/ wants to hire
any type i > i’ since they maximize profits by hiring in market (0,w”). Hence, total selective
hires in (i',iy) are given by F(ig)— F(i') < F(ig) — F(i') < iy —i'. The first inequality follows
from F(iy) = F(ig) and the second from the definition of iy. Since there is no non-selective
hiring, this implies that p(w(0,7);0,7) > 0 for some workers i € (i',iy), and therefore wage
w(0,14) cannot be the lower bound on their wages.

16. By the same argument as in step (14), in the corner equilibrium not every worker with ¢ < iy
can signal. Moreover, again by the same argument as in step (14), it is not possible that the
measure ig — A of workers who signal exceeds iy — F(i7) — A. Hence, together with the previous
step, we must have ig = ig — F(ifp).

17. Finally, we show that there is a unique solution to equations (68) and (69). The argument in
the proof of Proposition (12) applies, except that, with bunching, the function A(i*) is no longer
continuous. From (67) we see that I is still continuous in ig but, as i increases, jumps up at the
lower end of each bunching interval. This is because when i enters a bunching region, i®(i) jumps
to the upper end of that region. As a result, A(i) = I'(i,5 — F(i)/f(i)) is continuous in i except
when i is the lower end of a bunching interval, in which case A(7) discontinuously jumps up at
that point as i increases. Recall that the solution to (68) and (69) is 7" = min;e|y 5,1 {7|A(i) > 0}.
Together with the result from Proposition 12 that A’(i) > 0 when ¢ is not in a bunching region
and A = 0, this implies the following:

(a) If A(ig) <0, then A(i) < 0 for all ¢ € [A,ig], so there cannot be any solution to (68) and
(69) and the corner equilibrium is the unique equilibrium.

(b) If A(ig) > 0, then either A(7) > 0 for all ¢ € [\, ], in which case i* = A, or there exists
a unique solution i* € (A, ig|. Hence, if there is an interior equilibrium, it is also unique.

Existence. We have established the existence of a solution to equations (68) and (69). We now
provide the equilibrium decisions, probabilities and beliefs, and verify the conditions in Definition 1.

Interior Equilibrium.
(a) Education decisions:

0 ifi<Aori>ig
€; — .
es otherwise
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(b)

Probabilities:
I(w > qn) if e=0,1i>1iyg
e=0,1¢€ [’i*,iH), w € [Q(O,Z'),Q(O,i[{))
7 (w) i {e=0,ie[\i"), we fws,w0in)

e=0,1€[0,\), we g, w(0,ig))
e=0,i€[i*ig], w<w(0,i)

p(w;e, i) =
0 if e=0,i€[Ni"), w<wg
e=0,i€[0,)), w<qr
1 if e=0,1<ig, w>w0,if)
I(w > w(e, 1)) if e>0,i> A\
I (w > min {w(e,i),w(e,\)}) if e>0,1<A
where
i"(w) = min {i:w(0,i) > w},
ZE[i*,’iH]
w(e, 1) is given by (49) and
qH if 1> 0

F)w(0,8) + [ w(0,#)df (") if i€ l[i* in]
Fi)ws + Ji w(0,d)df(i) i i€ ([Ad)
f@)ar + [ w(0,9)df (@) if i<

Demand decisions:
(0, wg, x(i) =1(i > 0)) if 6 € [A,i%)
(0,w(0,0),x(7) =1(: > 0)) if 0 € [i*,ip)
(o0 x0) = (0, g x(3) = T(i > ) it 0 € [ifg,0°)
(0, qr, x(7) = 1V1) for a measure A(1 — f(i*)) of firms § > 6*
(es,qm, x(i) = 1Vi) for a measure ig — A of firms 6 > 6*

where 6* is such that F(0*) — F(ig) =1 —ig.
The non-selective demand in markets (0,w(0,4)) with i € [i*,iy) and f’(i) > 0 remains to be
specified. For a small interval of types [ig,i9 + A] the change in the probability of being hired
non-selectively is:
fio+A) = fio) = f' (i0) A
is(qr—w)+M(w—qr)
qH—w

Using that in a no-bunching region " (w) = , this implies that total non-

selective hires over an interval of wages [w,w + € are

A ) i = W] (5 ().

(g — w)*

Hence, the total measure of demand from firms 6 > 6* using the non-selective hiring rule x(i) =
1Vi placed on any set of markets (Ep, Wy) = {(e,w) : e = 0,w € (wp,w1) C [w(0,7*),w(0,ix)]}

must be
w1

D(Ey Wo,x) = [ T 7 ) — i = 17 7 () e

wo
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All firms 6 > 6* are indifferent between hiring in any of these markets and remaining inactive,
for instance by setting (eg, wg, xo) = (0,0, x(7) = 1V1).

(d) Beliefs: for selection rule x(i) = I(i > 0),

I(i>max{0,is})

] lfmax{e,is}
I(i€[max{0,is},ir))
ig—max{f,is}

. H(zi[max{zsﬂ},’zr(ew)})

i (w—cge)—0

% ife>0, w—cye>w(e,ig)

0 otherwise

ife=0, w>qg

ife=0, we w0,in) qu),0 <in

ife= 07 w e [wSHw(Oa?’H))? 0 < ,LH
if e >0,w—cpge € [w(e,\),w(e,ig)),0 <ig

and for selection rule (i) = 1V,

n(-ﬂ (;3)1[?5;5) ) hem 0w
,Z< ,\ii;—,[zl';’:H ife=0, we w0 in) qn)
T ife=0, w e [wg,w(0,in))
g(ise,w,x) = 116 < \) ife=0, we [qr, wg)
%]I'(i <A) if e € (0,es), w > w(e,0)
]I(lies[%’jf]) ife >eg, w>w(e \)
. 0 otherwise

To see that the proposed {e;, (eg, wg, xp), 11, G} is an equilibrium, note first that the probabilities defined
in (b) imply that low types are indifferent between any e € [0, eg] and high types are indifferent between
any e, so the education decisions defined in (a) solve the workers’ problem. The beliefs defined in (d)
imply that it is profit maximizing for firms 6 < ¢* to hire selectively in market (0,w = wg) and for
firms 6 € (¢*,4p) to hire in market (0,w(0,0)). Firms 6 > iy make zero profits by hiring selectively in
market (0, qg). Moreover, firms 6 > iy make zero profits by hiring non-selectively in markets (0, qz,),
(es,qm) or (0,w(0,7)), i € [i*,ig). Any other market has either G (I,,;e,w,xs) = 0 or results in
losses. Therefore the demands defined in (c) are an optimal choice. Finally, using the above-specified
demand and beliefs, Condition 1 holds. It is straightforward to verify that pu(w;e,i) given in (b) is
weakly decreasing in ¢, so Condition 2 is also satisfied. Beliefs satisfy Condition 3 in nonempty markets.
In zero supply markets, beliefs are also constructed to satisfy Condition 4 when they are well defined,
and G (;e,w, xg) = 0 only at wages where pu (w;e,i) = 0 for all ¢ such that x(i) = 1, so Condition 5 is
satisfied as well.

Corner equilibrium. We state the equilibrium objects {e;, (eg, wg, xs), p, G}. Verifying that
this is an equilibrium is analogous to the interior equilibrium case.

(a) Education decisions:

*

0 ifi<)\0ri2iH—F(iH)
€; = .
e otherwise
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(b) Demand decisions:

(0, w?, x(i) =1(i > 0)) for 0 <ip
(eg,wg, x9) = (0, qr, x(7) = 1Vi) for a measure X\ of firms 6 > 6*
(e*,qm,x(i) = 1Vi)  for a measure iy — F(ig) — A of firms 6 > 6*
(0,0, x(i) = 1Vi) otherwise
where 6* is such that F(0*) — F(ig) =1—ig
(c) Probabilities:
I(w > qn) it e=0,1i>ig
I(w>w!) if e=0,i¢e[\ig]

w(w;e i) = I(w >qr) if e=0,1<A
I(w > w(e, 1)) if e>0,i>\

I(w > min {w(e,i),w(e,N\)}) if e>0,i<A
where w(e, ) is given by (49) and

qH if 1>
u(i) =< wf if ie[\iy]
qr if 1< A
(d) Beliefs: for selection rule x(i) = 1I(i > 0),

I(i>max{0,ig—F(ig)})

iclmaelisg - Gin) B ) e
. : m?n{%I%iH)inII{{—,Q}7ZH if e =0, we[w” qn), 0 <in
g (ise,w,x) = Heclfarr)) if e > 0,w € [w(e,\), d(e,ig)),0 < iy
o if e >0, w > (e, in)
L 0 otherwise
and for selection rule (i) = 1V,
( LG<N)+HI(>ig—F(ig)) .
b A/\J]FllfiH+HF}§iH)H. ife=0, w>qpy
(i< )+1()Z\i[;7;[)(m),m)) i_ffe =0, w e [wF, qg)
g(ise,w, x) = F<N ife=0we [q, v
I(i<A) if e € (0,€*), w > w(e,0)
1(G€[Nigr—F(i . . _
%m)(_’im if e >e*, w>w(e )
L 0 otherwise
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