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This article is concerned with the analysis of correlated count data. A class of models is proposed in
which the correlation among the counts is represented by correlated latent effects. Special cases of the
model are discussed and a tuned and ef� cient Markov chain Monte Carlo algorithm is developed to
estimate the model under both multivariate normal and multivariate-t assumptions on the latent effects.
The methods are illustrated with two real data examples of six and sixteen variate correlated counts.
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A large literature on the analysis of count data is now
available (Cameron and Trivedi 1998, Winkelmann 2000),
but only a small portion of it deals with correlated counts.
Correlated counts typically arise in three varieties—as gen-
uine “multivariate” data on several related counted outcomes,
as longitudinal measurements on a large number of subjects
over a short period of time, or as measurements on a small
set of subjects over a long period of time (the seemingly
unrelated case). Although the longitudinal situation has been
actively studied (e.g., see Hausman, Hall, and Griliches 1984;
Blundell, Grif� th, and Van Reenen 1995; Wooldridge 1997;
Chib, Greenberg, and Winkelmann 1998, henceforth CGW)
and a number of useful models and approaches are avail-
able, the other cases have been analyzed only under simpli-
fying assumptions (King 1989; Jung and Winkelmann 1993;
Gurmu and Elder 1998; Munkin and Trivedi 1999). The latter
approaches either do not allow a general correlation structure
or are dif� cult to extend beyond the case of a few outcomes.

This article is an effort to deal with both problems. To
model the correlation among a large number of counts in a
� exible fashion, we introduce a set of correlated latent effects,
one for each subject and outcome. Conditioned on the latent
effects, the counts are assumed to be independent Poisson with
a conditional mean function that depends on the latent effects
and a set of covariates. To complete the model we assume
that the latent effects follow a multivariate Gaussian distribu-
tion with a zero mean vector and full unrestricted covariance
matrix. As an extension of this model, we also consider the
case in which the latent effects follow a multivariate-t distri-
bution. To estimate this model, we develop a Markov chain
Monte Carlo (MCMC) simulation method that is based on the
work of CGW. Under this framework, we are able to sample
the posterior distribution of the parameters and latent effects
without computing the likelihood function of the model.

The methods that we develop in this article can be applied to
datasets with large numbers of correlated counts. We demon-
strate this feature by � tting our model to a problem with 16
response variables. In our view this is an important illustration
that highlights what is possible from a Bayesian simulation-
based perspective.

The rest of the article is organized as follows. In Section 1
we present the basic model and some special cases and exten-
sions. The � tting algorithm is developed in Section 2, while
Section 3 gives two real data examples. Section 4 concludes.

1. MODEL

Following the usual notation for multivariate data, let yi
D

4yi11 : : : 1 yiJ 5 denote the collection of J counts on the ith sub-
ject in the sample, i µ n. Let bi

D 4bi11 : : : 1 biJ 5 denote a set
of J subject and outcome-speci� c latent effects, and suppose
that, conditioned on bi and parameters ‚j

2 Rkj 1 the counts
yij , j µ J , are independent Poisson:

yij
—bi1‚j Poisson4Œij5

Œij
D exp4x0

ij‚j
C bij5

for j µ J and i µ n1 (1)

where xij are covariates. To model the correlation among the
counts, let

bi
—D NJ 401 D51 i µ n1 (2)

where D is an unrestricted covariance matrix.
To understand some of the features of this model, let vij

D
exp4bij5 and vi

D 4vi11 : : : 1 viJ 5. Then vi LNJ 4Œ1 è5, a multi-
variate lognormal distributionwith mean Œ D exp4005 diag4D55

and dispersion matrix è D 4diag4Œ556exp4D5 ƒ 110
74diag4Œ55.

Hence, yij
—‹ij1 vij Poisson4‹ijvij5, where ‹ij

D exp4x0
ij‚j5.

This is, therefore, in the form of a Poisson–lognormal distribu-
tion as discussed by Aitchison and Ho (1989).

In this setup, the expectation and variance of the marginal
joint distribution of yi can be derived without integration. Let
Q‹ij

D ‹ijŒ (i.e., Q‹ij and ‹ij differ only by a constant fac-
tor), Q‹i

D 4 Q‹i11 : : : 1 Q‹iJ 5, and eåi
D diag4 Q‹i5. Applying the
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law of the iterated expectation, one obtains E4yi
—‚1D5 D Q‹i

and var4yi
—‚1D5 D eåi

C eåi6exp4D5 ƒ 1107eåi1 where we have
‚ D 4‚11 : : : 1 ‚J 5. Hence, the covariance between the counts
is represented by the terms

cov4yij1 yik5 D Q‹ij4exp4djk5 ƒ 15Q‹ik

D ‹ij exp4005djj54exp4djk5 ƒ 15‹ik exp4005dkk51

j 6D k1

which can be positive or negative depending on the sign of
djk, the 4j1 k5 element of D. Moreover, the model allows for
overdispersion, a variance in excess of the expectation, as long
as djj > 0. The correlation structure of the counts is thus unre-
stricted. Note, however, that the marginal distribution of the
counts yi cannot be obtained by direct computation, requiring
as it does the evaluation of a J -variate integral of the Poisson
distribution in (1) with respect to the distribution of bi .

It is interesting to note that our model is similar to that
of Gurmu and Elder (1998) except that in their model the
distribution of bij is left unspeci� ed. Under that assumption,
the model becomes computationally intractable for anything
more than a few correlated counts. As we show in this arti-
cle, it is possible to � t higher-dimensional models provided
one is willing to make a parametric distributional assumption
for bi , which in turn provides a clean interpretation for the
correlation structure. The assumption of normality is not cru-
cial and can be generalized. For example, it is easy to let the
distribution of the latent effects be multivariate-t instead of
the multivariate-normal, as will be discussed, or to model the
distribution by a � nite mixture of normal distributions. More
importantly, it is possible to relax the assumption, implicit in
the preceding formulation, that the bi are independent of the
covariates by letting the mean of bi be a function of one or
more of the available covariates. The estimation approach that
we will present needs to be modi� ed only slightly to incorpo-
rate this feature. Finally, our model can be specialized to the
panel-data setting (where the index j represents time) by let-
ting the conditional mean function be ˆij

D exp4x0
ij‚ C w0

ijbi5,
where wij is a set of covariates that are a subset of xij . This is
exactly the model of CGW that in turn is a generalization of
the model of Hausman et al. (1984). It should be noted that,
in this specialization of the general model, fewer than J latent
effects appear in the conditional mean function of subject i.

2. ESTIMATION OF THE MODEL

2.1 Likelihood Function

Let us suppose that the observations yi
D 4yi11 : : : 1 yiJ 5 are

conditionally independent across clusters. Then, the likelihood
function is the product of the contributions p4yi

—‚1 D5, where
p4yi

—‚1D5 is the joint probability of the J counts in cluster i

given by

p4yi
—‚1D5 D

Z JY

jD1

f 4yij
—‚j1 bij5”J 4bi

—01 D5dbi1 (3)

where f , as previously, is the Poisson mass function condi-
tioned on 4‚j 1 bij 5 and ” is the J -variate normal density func-
tion. This multiple integral cannot be solved in closed form

for arbitrary D, but some simpli� cations are possible if D is
assumed to be a diagonal matrix. To deal with the general case,
however, it is necessary to turn to simulation-based methods.

2.2 MCMC Implementation

The main idea of the estimation approach is to focus on the
posterior distribution of the parameters and the latent effects
and then to summarize this posterior distribution by MCMC
methods. Since much has been written about MCMC methods
(e.g., see Tierney 1994; Chib and Greenberg 1995, 1996), we
can be brief.

With MCMC methods, one designs an ergodic Markov
chain with the property that the limiting invariant distribution
of the chain is the posterior density of interest. Then, draws
furnished by sampling the Markov chain, after an initial tran-
sient or burn-in stage, can be taken as approximate correlated
draws from the posterior distribution. This output forms the
basis for summarizing the posterior distribution and for com-
puting Bayesian point and interval estimates. Ergodic laws of
large numbers for Markov chains on continuous state spaces
are used to justify that these estimates are simulation consis-
tent, converging to the posterior expectations as the simulation
sample size becomes large.

One standard method for constructing a Markov chain with
the correct limiting distribution, is via a recursive simulation
of the so-called full conditional densities—that is, the den-
sity of a set or block of parameters, given the data and the
remaining blocks of parameters. Each of the full conditional
densities in the simulation is then sampled either directly (if
the full conditional density belongs to a known family of dis-
tributions) or by utilizing a technique such as the Metropolis–
Hastings (M–H) method. An important and crucial point is
that these methods do not require knowledge of the intractable
normalizing constant of the posterior distribution.

In the present case, we apply MCMC methods to simu-
late the augmented posterior distribution of the parameters
and the latent effect. For the prior on the parameters, assume
that 4‚1Dƒ15 independently follow the distributions ‚

Nk4‚01 Bƒ1
0 51 Dƒ1 Wishart4�01 R051 where 4‚01B01 v01 R05

are known hyperparameters and Wishart4¢1 ¢5 is the Wishart
distribution with �0 df and scale matrix R0. Then, by Bayes
theorem, the posterior density is proportional to

”J 4‚—‚01Bƒ1
0 5fW4Dƒ1—�01R05

nY

iD1

p4yi
—‚1bi5”J 4bi

—01D51

where fW is the Wishart density. We now consider a sampling
procedure to simulate this density.

Following CGW, we construct our Markov chain using the
blocks of parameters 8bi9, ‚, and D and the full conditional
distributions

6b—y1‚1 D73 6‚—y1b73 6Dƒ1—b71 (4)

where b D 4b11 : : : 1 bn5. The simulation output is obtained
by recursively simulating these distributions, using the most
recent values of the conditioning variables at each step.
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2.3 Sampling b

The target density is � 4b—y1‚1D5 D Qn
iD1 � 4bi

—yi1 ‚1D5,
which factors into the product of n independent terms. To
sample the ith density,

� 4bi
—yi1‚1 D 5 D ci”J 4bi

—01 D5
JY

jD1

exp6ƒ exp4x0
ij‚j

C bij57

� 6exp4x0
ij ‚j

C bij57
yij

² ci�
C4bi

—yi1‚1 D51 (5)

we utilize the M–H algorithm. As shown by CGW, the pro-
posal density is found by approximating the target density
around the modal value by a multivariate-t distribution. Let
Obi

D arg max ln � C4bi
—yi1 ‚1D5 and Vbi

D 4ƒHbi
5ƒ1 be the

inverse of the Hessian of ln � C4bi
—yi1‚1D5 at the mode Obi. To

� nd these quantities, we use the Newton–Raphson algorithm
with the gradient vector gbi

D ƒDƒ1bi
C 6yi

ƒ exp4xi‚ C bi57

and Hessian matrix Hbi
D ƒDƒ1 ƒ diag8exp4xi‚ C bi59. In

practice, three or four steps of the Newton–Raphson algo-
rithm are suf� cient to locate the mode of the target density.
Then, our proposal density is taken to be q4bi

—yi1‚1 D5 D
fT 4bi

—Obi1 Vbi
1�5, a multivariate-t density with � df where �

is a tuning parameter. We now draw a proposal value b ü
i

from q4bi
—yi1‚1 D5 and move to b ü

i from the current point bi

with probability

�4bi1 b ü
i
—yi1 ‚1D5

D min
� C4b ü

i
—yi1‚1D5q4bi

—yi1 ‚1D5

� C4bi
—yi1 ‚1D 5q4b!

i
—yi1‚1 D5

1 1 0 (6)

If the proposal value is rejected, then the next item in the
chain is the current value bi .

2.4 Sampling ‚

We next sample ‚ given 4b1 D5 from the density that is
proportional to

� C4‚—y1 b1 D5 D ”k4‚—‚01 Bƒ1
0 5

nY

iD1

JY

jD1

exp6ƒ exp4x0
ij‚j

C bij57

� 6exp4x0
ij ‚j

C bij57
yij

D ”k4‚—‚01 Bƒ1
0 5

JY

jD1

p4y0j
—‚j1 b0j51 (7)

where

p4y0j
—‚j1 b0j5 D

nY

iD1

exp6ƒ exp4x0
ij‚j

C bij57

� 6exp4x0
ij‚j

C bij57
yij

is the mass function of the observations y0j
D 4y1j1 : : : 1 ynj5

given ‚j and b0j
D 4b1j1 : : : 1 bnj5. The factorization given

previously utilizes the fact that the counts are conditionally
independent given the latent effects. There are two ways to
sample this density. One way is to sample ‚ in one block by
the M–H algorithm, and the second way is to sample each of

the ‚j’s by a sequence of M–H steps. When the dimension of
‚ is large, as in our � rst application, the latter approach would
be preferred.

To sample ‚ in one block, we develop a tuned proposal
density in a manner analogous to that of bi . The proposal dis-
tribution is based on the mode O‚ D 4 O‚11 : : : 1 O‚J 5 and inverse
of the information matrix V O‚ D 6ƒH O‚7ƒ1 of log� C4‚—y1 b1 D5.
If we assume that the ‚j’s are a priori independent—that is,
the matrix Bƒ1

0 is block diagonal with the jth block given by
Bƒ1

0j —then the modal values O‚j can be found in sequence from
a few (typically three or four) Newton–Raphson steps with
the gradient vector ƒB0j4‚j

ƒ ‚0j 5 C Pn
iD16yij

ƒ exp4x0
ij‚j

C
bij57xij and the Hessian matrix H‚j

D ƒB0j
ƒPn

iD16exp4x0
ij‚j

C
bij57xijx

0
ij . In this case, the dispersion matrix V O‚ of the pro-

posal is also block diagonal with jth block given by V O‚j
D

6ƒH O‚j
7ƒ1. The algorithm is now implemented as follows. We

get a candidate value ‚ ü D 8‚ü
j 9 from the proposal density

fT 4‚j
— O‚j1V O‚j

1 �5, a multivariate-t distribution with mean O‚
and dispersion matrix V O‚j

, compute the probability of move

�4‚1‚ ü —y1 b1 D5 D min ”k4‚ ü —‚01Bƒ1
0 5

�
JY

jD1

p4y0j
—‚ ü

j 1 b0j 5fT 4‚j
— O‚j1 V O‚j

1�5

”k4‚—‚01Bƒ1
0 5

JY

jD1

p4y0j
—‚j1 b0j5

� fT 4‚ ü
j
— O‚j1V O‚j

1 �5 1 1 1 (8)

and accept the candidate value ‚ ü with probability �4‚1
‚ ü —y1b1 D 5.

If the dimension of ‚ is large, it may turn out that sampling
the whole ‚ vector in one block (as in the preceding approach)
may produce many rejections. In an effort to deal with such
cases, one may revise the (vector) components of ‚—namely,
the ‚j ’s—one at a time. In this alternative approach, one uses
the same ingredients as in the preceding method except that
now ‚j is revised through a sequence of M–H steps. The prob-
ability of move for ‚j is easily seen to be

�4‚j1‚
ü
j
—y0j1b0j 1D5 D min ”kj

4‚ ü
j
—‚0j1B

ƒ1
0j 5p4y0j

—‚ ü
j 1b0j 5

� fT 4‚j
— O‚j1V O‚j

1�5 ”kj
4‚j

—‚0j1B
ƒ1
0j 5

� p4y0j
—‚j1b0j5fT 4‚ ü

j
— O‚j1V O‚j

1�5 11 0

In practical experimentation we have found that this modi� -
cation is more ef� cient than the one-block approach when the
dimension of ‚ is large.

2.5 Sampling Dƒ1

Finally, we sample Dƒ1 from the density proportional to

fW 4Dƒ1—v01Rƒ1
0 5

nY

iD1

”J 4bi
—01D50
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On combining terms, one sees that this density is Wishart,

Dƒ1—b Wishart n C v01
h
Rƒ1

0
C

nX

iD1

4bib
0
i5

iƒ1
1 (9)

with degrees of freedom n C v0 and scale matrix 6Rƒ1
0

CPn
iD14bib

0
i57

ƒ1 .

2.6 Extensions

The basic model just presented can be generalized by let-
ting bi

—D1 ui NJ 401D=ui5, where ui gamma4ƒ0=21 ƒ0=25

and ƒ0 is a prespeci� ed hyperparameter. Integration over ui

leads to a multivariate-t distribution for bi with ƒ0 df, bi
—D

MVT401D1ƒ05, and the marginal distribution of yi is obtained
as before as a J -dimensional integral over the joint distribu-
tion of yi and bi .

This model allows for thicker tails of the distribution for
the latent effects relative to the Poisson lognormal model.
Although closed-form expressions for the marginal moments
E4yi5 and var4yi5 are not available, the computation of the
posterior distribution requires only two relatively minor mod-
i� cations to the MCMC algorithm. The � rst change occurs in
the simulation of the full conditional distribution of bi, where
the conditional Poisson density of cluster i is now multiplied
by a multivariate-t distribution rather than by a multivariate-
normal so that the ith target density should be written as

� 4bi
—yi1‚1 D5 D cifT 4bi

—01D1 ƒ05
JY

jD1

exp6ƒ exp4x0
ij‚j

C bij57

� 6exp4x0
ij‚j

C bij57
yij 0

Second, the distribution of D, conditional on b and u, is again
of the Wishart form

Dƒ1—b1 u Wishart nC v01 Rƒ1
0

C
nX

iD1

4Nbi
Nb0

i5

ƒ1

1

where Nbi
D bi

p
ui . Finally, to obtain values for ui , one can

directly draw from the full conditional distribution ui
—D1bi

gamma4v=21 w=251 where v D ƒ0
C J and w D ƒ0

C b0
iD

ƒ1bi .
Another possible extension is to allow the mean of bi to

depend on a given set of covariates Wi to model correla-
tion between those covariates and the latent effects. With this
in mind, one could let bi

—„1D NJ 4Wi„1D5. The required
changes to the MCMC algorithm are minor. The sampling of
‚ is unaffected by this change, while the full conditional of
bi conditioned on „ has the same form as in (5) except that
the prior of bi now includes a nonzero mean Wi„. Finally, the
sampling of „ and D given bi follows from standard updates
for normal models. For example, under a normal prior on „,
the full conditional of „ given 8bi9 and D is normal, while that
of Dƒ1 given 8bi9 and „ is Wishart as given in (9) with the
scale matrix modi� ed to incorporate the nonzero mean of bi .

3. APPLICATIONS

We illustrate the use of the proposed algorithm on two dif-
ferent datasets. In the � rst application, we jointly model six

measures of medical-care demand by the elderly. The second
application is concerned with a high-dimensional problem on
the number of airline incidents recorded for 16 U.S. passenger
air carriers between 1957 and 1986. In each application, our
algorithm is run for 6,000 iterations following a burn-in phase
of 500 iterations. The results are robust to the starting values
of ‚ [which was the maximum likelihood estimator (MLE)
from independent Poisson regressions] and D (which was .1
times the identity matrix). In effect, the algorithm required no
user intervention beyond the speci� cation of the model and
prior hyperparameters.

3.1 Health-Care Utilization

Deb and Trivedi (1997) estimated independent count-data
models for six measures of medical-care demand by the
elderly using a sample from the 1987 National Medical Expen-
diture Survey. One question of substantive interest is the extent
to which the use of health services depends on insurance
coverage. The six measures are the number of visits to a physi-
cian in an of� ce setting (OFP), the number of visits to a non-
physician in an of� ce setting (OFNP), the number of visits to
a physician in a hospital outpatient setting (OPP), the num-
ber of visits to a nonphysician in a hospital outpatient setting
(OPNP), the number of visits to an emergency room (EMR),
and the number of hospital stays (HOSP). The sample com-
prises 4,406 observations on individuals aged 66 or over. For
each of these individuals, the sample contains a total of 16
explanatory variables on insurance coverage, health status, and
other socioeconomic and demographic characteristics.

Deb and Trivedi treated the six counts as independent and
applied univariate � nite mixture models to each count. Munkin
and Trivedi (1999, henceforth MT) used the same data to esti-
mate a bivariate model for EMR and HOSP by simulated max-
imum likelihood. Instead of con� ning ourselves to two counts,
we consider the joint determination of all six counts using
the model speci� ed previously. This extension should yield a
superior model of the demand for health care because the dif-
ferent demand components are likely to be correlated, since
any omitted factor in one equation, such as certain aspects
of health, will in� uence other components as well. Moreover,
it would be unwise to impose equicorrelation from the out-
set. Some components could be more closely related than oth-
ers, and negative correlations may be possible as well if, for
instance, different types of health provisions are substitutes.

Since there are 17 regressors in each of the six equations,
we use the version of the MCMC algorithm in which the
‚j are drawn consecutively for the six equations. The pri-
ors for the estimation are de� ned by the hyperparameters
‚0 D 01Bƒ1

0
D 0001I73 �0 D 121 R0 D I6, to re� ect weak prior

information.
Table 1 contains the prior-posterior summary for the regres-

sion coef� cients. To save space, we only display the results
for the emergency-room-visit and hospital-stay equations. The
results for this part of the model are directly comparable to
those of MT, although, as stated previously, they considered
a bivariate model, whereas in our case the two equations are
estimated jointly with the four other equations in a full six-
variate model for all available health-demand variables.
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Table 1. Posterior Summary for ‚5 and ‚6 Based on the MCMC
Simulation Output From Six-Variate Model

Variable Mean Std. dev. Lower Upper Ineff.

Response: EMR

Excellent health ƒ00655 00207 ƒ10068 ƒ00256 30106
Poor health 00543 00115 00324 00763 90383
Chronic condition 00269 00030 00211 00327 80220
Limits to activities 00428 00101 00223 00627 80846
Northeastern U.S. 00058 00113 ƒ00163 00280 50714
Midwestern U.S. 00045 00104 ƒ00158 00253 60431
Western U.S. 00168 00117 ƒ00068 00395 70931
Age� 10ƒ1 00132 00065 00003 00256 40915
Black 00202 00129 ƒ00057 00454 60448
Male 00101 00089 ƒ00071 00276 50882
Married ƒ00129 00095 ƒ00317 00057 60164
Years of schooling ƒ00012 00012 ƒ00035 00011 60083
Income ƒ00001 00015 ƒ00031 00028 50703
Employed 00205 00144 ƒ00081 00492 50018
Private insurance 00062 00112 ƒ00155 00284 60034
Medicaid 00207 00144 ƒ00080 00490 60713
Constant ƒ30843 00538 ƒ40923 ƒ20747 50927

Response: HOSP

Excellent health ƒ00723 00210 ƒ10152 ƒ00322 30450
Poor health 00597 00110 00381 00820 110538
Chronic condition 00330 00028 00273 00385 90016
Limits to activities 00359 00097 00166 00555 100278
Northeastern U.S. 00052 00111 ƒ00168 00266 60816
Midwestern U.S. 00184 00100 ƒ00010 00377 70596
Western U.S. 00156 00113 ƒ00068 00376 80533
Age� 10ƒ1 00223 00063 00098 00348 70353
Black 00156 00127 ƒ00094 00404 70753
Male 00201 00088 00031 00371 60630
Married ƒ00023 00093 ƒ00207 00158 70130
Years of schooling 00011 00012 ƒ00012 00035 70035
Income ƒ00002 00014 ƒ00030 00025 60291
Employed 00053 00145 ƒ00232 00341 70806
Private insurance 00215 00112 ƒ00005 00431 60645
Medicaid 00253 00144 ƒ00028 00536 70107
Constant ƒ40993 00526 ƒ60020 ƒ30933 80063

NOTE: The prior distributions of all parameters have mean 0 and standard deviation 10. In
the table, “Lower” and “Upper” denote the 2.5th percentile and the 97.5th percentile of the
simulated draws, respectively, and Ineff. denotes the inef’ ciency factor. The results are based
on 6,500 draws of which the ’ rst 500 are discarded.

The table gives several summary measures of the posterior
distribution. In addition to the posterior mean and standard
deviation, we also display the 2.5th and the 97.5th percentile
of the marginal posterior distribution and the inef� ciency
factor ( INEFF) (also called the autocorrelation time) in the
estimation of the posterior mean of ‚. If we let G denote
the Monte Carlo sample size, then the inef� ciency factor is
de� ned as 1 C 2

Pˆ
kD1 �4k5, where �4k5 is the autocorrelation

at lag k for the parameter of interest and the terms in the sum-
mation are cut off according to (say) the Parzen window. The
inef� ciency factors are reasonably small, indicating that the
sampler is mixing well.

The table shows that many of the included variables con-
tribute signi� cantly to the observed interpersonal variation in
visits. The posterior means are very similar to the simulated
MLE’s reported by MT. For instance, persons who self-assess
their health status as poor are more likely, and those who
self-assess their health status as excellent are less likely, to
visit an emergency room or stay at a hospital than others.
In addition to these two measures of health status, conditions
that limit activities of daily living have the most signi� cant

Table 2. Means and Standard Deviations of the Posterior Distribution
of the Correlation Matrix of the Latent Effects

OFP OFNP OPP OPNP EMR

OFNP 0.330
(0.024)

OPP 0.164 0.115
(0.027) (0.032)

OPNP 0.403 0.196 0.478
(0.027) (0.033) (0.031)

EMR 0.328 0.113 0.300 0.302
(0.034) (0.040) (0.038) (0.045)

HOSP 0.449 0.081 0.433 0.417 0.945
(0.031) (0.039) (0.037) (0.038) (0.012)

and strongest effect on the outcome variables. Gender is sig-
ni� cant only in the hospital equation, with a higher risk of
hospitalization for men. Similarly, private insurance does not
affect the number of emergency-room visits but it increases
the expected number of hospital stays.

Next, in Table 2 we summarize the evidence on the cor-
relation structure for our six-variate model. For this purpose,
we computed C D 4diag4D55ƒ1=2D4diag4D55ƒ1=2 for each draw
from the posterior sample on D. This gives us a sample from
the posterior of C , which we have summarized in Table 2 in
terms of the means and standard deviations.

There is a positive correlation between each of the latent
effects in the six equations but the correlation structure is
not homogeneous. As expected, the equations for emergency-
room admittance and hospitalization are closely related. We
obtain a mean value for the correlation coef� cient of 0.945,
which is close to the 0.92 reported by MT. The variances
of the latent effects in these two equations, not shown here,
have posterior means of 1.70 and 1.77, respectively, which are
close to the values reported by MT. Since the latent effects in
equations 5 and 6 have similar variances and are highly cor-
related, it is likely that the correlation structure between the
last two equations could be captured by a one-factor model as
well, as was also concluded by MT. However, a closer look
at Table 2 shows that such a conclusion does not general-
ize to the other four equations and that a � exible model with
a full set of correlated latent effects is needed to adequately
describe the correlation structure. One observation is that the
pairs of equations representing “serious” and “less serious”
health problems are relatively unrelated. For example, the cor-
relation between visits to nonphysicians in an of� ce situation
and hospitalization is just 0.081. Although negative correla-
tions are not observed in this example, the need for letting the
matrix D be unrestricted is evident.

Our discussion so far has concentrated on the regression
coef� cients and the correlation structure. In addition, the
model can be used to obtain predictive distributions. The prob-
ability function of the model depends on ‚, the latent variable
bij , and the covariates xij . One can compute the average pre-
dicted probability of outcomes in equation j1 j D 11 : : : 16 by
integrating f 4yj

—‚j1 bij1 xij51 yj
D 0111 : : : , over the joint post-

erior distribution of ‚j and b and over the observed data distri-
bution of x. In practice, this approach is simple to implement
because it requires only the output from the MCMC algorithm.
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For each value of ‚r
j and 8br

i 9 from the MCMC simulation,
we compute ˆr

ij
D exp4x0

ij‚
r
j
Cbr

ij5. To predict marginal proba-
bilities, we compute

Opkj
D 1

N

1
R

RX

rD1

NX

iD1

f4kj
—ˆr

ij51 kj
D 0111 : : : 1 (10)

where f is the Poisson probability function and R is the num-
ber of iterations. The prediction of joint probabilities is, how-
ever, more interesting because in that case the proper modeling
of the correlation structure is important. Predictions of joint
probabilities within the context of our model are simple since,
conditional on the latent effects, the six equations have inde-
pendent Poisson distributions and the joint probabilities can
thus be obtained through multiplication. Thus, all one needs
to do in (10) is to replace f 4kj

—ˆr
ij5 by

Q6
jD1 f 4kj

—ˆr
ij5. Finally,

we can construct out-of-sample predictions. In this case, 8bi9

for the new data points is sampled from a normal distribution
conditioned on each sampled value of D.

The predictions from the model can be used to design a
heuristic diagnostic check of model � t. The high dimension-
ality of the joint distribution means that one can consider
model � t at various levels. One possibility is to focus on the
marginal distributions of the observed data. Table 3 makes
such a comparison for the outcomes 0, 1, 2, 3, 4, and 5
or greater. As expected, the in-sample predictions tend to be
better than the out-of-sample predictions. With the exception
of the � rst equation, the empirical frequency distributions of
the data are traced closely by the predictions. In the case of
the OFP response, the high frequency of zeros for the given

Table 3. In- and Out-of-sample Predictions of Marginal Probabilities

P P P P P P
(yj D 0) (yj D 1) (yj D 2) (yj D 3) (yj D 4) (yj > 4)

In-Sample

OFP predicted 00116 00137 00123 00103 00085 00436
empirical 00155 00109 00097 00095 00087 00457

OFNP predicted 00674 00134 00055 00030 00020 00087
empirical 00682 00129 00047 00028 00024 00090

OPP predicted 00771 00122 00042 00020 00011 00034
empirical 00771 00119 00046 00017 00012 00035

OPNP predicted 00842 00092 00028 00012 00007 00020
empirical 00838 00098 00028 00011 00006 00019

EMR predicted 00825 00125 00031 00011 00004 00004
empirical 00818 00133 00031 00012 00002 00004

HOSP predicted 00810 00131 00035 00013 00005 00006
empirical 00804 00136 00040 00011 00005 00004

Out-of-sample

OFP predicted 00119 00144 00128 00104 00082 00423
empirical 00159 00102 00103 00093 00082 00461

OFNP predicted 00678 00140 00055 00029 00018 00080
empirical 00688 00124 00044 00030 00021 00093

OPP predicted 00771 00118 00040 00019 00011 00041
empirical 00776 00110 00046 00021 00013 00034

OPNP predicted 00848 00088 00026 00011 00006 00020
empirical 00834 00097 00027 00011 00009 00022

EMR predicted 00824 00120 00030 00011 00006 00009
empirical 00821 00127 00034 00013 00002 00004

HOSP predicted 00819 00120 00031 00013 00006 00011
empirical 00800 00140 00040 00008 00005 00006

NOTE: For out-of-sample predictions the sample was split in half, and the results using the
’ rst 2,203 observations were used to predict the distribution of the other half.

Table 4. In- and Out-of-Sample Predictions of Joint Probabilities

In-sample Out-of-sample

Event Actual Joint Independent Actual Joint Independent

(01010101010) 00099 00067 00034 00104 00068 00036
(1C1010101010) 00285 00296 00258 00284 00308 00264
(011C10101010) 00014 00014 00016 00014 00015 00017
(01011C101010) 00010 00010 00010 00008 00010 00011
(0101011C1010) 00001 00003 00006 0 00003 00006
(010101011C10) 00005 00005 00007 00005 00005 00008
(01010101011C) 00002 00000 00008 00002 00004 00008

NOTE: The ’ rst column gives the values for the sixtuplet under consideration (OFP, OFNP,
OPP, OPNP, EMR, HOSP).

mean suggests that alternative models such as the hurdle or
� nite mixture models (see Deb and Trivedi 1997) might be
appropriate.

As stated previously, the real advantage of a joint model lies
in the prediction of joint probabilities. Table 4 gives examples
for some interesting cases. For instance, the � rst row gives the
joint probability that a person did not use any of the six health
services over the sample period. In the sample, this applies to
10% of all individuals. The joint model predicts the proportion
of “nonusers” to be 7%. Although this underpredicts the actual
outcome, the joint model offers a substantial improvement
over the independece model, which underpredicts the nonuse
event even more seriously. The next six rows of Table 4 give
the joint probabilities of a count of 1 or greater for one of the
six types of health services at a time and zero counts for the
other � ve types. In all instances, the predictions of the joint
model are far superior to the predictions under independence,
both in and out of sample, and the predictions from the joint
sample are accurate to the third digit in a number of cases.

3.2 Number of Airline Incidents

In our second application, we reanalyze the airline accident
data of Rose (1990) with a view to illustrating an application
involving high-dimensional correlated counts. Our sample data
consists of 16 U.S. passenger air carriers (from a total of 35)
who had complete observations between 1957 and 1986. The
dependent variables are the 16 counts of the number of acci-
dents per carrier per year, where accidents are de� ned as any
operation-related occurrence that leads to personal injury or
death or substantial damage to the aircraft. Over the sample
the number of accidents ranges from 0 to 14 with mean 1.7
and variance 4.9. Similar data were also analyzed by Dionne,
Gagné, Gagnon, and Vanasse (1997) for Canadian air acci-
dents during 1976 and 1987 for more than 120 carriers.

Contemporaneous correlation in accident outcomes may
be the consequence of omitted industrywide variables—for
instance, safety standards set by the Federal Aviation Author-
ity. Such factors can affect all airlines equally, but this need
not be the case. In our model, we capture the common effects
through airline � xed effects, whereas the additional correlated
latent effects allow both for carrier-speci� c overdispersion and
for additional contemporaneous correlation between carriers.
Note that, since we condition on � xed effects, the assumption
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Table 5. Posterior Summary From the 16 Variate Multivariate-t Count
Model Fit to Airlines Data

Mean Std. dev. Median Lower Upper Ineff.

Operating ƒ007565 009473 ƒ007429 ƒ205164 100512 800446
margin

Stage length ƒ000223 005035 ƒ000184 ƒ100292 009424 800218
Experience ƒ000081 000546 ƒ000075 ƒ001143 000988 708574
International 004556 008551 004719 ƒ101662 201957 607933

NOTE: The estimated model also includes 29 year and 16 ’ rm-’ xed-effect covariates not
shown here. “Lower" and “Upper" denote the 2.5th percentile and the 97.5th percentile,
respectively, and Ineff. denotes the inef’ ciency factor. The results are based on 6,500 draws,
of which the ’ rst 500 are discarded.

that the latent effects are independent of the regressors is not
very strong.

Let yit denote the number of accidents for carrier i in year t.
By assumption, yit

—ˆit is independently Poisson distributed,
where ˆit

D dit exp4� i
C„t

Cx0
it‚ Cbit50 The expected number

of accidents is assumed to be proportional to the total num-
ber of departures dit (in thousands). The covariates include 16
airline � xed effects, 29 year � xed effects, operating margin
as a measure of pro� tability of the airline (OPMARG), aver-
age stage length in thousands of miles (AVSTAGE), cumula-
tive airline operating experience in billions of aircraft miles
(EXPER), and the fraction of total departures that are interna-
tional � ights ( INTL) (see Rose 1990 for further details).

In this setup, we allow for airline-speci� c overdisper-
sion and additional contemporaneous correlations between
the accident rates of the 16 carriers by assuming that bt

D
4bi11 : : : 1 bi165 is distributed as multivariate-t with mean vec-
tor equal to 0, dispersion matrix D, and 10 df. We employ
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Figure 1. Posterior Boxplots of Diag D and Autocorrelation Functions of D1 1, D9 9, D12 12, and D16 16 in Airline Count-Data Example.

the following hyperparameters: ‚0
D 01Bƒ1

0
D 0001I73�0

D 321

R0
D I161 ƒ0

D 10, which imply that the prior mean on the
diagonal elements of D is approximately 1=32 D 003 (indicat-
ing small heterogeneity) but with fairly large prior variance
(due to the low value of the degree of freedom). Our MCMC
algorithm for this model, discussed previously, is run for 6,000
iterations beyond a burn-in sample of 500 cycles.

In Table 5 we summarize the posterior distribution of some
of the elements of ‚. After controlling for the airline � xed
effects, the year effects, and the correlation among the out-
comes, the interpercentile ranges of the marginal posterior
distributions of each of the four airline-speci� c covariates
include 0. It is rather more dif� cult to summarize the post-
erior distribution of D given that D contains 136 parame-
ters. To give some idea of the posterior distribution, we report
in Figure 1 the posterior boxplots of the 16 diagonal ele-
ments of D along with the autocorrelation plots of D111, D919,
D12112, and D16116. We see that the posterior distributions of
the diagonal elements are quite similar with median values
ranging from about 0.06 to 0.07. Naturally, the posterior dis-
tributions are skewed because they are bounded from below at
0. Note that the autocorrelations in the sampled output decline
quickly, indicating that the sampler is mixing well. Substan-
tively, in contrast to the previous example, in which the pattern
of D was complex, the evidence here points to a correlation
matrix that neither indicates airline-speci� c heteroscedasticity
nor substantial contemporaneous correlations (the off-diagonal
elements are not displayed; they tend to be close to 0). Overall,
this example provides another illustration of the ef� cacy of
our method in high-dimensional count-data models that (as far
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as we are aware) have never before been � t with this level of
generality on the correlation structure.

4. CONCLUDING REMARKS

This article develops a general simulation-based approach
for the analysis of multivariate count data. In our model, the
correlation among the counts is modeled by assuming that
the counts are independent Poisson variates, conditioned on
a vector of correlated latent effects. Correlation among the
counts is achieved by letting the latent effects be distributed
as multivariate log normal or multivariate log-t. The correla-
tion structure of the random effects is taken to be fully gen-
eral. We develop an MCMC-based approach to estimate the
model and show that the method is practical even in high-
dimensional problems.The method is applied in the joint anal-
ysis of six alternative measures of health-care usage, as well
as in the analysis of a panel dataset on air-traf� c incidents. In
both cases, interesting information on the underlying correla-
tion structure of the counts is recovered.

[Received July 1999. Revised January 2001.]
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