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Abstract

We investigate the effects of constraining gross-exposure and shrinking covariance
matrix in constructing large portfolios, both theoretically and empirically.
Considering a wide variety of setups that involve conditioning or not conditioning
the covariance matrix estimator on the recent past (multivariate GARCH),
smaller versus larger universe of stocks, alternative portfolio formation objectives
(global minimum variance versus exposure to profitable factors), and various
transaction cost assumptions, we find that a judiciously chosen shrinkage method
always outperforms an arbitrarily determined constraint on gross-exposure. We ex-
tend the mathematical connection between constraints on the gross-exposure and
shrinkage of the covariance matrix from static to dynamic, and provide a new ex-
planation for our finding from the perspective of degrees of freedom. In addition,
both simulation and empirical analysis show that the dynamic conditional
correlation-nonlinear shrinkage (DCC-NL) estimator results in risk reduction and effi-
ciency increase in large portfolios as long as a small amount of short position is
allowed, whereas imposing a constraint on gross-exposure often hurts a DCC-NL
portfolio.
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It is well established that using the sample covariance matrix is inappropriate in construct-

ing large unconstrained portfolios, which will lead to extreme positions and poor out-of-

sample performance. To improve the performance of portfolios, two different methods are

very popular. The first one is to constrain (e.g., Jagannathan and Ma, 2003; DeMiguel

et al., 2009a; Fan, Zhang, and Yu, 2012; Behr, Guettler, and Miebs, 2013; Li, 2015) or

shrink (e.g., Golosnoy and Okhrin, 2007; Frahm and Memmel, 2010; Tu and Zhou, 2011;

DeMiguel, Martin-Utrera, and Nogales, 2013; Bodnar, Parolya, and Schmid, 2018) the

portfolio weights directly, and the second is to use an improved estimator of covariance ma-

trix to constrain or shrink the portfolio weights indirectly (e.g., Ledoit and Wolf, 2003,

2017a; Fan, Fan, and Lv, 2008, Fan, Liao, and Mincheva, 2013; Engle, Ledoit, and Wolf,

2019; De Nard, Ledoit, and Wolf, 2020).

There is a general perception that constraining the portfolio weights is a simple alterna-

tive to shrinking the covariance matrix. Studies share the same theoretical analysis on why

the two approaches are beneficial to large portfolios: the extreme sample covariances be-

tween stocks that lead to extreme weights are usually caused by estimation errors (see foot-

note 8 in DeMiguel et al., 2009b, for illustration); thus, imposing constraints on portfolio

weights or shrinking the sample covariances can reduce the sampling error and improve the

out-of-sample performance. Although some people may have read this connection as a con-

firmation that “shrinkage is not necessary,” it could equally be interpreted as saying that

shrinkage works because we (meaning the asset management and finance professors who

impose constraints on portfolio weights) have been effectively shrinking all along without

even knowing it.

This paper aims at providing a comparative analysis of the two approaches and getting

the best of both worlds. In particular, we work in the realm of fully invested portfolios, that

is, portfolios whose weights sum up to one, which is the default choice for the bulk of the

asset management industry (as opposed to weights summing up to zero). Even though the

weights sum up to one, there is some leeway to take on short positions, and an interesting

question is how much. The major candidates are the strategy without any constraint on

gross-exposure, the so-called “150/50” strategy (meaning that for $100 million of capital,

the prime broker enables you to go $150 million long if you go $50 million short at the

same time, for a net exposure to the stock market of $100 million, which is exactly equal to

the capital invested), the “130/30” strategy, and the “100/0” strategy (no short sales are

allowed). For a more solid analysis, we consider a wide choice for the constraint on short

sales, with the gross-exposure constraint parameter continuously increasing from 1 (the

“100/0” strategy) to 16 (the “850/750” strategy). Moreover, at the same time, instead of

linearly shrinking the unconditional covariance matrix as the previous literature does, we

allow each of the eigenvalues of the sample covariance matrix to have its own shrinkage in-

tensity, optimally determined under large-dimensional asymptotics, while also incorporat-

ing multivariate GARCH effects.
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Our paper makes the following contributions to the literature that deals with risk reduc-

tion and efficiency increase in large portfolios. First, we extend the mathematical equiva-

lency of constraining portfolio weights and shrinking the covariance matrix from the

conventional static framework to dynamic, where multivariate GARCH effects are incorpo-

rated. Second, we find that using the judiciously chosen shrunk covariance matrix always

outperforms the strategy of imposing an arbitrarily determined gross-exposure constraint.

We provide a new theoretical explanation from the perspective of degrees of freedom to

bridge the gap between theory and practice. Third, we reveal the best of both the shrinkage

estimator and the gross-exposure constraint, which can provide enlightenments to quantita-

tive investors and analysts. Moreover, we find that the nonlinear (NL) shrinkage of the co-

variance matrix improves a large portfolio as long as a small amount of short position is

allowed, but imposing a constraint on gross-exposure often hurts a covariance-shrunk

portfolio.

If constraining weights and shrinking covariances are essentially equivalent, then why is

shrinkage still beneficial for portfolios with moderate gross-exposure constraints? The an-

swer is that constraining the gross-exposure has only one degree of freedom, that is, the

amount of gross-exposure permitted; whereas shrinkage of the NL kind—as utilized here—

has as many degrees of freedom as there are variables in the system, which is assumed to be

a large number, and these are individually optimized in an asymptotic sense as matrix di-

mension and sample size go to infinity together. Thus, the influence of shrinkage is fine-

tuned automatically, whereas gross-exposure constraint applies uniformly across the

board.1 The gross-exposure constraint, therefore, is redundant when the optimal shrinkage

is provided by the NL shrinkage method.

Our Monte Carlo simulation and empirical analysis demonstrate the advantage of using

the NL shrinkage covariance matrix estimator over imposing the gross-exposure constraints

for a wide range of constrained portfolios. Additionally, we find that using the dynamic

conditional correlation (DCC) model improves the portfolio performance. Consequently,

the DCC-NL shrinkage (DCC-NL) portfolio is always preferred: as long as some short posi-

tions are allowed, which can be done in many fully invested funds as long as the prime bro-

ker allows it, the DCC-NL delivers the best performance. Our findings are stable in

simulations, where both normally distributed and t-distributed disturbance terms are con-

sidered, as well as in empirical exercises, where both the global minimum variance (GMV)

portfolios and the mean–variance efficient (MVE) portfolios exposed to profitable factors

are constructed.

We know that since the groundbreaking work of Markowitz (1952), statistics and opti-

mization techniques have been used to develop diversified investment strategies that either

(i) minimize risk, subject to exposure to the stock market (the GMV portfolio) or (ii) are ef-

ficient in terms of risk-return trade-off (the MVE portfolio). The first type is a purer test of

the covariance matrix estimator and the optimization program used, whereas the second

one requires, in addition, a good predictive model for expected returns, which is notorious-

ly hard to obtain.

1 Behr, Guettler, and Miebs (2013) extend the arbitrarily chosen constraints on weights to flexible ex

ante constraints that can better suit the data, but it is still infeasible to guarantee that all individual

weights are optimally shrunk.
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During the past decades, on the one hand, various attempts have been made to reduce

the estimation errors of the large-dimensional covariance matrix. Imposing the assumption

of a factor structure (e.g., Stock and Watson, 2002; Fan, Fan, and Lv, 2008; Bai and Li,

2012; Fan, Liao, and Mincheva, 2013) and shrinking the sample covariance matrix (Ledoit

and Wolf, 2003, 2004a, 2004b, 2012, 2015, 2020a) are two popular and effective ways.

The shrinkage method can also be used in a factor model to estimate the residual covariance

matrix (De Nard, Ledoit, and Wolf, 2020). On the other hand, a variety of methods have

been introduced in the literature to deal with the parameter uncertainty about expected

returns, including Bayesian approaches (e.g., Pástor, 2000; Wang, 2005; Pástor and

Stambaugh, 2009; Tu and Zhou, 2010; Bauder et al., 2020) and some other non-Bayesian

strategies (e.g., Goldfarb and Iyengar, 2003; Garlappi, Uppal, and Wang, 2007; Brandt,

Santa-Clara, and Valkanov, 2009; Branger, Lu�civjanská, and Weissensteiner, 2019).

Moreover, hundreds of signals have been proposed to predict expected returns (see Hou,

Xue, and Zhang, 2015; Harvey, Liu, and Zhu, 2016; Green, Hand, and Zhang, 2017; and

the references therein). Given that the two strands of literature have attracted a large

amount of attention, we consider both exercises. Specifically, to construct the MVE port-

folios, we use the signal return-on-equity (ROE) as a proxy for the expected return, which

has been proven to have statistically significant explanatory power for cross-sectional

anomalies (Feng, Giglio, and Xiu, 2020). For robustness check, we consider the widely

used signal earnings-to-price (E/P) as an alternative proxy. We also consider different setups

for transaction costs.

Our work is most closely related to the literature that attempts to provide a unified ana-

lysis framework for imposing constraints on weights and using advanced estimators for the

covariance matrix. Jagannathan and Ma (2003) find with the no-short-sale constraint in

place, GMV portfolios constructed based on the sample covariance matrix perform as well

as those constructed using the linear shrinkage estimator. However, if a shrinkage estimator

of the covariance matrix is used, the no-short-sale constraint would then hurt the out-of-

sample performance. They explain the similar performances and the “either-or” dichotomy

by the analogous mechanisms of constraining weights and shrinking covariances.

DeMiguel et al. (2009a) and Brodie et al. (2009) use the ‘2-norm or ‘1-norm framework

to unify the shrinkage effects in weights and in covariance matrix. The ‘2-norm constrained

portfolios, related to ridge regression which shrinks all regression coefficients toward zero

and does not produce any sparsity, correspond to the shrinkage estimators in Ledoit and

Wolf (2004b). The ‘1-norm constrained portfolios, related to LASSO regression which

tends to give sparse weights, are equivalent to the short-sale-constrained portfolios in

Jagannathan and Ma (2003). Yen (2016) imposes both ‘1-norm and ‘2-norm penalties to

study portfolio optimization.

Equivalent unconstrained regression representation for portfolio optimization has also

been investigated. Britten-Jones (1999) discusses the portfolio selection problem through an

artificial linear regression. On this basis, Fan, Zhang, and Yu (2012) and Li (2015) show

that constraining portfolio norms amounts to constraining estimation risks. In addition,

Ao, Li, and Zheng (2019) proposes a strategy MAXSER building upon a novel uncon-

strained regression representation and can simultaneously achieve mean–variance efficiency

and risk control. Furthermore, Callot et al. (2020) study the variance, weights, and risk of

large portfolios by using nodewise regression to directly estimate the inverse covariance

matrix.
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Note that shrinkage estimators of the covariance matrix whose performances in portfolio

selection have been compared with those constraining on portfolio weights are all linear, with

the shrinkage target being the Sharpe (1963)’s single index covariance matrix proposed by

Ledoit and Wolf (2003) (Jagannathan and Ma, 2003; DeMiguel et al., 2009a; Li, 2015), an

identity matrix proposed by Ledoit and Wolf (2004b) (DeMiguel et al., 2009a), or a

constant-correlation model proposed by Ledoit and Wolf (2004a) (Li, 2015). The estimation

is essentially equivalent to linearly shrinking the sample eigenvalues toward a more central-

ized set of eigenvalues by a unified shrinkage intensity. Ledoit and Wolf (2012, 2015) extend

the linear shrinkage of the sample eigenvalues to the NL transformation, and obtain the NL

estimator of the covariance matrix, which has been proven to have better out-of-sample per-

formance (Ledoit and Wolf, 2015, 2017a). Ledoit and Wolf (2020b) summarize that the lin-

ear shrinkage is simpler to understand and to implement, but the NL shrinkage is more

flexible and powerful. As the shrinkage mechanism is improved from a procedure with an ex-

ogenous target and a unified intensity to an endogenous optimization algorithm, it is import-

ant to compare its effect with that of imposing varying degrees of gross-exposure constraint.

Further, Bollerslev, Patton, and Quaedvlieg (2018) argue that the shrinkage intensity

should be time-varying to consider the dynamic variation of the covariances. Consistent

with this idea, Engle, Ledoit, and Wolf (2019) propose the DCC-NL estimator of the co-

variance matrix, which uses the NL shrinkage estimator to replace the sample covariance

matrix in the “correlation targeting” maximum-likelihood estimation of the DCC model.

The DCC-NL estimator of the covariance matrix turns out to perform better than previous

estimators based on the conventional DCC model. Since the DCC model works in captur-

ing the conditional heteroscedasticity, we conjecture that the use of DCC model would also

help improve the out-of-sample performance of portfolios with gross-exposure constraints.

The key differences between our work and the previous literature are embodied in the

following two aspects. First, we adopt the most advanced estimator for covariance matrix,

which not only applies the NL shrinkage procedure to account for the individual shrinkage

intensity, but also considers the dynamic variation of the covariances using the GARCH

model. Second, we focus on the improvement of DCC-NL over DCC when some certain

gross-exposure constraints are imposed. On this basis, we obtain new findings that the

DCC-NL estimator is always preferred and using the NL shrinkage estimator is superior to

imposing a gross-exposure constraint. Compared with imposing a gross-exposure con-

straint, using the NL shrinkage estimator has a larger degree of freedom, which gives

enough room for the benefits of the automatic optimization procedure.

The rest of the paper is organized as follows. Section 1 provides the methodologies,

including the NL shrinkage estimator of the covariance matrix, its combination with the

DCC model, and our theoretical findings in constructing constrained GMV and MVE port-

folios. In Section 2, we use Monte Carlo simulations to verify our theoretical results. In

Section 3, we describe our data, report the results for out-of-sample performance of the

GMV and the MVE portfolios, and conduct robustness checks. Section 4 concludes.

1 Methodology

1.1 Shrinkage and DCC

It is widely known that the sample covariance matrix performs poorly out-of-sample in

large dimensions due to overfitting. Without imposing any additional structure on the data,
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shrinkage methods improve the estimation precision by rectifying the bias of the sample

eigenvalues. The basic idea behind shrinkage methods is to pull the extreme sample eigen-

values toward the grand mean of all sample eigenvalues, since the smallest sample eigenval-

ues are biased downward and the largest ones upward. Ledoit and Wolf (2003, 2004a,

2004b) propose the linear shrinkage estimators, which are the first-order approximation

solutions to a NL optimization problem, as all sample eigenvalues adjust with the same

shrinkage intensity. The NL shrinkage estimators proposed by Ledoit and Wolf (2012,

2015) allow the sample eigenvalues to adjust with heterogeneous shrinkage intensities and

should generally perform better than the linear ones.

To determine the optimal shrinkage intensity for every sample eigenvalue (in regard to a

particular loss function), Ledoit and Wolf (2015) discretize the famous Mar�cenko and

Pastur (1967) equation and construct the Quantized Eigenvalues Sampling Transform

(QuEST) function. By numerically inverting the QuEST function,2 the consistent estimators

for the population eigenvalues can be obtained. Specifically, let ðk1; . . . ; kNÞ denote a set of

eigenvalues of the N�N sample covariance matrix S, sorted in descending order, and

ðu1; . . . ;uNÞ be the corresponding eigenvectors. Let QT;NðtÞ :¼ ðq1
T;NðtÞ; . . . ;qN

T;NðtÞÞ
0 de-

note the QuEST function, which turns the set of population eigenvalues t :¼ ðt1; . . . ; tNÞ
into the set of sample eigenvalues. Thus, given the set of sample eigenvalues, the population

eigenvalues can be consistently estimated by inverting the QuEST function:

bs :¼ argmin
t2½0;þ1ÞN

1

N

XN
i¼1

�
qi

T;NðtÞ � ki

�2

: (1.1)

Then, the NL shrinkage estimator (denoted by NL) of the covariance matrix is

R̂ :¼
XN
i¼1

bki ðbsÞ � uiu
0
i: (1.2)

where bki ðbsÞ for i ¼ 1; . . . ;N denote the shrunk eigenvalues based on bs. The basic idea of

this shrinkage formula is that

bki ðbsÞ � u0i Rui; (1.3)

where R represents the unconditional population covariance matrix. The approximation is

valid asymptotically as matrix dimension and sample size go to infinity together in the man-

ner detailed by Ledoit and Wolf (2015). Equations (1.2) and (1.3) are very similar to ki ¼
u0i Rui and S ¼

PN
i¼1 ki � uiu

0
i: all we have done is replace the in-sample variance of a port-

folio whose weights are determined by eigenvector ui with the true variance of the same

portfolio. This is a substantial improvement because the fact that the eigenvectors

ðuiÞi¼1;...;N are extracted from the same dataset as the eigenvalues ðkiÞi¼1;...;N generates tre-

mendous over-fitting bias.

In addition, to capture the volatility-clustering feature of asset returns, Engle (2002)

uses the DCC model to describe the time-varying structure in variances and covariances.

Let Rt :¼ ðrijtÞ denote the conditional covariance matrix of asset returns rt :¼ ðritÞ (N-di-

mensional column vector) at time t, where t ¼ 1; . . . ;T. Let Dt :¼ diagðr1=2
11t . . . r1=2

NNtÞ

2 See Ledoit and Wolf (2017b) for the detailed implementation.
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denote the volatility matrix, Qt :¼ ðqijtÞ the pseudo-correlation matrix, and Pt :¼ ðqijtÞ the

correlation matrix, satisfying

Pt :¼ diagðq�1=2
11t . . . q

�1=2
NNt ÞQtdiagðq�1=2

11t . . . q
�1=2
NNt Þ: (1.4)

The DCC model is defined as

Rt ¼ DtPtDt: (1.5)

A GARCH(1,1) model is used to describe the dynamic of every univariate volatility:

r2
ii;t ¼ r2

ii;0ð1� ai � biÞ þ air
2
i;t�1 þ bir

2
ii;t�1; (1.6)

and the pseudo-correlation matrix Qt is specified as

Qt ¼ Qð1� a� bÞ þ ast�1s0t�1 þ bQt�1; (1.7)

where ai, bi, a, and b are non-negative scalars satisfying ai þ bi < 1 for every i 2
f1; 2; . . . ;Ng and aþ b < 1. rii;0 is the long-run volatility of asset return for individual i,

st ¼ D�1
t rt is the devolatilized return at time t, and Q is the long-run covariance matrix of st.

By combining the NL shrinkage estimator of Q with the DCC model, Engle, Ledoit,

and Wolf (2019) propose the DCC-NL estimator of the covariance matrix. To avoid invert-

ing matrices with large dimensions, they also use the 2MSCLE method (Pakel et al., 2020)

in estimating the DCC model, which is the composite likelihood estimation bonding the in-

dividual likelihoods generated by 2� 2 blocks of all contiguous pairs.

To sum up, NL aims to improve the estimation precision of covariance matrix by

shrinking eigenvalues and thus reducing estimation errors. Meanwhile, DCC takes the con-

ditional heteroscedasticity into consideration by dynamic modeling. In view of these

strengths, the DCC-NL estimator is supposed to have better out-of-sample performance

than the DCC estimator, the NL estimator, and the sample covariance matrix (denoted by

S), especially in large dimensions.

Even though our paper uses (in part) the DCC-NL method of Engle, Ledoit, and Wolf

(2019), our paper differs from theirs because they focus on the unconstrained case, whereas

we explore the interaction of the DCC-NL (among others) with gross exposure constraints.

This is more practically relevant because many investors face leverage constraints. At the

start of the investigation, we cannot know a priori whether the benefits of DCC-NL

observed by Engle, Ledoit, and Wolf (2019) carry over to the constrained case because

applying a gross book exposure constraint may already induce a sufficient of (implicit)

shrinkage to nullify the benefits of explicitly shrinking via DCC-NL or another shrinkage

method. This is the question that we need to answer.

1.2 Constructing GMV Portfolios with Gross-Exposure Constraints

Based on the estimator R̂t of the time-varying covariance matrix Rt, constructing GMV

portfolios with the gross-exposure constraint is equivalent to the following minimization

problem given by

minwt
w0tR̂twt

subject to w0t1 ¼ 1 and
XN
i¼1

jwi;tj � c:
(1.8)
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The constraint
PN

i¼1 jwi;tj � c could be expressed as jjwtjj1 � c. Note that c � 1, and

the constraint becomes weaker with the increase of c. When c¼ 1, the constraint is equiva-

lent to the extreme situation considered in Jagannathan and Ma (2003) that no short sales

are allowed. c ¼ 1:6 corresponds to fully invested portfolios of the 130/30 type, and c¼2

to 150/50. When c ¼ 1, the gross-exposure is unconstrained.

Define the Lagrangian as

Lðwt;l; kÞ ¼ w0tR̂twt � lðw0t1� 1Þ � kðc� jjwtjj1Þ; (1.9)

and let gt be the subgradient3 vector of jjwtjj1. Then, for wi;t 6¼ 0, the i-th element of gt is

unique, that is, gi;t ¼ signðwi;tÞ; for wi;t ¼ 0; gi;t could be any values in ½�1;1�.
Consequently, the Karush–Kuhn–Tucker (KKT) conditions for the above gross-

exposure-constrained optimization problem (1.8) are

2R̂twt � l1þ kgt ¼ 0;

kðc� jjwtjj1Þ ¼ 0; k � 0;

jjwtjj1 � c; w0t1� 1 ¼ 0;

8>>><>>>: (1.10)

where 1 is the column vector of ones, and k and l are Lagrange multipliers. Denote a solu-

tion to Equation (1.10) by w	t . The following result shows that constructing the gross-

exposure-constrained minimum variance portfolio from the DCC estimator is equivalent to

constructing a (unconstrained) minimum variance portfolio from a shrunk version of the

DCC estimator.

Theorem 1.

i. Let ~Rc;t ¼ R̂t þ 1
2 k g	t 10 þ 1g	0t
� �

, where g	t is the subgradient at w	t , and k is the

Lagrange multiplier defined inEquation (1.10). Then, ~Rc;t is positive definite if R̂t is a

positive definite DCC covariance matrix estimator.

ii. The partial constrained portfolio optimization problem (1.8) is equivalent to the opti-

mization problem

min
w0t1¼1

w0t
~Rc;twt (1.11)

with the regularized covariance matrix
~
�;t.

It is noteworthy that the optimization problem (1.8) is solved by using the quadratic

programming algorithm (Tibshirani, 1996). Even though we do not compute the theoretical

regularized matrix ~Rc;t in empirical analysis, the equivalence established in Theorem 1

could explain the relation between the two kinds of optimization problems. The Lagrange

multiplier k could be viewed as the parameter that controls the amount of shrinkage, which

illustrates the relation between ~Rc;t and the well-known shrinkage estimator of covariance

matrix.

3 We say that a vector g is a subgradient of f : Rn ! R at w0 2 dom f if for all w 2 dom f , f ðwÞ �
f ðw0Þ þ g>ðw�w0Þ: If f is convex and differentiable, then its gradient at w0 is a subgradient. But

a subgradient can exist even when f is not differentiable at w0. A vector g is a subgradient of f at

w0 if the affine function (of w) f ðw0Þ þ g>ðw�w0Þ is a global underestimator of f (Boyd, Boyd,

and Vandenberghe, 2004).
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It can easily be seen that the approach of imposing constraints on gross-exposure has

only one degree of freedom: the Lagrange multiplier k (or, equivalently, the gross exposure

constraint c, as these two are in one-to-one correspondance, holding everything else equal).

It is not obvious how to choose this parameter optimally if the goal is to maximize covari-

ance matrix accuracy, but we will leave this issue aside for a moment. In contrast, the NL

shrinkage has N degrees of freedom bk1ðbsÞ; . . . ;ckN ðbsÞ, each one chosen optimally through an

automatic procedure under large-dimensional asymptotics. This ability to “locally fine-

tune” is a huge advantage when population eigenvalues can be dispersed, clustered, or

otherwise unruly, which is the general case.

This analysis provides a mathematical justification why the NL and DCC-NL can im-

prove gross-exposure-constrained strategies in spite of the well-known tendency for gross

exposure constraints to apply some shrinkage implicitly. Thus, the purpose of the empirical

analysis in Section 3.2.1 will be to verify that the usefulness of NL and DCC-NL—already

established in the unconstrained case by Ledoit and Wolf (2015) and Engle, Ledoit, and

Wolf (2019), respectively—carries over to the more realistic case of exposure-constrained

portfolios.

1.3 Constructing MVE Portfolios with Gross-Exposure Constraints

Given the estimator of the covariance matrix R̂t and the gross-exposure parameter c, the

MVE portfolio based on a return predictive signal mt :¼ ðm1t; . . . ;mNtÞ0 is formulated as

min
wt

w0tR̂twt (1.12)

subject to w0t1 ¼ 1 ; (1.13)

w0tmt ¼ bt and (1.14)

XN
i¼1

jwi;tj � c; (1.15)

where bt is a selected target exposure to the signal mt. In our empirical study, bt is deter-

mined by the sorting portfolios. In particular,

bt ¼ wQ0tmt ; (1.16)

where wQt is the weight vector of quantile-based portfolios. Let fð1Þ; ð2Þ; . . . ; ðNÞg be the

permutation of f1; 2; . . . ;Ng that results in descending order of scores for the signal mt.

Then, wQ
ð1Þ
t ¼ � � � ¼ wQ

ðdÞ
t :¼ 1=d and wQ

ðdþ1Þ
t ¼ � � � ¼ wQ

ðNÞ
t :¼ 0, where d is the largest

integer that is smaller than or equal to the ratio of portfolio size N to the number of quan-

tiles B. We consider quintiles (B¼ 5) in our empirical analysis.

Denote the solution to problem (1.12) as w	b;t, then we could obtain the following the-

orem similar to Theorem 1.
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Theorem 2. The partial constrained portfolio optimization problem (1.12) is equivalent

to the optimization problem

minwt
w0t

~Rc;twt

subject to w0t1 ¼ 1 and w0tmt ¼ bt:
(1.17)

with the regularized covariance matrix ~Rc;t. Here, ~Rc;t ¼ R̂t þ 1
2 k g	b;t1

0 þ 1g	0b;t

� �
; g	b;t is the

subgradient at w	b;t, and k is the Lagrange multiplier.

As in the GMV case of Section 1.2, we can see that the shrinkage implicit in gross-book-

exposure constraints has only one degree of freedom, so NL shrinkage enjoys a theoretical

advantage with its N degrees of freedom. This is even more so for DCC-NL, since it over-

lays a time-varying component that is missing in gross-book-exposure constraints. This pro-

vides theoretical justification for the empirical analysis of Section 3.2.2 that examines

whether the results of Ledoit and Wolf (2015) and Engle, Ledoit, and Wolf (2019), for NL

and DCC-NL, respectively, carry over from the unconstrained MVE portfolio to the

exposure-constrained MVE portfolio.

2 Monte Carlo Simulations

In the last section, we demonstrate that imposing the gross-exposure constraint on a port-

folio is equivalent to using the shrinkage estimator when the time-varying structure of the

covariance matrix is captured by the DCC model. In this section, we use Monte Carlo simu-

lations to quantify the finite sample performance of portfolios constructed using different

covariance matrix estimators and with varying levels of gross-exposure constraint. In par-

ticular, we want to study and compare the usefulness of the NL shrinkage estimation, the

DCC model, and the gross-exposure constraint in portfolio improvement and address the

following questions, among others. Is it better to use the NL shrinkage covariance matrix

estimator or the optimal gross-exposure constraint? Is it better to use a dynamic model

(with DCC) or a static model (without DCC)? Does the NL shrinkage improve over a pure

portfolio with a moderate gross-exposure constraint (for both the dynamic model and the

static model)? Last but not least, how do the NL shrinkage, the DCC model, and the gross-

exposure constraint affect the risk approximations?

2.1 Data Generating Process

To generate realistic simulations that match the empirical data, we first estimate the uncon-

ditional covariance matrix from the most liquid stocks (N¼500, 1000) in the CRSP data-

base based on the NL shrinkage method using 5 years of daily data from 2010 to 2014.

This matrix will be regarded as the true unconditional covariance matrix.

Second, we simulate the DCC time series rt ¼ R1=2
t zt with disturbance terms zt drawn

from a multivariate standard normal distribution or a multivariate “Student” t-distribution

with five degrees of freedom. The conditional covariance matrix Rt is generated from

Equation (1.5) to Equation (1.7), with parameters ai ¼ 0:05 and bi ¼ 0:90 for all individual

stocks i ¼ 1; . . . ;N in Equation (1.6) and parameters a ¼ 0:05 and b ¼ 0:93 in Equation

(1.7). For each simulation, we thereby generate a T �N �N time-varying covariance ma-

trix and correspondingly a T�N matrix of simulated returns, where the time length T is
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1250 and the portfolio size N is either 500 or 1000. We repeat each simulation for 100

times.

2.2 Portfolio Improvement

We construct GMV portfolios [Equation (1.8)] based on four different covariance matrix

estimators, including the sample covariance matrix (S), the NL shrinkage estimator (NL)

proposed by Ledoit and Wolf (2015), the covariance matrix estimator based on DCC model

(Engle, 2002), and the DCC-NL estimator proposed by Engle, Ledoit, and Wolf (2019).

For each covariance matrix estimator, we allow a wide choice of the gross-exposure param-

eter c, ranging from 1 to 16, and we also entertain the situation where no constraint on

gross-exposure is imposed (c ¼ 1).

In Table 1, we report the annualized actual risks of the empirical portfolio obtained by

Equation (2.1), the standard errors of weights and the total short positions of the empirical

portfolios constructed based on the four covariance matrix estimators, either without any

constraint on gross-exposure or with the optimal constraint on gross-exposure

(þconstraint*). All the results shown are for a typical simulated dataset, which has the me-

dian oracle risk among 100 simulations.

We can see that purely using a NL shrinkage estimator of covariance matrix uniformly

dominates purely imposing an optimal constraint on gross-exposure, and using the DCC

model helps improve the performance in all cases. For example, when N¼1000 and the

disturbance terms zt are generated from a multivariate standard normal distribution, impos-

ing gross-exposure constraint reduces the annualized actual risk of the empirical portfolio

from 6.63% to 4.11% at best, whereas using the NL covariance matrix estimator reduces

the risk to 3.92%, and DCC-NL reduces the risk to 3.69%. We also find that additionally

imposing an optimal constraint on the gross-exposure has no effect on the NL portfolio,

but it improves the performance of a pure DCC-NL portfolio.

Remark 3.1 (Determinants of the optimal constraint). The optimal constraint (with gross-

exposure parameter c	), which minimizes actual risk among portfolios with different

degrees of gross-exposure constraint, is unknown in practice. According to Equation (2.1),

the optimal constraint parameter c	 is determined by both the real covariance matrix Rt

and the estimated weights vector bwt. Suppose the estimated weights vector is close to the

oracle one when the gross-exposure parameter c is around the oracle optimal parameter

c	orc. Then, c	 should be close to the oracle optimal parameter c	orc ¼
PN

i¼1 jw	i;tj, where w	i;t

denotes the i-th element of the optimal weights vector w	t ¼
R�1

t 1

10R�1
t 1

. Let R�1
t ¼ ðr�

ij;tÞ1� i;j�N,

then 10R�1
t 1 ¼

PN
i¼1

PN
j¼1 r�

ij;t, and c	orc ¼
PN

i¼1
j
PN

j¼1
r�

ij;t
jPN

i¼1

PN

j¼1
r�

ij;t

. Given the positive definiteness of

the inverse covariance matrix,
PN

i¼1

PN
j¼1 r�

ij;t is positive. Therefore, if many of the row

sums
PN

j¼1 r�
ij;tði ¼ 1; . . . ;NÞ are negatively large, then both c	orc and c	 will be large. For a

special case, if none of the row sums is negative, then c	orc ¼ 1 and c	 will be close to 1. h

For a more comprehensive comparison, we present the annualized actual risks for the

four covariance matrix estimators with a continuously changing gross-exposure constraint

parameter c in Figures 1 and 2, for simulated data with zt 
 Nð0; 1Þ and zt 
 tð5Þ, respect-

ively. It is clear from the figures that using the DCC-NL covariance matrix achieves the
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minimum actual risks in all cases with different gross-exposure constraints. The gains from

NL shrinkage increase as the constraint c becomes less binding and the portfolio size N

becomes larger. The former is explained by Jagannathan and Ma (2003) that imposing con-

straints on portfolio weights has a shrinkage-like effect, and thus it hurts the performance

of the shrinkage estimator of covariance matrix. The latter is consistent with the finding of

Ledoit and Wolf (2017a) that the amount of improvement is more pronounced in large

dimensions. By contrast, the gains from DCC decrease as the constraint c becomes less

binding and the portfolio size N becomes larger. This is because without an effective con-

straint, the large errors generated in estimating the model impair the performance of DCC,

and the large portfolio size exacerbates the problem.

Table 1 Actual risk of portfolio and standard deviation and total short position of weights

zt 
 Nð0; 1Þ zt 
 tð5Þ

C Ract StdW ShortW c Ract StdW ShortW

Panel A: 500 stocks contained in the portfolio

S 1 5.53 2.35 403.15 1 5.54 2.36 407.13

S þ constraint* 5.5 5.10 1.72 225.00 6.0 5.14 1.80 250.00

NL 1 5.01 1.58 258.62 1 5.01 1.59 265.09

NL þ constraint* 5.9 5.01 1.53 245.00 5.9 5.01 1.54 245.00

DCC 1 5.11 2.33 397.52 1 5.07 2.33 396.53

DCC þ constraint* 4.6 4.45 1.57 180.00 4.5 4.40 1.56 175.00

DCC-NL 1 4.40 1.68 270.62 1 4.37 1.70 275.47

DCC-NL þ constraint* 4.9 4.32 1.48 195.00 4.8 4.27 1.48 190.00

Panel B: 1000 stocks contained in the portfolio

S 1 6.63 1.92 701.15 1 6.48 1.91 698.72

S þ constraint* 5.0 4.11 0.87 200.00 5.1 4.04 0.88 205.00

NL 1 3.92 0.74 245.30 1 3.84 0.75 250.86

NL þ constraint* 5.9 3.92 0.74 244.44 5.6 3.84 0.73 229.99

DCC 1 6.43 1.84 665.61 1 6.24 1.85 673.41

DCC þ constraint* 4.4 3.91 0.82 169.98 4.4 3.84 0.82 169.98

DCC-NL 1 3.69 0.79 252.52 1 3.65 0.80 256.07

DCC-NL þ constraint* 5.2 3.66 0.74 209.97 5.2 3.61 0.75 209.97

Notes: This table shows the simulation results for the empirical GMV portfolios constructed based on different

covariance matrix estimators, facing no gross-exposure constraint or with an optimal gross-exposure con-

straint (þconstraint*). All the results presented are the median values among 100 simulations. Panels A and B

show results for portfolios with 500 and 1000 stocks, respectively. The left panel and the right panel show

results for simulated data, where the disturbance terms are drawn from a multivariate standard normal distri-

bution and a multivariate t-distribution with five degrees of freedom, respectively. The covariance matrix is

estimated using the most recent 1250 daily returns based on four different methods, which are the sample co-

variance matrix (S), the NL shrinkage estimator (NL) (Ledoit and Wolf, 2015), the DCC estimator (Engle,

2002), and the DCC-NL estimator (Engle, Ledoit, and Wolf, 2019). The sum of the absolute weights should

not exceed the gross-exposure parameter c. c ¼ 1 means there is no constraint on the gross-exposure of the

portfolio, and the optimal c corresponds to the gross-exposure constraint where the portfolio has the minimum

annualized actual risk (Ract). The standard deviation of weights (StdW) and the total short position of weights

(ShortW) of the empirical portfolios are also reported. All the figures shown are in percentage.
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Figure 1 Comparisons of the median annualized actual risks of the 100 simulated GMV portfolios con-

structed based on different covariance matrix estimators (S, NL, DCC, DCC-NL) and facing various

degrees of gross-exposure constraints (the intensity of the constraint declines with the increase of par-

ameter c). The disturbance terms of the simulated data are drawn from a multivariate standard normal

distribution.
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Figure 2 Comparisons of the median annualized actual risks of the 100 simulated GMV portfolios con-

structed based on different covariance matrix estimators (S, NL, DCC, DCC-NL) and facing various

degrees of gross-exposure constraints (the intensity of the constraint declines with the increase of par-

ameter c). The disturbance terms of the simulated data are drawn from a multivariate t-distribution

with five degrees of freedom.
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Remark 3.2 (The performance of DCC when T < N). Due to completeness, we also con-

sidered the special case when the number of observations (T) is smaller than the number of

stocks (N). It is well-known that when T<N, the sample covariance matrix is not of full

rank, so its inverse will not exist. As the traditional DCC estimator relies on the sample co-

variance matrix, its inverse will not exist either. In this case, the advantage of using NL

shrinkage estimators is self-evident. To evaluate the performance of DCC, we compare the

results of NL and DCC-NL. The data generating process is the same as described in Section

2.1 except that we set T¼500 and N¼1000. In unreported results, we find that the benefit

of using DCC model is weakened by the large ratio of N/T. In particular, when the gross-

exposure is tight (c is small), DCC-NL still delivers smaller actual risks, but NL performs

better if no effective gross-exposure constraint is imposed. This finding indicates that in the

estimation of the DCC model the large-dimensional small sample size problem (N=T ¼ 2)

causes large approximation errors, which can be reduced by imposing tight gross-exposure

constraints. In this special case, it is advisable to use the pure NL method if no external

gross-exposure constraint is imposed, but DCC-NL is still preferred if a common external

gross-exposure (such as the “130/30” or the “150/50” requirement) is imposed. h

We also show the 10th, 50th, and 90th percentiles of Ract among the 100 simulations in

Figure 3 for N¼500 and in Figure 4 for N¼ 1000, both for simulated data with

zt 
 Nð0;1Þ.4 We can see that the sampling variation is always small. Moreover, the three

percentiles of Ract for DCC-NL estimator are more closer than those of the other three esti-

mators, indicating that the performance of DCC-NL estimator is more stable in portfolio

selection.

The numbers in the columns StdW and ShortW of Table 1 indicate that both the shrink-

age estimator and the gross-exposure constraint largely reduce the standard deviations of

weights and the total short positions. By comparison, the shrinkage estimator reduces the

standard deviations of weights more remarkably and the gross-exposure constraint has a

more distinct effect on reducing the total short positions.

To sum up, for varying gross-exposure constraints, it is always the DCC-NL estimator

that yields the lowest risks. Imposing moderate constraints on gross-exposure effectively

reduces the risks but is uniformly dominated by using the DCC-NL covariance matrix

estimator.

2.3 Risk Approximations

Following Fan, Zhang, and Yu (2012), besides Ract, we also computer the oracle risk

(denoted by Rorc) of the theoretical optimal portfolio and the empirical risk (denoted by

Remp) based on the estimated weights and estimated covariance matrix to analyze the risk

approximations. In particular, the three annualized risks are defined as follows:

Ract ¼
ffiffiffiffiffiffiffiffi
252
p bw 0tRt bwt: (2.1)

4 Since the results for simulated data with zt 
 tð5Þ are very similar with those for simulated data

with zt 
 Nð0; 1Þ, we do not report the details here for simplicity.
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Rorc ¼
ffiffiffiffiffiffiffiffi
252
p

w0tRtwt: (2.2)

Remp ¼
ffiffiffiffiffiffiffiffi
252
p bw 0tR̂t bwt: (2.3)

Note that only the empirical risk is known, and the difference between Remp and Ract

reflects the estimation error in the covariance matrix.

Figures 5 and 6 depict all three risks for N¼ 500 and N¼1000, respectively, both for

simulated data with zt 
 Nð0;1Þ. The curve of the oracle risk shared by the four graphs in

Figure 5 (or Figure 6) indicates that the theoretical risk decreases quickly with the increase

of the gross-exposure parameter c before c reaches 2, when the constraint forms the 150/50

strategy, which involves 150% long positions and 50% short positions. In fact, based on

the true covariance matrix, the GMV portfolios have c	orc ¼ 5:758 for N¼ 500 and c	orc ¼
5:846 for N¼ 1000, indicating oracle total short positions of 237.9% for N¼ 500 and

242.3% for N¼1000. When c > c	orc, the oracle risk remains constant, and relaxing the

constraint reduces the empirical risk but increases the actual risk. The increase of the actual

risk is especially distinct when N¼ 1000 and S or DCC covariance matrix estimator is

used.
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Figure 3 Comparisons of the 10%, 50%, and 90% quantiles of the annualized actual risks of the 100

simulated GMV portfolios constructed. N¼ 500, and the disturbance terms are drawn from a multivari-

ate standard normal distribution.

Zhao et al. j Risk Reduction and Efficiency Increase 87

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/21/1/73/6151211 by U

niversity Library Zurich / Zentralbibliothek Zurich user on 23 M
ay 2023



1 2 3 4 5 6 7 8 9 10111213141516

Exposure Constraint ( )

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

A
nn

ua
liz

ed
 R

is
k 

(%
)

S

10%
50%
90%

1 2 3 4 5 6 7 8 9 10111213141516

Exposure Constraint ( )

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

A
nn

ua
liz

ed
 R

is
k 

(%
)

DCC

10%
50%
90%

1 2 3 4 5 6 7 8 9 10111213141516

Exposure Constraint ( )

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

A
nn

ua
liz

ed
 R

is
k 

(%
)

NL

10%
50%
90%

1 2 3 4 5 6 7 8 9 10111213141516

Exposure Constraint ( )

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

A
nn

ua
liz

ed
 R

is
k 

(%
)

DCC-NL

10%
50%
90%

Figure 4 This is similar to Figure 3 except N¼ 1000.
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Figure 5 Comparisons of the median annualized oracle risks, median annualized actual risks, and me-

dian annualized empirical risks of the 100 simulated GMV portfolios constructed based on different co-

variance matrix estimators (S, NL, DCC, DCC-NL) and facing various degrees of gross-exposure

constraints (the intensity of the constraint declines with the increase of parameter c). N¼ 500, and the

disturbance terms are drawn from a multivariate standard normal distribution.
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The three risks are high but nearly the same when c¼1. With the increase of c, the dif-

ference between the actual risk and the empirical risk increases, suggesting that the estima-

tion of the covariance matrix becomes harder. If no-shrinkage-involved covariance matrix

estimator is used for constructing a large portfolio with N¼1000, the curves of actual risks

start upward sloping when c > 4, making both the actual–empirical gap and the actual–or-

acle gap increase dramatically. The difference between the actual and the oracle risks shows

very similar properties to the actual–empirical gap, except that the former is much smaller

than the latter when DCC model is used, indicating the important role of DCC model in

estimating the optimal weights.

Overall, the NL shrinkage reduces approximation errors of the covariance matrix and

improves the weights allocations when a relatively loose constraint is imposed, whereas the

DCC model improves portfolio allocations and thereby reduces the actual risks. By con-

trast, approximation errors reduce with the reinforcement of the gross-exposure constraint,

but a tight constraint impairs the portfolio performance as it results in too conservative

allocations.

2.4 Combining Shrinkage with Gross-Exposure Constraints

As a final lesson, there are circumstances where the gross-exposure constraint is externally

imposed: for example, by the regulatory authorities, by the financing conditions extended

by prime brokers, or by risk-management commitments advertized to fund investors in the

marketing materials at the initial asset-gathering stage. In such cases, Table 1 and Figures 1

and 2 show that there is still incremental benefit to using DCC-NL, even after the gross-

exposure constraint has already been imposed. Indeed, for every panel and every value of

the gross exposure constraint c:

1. the conditional covariance matrix (DCC) is better than the unconditional one (S);
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Figure 6 This is similar to Figure 5 except N¼ 1000.
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2. the shrunk conditional covariance matrix (DCC-NL) is better than the plain one

(DCC).
Here, we measure “better” as having lower standard deviation of the returns on the

GMV portfolio. Note, however, that the gains from shrinkage become monotonically

weaker as the gross exposure constraint c becomes more binding. This is because the gross-

exposure constraint applies a “brute-force” one-size-fits-all over-shrinkage that leaves little

room for the benefits of a locally adaptive optimal NL shrinkage formula to express

themselves.

3 Empirical Results

3.1 Data

We examine the effects of the gross-exposure constraint, the shrinkage estimation of covari-

ance matrix, and the use of DCC model to capture the heteroscedasticity on the out-of-

sample performance of the GMV portfolio and the MVE portfolio. We use the same

portfolio-construction rules as in Ledoit, Wolf, and Zhao (2019), except that we also im-

pose different levels of gross-exposure constraints on portfolio weights.

Specifically, we focus on stocks traded on the NYSE, AMEX, and NASDAQ, with daily

return data for all the immediately preceding 1250 days as well as the upcoming 21 days,

and with correlations not exceeding 0.95.5 The daily return data we use, which cover the

period from January 1, 1980 to December 31, 2018, are from the Center for Research in

Security Prices (CRSP) database. The out-of-sample period is from January 8, 1986 to

December 31, 2018. We update the portfolios every 21 consecutive trading days, and thus

form 396 investment dates from January 8, 1986 to December 31, 2018. At every invest-

ment date h, the covariance matrix is estimated based on the most recent 1250 daily returns

(roughly equals 5 years).

For both the GMV portfolio and the MVE portfolio, we consider two different portfolio

sizes N ¼ 500 and 1000. For a given combination (h, N), in the set of stocks that satisfy

the above conditions, we pick the largest N stocks (as measured by their market capitaliza-

tion on investment date h) as our investment universe.

We also consider the four covariance matrix estimators: the sample covariance matrix

(S), the NL shrinkage estimator (NL) (Ledoit and Wolf, 2015), the covariance matrix esti-

mator based on DCC model (Engle, 2002), and the DCC-NL estimator (Engle, Ledoit, and

Wolf, 2019). To consider the effects of the gross-exposure constraint and the shrinkage co-

variance matrix estimator together, we establish portfolios with a varying gross-exposure

parameter c, based on each covariance matrix estimator for each portfolio type and port-

folio size.

3.2 Main Results

3.2.1 Results for GMV portfolios

Table 2 presents the out-of-sample performance measures of the GMV portfolios with a

varying gross-exposure parameter c ¼ 1, 2, 1.6, and 1 for each covariance matrix

5 The sample correlations are calculated based on the daily returns over the past 1250 days. We re-

move the stock with the lower volume in a pair on the investment date if the correlation of the two

exceeds 0.95.
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Table 2 Out-of-sample performance, characteristics of weights, and average turnover of the

GMV portfolio

R̂ AvR StdR IR MinW MaxW StdW ShortW AvT

Panel A: 500 stocks contained in the portfolio

c ¼ 1 S 10.23 10.78 0.95 �6.23 10.27 1.73 255.14 6.50

NL 10.63 9.75 1.09 �2.85 4.90 1.00 140.21 2.35

DCC 13.22 10.44 1.27 �4.25 16.29 1.61 179.22 4.11

DCC-NL 12.94 9.55*** 1.35 �2.24 14.86 1.27 109.56 2.04

c¼ 2 S 10.78 9.99 1.08 �3.43 9.84 1.02 50.00 3.19

NL 10.69 9.86 1.08 �2.75 5.69 0.80 50.00 1.39

DCC 12.22 9.82 1.24 �2.72 17.97 1.30 49.97 2.88

DCC-NL 12.38 9.52*** 1.30 �2.05 16.85 1.23 49.41 1.36

c ¼ 1:6 S 10.71 10.11 1.06 �3.12 10.64 0.99 30.00 2.80

NL 10.77 10.06 1.07 �2.73 6.39 0.78 30.00 1.39

DCC 12.02 9.78 1.23 �2.42 19.29 1.32 30.00 2.76

DCC-NL 12.24 9.59*** 1.28 �1.94 18.50 1.28 29.94 1.29

c¼ 1 S 10.67 11.34 0.94 0.00 12.99 1.02 0.00 2.36

NL 10.97 11.34 0.97 0.00 8.20 0.80 0.00 0.36

DCC 11.13 10.19 1.09 0.00 24.83 1.52 0.00 1.29

DCC-NL 11.24 10.17 1.10 0.00 24.74 1.52 0.00 0.17

Panel B: 1000 stocks contained in the portfolio

c ¼ 1 S 10.16 13.54 0.75 �7.26 9.78 1.69 557.00 12.62

NL 10.64 8.81 1.21 �1.44 2.44 0.49 142.76 3.26

DCC 10.28 10.51 0.98 �4.44 19.60 1.36 335.99 7.42

DCC-NL 11.26 8.16*** 1.38 �1.15 16.22 0.79 97.29 2.73

c¼ 2 S 10.78 9.27 1.16 �2.39 8.41 0.62 50.00 3.56

NL 10.67 9.13 1.17 �1.64 3.30 0.41 50.00 1.69

DCC 10.71 8.52 1.26 �1.77 21.98 0.95 49.99 3.30

DCC-NL 11.24 8.11*** 1.39 �1.13 18.71 0.83 49.60 1.66

c ¼ 1:6 S 10.95 9.37 1.17 �2.07 9.15 0.62 30.00 2.96

NL 10.92 9.41 1.16 �1.76 3.80 0.42 30.00 1.65

DCC 10.90 8.35 1.31 �1.55 23.70 0.99 30.00 2.96

DCC-NL 11.23 8.10*** 1.39 �1.09 21.15 0.90 29.98 1.48

c¼ 1 S 12.02 10.94 1.10 0.00 11.75 0.67 0.00 2.47

NL 12.04 10.98 1.10 0.00 5.52 0.46 0.00 0.55

DCC 9.96 8.62 1.16 0.00 31.73 1.24 0.00 1.42

DCC-NL 9.66 8.53*** 1.13 0.00 31.01 1.22 0.00 0.22

Notes: This table shows the out-of-sample results for the GMV portfolios constructed based on different covari-

ance matrix estimators and facing various degrees of gross-exposure constraints. The covariance matrix is esti-

mated using the most recent 1250 daily returns based on four different methods, which are the sample covariance

matrix (S), the NL shrinkage estimator (NL) (Ledoit and Wolf, 2015), the DCC estimator (Engle, 2002), and the

DCC-NL estimator (Engle, Ledoit, and Wolf, 2019). c is a gross-exposure parameter indicating the supremum of

the sum of the absolute weights. Therefore, c ¼ 1; 2; 1:6; 1 stands for an increasing restriction with the total short

position not exceeding1; 50%; 30%; 0 of the total investment. We hold the portfolios for 21 days and record their

daily returns. We report their out-of-sample AvR, annualized standard deviations (StdR), and IRs. Four character-

istics of portfolio weights, including the minimum weight (MinW), the maximum weight (MaxW), the standard

deviation of weights (StdW), and the total short positions of weights (ShortW), and the average turnover (AvT) of

portfolios are also reported. All numbers shown are in percentage except those for IRs. Panel A and panel B show

results for portfolios with 500 and 1000 stocks, respectively. In the rows labeled DCC and DCC-NL, significant

outperformance of one of the two portfolios over the other in terms of StdR is denoted by asterisks: ***, **, and

* denote significance at the 0.01, 0.05, and 0.1 levels, respectively.

Zhao et al. j Risk Reduction and Efficiency Increase 91

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/21/1/73/6151211 by U

niversity Library Zurich / Zentralbibliothek Zurich user on 23 M
ay 2023



estimator. Specifically, we report the annualized average return (AvR), computed by the

average out-of-sample returns multiply by 252, annualized standard deviations (StdR),

computed by the standard deviation of the out-of-sample returns multiply by
ffiffiffiffiffiffiffiffi
252
p

, and

Information Ratios (IRs), which is the ratio of AvR to StdR.

On the one hand, DCC-NL performs the best among four covariance matrix estimators

considered in all cases with different gross-exposure constraints. Judging by the StdR of

GMV portfolios, the outperformance of DCC-NL is most remarkable when N¼ 1000 and

no gross-exposure constraint is imposed: it reduces the out-of-sample standard deviation by

5.38 percentage points compared with the sample covariance matrix.

As the gross-exposure constraint becomes more binding, the gains from shrinkage de-

cline. Nevertheless, the DCC-NL estimator is always preferred: it delivers the smallest out-

of-sample standard deviation even when an appropriate gross-exposure constraint is

imposed. We use the prewhitened HACPW method described in Ledoit and Wolf (2011) to

test if the outperformance of DCC-NL over DCC in terms of out-of-sample standard devi-

ation is significant in cases with different gross-exposure constraints. The results show that

the outperformance is always significant at the 0.01 level, except when no short position is

allowed.

On the other hand, the moderate constraints with c¼2 and c ¼ 1:6 outperform the ex-

treme no-short-sale constraint with c¼ 1 and the no constraint with c ¼ 1 if no shrinkage

is used in the covariance matrix. For example, when N¼ 1000, if the sample covariance

matrix is used, the 50% short-sale constraint (c¼2) reduces the out-of-sample standard de-

viation by 4.27 and 1.67 percentage points compared with the no-constraint strategy and

the no-short-sale strategy, respectively. However, the effect of imposing a gross-exposure

constraint is limited and becomes insignificant if the NL shrinkage estimator is used.

As expected, the combined effect of using DCC and imposing an appropriate gross-

exposure constraint is not as good as that of using the DCC-NL estimator. Specifically,

when N¼1000, the GMV portfolio constructed using the DCC estimator with the con-

straint of c ¼ 1:6 has an annualized out-of-sample standard deviation of 8.35%, reducing

the 13.54% from using the sample covariance matrix by over 5 percentage points, but using

the DCC-NL estimator without any gross-exposure constraint generates a lower standard

deviation of 8.16%.

Figure 7 reveals the change of the out-of-sample risks with the continuous increase of the

parameter c. The out-of-sample risks first decline and then increase for all portfolios con-

structed based on different covariance matrix estimators and for both cases with 500 and

1000 stocks. The optimal choice that corresponds to the lowest risk is around c¼ 2 (the 150/

50 strategy) for portfolios with 500 stocks and around c ¼ 1:6 (the 130/30 strategy) for port-

folios with 1000 stocks, where in both cases the DCC-NL estimator is suggested.

Taken together, the DCC-NL estimator achieves the best performance in all cases no

matter whether a gross-exposure constraint is imposed; imposing the 30–50% constraint

on gross-exposure also improves the portfolio performance, but is not as effective as using

the DCC-NL estimator. Thus, investors should use the DCC-NL estimator to improve the

portfolio performance rather than imposing an external gross-exposure constraint.

3.2.2 Results for MVE portfolios

Table 3 presents results for the MVE portfolios constructed based on the signal ROE,

which is a well-known profitability factor that can indicate the growth potential of a firm
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(Haugen and Baker, 1996) and has been proven to have statistically significant explanatory

power for cross-sectional anomalies (Hou, Xue, and Zhang, 2015; Feng, Giglio, and Xiu,

2020). We calculate ROE by the income before extraordinary divided by 1-quarter-lagged

book equity. The data are from the merged CRSP/Compustat database.

Judging by the IRs and the corresponding significant test,6 the DCC-NL estimator still

performs the best among all covariance matrix estimators and its outperformance relative

to DCC is statistically significant when the gross-exposure constraint is not too tight. When

N¼1000 and no constraint is imposed on weights, the MVE portfolio constructed using

the DCC-NL estimator has an IR of 1.79, almost double that from using the sample covari-

ance matrix. When no shrinkage is in the covariance matrix, the 130/30 and 150/50 strat-

egies outperform the strategy without any constraint on weights or with the extreme

no-short-sale constraint. In addition, directly using the NL shrinkage estimator excels

imposing the 30% or 50% short-sale constraint, both of which are superior to imposing

the no-short-sale constraint, whereas both are inferior to using the DCC-NL estimator

without any constraint.

These findings again support our conjecture that imposing constraints on portfolio

weights has a shrinkage-like effect, no matter whether the DCC model is used for consider-

ing the dynamics in covariances and variances. But unlike the NL shrinkage technique, it is

difficult to achieve the optimal shrinkage level for the gross-exposure constraint with one

degree of freedom.
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Figure 7 Comparisons of the out-of-sample risks of the GMV portfolios constructed based on different

covariance matrix estimators (S, NL, DCC, DCC-NL) and facing various degrees of gross-exposure con-

straints (the intensity of the constraint declines with the increase of parameter c).

6 We use the prewhitened HACPW method described in Ledoit and Wolf (2008) to test if the outper-

formance of DCC-NL over DCC in terms of out-of-sample IR is significant.
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Table 3 Out-of-sample performance, characteristics of weights, and average turnover of the

MVE portfolio constructed based on the ROE signal

R̂ AvR StdR IR MinW MaxW StdW ShortW AvT

Panel A: 500 stocks contained in the portfolio

c ¼ 1 S 12.79 11.03 1.16 �6.53 10.39 1.79 267.08 6.72

NL 13.77 10.00 1.38 �3.07 5.04 1.05 150.65 2.50

DCC 15.36 10.73 1.43 �4.69 16.35 1.68 195.82 4.27

DCC-NL 15.27 9.78 1.56*** �2.65 14.86 1.32 122.55 2.19

c¼ 2 S 12.97 10.23 1.27 �3.73 10.15 1.07 50.00 2.67

NL 13.32 10.22 1.30 �3.00 6.17 0.86 50.00 1.12

DCC 14.18 10.05 1.41 �3.10 18.36 1.35 50.00 2.55

DCC-NL 14.42 9.81 1.47** �2.48 17.41 1.29 50.00 1.20

c ¼ 1:6 S 12.63 10.56 1.20 �3.38 11.06 1.06 30.00 2.35

NL 12.98 10.57 1.23 �3.00 7.11 0.85 30.00 1.14

DCC 13.61 10.17 1.34 �2.79 19.62 1.36 30.00 2.40

DCC-NL 13.84 10.01 1.38** �2.39 19.09 1.33 30.00 1.13

c¼ 1 S 12.74 12.30 1.04 0.00 14.90 1.14 0.00 2.30

NL 12.83 12.33 1.04 0.00 10.79 0.94 0.00 0.32

DCC 12.14 11.41 1.06 0.00 22.75 1.47 0.00 1.14

DCC-NL 12.08 11.41 1.06 0.00 22.68 1.47 0.00 0.15

Panel B: 1000 stocks contained in the portfolio

c ¼ 1 S 13.05 13.82 0.94 �7.57 9.80 1.73 571.36 12.88

NL 14.57 9.02 1.62 �1.55 2.48 0.51 151.45 3.39

DCC 13.46 10.95 1.23 �4.83 19.52 1.42 361.70 7.82

DCC-NL 15.00 8.37 1.79*** �1.45 16.67 0.83 110.62 2.89

c¼ 2 S 13.36 9.36 1.43 �2.50 8.52 0.64 50.00 2.86

NL 13.74 9.46 1.45 �1.77 3.53 0.44 50.00 1.36

DCC 14.12 8.59 1.64 �1.98 21.72 0.96 50.00 2.69

DCC-NL 14.34 8.33 1.72** �1.47 19.77 0.88 49.99 1.41

c ¼ 1:6 S 13.20 9.72 1.36 �2.22 9.32 0.64 30.00 2.48

NL 13.55 9.82 1.38 �1.92 4.17 0.45 30.00 1.35

DCC 13.75 8.61 1.60 �1.81 23.19 0.99 30.00 2.54

DCC-NL 13.73 8.45 1.62 �1.45 22.04 0.95 30.00 1.25

c¼ 1 S 14.14 11.66 1.21 0.00 12.68 0.73 0.00 2.42

NL 13.77 11.77 1.17 0.00 7.17 0.53 0.00 0.49

DCC 12.03 10.06 1.20 0.00 25.05 1.07 0.00 1.24

DCC-NL 11.95 9.97 1.20 0.00 24.97 1.07 0.00 0.17

Notes: This table shows the out-of-sample results for the MVE portfolios constructed based on the signal ROE,

using different covariance matrix estimators and facing various degrees of gross-exposure constraints. The covari-

ance matrix is estimated using the most recent 1250 daily returns based on four different methods, which are the

sample covariance matrix (S), the NL shrinkage estimator (NL) (Ledoit and Wolf, 2015), the DCC estimator

(Engle, 2002), and the DCC-NL estimator (Engle, Ledoit, and Wolf, 2019). c is a gross-exposure parameter indi-

cating the supremum of the sum of the absolute weights. Therefore, c ¼1; 2; 1:6; 1 stands for an increasing re-

striction with the total short position not exceeding 1; 50%; 30%; 0 of the total investment. We hold the

portfolios for 21 days and record their daily returns. We report their out-of-sample AvR, annualized standard

deviations (StdR), and IRs. Four characteristics of portfolio weights, including the minimum weight (MinW), the

maximum weight (MaxW), the standard deviation of weights (StdW), and the total short positions of weights

(ShortW), and the average turnover (AvT) of portfolios are also reported. All numbers shown are in percentage ex-

cept those for IRs. Panels A and B show results for portfolios with 500 and 1000 stocks, respectively. In the rows

labeled DCC and DCC-NL, significant outperformance of one of the two portfolios over the other in terms of IR

is denoted by asterisks: ***, **, and * denote significance at the 0.01, 0.05, and 0.1 levels, respectively.
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3.3 Portfolio Weights

For each investment period, we compute the minimum weight (MinW), the maximum

weight (MaxW), the standard deviation of weights (StdW), and the total short positions in

weights (ShortW) across the N stocks of the portfolio. We present the average values over

the 396 investment dates from January 8, 1986 to December 31, 2018 for the four charac-

teristics of portfolio weights in Tables 2 and 3.

We find that portfolios constructed based on the sample covariance matrix have the

smallest minimum weight and the largest total short position, whereas portfolios con-

structed based on the DCC estimator have the largest maximum weight, and portfolios con-

structed based on the NL estimator have the smallest maximum weight and the smallest

standard deviation in weights.

If no gross-exposure constraint is in place, the total short positions are always large, es-

pecially when N is large and no shrinkage is used in the estimation of the covariance ma-

trix. For example, when N¼ 1000, the total short position of GMV portfolio reaches

335.99% if the DCC estimator is used, and this number even comes up to 557.00 if the

sample covariance matrix is used. For MVE portfolios, the corresponding short positions

are even larger, with 361.70% for the DCC estimator and 571.36% for the sample covari-

ance matrix.

Similar to imposing the gross-exposure constraints, using the NL shrinkage estimators

largely reduces the total short position and the turnover of portfolios. This should not be

surprising considering how the NL shrinkage method works in improving the estimation

precision of covariance matrix.

3.4 Robustness Checks

3.4.1 Alternative predictors

For robustness check, we consider the MVE portfolios with an alternative factor exposure.

Instead of using the signal ROE, now we focus on a factor that not only indicates growth

potential but also reflects price level. We follow Basu (1983) and use E/P, measured as in-

come before extraordinary divided by the market capitalization.

Table 4 presents the results for the MVE portfolios constructed based on the E/P signal,

from which we draw similar conclusions to our main findings aforementioned. First, the

DCC-NL estimator still performs the best among all estimators we considered, though its

advantage over DCC is significant only when the constraint on gross-exposure is loose

enough. When N¼ 1000 and no constraint on gross-exposure is imposed, the NL estimator

and the DCC-NL estimator increase the IR based on the sample covariance matrix by more

than 70% and 90%, respectively. The gains from NL shrinkage become weaker as the in-

tensity of the gross-exposure constraint increases and the size of the portfolio decreases.

Second, the moderate constraints with c¼2 and c ¼ 1:6 lead to better out-of-sample per-

formance than no constraint or the extreme no-short-sale constraint when S or DCC is

used. Third, the effect of using the NL estimator is more remarkable than that of imposing

the 30% or 50% short-sale constraint. When N¼1000, the use of NL estimator and the

50% short-sale constraint raise the IR of the portfolio constructed from 1.03 to 1.74 and

1.62, respectively.
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3.4.2 Transaction costs

Transaction costs are important issues in practical implementations (Mei, DeMiguel, and

Nogales, 2016; Mei and Nogales, 2018). In Table 5, we present results for the MVE port-

folios constructed based on the ROE signal, when the transaction costs are considered.

Referring to Avramovic and Mackintosh (2013) and Webster et al. (2015), we set the bid–

ask spread to be three or five basis-points to embody the transaction costs.

Table 4 Out-of-sample performance, characteristics of weights, and average turnover of the

MVE portfolio constructed based on the E/P signal

R̂ AvR StdR IR MinW MaxW StdW ShortW AvT

Panel A: 500 stocks contained in the portfolio

c ¼ 1 S 13.86 10.89 1.27 �6.46 10.49 1.77 263.44 6.73

NL 14.64 9.90 1.48 �3.06 5.36 1.04 148.22 2.47

DCC 16.37 10.58 1.55 �4.82 16.27 1.66 192.81 4.24

DCC-NL 16.23 9.69 1.68*** �2.67 14.67 1.30 120.38 2.16

c¼ 2 S 13.96 10.14 1.38 �3.65 10.67 1.07 50.00 2.67

NL 14.30 10.16 1.41 �2.94 6.80 0.85 50.00 1.13

DCC 15.52 9.91 1.57 �3.13 18.23 1.34 50.00 2.55

DCC-NL 15.49 9.72 1.59 �2.47 17.16 1.27 50.00 1.20

c ¼ 1:6 S 14.07 10.46 1.35 �3.31 11.76 1.06 30.00 2.36

NL 14.46 10.51 1.38 �2.91 7.97 0.86 30.00 1.15

DCC 15.16 10.04 1.51 �2.83 19.63 1.36 30.00 2.41

DCC-NL 15.11 9.92 1.52 �2.39 18.97 1.32 30.00 1.13

c¼ 1 S 15.50 12.66 1.22 0.00 16.42 1.20 0.00 2.34

NL 15.61 12.80 1.22 0.00 12.52 1.00 0.00 0.32

DCC 15.04 11.67 1.29 0.00 23.66 1.51 0.00 1.15

DCC-NL 15.02 11.59 1.30 0.00 23.50 1.51 0.00 0.15

Panel B: 1000 stocks contained in the portfolio

c ¼ 1 S 14.04 13.65 1.03 �7.65 10.09 1.72 567.54 12.84

NL 15.51 8.93 1.74 �1.51 2.63 0.51 149.02 3.35

DCC 14.74 10.77 1.37 �5.04 19.48 1.40 355.07 7.71

DCC-NL 15.94 8.27 1.93*** �1.42 16.46 0.82 107.99 2.85

c¼ 2 S 15.02 9.28 1.62 �2.50 9.03 0.64 50.00 2.87

NL 15.13 9.40 1.61 �1.76 3.78 0.43 50.00 1.38

DCC 15.77 8.51 1.85 �2.06 21.64 0.95 50.00 2.72

DCC-NL 15.67 8.25 1.90 �1.45 19.45 0.87 49.99 1.43

c ¼ 1:6 S 15.38 9.66 1.59 �2.17 9.95 0.64 30.00 2.51

NL 15.43 9.80 1.57 �1.88 4.53 0.44 30.00 1.37

DCC 15.42 8.53 1.81 �1.81 23.19 0.99 30.00 2.56

DCC-NL 15.31 8.36 1.83 �1.41 21.81 0.94 30.00 1.26

c¼ 1 S 17.49 12.01 1.46 0.00 13.84 0.75 0.00 2.45

NL 17.47 12.18 1.43 0.00 8.19 0.55 0.00 0.50

DCC 15.12 10.27 1.47 0.00 26.05 1.10 0.00 1.28

DCC-NL 14.98 10.18 1.47 0.00 25.70 1.10 0.00 0.17

Notes: This table is similar to Table 3 except that the MVE portfolios are constructed based on the E/P signal.
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Table 5 Out-of-sample performance of the MVE portfolio constructed based on the ROE signal

with transaction costs considered

Spread ¼ 3 basis-points Spread ¼ 5 basis-points

R̂ AvR StdR IR AvR StdR IR

Panel A: 500 stocks contained in the portfolio

c ¼ 1 S 10.37 11.04 0.94 8.75 11.07 0.79

NL 10.45 10.03 1.04 8.23 10.10 0.82

DCC 11.40 10.77 1.06 8.77 10.87 0.81

DCC-NL 12.06 9.81 1.23*** 9.92 9.88 1.00***

c¼ 2 S 9.59 10.26 0.93 7.33 10.33 0.71

NL 10.49 10.23 1.03 8.61 10.28 0.84

DCC 10.84 10.08 1.08 8.61 10.14 0.85

DCC-NL 11.56 9.83 1.18*** 9.66 9.88 0.98***

c ¼ 1:6 S 9.36 10.58 0.88 7.18 10.64 0.68

NL 10.14 10.59 0.96 8.25 10.63 0.78

DCC 10.32 10.20 1.01 8.13 10.26 0.79

DCC-NL 11.01 10.03 1.10*** 9.13 10.08 0.91***

c¼ 1 S 9.49 12.32 0.77 7.33 12.37 0.59

NL 10.29 12.34 0.83 8.59 12.37 0.69

DCC 9.30 11.43 0.81 7.41 11.47 0.65

DCC-NL 9.60 11.42 0.84*** 7.95 11.45 0.69***

Panel B: 1000 stocks contained in the portfolio

c ¼ 1 S 8.75 11.07 0.79 5.31 13.97 0.38

NL 8.23 10.10 0.82 4.81 9.40 0.51

DCC 8.77 10.87 0.81 1.05 11.45 0.09

DCC-NL 9.92 9.88 1.00*** 5.54 8.75 0.63***

c¼ 2 S 7.33 10.33 0.71 3.91 9.69 0.40

NL 8.61 10.28 0.84 5.19 9.72 0.53

DCC 8.61 10.14 0.85 4.78 8.94 0.53

DCC-NL 9.66 9.88 0.98*** 5.76 8.64 0.67***

c ¼ 1:6 S 7.18 10.64 0.68 3.98 10.02 0.40

NL 8.25 10.63 0.78 5.00 10.08 0.50

DCC 8.13 10.26 0.79 4.49 8.96 0.50

DCC-NL 9.13 10.08 0.91*** 5.25 8.75 0.60***

c¼ 1 S 7.33 12.37 0.59 4.95 11.91 0.42

NL 8.59 12.37 0.69 5.74 11.96 0.48

DCC 7.41 11.47 0.65 3.55 10.30 0.34

DCC-NL 7.95 11.45 0.69*** 4.11 10.18 0.40***

Notes: This table shows the out-of-sample results for the MVE portfolios constructed based on the signal

ROE, using different covariance matrix estimators and facing various degrees of gross-exposure constraints

when transaction costs are considered. We report their out-of-sample AvR, annualized standard deviations

(StdR), and IRs. AvR and StdR are shown in percentage. Panels A and B show results for portfolios with 500

and 1000 stocks, respectively. The left and right panels show results under the assumptions of three basis-

points and five basis-points bid–ask spreads, respectively. In the rows labeled DCC and DCC-NL, significant

outperformance of one of the two portfolios over the other in terms of IR is denoted by asterisks: ***, **, and

* denote significance at the 0.01, 0.05, and 0.1 levels, respectively.
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Unsurprisingly, the IR becomes lower with the increase of transaction costs.

Features suggested by the pattern of IRs are consistent with our main results. The DCC-NL

estimator generates the best out-of-sample performance among the four covariance

matrix estimators in all cases. The advantage of the DCC-NL estimator is most remarkable

when no gross-exposure constraint is imposed. When N¼ 500 and the bid–ask spread

is three basis-points, using DCC-NL estimator increases the IR of using S estimator

from 0.94 to 1.23, if no constraint is imposed on gross-exposure. When constraints are

imposed, the DCC-NL estimator still helps increase the IR. Moreover, owing to the parsi-

mony of the shrinkage method in turnover, the advantage of the DCC-NL estimator over

the DCC (S) estimator becomes more significant and robust than when the transaction costs

are ignored.

3.5 Combining Shrinkage with Gross-Exposure Constraint in Practice

In the process of researching the comparison of gross-exposure constraint versus shrinkage,

it so happens that we have also gathered evidence as to whether there are any benefits from

combining both techniques. The question is: benefits to whom?

With respect to a gross-exposure-constrained portfolio, upgrading from the sample co-

variance matrix to the DCC-NL estimator (while preserving the gross-exposure constraint)

yields benefits almost as across-the-board as in the Monte-Carlo simulations analyzed in

Section 2.4. The pattern identified earlier still holds: shrinkage has more room for improve-

ment if gross-exposure is less binding of a constraint.

With respect to a pure DCC-NL portfolio, gradually tightening the gross-exposure con-

straint often hurts, but not always, and may even help at the beginning. Thus, there are cir-

cumstances where imposing c¼2, which corresponds to a 150/50 portfolio, actually results

in better performance:

• GMV portfolio, 500-stock universe.

• GMV portfolio, 1000-stock universe.

• ROE-optimized portfolio, 5-bp transaction cost, and 1000-stock universe.
In most other cases, moving from an absence of gross-exposure constraint to a 150/50

portfolio generated very little loss. Thus, taking into account the practicalities of the prob-

lem, it seems that 150/50 is the “sweet spot” where short-sale does not start to hurt (much),

provided we have a good NL shrinkage estimator of the conditional covariance matrix such

as DCC-NL.

4 Conclusion

Constraints on portfolio weights are often used by quantitative investors. Besides the non-

negative constraint, strategies limiting the total short position to be at most 30% and 50%

of the portfolio value are prevalent in practice, that is, the so-called “130/30” strategy and

“150/50” strategy. Previous studies argue that using an advanced estimator for the covari-

ance matrix is unnecessary or even harmful in constructing GMV or MVE portfolios if

some certain constraints on weights are in place as the two different approaches reduce

portfolio risks in a similar way. This paper finds that the DCC-NL estimator, which consid-

ers both the dynamics and the estimation precision of the covariance matrix, is always pre-

ferred for a wide range of gross-exposure constraint parameters.
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We extend the mathematical connection between imposing the gross-exposure con-

straint and using the shrinkage estimator of the covariance matrix to a dynamic framework.

Despite the mathematical equivalence, the NL shrinkage method has at least two advan-

tages compared with the gross-exposure constraint: first, it has N degrees of freedom, leav-

ing enough room for the benefits of the optimization; second, it uses an automatic

procedure to achieve optimization and does not need any exogenous constraint parameter.

Thus, using the NL shrinkage estimator outperforms imposing a gross-exposure constraint.

Besides the above finding, we also demonstrate through Monte Carlo simulations that

upgrading from the sample covariance matrix to the DCC-NL estimator is beneficial, even

after the gross-exposure constraint has already been imposed. The good out-of-sample per-

formance of the DCC-NL estimator is attributed to both the use of a DCC model, which

captures the dynamic structure, and the introduction of an appropriate shrinkage, which

reduces estimation errors.

Based on daily return data from stocks traded on the NYSE, AMEX, and NASDAQ, we

construct GMV portfolios and MVE portfolios exposed to return predictive signals for

portfolio sizes N ¼500 and 1000. The empirical results show that with respect to a gross-

exposure-constrained portfolio, using the DCC-NL estimator yields the best out-of-sample

performance in all cases, and the benefits of the shrinkage are significant if the gross-

exposure constraint is moderate and thus there is enough room for the benefits of the

shrinkage formula. In contrast, gradually tightening the gross-exposure constraint often

hurts a pure DCC-NL portfolio when c is smaller than 2, corresponding to the constraint

that allows 50% short positions at most. Though imposing an appropriate gross-exposure

constraint has a similar effect as using the NL shrinkage estimator in reducing risks, the lat-

ter always performs better. Taking into account the dynamic nature and upgrading to the

DCC-NL estimator improve the performance even further. In addition, both the NL shrink-

age and the gross-exposure constraint help reduce the standard deviation of weights and

the turnover of portfolios.

In our main study, we use the ROE as a proxy for the expected return to construct the

MVE portfolio. As robustness checks, we consider the E/P as an alternative proxy and also

take the effect of transaction costs into account by assuming the bid–ask spread to be three

or five basis-points. Our findings turn out to be robust to both of these changes.

Appendix A

A. Theoretical Justifications

Proof of Theorem 1. (i) Note that the matrix ~Rc;t is obviously symmetric and the solution

to problem (1.8) is denoted by w	t . For any vector x,

x0~Rc;tx ¼ x0R̂txþ
1

2
k x0g	t 10xþ x01g	0t x
� �

¼ x0R̂txþ kðx0g	t Þð10xÞ:
(A.1)

Based on the KKT conditions in Equation (1.10), 2R̂tw
	
t � l1þ kg	t ¼ 0. Therefore,
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kðx0g	t Þð10xÞ ¼ �2ðx01Þðx0R̂tw
	
t Þ þ lðx01Þ2: (A.2)

Note that

j x01ð Þ x0R̂tw
	
t

� �
j ¼ j x01ð Þ x0R̂

1
2

t

� �
R̂

1
2

tw
	
t

� �
j � j x01ð Þðx0R̂txÞ

1
2ðw	0t R̂tw

	
t Þ

1
2j;

where the equality holds because of the positive definiteness of the DCC estimator R̂t, and

the inequality could be obtained by Cauchy–Schwarz inequality.

In addition, because the DCC estimator R̂t is positive definite under some conditions,

we have

0 < w	0t R̂tw
	
t ¼

1

2
lw	0t 1� 1

2
kw	0t gt ¼

1

2
l� 1

2
kjjw	t jj1 �

1

2
l:

Hence,

j x01ð Þ x0R̂tw
	
t

� �
j � jx01jðx0R̂txÞ

1
2

1

2
l

� �1
2

: (A.3)

Combining (A.1)–(A.3), we have

x0~Rc;tx ¼ x0R̂tx� 2ðx01Þðx0R̂tw
	
t Þ þ lðx01Þ2

� x0R̂tx� 2jðx01Þðx0R̂tw
	
t Þj þ lðx01Þ2

� x0R̂tx� 2jx01jðx0R̂txÞ
1
2 1

2 l
� �1

2 þ lðx01Þ2

¼ ða� bÞ2 þ b2;

(A.4)

where a ¼ ðx0R̂txÞ
1
2 and b ¼ 1

2 l
� �1

2jx01j.
Moreover, ða� bÞ2 þ b2 is always nonnegative and is zero if and only if a¼b and b¼0

hold simultaneously. However, a ¼ ðx0R̂txÞ
1
2 > 0 because R̂t is positive definite. Therefore,

for any vector x, x0~Rc;tx > 0 holds. This indicates the positive definiteness of ~Rc;t.

Proof of Theorem 1. (ii) First, the optimization problem (1.11) with equality constraint

could be solved through the Lagrange multiplier method. Construct the Lagrangian

Lðwt;lcÞ ¼ w0t
~Rc;twt � lcðw0t1� 1Þ;

then the solution w
opt
t to this minimization problem should satisfy

2~Rc;tw
opt
t � lc1 ¼ 0;

w
opt0
t 1� 1 ¼ 0:

(

Because ~Rc;t is invertible, then the solution to this problem is given by

wopt
t ¼

~R
�1

c;t 1

10~R
�1

c;t 1
: (A.5)

By the Lagrange multiplier method, problem (1.8) is to minimize

Lðwt;l; kÞ ¼ w0tR̂twt � lðw0t1� 1Þ � kðc� jjwtjj1Þ:

Based on the fact that g	0t w	t ¼ jjw	t jj1 and KKT conditions in Equation (1.10), we have
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~Rc;tw
	
t ¼ R̂tw

	
t þ

1

2
kg	t 10w	t þ

1

2
k1g	0t w	t

¼ R̂tw
	
t þ

1

2
kg	t þ

1

2
kjjw	t jj11

¼ 1

2
kcþ lð Þ1:

Hence, the solution to problem (1.8) w	t ¼ 1
2 kcþ lð Þ~R�1

c;t 1. Moreover, because of the

constraint w0t1 ¼ 1, solving for kcþ l yields kcþ l ¼ 2

10 ~R
�1

c;t 1
. This fact indicates that

w	t ¼ w
opt
t :

Therefore, it implies the equivalence of the partial constrained optimization problem and

the (unconstrained) optimization problem with regularized covariance matrix estimator.

Proof of Theorem 2. First, the optimization problem (1.17) with equality constraint could

be solved through the Lagrange multiplier method. Construct the Lagrangian

Lðwt; l1c; l2cÞ ¼ w0t
~Rc;twt � l1cðw0t1� 1Þ � l2cðw0tmt � btÞ;

then the solution w
opt
b;t to this minimization problem should satisfy

2~Rc;tw
opt
b;t � l1c1� l2cmt ¼ 0;

w
opt0
b;t 1� 1 ¼ 0; w

opt0
b;t mt � bt ¼ 0:

(

Therefore, w
opt
b;t ¼ l1c

~R
�1

c;t 1þ l2c
~R
�1

c;t mt ¼ ~R
�1

c;t

�
1;mtÞð

l1c

l2c
Þ.

The above equations also imply that

1 ¼ 1

2
l1c1

0~R
�1

c;t 1þ 1

2
l2c1

0~R
�1

c;t mt;

bt ¼
1

2
l1cm

0
t
~R
�1

c;t 1þ 1

2
l2cm

0
t
~R
�1

c;t mt;

or

1
bt

� �
¼ 1

2
1;mtð Þ0~R�1

c;t 1;mtð Þ l1c

l2c

� �
:

Solving for l1c;l2cð Þ0 yields

l1c

l2c

� �
¼ 2½ 1;mtð Þ0~R�1

c;t 1;mtð Þ� 1
bt

� �
:

Therefore, the solution to this problem is given by

wopt
b;t ¼ ~R

�1

c;t 1;mtð Þ½ 1;mtð Þ0~R�1

c;t 1;mtð Þ� 1
bt

� �
: (A.6)

By the Lagrange multiplier method, problem (1.12) is to minimize

L wt;l1;l2; kð Þ ¼ w0tR̂twt � l1 w0t1� 1
� �

� l2 w0tmt � bt

� �
� k c� jjwtjj1
� �

:

So, the KKT conditions are
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2R̂twt � l11� l2mt þ kgt ¼ 0;
k c� jjwtjj1
� �

¼ 0; k � 0;
jjwtjj1 � c; w0t1� 1 ¼ 0; w0tmt � bt ¼ 0:

8><>: (A.7)

Based on the fact that g	0b;tw
	
b;t ¼ jjw	b;tjj1 and KKT conditions in Equation (A.7), we

have

~Rc;tw
	
b;t ¼ R̂tw

	
b;t þ

1

2
kg	b;t1

0w	b;t þ
1

2
k1g	0b;tw

	
b;t

¼ R̂tw
	
b;t þ

1

2
kg	b;t þ

1

2
kjjw	b;tjj11

¼ 1

2
kcþ l1ð Þ1þ 1

2
l2mt:

It then follows that w	b;t ¼ 1
2

~R
�1

c;t kcþ l1ð Þ1þ l2mt½ �. The constraints also imply that

1 ¼ 1

2
kcþ l1ð Þ10~R�1

c;t 1þ 1

2
l210~R

�1

c;t mt;

bt ¼
1

2
kcþ l1ð Þm0t ~R

�1

c;t 1þ 1

2
l2m0t

~R
�1

c;t mt;

or

1
bt

� �
¼ 1

2
1;mtð Þ0~R�1

c;t 1;mtð Þ kcþ l1

l2

� �
:

Solving for kcþ l1; l2ð Þ0 yields

kcþ l1

l2

� �
¼ 2½ 1;mtð Þ0~R�1

c;t 1;mtð Þ� 1
bt

� �
:

Hence,

w	b;t ¼ ~R
�1

c;t 1;mtð Þ½ 1;mtð Þ0~R�1

c;t 1;mtð Þ� 1
bt

� �
: (A.8)

We can then conclude that w
opt
b;t ¼ w	b;t. This completes the proof.
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Pástor, L., and R. F. Stambaugh. 2009. Predictive Systems: Living with Imperfect Predictors. The

Journal of Finance 64: 1583–1628.

Sharpe, W. F. 1963. A Simplified Model for Portfolio Analysis. Management Science 9: 277–293.

Stock, J. H., and M. W. Watson. 2002. Forecasting Using Principal Components from a Large

Number of Predictors. Journal of the American Statistical Association 97: 1167–1179.

Tibshirani, R. 1996. Regression Shrinkage and Selection via the Lasso: A Retrospective. Journal of

the Royal Statistical Society 58: 267–288.

Tu, J., and G. Zhou. 2010. Incorporating Economic Objectives into Bayesian Priors: Portfolio

Choice under Parameter Uncertainty. Journal of Financial and Quantitative Analysis 45:

959–986.

Tu, J., and G. Zhou. 2011. Markowitz Meets Talmud: A Combination of Sophisticated and Naive

Diversification Strategies. Journal of Financial Economics 99: 204–215.

Wang, Z. 2005. A Shrinkage Approach to Model Uncertainty and Asset Allocation. Review of

Financial Studies 18: 673–705.

Webster, K., Y. Luo, M. A. Alvarez, J. Jussa, S. Wang, G. Rohal, A. Wang, D. Elledge, and G.

Zhao. 2015. A Portfolio Manager’s Guidebook to Trade Execution: From Light Rays to Dark

Pools. Deutsche Bank Markets Research. Quantitative Strategy: Signal Processing, Deutsche

Bank Markets Research, New York, USA.

Yen, Y.-M. 2016. Sparse Weighted-Norm Minimum Variance Portfolios. Review of Finance 20:

1259–1287.

Zhao et al. j Risk Reduction and Efficiency Increase 105

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/21/1/73/6151211 by U

niversity Library Zurich / Zentralbibliothek Zurich user on 23 M
ay 2023


	tblfn1
	tblfn2
	tblfn3
	tblfn4
	tblfn5

