
 

 

 
 

 

Institute for Empirical Research in Economics 

University of Zurich 

 

Working Paper Series 

ISSN 1424-0459 
 

 

 

 

 

 

Working Paper No. 491 

Brain versus Brawn:                                                   

The Realization of Women's Comparative Advantage 

Michelle Petersen Rendall 

Revised version, June 2017 

 

 



Brain versus Brawn:
The Realization of Women’s Comparative Advantage∗

Michelle Petersen Rendall†
The University of Zurich

June 28, 2017

ABSTRACT

In the last decades the US economy experienced a rise in female labor force participation, a reversal
of the gender education gap and a closing of the gender wage gap. Importantly, these changes oc-
curred at a substantially different pace over time. During the same period, workers in the US faced
a considerable shift in labor demand from more physical to more intellectual skill requirements.
I rationalize these observations in the context of a general equilibrium model displaying two key
assumptions: (1) the demand for brain increases both within and across education groups; and (2)
women have less brawn than men. Given the observed US technical change process, the model
replicates (1) over half of the narrowing gender wage gap, (2) most of the narrowing employment
gap, and (3) all of the reversing education gap. Crucially, the model can also account for the time-
varying-path of the narrowing gender divide with an initial stagnation and a later acceleration in
female wages and education rates.
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1 Introduction

One important and dramatic social phenomena of the 20th century has been the rise in female la-

bor force participation, coupled with a rise in broad college attainment and a closing of the gender

wage gap. Many complementary theories explaining the rise in female labor force participation

have been proposed. In contrast, the determinants of the evolution of female wages has remained

largely unexplained and the reversal of the gender education gap has been difficult to replicate in

standard economic models.1 The main challenge is finding a mechanism that can account both

for the closing gender gaps and the time-varying speed of convergence of these gaps. The gen-

der education and wage gaps close at an accelerating speed only starting in the 1980s, although

women have entered the economy at a mostly constant rate since World Ward II. One potential

explanation for this acceleration is recent technical change that favored women’s innate abilities.

Goldin (1990, pp. 108-109), using data from the 1920s and 1930s, suggests that women’s lower

earnings stemmed from the rewards to strength in manufacturing. While many studies have shown

that increasing human capital demand (and investment) can explain male wage divergence across

education groups over the last decades,2 the same theory has not been applied to account for the

time-varying gender gaps. In this spirit, my goal is to quantify how much of the time-varying gen-

der convergence in labor force participation, wages and education can be explained by a changing

demand, shifting from physical labor (“brawn”) to intellectual abilities (“brain”).

I begin by establishing four facts on brain and brawn requirements in the labor market that have

not been previously reported. First, women have historically tended to work in occupations with

less brawn requirements than men, especially in unskilled jobs. Second, aggregate trends show a

strong labor demand shift from brawn to brain for the unskilled, but less so for the skilled. Third,

over time both skilled and unskilled women shift increasingly into occupations requiring a higher

1See for example Fogli and Veldkamp (2011); Ngai and Petrongolo (2017) for the former and Guvenen and Rendall
(2015) for the latter.

2See for example Becker (1994); Juhn, Murphy and Pierce (1993); Guvenen and Kuruscu (2010).
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share of brain, but there is no similar trend for men. Fourth, the data shows a strong rise in the

returns to brain over brawn for both the unskilled and skilled, with the relative rise being twice as

large for college educated workers.

These facts suggest that a shift in labor demand requirements from brawn to brain, due to tech-

nical change, might have a positive effect on women’s labor force participation, education and

wages if women have an innate comparative advantage in brain over brawn.3 To formalize this

hypothesis, I build a general equilibrium model with two key assumptions: (1) the demand for

brain increases both within and across education groups; and (2) women have less brawn than

men. Moreover, to capture the effect of technical change across all gender and educational attain-

ment groups I assume two types of technical change: (1) standard skill-biased technical change

(SBTC) increasing labor productivity of college-educated individuals; and (2) brain-biased techni-

cal change (BBTC) increasing labor productivity of brain over brawn inputs, both in educated and

uneducated jobs.

On the labor demand side, a representative firm faces these two types of exogenous technical

change, with both shifting demand towards brain inputs. Production is modeled as an aggregate

constant elasticity of substitution (CES) production function of college and non-college labor. In

addition, each labor-education type has a CES production function of brain- and brawn-inputs.

BBTC occurs starting in the 1960s and SBTC, following the literature, starts in the late 1970s.4

On the supply side, overlapping generations of finitely-lived agents maximize household con-

sumption each period. Before reaching working-age, agents first decide on obtaining a college

education, and are then married with assortative mating probabilities or remain single forever.

Agents are heterogenous in innate brain and brawn. Therefore, depending on current skill wage

3Some occupational groups document clearly how men have a comparative advantage in brawn compared to
women. In sports, male brawn records tend to exhibit higher physical strength than women’s equivalent records,
e.g., the fastest recorded male tennis serve is 35 percent faster (Glenday, 2013). A similar conclusion can be drawn
from a BBC News Online (2002) article about the British military barring women from frontline combat since they
failed to pass the required physical test in 2002.

4Given the temporary effects of World War II on women’s labor market participation and wages (see Acemoglu,
Autor and Lyle, 2004) and general data availability, the quantitative analysis focuses on the 1960s onwards.
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rates, agents differ in their willingness to work in the labor market and devote time to home pro-

duction. With lower innate brawn endowments, women who work will generally have lower wages

than men. With a fall in the returns to brawn and a rise in the returns to brain, women’s compar-

ative advantage in brain allows for a catch up in employment levels and wages. Individuals also

account for expected income, a function of brain and brawn market prices, when deciding on their

education. Higher ability women may stay out of the labor market when brawn is more valuable or

the returns to brain are low, thus obtaining less education compared to men with the same innate

brain.5 Over time, women may then surpass men in educational attainment, given their compar-

ative advantage, or greater dependence, in brain for higher wages. Lastly, I allow for changes in

home productivity.6

The model is calibrated to match various 1960 US data moments on employment, wages and

education; three wage trends from 1960 to 2010; and the rise in the share of male college graduates

from 1960 to 2010. The base calibration is able to replicate 80 percent of the closing aggregate

gender participation gap and 91 percent of the closing married gender participation gap. It also

replicates all the gender education reversal and 59 percent of the closing gender wage gap.

The base model is also able to address one of the main challenge in the literature, that is,

the mechanism here is not only able to replicate the closing gender gaps, but also generates a

time-varying speed of convergence of the wage and education gaps. This is the consequence of

three effects on women’s average wages: (1) a positive skill price effect, (2) a negative labor

supply effect, and (3) a positive education-labor supply effect. As these three effects dominate at

different instances in time the model generates a non-linear path of convergence. More specifically,

women benefit from increasing returns to brain given their comparative advantage. However, as

5Assortative matching in the marriage market could off-set this effect by inducing women to educate even when
market returns are low in order to find a high-earning spouse. But this effect should be relatively random across the
female ability distribution.

6That changes in home productivity can explain part of the rise in female employment is a well-established fact.
Improvements in home technology, such as the invention and marketization of household appliances (see, for exam-
ple, Greenwood, Seshadri and Yorukoglu, 2005, and references therein), or the improvements in baby formulas (see
Albanesi and Olivetti, 2016), enabled women to enter the labor market.
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all women’s wages increase with BBTC, women with relatively lower brain endowments enter the

labor market creating a negative selection effect, especially during the earlier period.7 Following

this period, given women’s comparative advantage in brain and the complementarity between brain

and education, with sustained SBTC women surpass men in college attainment and create a positive

labor supply effect. In summary the interaction between both types of technical change is key in

shaping the changing selection of women into the labor market, leading to a varying time-path of

both for the education and wage gap convergence.

Given the success of the model in generating a large convergence in employment and consis-

tent time-varying changes in the gender education gap and the gender wage gap, I use the model

to perform three types of counterfactual experiments. First, removing SBTC, BBTC and gender

differences in brawn, I show that, the model can replicate the closing gender wage gap by allow-

ing for gender wage discrimination to initially exist and subsequently decrease at a constant rate.

However, this counterfactual experiment shows that disappearing gender discrimination cannot

generate a time-varying path in the convergence of wages. In order to generate a non-linear path,

the model would require a shock/event that changed the level of discrimination in the 1980s. In

addition, a fall in gender discrimination leads to less female college attainment than in the bench-

mark, as a fall in discrimination benefits all women equal. That is, falling gender discrimination

does not amplify high-ability women’s larger comparative advantage in brain - a skill complemen-

tary to education. The second set of counterfactuals removes SBTC and BBTC individually and

in combination to provide insight into which type of technical change drives which gender gap.

Traditional SBTC is the exclusive driver for the gender education reversal, but SBTC and BBTC

together shape wage changes. In the last counterfactual, home productivity is kept at the 1960s

level. Removing home productivity does have a small quantitative effect on the closing gaps, but

does not alter the time-varying shape of the gender convergence.

7The effect on the gender wage gap is ambiguous. The gender gap will widen if the negative supply effect domi-
nates and close if the positive price effect dominates.
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The remainder of the paper is organized as follows. Section 2 discusses the related literature;

Section 3 establishes some novel facts on labor demand requirements and related returns in the

US; Section 4 presents a partial equilibrium toy model to provide insight on the theory; Section

5 generalizes the model to a general equilibrium framework for the quantitative analysis; Section

6 discusses the calibration; Section 7 provides the benchmark results and the three counterfactual

exercises; and Section 8 concludes.

2 Literature Review

The paper considers changes in labor demand requirements on agents’ optimal education and labor

supply decisions. It connects three related strands of literature on: (1) technical change; (2) gender

education; and (3) female labor supply.

Jones, Manuelli and McGrattan (2015) explain a large rise in female participation by an ex-

ogenously closing wage gap. In Rendall (2015) I use, in addition to the exogenously closing wage

gap, structural change to explain rising female employment, while Olivetti (2006) does so with

an exogenous increase in returns to experience for women. Thus, by modeling gender differences

in innate labor market skills and allowing for technical change, I provide a possible underlying

mechanism for observed increases in female wage returns taken as given in these studies.

Ngai and Petrongolo (2017) focus on determining how much of the closing gender wage and

employment gaps can be explained by structural change. Productivity differences are modeled by

assuming that women have a comparative advantage in services over manufacturing. The authors

find that structural change can account for 20 percent of the closing gender wage gaps and half of

the rise in hours worked. As explained in their paper, the theory of brain versus brawn can provide

a micro foundation for gender productivity differences across sectors. Indeed, in Appendix A, I

show that broad sectors (services/manufacturing) provide a reduced form of explicitly modeling

the skill inputs of brain and brawn. However, this reduced form cannot be used to study the
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effects of SBTC or BBTC on gender gaps, as there are a number of low-skilled service jobs that

require substantial brawn skills (e.g., waiters, cleaners). By not relying on endogenous structural

transformation, I am able to contrast the effect of SBTC - a standard theory in explaining rising

male wage inequality - versus BBTC on gender employment, education and wage outcomes.

Hsieh et al. (2013) study the convergence in occupational choices between men and women.

Their focus in not on explaining this convergence through technical or structural change but rather

a reduction in labor market frictions. Studying the same time period (1960 onwards), the authors

find that decreasing frictions leading to a convergence in occupational choice accounting for 15

to 20 percent of growth in aggregate output. The theory of frictions is complementary to the

mechanism proposed here.

Fogli and Veldkamp (2011) focus on the effects of cultural, social, and intergenerational learn-

ing on female labor supply. An extension aims to explain the evolution of wages through women’s

changing self-selection bias in the 20th century. The model is unable to match the complete wage

evolution, matching either the initial stagnation or the later rise in relative female-to-male wages.

In this paper, technical change complements the theory of social learning, explaining part of both

the period of stagnating and the later closing gender wage gap.

The hypothesis that changing technological progress affects the gender wage gap has also been

analyzed in econometric studies with different conclusions. Wong (2006) finds that SBTC has

a similar impact on men’s and women’s wages and, therefore, cannot explain the closing wage

gap. Black and Spitz-Oener (2010) quantify the contribution of changes in specific job tasks on

the closing wage gap from 1979 to 1999 for West Germany. The authors find that SBTC in West

Germany, especially through the adoption of computers, can explain about 41 percent of the closing

wage gap. While these two studies estimate the effects of relative labor demand changes on the

wage gap, both assume an inelastic labor supply. Consequently, they cannot address the non-

linear path of average female-to-male wages stemming from women’s self-selection bias into the

labor market and changing education choices - both components that are crucial in explaining the
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transition of women in my theory.

In terms of methodology this paper is most closely related to Galor and Weil (1996), who sug-

gest that women have entered the labor market when technological change shifted labor demand

away from brawn requirements. A similar explanation of technical change (intellectual versus raw

ability) has been used by Guvenen and Kuruscu (2010) in explaining the rise between and within

male wage inequality in the US since 1970. The authors focus on men and the human capital ac-

cumulation decision over the life-cycle. The approach of skill differentiation also relates to Autor,

Levy and Murnane (2003), who analyze how changes in the skill content of occupations, through

recent technological change, has affected the demand for college labor. Since the authors look at

recent technical change and the effect of the computer, they focus on differences in “routine” and

“non-routine” tasks.

3 Empirical Trends

This project starts from the premise that women have, on average, less brawn than men. No good

dataset with individual’s brain and brawn skills exits. However, the Fourth Edition (1977) and Re-

vised Fourth Edition (1991) of the Dictionary of Occupational Title (DOT) allow for a consistent

construction of such measures by US census occupations.8 The surveys were developed by the US

Department of Labor, who evaluated approximately 40 job requirements for more than 12,000 oc-

cupations. Using a selected set of these 40 job requirements, I compute brain and brawn measures

across occupations and time.9 Assuming that women and men have similar levels of brain, men

have a comparative advantage in the labor market if work is brawn-intensive. US Census/CPS sur-

vey data merged with the DOT skill measures suggests that labor demand (due to both SBTC and

8The occupational skill measures from the 1991 DOT were updated on a rolling basis from 1977 until 1991. The
survey was replaced by O*net in 2001. This replacement was accompanied by a reworking of the survey method and
content, making it impossible to construct consistent brain and brawn measure across the DOT surveys and O*net.
Given the historic long-run perspective of this paper, I have chosen to work with the two digitalized DOT surveys
covering the largest stretch of the time periods studied here.

9For details on the construction of measures see Appendix A.
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Figure 1: Brain and Brawn Occupation Combinations
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(b) 1991 DOT Factors in 2010
Source: 1977

and 1991 DOT skill requirements by 3-digit 1950 IPMUS occupational codes. See Appendix A for details on the computation of skill measures.
Employment shares by 3-digit occupation are computed from 1960 US Census and 2010 March CPS data, respectively. Weekly hours worked,

weeks worked per year and the provided survey weights for individuals aged 25-64 are multiplied to compute efficiency units of labor.

BBTC), has been shifting toward low-brawn occupations, eroding men’s comparative advantage in

the labor market.

Figure 1 plots occupational brain and brawn combinations weighted by the 1960 Census and

2010 CPS employed population, respectively. Since skills have no natural scale, they are normal-

ized to percentiles of the 1960 US skill distributions using 1960 Census population weights of

individuals aged 25 to 65. The size of each circle corresponds to its relative employment share,

with total employment normalized to one in each year. Two facts emerge: (1) there is large vari-

ance in brain and brawn requirements across the economy; and (2) a striking disappearance of high

brawn occupations by 2010 (compare the left and right panels).

Figure 2 shows the evolution of aggregate skill requirements. Labeled lines exploit both

changes within and across occupations. That is, averages use the 1977 DOT until 1976, a weighted

combination of 1977 and 1991 DOT characteristics until 1991, and 1991 DOT factor estimates

from 1991 onward. The dashed lines provide 1977 DOT average changes related only to compo-

sitional changes in occupation/industry employment distributions. A diverging trend in favor of

brain can be seen and is a likely indication of BBTC. Note that most of the change is driven by

the “extensive” margin. However, brawn demand sees a sharper fall using both within and across
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Figure 2: Labor Requirements over Time

35
40

45
50

55
60

1960 1970 1980 1990 2000 2010
Year

Brain Brawn

A
ve

ra
ge

 P
er

ce
nt

ile
 (

B
as

e 
19

60
)

Source: 1977 and 1991 DOT skill requirements by 3-digit 1950 IPMUS occupational codes. See Appendix A for details on the computation of
skill measures. To compute percentile changes, employment shares by 3-digit occupation are computed from 1960 US Census and 1968-2010
March CPS data. Weekly hours worked, weeks worked per year and the provided survey weights for individuals aged 25-64 are multiplied to

compute efficiency units of labor.

occupation changes, suggesting that not updating beyond 1991 due to data limitations makes this

is a conservative lower bound in BBTC (i.e., any change of skills within occupations post-1991 is

not captured).

Since much of the shift is due to compositional occupation changes, part of this shift towards

brain could be captured by a rise of college occupations (traditional SBTC).10 Table 1 decomposes

the aggregate skill trend by education and by education/gender groups. The data is segregated

by individuals with at least a four-year college degree (C+) and the working age population with

no formal college degree (LTC). For comparison purposes, relative brain-to-brawn skill require-

ments normalized in 1960 by aggregate education groups are reported. Evidence of BBTC for

non-college graduates is considerably stronger than for college graduates, with relative brain re-

quirements increasing by 27 percent for the LTC group. In contrast, there is only a small increase

for college graduates. Keeping the same education-normalization, the 1960 values suggest that

10Decompositions by broad sectors are left to the Appendix A (see Figure A.2).
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Table 1: Change in Labor Requirements by Education and Gender

Group 1960 2010 ∆
Aggregate 1.00 1.58 0.58
By Education
C+ 1.00 1.02 0.02
LTC 1.00 1.27 0.27
By Education and Gender
Men C+ 1.05 1.01 -0.04
Men LTC 0.97 1.03 0.06
Women C+ 0.82 1.03 0.21
Women LTC 1.17 1.86 0.69

Source: 1977 and 1991 DOT skill requirements by 3-digit 1950 IPMUS occupational codes. See Appendix A for details on the computation of
skill measures. To compute relative labor requirements, the ratio of average brain and brawn skills by group is taken. Average skills are computed
using employment shares by year computed from 1960 US Census and 2010 March CPS data as in Figure 1. The resulting ratios are normalized

using the 1960 ratios by broad education group (C+ and LTC) irrespective of gender.

LTC women have always worked in relatively higher brain occupation than their male counter-

parts, while C+ college women have traditionally worked in relatively lower brain occupations

(1.17 versus 0.97 and 0.82 versus 1.05, by education type respectively). That educated women

worked in occupations requiring relatively less brain points to negative self-selection by ability in

1960. Although aggregate BBTC has been small for college graduates, skilled women have seen a

sizable rise in their relative brain-to-brawn requirement of 21 percent. This change over time for

college graduate women suggests a “catching up” or a change in self-selection from negative to

positive. This is also consistent with evidence found by Hsieh et al. (2013) in that by 2010 college

men and women work in similar types of occupations. Overall, unskilled women have seen the

largest change with a 69 percent increase in their brain to brawn skill ratio.

The previous evidence only provides a partial equilibrium aspect of technological change cap-

turing changing labor requirements. Relative prices of these inputs could also be affected. To

provide some evidence related to relative prices, I make use of CPS wage data combined with the

DOT. Given that the DOT only provides information on job requirements (not workers), I assume

that on average male workers match efficiently/correctly to jobs. Using b to denote brain skills and
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r to denote brawn skills, the wage for individual i in occupation j is,

wi
t = wb,tbb j +wr,trr j + ε i

t for all t, (1)

where {wb,wr} are skill prices (wage rates), {b,r}, are the total (largest) skill amount available,

{b j,r j} are brain and brawn percentiles,11 and ε j,t is an error term. Since, wb,tb and wr,tr are not

separately identifiable, an assumption needs to be imposed to obtain brain and brawn returns over

time. To estimate b and r, Equation (1) can either be estimated for a base year, assuming wb,0 =

wr,0 = 1, or it can be estimated using all time periods jointly, implicitly assuming that average

returns over the entire period equal one. The two assumptions produce similar results. Only the

results to the second method are provided. To account for the effect of education on brain returns,

the regression to determine b and r also includes an interaction of brain and education.12 Skill

quantities follow from regressing individual wage residuals (controlling for region, race, marital

status and age) on brain, brawn and an individual’s education,

wi
t = αbb j +αrr j +αeb jei + ε i

t , (2)

where ei = 1 if the individual has a college degree and zero otherwise. Implicitly, {b,r} are

constant over time, similar to the data. It is conceivable that b has grown, but given data availability

it is difficult to verify or estimate. Using the estimates from Equation (2), we can then estimate

brain and brawn (wi,t) skill prices for a given time period t by,

w j,t = wb,t
(
ab +aee j

)
b j +wr,tarr j + ε j,t for all t, (3)

where ai are the coefficient estimates from Equation (2).
11Since skills are normalized from zero to 100 on a percentile distribution, a skill of zero can be interpreted as using

zero percent and a skill of 100 using 100 percent of the skill available.
12A specification also allowing for an interaction between education and brawn shows that brawn returns are on

average not statistically different across education groups.
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Table 2 summarizes the estimated relative brain-to-brawn wage changes.13 On aggregate, rela-

tive returns grew by 36 percent, where the increase is more than twice as high for college educated

individuals than other workers, 54 versus 21 percent, respectively.

Table 2: Change in Relative Brain-to-Brawn Returns

Group 1965 2005 ∆
Aggregate -0.09 0.27 0.36
By Education
C+ -0.27 0.27 0.54
LTC -0.09 0.12 0.21

Source: 1977 and 1991 DOT skill requirements by 3-digit 1950 IPMUS occupational codes. See Appendix A for details on the computation of
skill measures. Relative returns are the difference of average brain and brawn skills prices by group. Average skills prices are computed according
to in Equations (1) and (2) by using wage residuals after controlling for experience, race and region of full-time full-year male workers adjusted by

individuals’ survey weights from 1968-2007 March CPS data.

Given the above facts, this study argues that, after World War II, women entered the labor

market and their average wages improved due to the rise of brain-demand, which complemented

women’s comparative advantage.

4 Toy Model

The underlying forces of the model simulated in Sections 5-7 are best demonstrated in a simplified

partial equilibrium version. Assume a unit measure of men and women, who are all single and

live one period, with utility functions linear in consumption, u(ci
t) = ci

t , where ci
t = max{wi

t ,Ah}.

Agent i chooses between working and earning wage wi
t or staying at home and consuming home

production Ah. Individuals decide on attending college, e ∈ {0,1}, to increase their innate brain

ability by a factor ε > 1 at the beginning of the period. Attending college produces a utility

cost of χ > 0. Wages are a function of an agent’s acquired brain and innate brawn, that is wi
t =

wb,tbi(e)+wr,tri, where bi(e) = biε , if the individual attends college, and bi(e) = bi otherwise. Let

13For consistency, only CPS wage data is used in computing wage trends. Due to the financial crisis, any data
beyond 2007 is also dropped. All detailed results are available from the author upon request.
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all men have equal brawn, rm, and all women have less brawn, r f < rm. Innate brain is distributed

identically for everyone, bi ∼U [bl,bh]. Furthermore, assume that all men work, wb,tbl +wr,trm ≥

Ah, but women’s brawn is such that low-brain women do not work, wb,tbl +wr,tr f < Ah. Thus, a

woman works if and only if,14

bi(e)≥
Ah −wr,tr f

wb,t
≡ b̂ f

t . (4)

Substituting for brain acquired through schooling, bi(e) = biε , the college education decision

for a male i is, (
wb,tbiε +wr,trm)−χ ≥

(
wb,tbi +wr,trm) , (5)

or men study if and only if,

bi ≥ χ
wb,t (ε −1)

≡ b̂m,e
t . (6)

The male cut-off for education, b̂m,e, is an increasing function of the cost of education, but a

decreasing function of the returns to brain, both in wages and acquired brain. If all women work,

women would have the same cut-off, b̂ f ,e = b̂m,e. However, since some women remain home if r f

is low enough, the education decision follows from,

max
{(

wb,tbiε +wr,tr f
)
,Ah

}
−χ ≥ max

{(
wb,tbi +wr,tr f

)
,Ah

}
. (7)

The cut-off is a function of home productivity, b̂ f ,e (Ah). Moreover, this cut-off is greater than or

equal to the male cut-off, b̂ f ,e (Ah) ≥ b̂m,e, since women who choose to stay home gain nothing

from education, but still pay the cost, χ . In an economy with high returns to brawn this outcome

is more likely.

14Given the empirical evidence on women’s self-selection into work changing from negative to positive (Mulligan
and Rubinstein, 2008), the general equilibrium model is amended to allow for potential changes in selection through
assortative matching in marriage.
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4.1 Evolution of Labor Supply and Wages under BBTC

Given the above assumptions, men’s labor force participation equals one and women’s equals,

LFP f
t =

∫ bh

b̂ f
t

dF(b) =
bh − b̂ f

t

bh −bl
. (8)

If BBTC raises wb,t
wr,t

, this leads to a fall in b̂ f
t and a rise in female employment, i.e., BBTC closes

the gender employment gap. Similarly, with relative low brain returns and b̂ f ,e
t (Ah)> b̂m,e

t , BBTC

closes the gender education gap.

Using Equation (4), if one becomes educated (high χ), average female wages are,

w f
t = wb,tE(b f )+wr,tr f = 0.5

(
wb,tbh +wr,tr f +Ah

)
, (9)

where E(b f ) is the average brain supply of women conditional on the working population.

E(b f ) =

∫ bh

b̂ f
t

b dF(b)

LFP f
t

= 0.5
(

bh + b̂ f
t

)
. (10)

Similarly, male wages (without education) are,

wm
t = wb,tE(bm)+wr,tr f = 0.5wb,t (bh +bl)+wr,trm, (11)

where E(bm) = 0.5(bh +bl) given that all men work. There are three forces that govern the evolu-

tion of the gender wage gap with BBTC:

1. The Price Effect: women benefit more (loose less) from falling brawn wages wr,t

2. The Supply Effect: lower ability women will enter the market

3. The Education Effect: non-working women have no incentive to obtain education. However,

once more women enter the labor market, they are more likely then men to obtain education,

15



increasing women’s relative brain supplies.

The price effect follows from comparative statics on Equations (9) and (11),

∂wm
t

∂wr,t
= rm >

∂w f
t

∂wr,t
= 0.5r f > 0 (12)

∂wm
t

∂wb,t
= 0.5(bh +bl) >

∂w f
t

∂wb,t
= 0.5bh > 0.

Given women’s lower brawn endowment, r f < rm, a fall in wr,t closes the gender wage gap. How-

ever, rising returns to brain lead to a smaller increase in female wages, bl > 0. The result is driven

by the supply effect,
∂E(bm)

∂wb,t
= 0 >

∂E(b f )

∂wb,t
=−0.5

b̂ f
t

wb,t
, (13)

with lower ability (brain) women entering the market as brain returns rise. The education effect

can counteract the negative Supply Effect as women surpass men in acquired brain.

In summary, the price and education effect closes the wage gap, while the supply effect widens

the wage gap. The supply effect is stronger when women’s labor force participation and education

levels are low, but weakens as labor force participation and education rates converge. Therefore, the

closing of the gender wage gap is slow at first, but accelerates as the Price and Education Effect

begin to dominate. These results suggest that a model differentiating between brain and brawn

labor requirements should replicate the initial US employment, education, and wage differences

across gender. It should also reproduce the subsequent evolution of the gender gaps in education

and wages, including some initial “stagnation” in average female wages as observed during the

1960s and 1970s, and a later reversal through increasing female education attainment.
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5 General Equilibrium Model

The general equilibrium model is based on the previous one period model with some modifications

to account for key labor market facts across marital status. The economy consists of overlapping

generations who live for four periods, with a unit measure of both men and women in aggregate,

and a representative competitive firm. There is no population growth and agents only marry within

generations.

5.1 Aggregate Production

Agents supply two labor inputs, brain and brawn to a labor market segregated by education. The

aggregate production function has constant elasticity of substitution in (1) the two inputs, Be
t and Re

t

with e ∈ {0,1} (the aggregate labor supplies of brain and brawn by education, with the superscript

equal to one denoting college labor), and (2) across education levels,

Yt =

{
∑

j=0,1
α j

t

(
γ j

t (B
j
t )

ϕ
j +(1− γ j

t )(R
j
t )

ϕ
j

)ϕ/ϕ j

}1/ϕ

. (14)

The share parameters on education type, αe
t , satisfy α1

t +α0
t = 1, γe

t is the share parameter on

brain, εϕ = 1
1−ϕ is the elasticity of substitution between the education groups, and εe

ϕ = 1
1−ϕe

is the

elasticity of substitution between the two skill inputs. A rise in α1
t represents exogenous SBTC

and a rise in γe
t is exogenous BBTC. With intermediate output Y e

t =
(
γe

t (B
e
t )

ϕe +(1− γe
t )(R

e
t )

ϕe
)1/ϕe

and αt = α1
t (α0

t = 1−αt), the college wage premium is,

w1
t

w0
t
=

αt

1−αt

(
Y 1

t

Y 0
t

)ϕ−1

. (15)
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Similarly, the brain premium by education is,

we
b,t

we
r,t

=
γe

t
1− γe

t

(
Be

t
Re

t

)ϕe−1

. (16)

For the model to generate a rise in the relative demand for brain through BBTC, the two inputs

must be substitutes, εe
ϕ > 1. From Equation (16) the relative demand of inputs is,

Be
t

Re
t
=

(
γe

t we
r,t

(1− γe
t )we

b,t

)εϕe−1

. (17)

The brain premia,
we

b,t
we

r,t
, rise as long as an outward shift in labor supply does not offset the increase

in labor demand.

5.2 Households: Preferences, Marriage and Education

At the beginning of “life,” individuals choose to attend college by paying a cost χ . College in-

creases innate brain abilities by a factor ε > 1. However, when making the college decision, agents

do not have prefect information over their true innate brain ability, which is only revealed at the

start of their working life. After the education decision is made, but before entering the labor mar-

ket, an exogenous probability determines marital status (remain single forever or married). Mar-

riage rates are education-specific to match the assortative mating in educational attainment (from

the US). Households collectively decide on who will work in the market or home and consume a

final market good and home production.
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5.2.1 Married Households

Agents only decide on the extensive margin of labor supply, ℓi = {0,1}. Market and home pro-

duced goods are imperfect substitutes. A married household maximizes,

Up(ct ,ht) =
1
ζ

ln
(
(ct − c)ζ +hζ

t

)
. (18)

subject to a standard budget constraint and the home production technology,

ct ≤ ωm
ei,tℓ

m
t +ω f

ei,tℓ
f
t and (19)

ht = Ah

(
1− ℓm

t +1− ℓ
f
t

)
, (20)

where the superscripts stand for male or female, 1
1−ζ is the elasticity of substitution between

market and home goods, and c is a consumption subsistence level. The consumptions subsis-

tence level is necessary to account for the fact that married, but not single, educated and un-

educated women had similar labor supplies in 1960 and that self-selection into the labor mar-

ket has moved from negative to positive (Mulligan and Rubinstein, 2008). Agent i earns wage,

ωg
ei,t = (1− τg)wei

t (w
ei
b,tbi(1+ eiεi)+wei

r,tri) for ei ∈ {0,1} and g ∈ { f ,m}, a function of his/her

innate brain and brawn abilities, educational attainment, ei, and gender-specific labor market dis-

crimination, τg. As in the partial equilibrium model, brawn is common within gender, with men

having more than women, rm > r f , while brain comes from a gender-neutral log-normal distri-

bution, ln(bi) ∼ N(µb,σ2
b ). By assumption men and women are perfect substitutes in home pro-

duction. Therefore, spouses specialize with the higher wage earner entering the labor market first.

Given a positive subsistence level c > 0, the primary earner always works, while the secondary

earner works if,

ω2
t >

((
ω1

t
)ζ

+Aζ
h

) 1
ζ −ω1

t or ω1
t < c, (21)
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where the superscript denotes the primary and secondary earner.

5.2.2 Single Households

Given the subsistence requirements and the discrete labor decision, single agents always work in

this set-up. To ensure the model is consistent with the data, some agents have the option of staying

at home with probability ps ≥ 0. This can be thought of as the government providing benefits equal

to the subsistence requirements for a “random” fraction of agents or some single agents having

other means of covering the subsistence requirement (e.g., living with their parents, inheritance).

The indicator function 1ps denotes households with these additional resources. Single agents then

solve the maximization problem,

Us(ct ,ht) =

 ln
(

ct − c
ψ

)
if 1ps = 0;

max{ln((ct) , ln(ht)} if 1ps = 1,
(22)

subject to a standard budget constraint and the home production technology,

ct ≤ ωg
ei,tℓt and (23)

ht = Ah (1− ℓt) , (24)

where the subsistence requirement is adjusted for the economies of scales, 2 > ψ > 1. Single

households cover less subsistence expenditure than married households, but not necessarily half of

the amount, given economies of scale in marriage. The fraction 1− ps of single agents must work,

while the fraction ps works if and only if

ωg
ei,t ≥ Ah +

c
ψ
. (25)
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5.2.3 Marriage Market

Marriage is determined by chance, but varies with educational attainment. Women at time t marry

with probability p f
e,t for e ∈ {0,1}. To capture assortative matching in education, the probability

that a woman of education j ∈ {0,1} marries a man with the same educational background j is

strictly greater than marrying another man, k ̸= j, i.e., p f
j, j,t > p f

j,k,t with ∑k=0,1 p f
j,k,t = 1. Only

agents of the same generation marry, after the education decision has taken place. Therefore,

in each period there will be a new fraction of young agents with and without a college degree.

Denote these fractions of each gender/education type by λ g,e
t with g = { f ,m} for female/male

and e = {0,1} for LTC/C, respectively. At time t for a consistent equilibrium, male marriage

probabilities are,

pm
e,t =

∑k=0,1 λ f ,k
t p f

k,t p f
k,e,t

λ m,e
t

,

pm
e,1,t =

λ f ,1
t p f

1,t p f
1,e,t

∑k=0,1 λ f ,k
t p f

k,t p f
k,e,t

and pm
e,0,t = 1− pm

e,1,t .

5.2.4 Education Choice

Individuals choose education when young and single. Education carries a utility cost χ ∼N(µχ ,σχ),

but increases innate brain ability by a factor of ε > 1. If the value function of an agent of gender g

with education e at the beginning of life is defined as V g
e , an individual goes to college if and only

if, E
(
V g

1
)
−χ ≥ E

(
V g

0
)
. More specifically,

pg
1,t ∑

k=0,1

(
pg

1,k,tV
g
p,1,k

)
+(1− pg

1,t)V
g
s,1 − pg

0,t ∑
k=0,1

(
pg

0,k,tV
g
p,0,k

)
− (1− pg

0,t)V
g
s,0 ≥ χ, (26)

where V g
p,1,k (V g

p,0,k) is the value function of an educated (uneducated) agent married to a spouse

of education k = {0,1} and V g
s,e is the value function of an agent that remains single forever with

education e= {0,1}. Equation (26) shows the two benefits of education: (1) higher wages in future
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periods and (2) assortative matching in marriage.

5.3 Decentralized Equilibrium

An equilibrium, given wages {we
t ,w

e
b,t ,w

e
r,t}(e=0,1), is defined by:

1. The demand for market goods, ci, the production of household goods, hi, the supply of labor,

ℓg
i , and the initial education choice eg

i , that maximize household utility;

2. The demand for labor inputs, Be and Re for e ∈ {0,1}, that maximize the final good’s profit

function; and

3. Markets clearing,

(a) The labor market, Be
hh = Be and Re

hh = Re for e ∈ {0,1}; and

(b) The goods market, Chh = Y ,

where Be
hh and Re

hh are aggregate household labor skill supplies obtained by integrating la-

bor supply over the brain and brawn distribution of all agents and Chh is aggregate market

consumption obtained by integrating over all households.

6 Calibration

The model is calibrate to the 1960’s US economy and then simulated until 2010 at 10 year-intervals.

I allow for four exogenous trends: (1) SBTC through a increase in αt ; (2) BBTC through an

increase in {γ1
t ,γ0

t }; (3) falling marriage rates; and (4) changes in home productivity.15

Agents work for 40 years (or 4 periods) and discount at an annual rate of β = 0.98. The two

standard elasticity parameters, {ϕ ,ζ}, are taken from previous studies. The elasticity parameter

of college to non-college labor is set to ϕ = 0.60, the value estimated by Autor, Katz and Kear-

ney (2008) for the US from 1963 to 2005. Following Ngai and Pissarides (2008), the elasticity
15Bridgman (2016) and Moro, Moslehi and Tanaka (2017) find that falling relative home-to-market productivity in

the late 1970s is an important driver of market versus home labor decisions.
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parameter of market to non-market consumption is set to ζ = 0.57. The growth in home (relative

to market) productivity is set following Bridgman (2016). Before 1978, home productivity growth

outpaces market productivity by 0.4 percent, and after 1978 it grows 1.5 percent more slowly.

Thus, gAh,0 = 0.004 before 1978 and gAh,1 =−0.015 thereafter.

The remaining elasticity parameters {ϕ 1,ϕ 0} are estimated using a similar approach as Katz

and Murphy (1992, pg. 69). Having determined returns to brain and brawn in Section 3, average

brain and brawn efficiency units can be computed as,

Ee
b,t = ∑

j
bb jLe

j,t for e ∈ {0,1}, (27)

where Le
j,t are employment shares of occupation j and education e. In computing wage rates,

only wages of full-time-full-year workers are included,16 while Le
j,t includes all individuals with

working hours of at least 260 per year. Individuals are weighted by their CPS weights and hours

worked per year to compute total annual factor supplies. To estimate the elasticity parameter ϕ e

BBTC is assumed log-linear,17

ln
(

γe
t

1− γe
t

)
t
= be

0 +be
1t +ηe

t . (28)

Taking the natural logarithm of the relative wage Equation (16), and inserting Equation (28), leads

to the following regression by education group,

ln
(

we
b

we
r

)
t
= ae

1t +ae
2 ln
(

Ee
b

Ee
r

)
t
+νe

t , (29)

where a2 = ϕ e −1. Table 3 provides the regression estimates in aggregate and for both education

groups separately. Given the results across all estimation groups, I assume a common elasticity

parameter of ϕ 1 = ϕ 0 = 0.88.
16Full-time-full-year workers are defined as working at least 1,400 hours per year.
17See also Krusell et al. (2000) for a similar estimation.
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Table 3: Elasticity Parameters

Variable Aggregate C+ LTC
a2 -0.123∗∗ -0.120∗∗ -0.121∗∗

(0.033) (0.017) (0.041)
a1 0.011∗∗ 0.015∗∗ 0.005∗∗

(0.002) (0.002) (0.002)
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Source: 1977 and 1991 DOT skill requirements by 3-digit 1950 IPMUS occupational codes. See Appendix A for details on the computation of
skill measures. 1968-2010 March CPS data for wage and efficiency units see Table 1 and 2 for details on the computation of wage rates and

efficiency units of labor.

The subsistence scaling parameter is set according to OECD scales, ψ = 1.5, the share param-

eter for educated labor is set to γ1
0 = 0.5, mean brain, µb, is normalized to zero while male brawn,

rm, is normalized to one, such that men have on average the same innate brain and brawn endow-

ments, and labor market discrimination, τ f , is set to zero.18 SBTC and BBTC, {gα ,gγ0,gγ1},

are estimated to jointly match: (1) the rise in the college wage premium; and (2) the rise in

the relative brain premia by education group. The variance in education cost, σχ is calibrated

to match the rise in male educational attainment from 1960 to 2010. All remaining parameters

{α0,γ0
0 ,r

f ,Ah,p,Ah,s, ps,c,σb,ε,τ f ,µχm,µχ f } are calibrated by matching 1960s data targets (see

Table 4 for all parameter values).

Parameters are calibrated jointly by minimizing the distance between data targets and model

moments (see Table 5), with some targets naturally more informative for certain parameters than

others. Below follows an outline of the general strategy. Education parameters, {µχm,µχ f ,σχ},

are matched to education shares. The shares of young males and females with a college degree

in 1960 provide a one-to-one mapping for the average cost of education by gender µχg . The

rise in the share of male college graduates is informative of the variance in educational cost σχ .

The production share parameters, {α0,γ0
0}, are matched to the college wage premium and the

18Even when allowing for general labor market discrimination, τ f > 0, the model does well in matching all targets
by calibrating such discrimination close to zero. That is, the model does not require discrimination to match the
selected targets.
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Table 4: Model Parameters

Estimated Type Value
ϕ 1 elasticity parameter C+ brain/brawn 0.88
ϕ 0 elasticity parameter LTC brain/brawn 0.88
α0 share on C+ output 0.40
γ0

0 share on LTC brain/brawn 0.41
r f female brawn 0.44
σb std. dev. brain 0.66
ε education brain increment 1.22
c subsistence consumption 0.44
Ah,p married women home productivity 2.13
Ah general home productivity 0.45
ps singles’ work requirement 0.57
µχm men’s mean cost of education 0.74
µχ f women’s mean cost of education 1.33
σχ std. dev. cost of education 0.89
gα SBTC growth rate 0.010
gγ0 BBTC growth rate on LTC 0.003
gγ1 BBTC growth rate on C+ 0.005
Predetermined
gAh,0 home-to-market productivity growth rate before 1978 0.004
gAh,1 home-to-market productivity growth rate after 1978 -0.015
ϕ elasticity parameter C+ vs LTC 0.60
ζ elasticity parameter consumption 0.57
Normalized
µb mean brain 0
rm male brawn 1.0
τ f female market discrimination 0
γ1

0 share on C+ brain/brawn 0.5

labor force participation of men. The productivity parameters {r f ,σb,ε} are matched to wage-

education differences. The gender wage gap determines female brawn, r f , the variance in log

male wages determines variance in innate brain, σb,19 and the difference between the gender wage

gap for college versus non-college workers is informative on the additional returns to education,

ε . The parameters governing participation {c,Ah,p,Ah, ps} are matched to all remaining labor

19The model abstracts form idiosyncratic shocks, which are present in the data. Therefore, instead of matching the
log wage variance in the US data when calibrating the standard deviation of brain, I follow Guvenen and Kuruscu
(2010) in matching the residual variance of 0.104, defined as variance less idiosyncratic shocks.
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force participation targets and the difference between the selection-corrected (using the Heckman

correction framework) and uncorrected married gender wage gap. Lastly, the change in log wage

premia provide direct mappings for SBTC and BBTC by education group.20 Targets are matched

Table 5: Data Targets and Model Moments

1960s Target Data Model
Young Male C+ 0.11 0.11
Young Female C+ 0.07 0.09
Rise in Male C+ 0.22 0.17
Single Female LFP 0.68 0.67
Single Female C+ LFP 0.89 0.88
Single Male LFP 0.87 0.88
Male LFP 0.95 0.97
Married Female LFP 0.33 0.33
Gender Wage Gap -0.54 -0.47
Gender Wage Gap Difference C+ to LTC 0.14 0.14
Married Gender Wage Gap Difference Corrected to Average 0.10 0.09
Male College Premium 0.42 0.47
Variance in Log Male Wages 0.10 0.10
Growth Target
Log Growth in male college wage premium 0.32 0.32
Log Growth in brain premium C+ 0.54 0.54
Log Growth in brain premium LTC 0.21 0.21

Source: 1960 US Census and 2010 March CPS data merged with 1977 and 1991 DOT skill requirements by 3-digit 1950 IPMUS occupational
codes. All data targets are 10-year moving averages. The sample consists of men and women aged 25-64 adjusted with survey weights.

well. The largest discrepancy is between the average gender wage gap in the data and model

of -0.54 versus -0.47. However, the difference between the gender wage gaps in college-to-LTC

groups and the selection corrected versus uncorrected married wage gap are all matched.

7 Results

The economy is simulated for six periods from 1960 to 2010. In addition to the calibrated growth

rates, marriage rates are adjusted to match US marriage trends. Table 6 documents aggregate time

20SBTC is set to start only after 1978 consistent with the evidence from Heathcote, Storesletten and Violante (2010).
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trends of the US versus the simulated economy. As the aim of the model is to understand gender

differences, the results are presented in terms of three gender gaps: (1) education, (2) employment,

and (3) wages.

Table 6: Gender Gaps over Time

1960 2010 ∆2010−1960
Data Model Data Model Data Model

Education
Fraction C+ -0.05 -0.02 0.02 0.04 0.06 0.06
Employment
All -0.54 -0.57 -0.14 -0.24 0.41 0.33
Single -0.19 -0.20 -0.03 -0.15 0.15 0.05
Married -0.63 -0.67 -0.20 -0.28 0.43 0.39
Wage
All -0.54 -0.47 -0.26 -0.30 0.29 0.17
Selection-Adjusted All -0.41 -0.44 -0.32 -0.32 0.09 0.12

The model generates closing gaps for education, employment and wages as in the US. The

calibration is able to replicated over 80 percent (0.41 versus 0.33) of the observed rise in female

labor force participation from 1960 to 2010. This increase in female labor force participation is

mostly generated by married woman, replicating 91 percent of the data (in almost equal portions

by educational attainment - not reported here). The benchmark is able to replicate all the reversal

in the education gap. The model does not rely on differences in education costs over time, by

gender, or gender-specific labor market discrimination (see for example Heathcote, Storesletten

and Violante, 2010; Cerina, Moro and Rendall, 2017) to replicate the gender education reversal.

Instead the only model gender-difference necessary to generate a reversal in the gender education

gap is that women have 44 percent of male innate brawn - a skill important in the 1960’s labor

market, but not in 2010. Lastly, the model is consistent with the fact that women have moved

from being negatively self-selected to positively self-selected over this time period. In the data,

the uncorrected gap is 13 percentage points larger than the corrected gap in 1960, but by 2010 the

uncorrected gap is instead seven percentage points smaller. The model produces the same change
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Figure 3: Evolution
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(a) The Gender Wage Gap
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(b) The Gender Education Gap

in self-selection as in the data (from negative to positive), where the difference goes from three

percent points to negative two percentage points. With this changing self-selection of women, the

benchmark replicates over half of the closing gender wag gap (0.17 over 0.29).

Figure 3 shows the evolution of the gender wage and education gaps - both having time-varying

paths. Not only is the model able to replicate a substantial part of the aggregate change between

1960 and 2010, the simulation is also consistent with the relative change in slopes of the transition.

The US gender wage gap closes on average by 0.2 percentage points per annum from 1960 to

1980, and than accelerates to a rate of 0.8 percentage points per annum from 1980 to 2010. In the

model the respective rates are 0.1 and 0.5 percentage points per annum. As the model explains over

half of the closing wage gap, the per annum rates almost coincide with their respective slopes. In

both cases, growth more than quadruples from the earlier to later period. In comparing the gender

education gap in the data between 1960 and 1990 there is no overall growth, and between 1990

and 2010 growth changes to 0.4 percentage points per annum. In the model, there is virtually no

growth prior to 1990 and a per annum change of 0.3 after 1990.
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Figure 4: Counterfactual: Labor Market Discrimination
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(a) The Gender Wage Gap
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(b) The Gender Education Gap

7.1 Discrimination Counterfactual

The model relies on a gender difference in brawn skills to replicate the initial gender gaps in

employment, education and wages in 1960. Over time, technical change biased toward brain closes

all three gender gaps and produces realistic time-varying paths for education and wages. SBTC

increases the value of brain indirectly as educated jobs always require relatively less brawn, γ1
1960 =

0.5 > γ0
1960 = 0.4 and ε > 1.0. BBTC directly decreases the value of brawn-to-brain for each

education group. Instead of modeling technical change and gender differences through skills,

the empirical literature has attributed much of the unexplained gender wage gap between men

and women to labor market discrimination. In this spirit, we can use the benchmark calibration

by setting r f = rm = 1.0, gγ0 = gγ1 = 0 and gα = 0 and estimate a labor market discrimination,

{τ f
1960,τ

f
2010}, to match the change in the gender wage gap from 1960 to 2010.

Figure 4 shows the resulting gender wage and education gap evolution assuming gender dis-

crimination decreases monotonically. Two experiments are computed, one with and one without

SBTC, i.e., gα > 0 which is labeled “Discrimination and SBTC” and gα = 0 which is labeled

“Discrimination.” Allowing for a linear decrease in labor market discrimination leads to an almost

linear gender wage gap closing (see left panel). Without SBTC and BBTC the gender wage gap

closes in a slightly inverted U-shape. With SBTC still present, as in the benchmark, the gender
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Figure 5: Counterfactual: Varying Technical Change
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(b) The Gender Wage Gap

education gap does not close until 1990, but then closes one third less than the benchmark. The

lower educational attainment of women is a consequence of removing part of the demand shift

towards women’s comparative advantage in brain. With a fall in labor market discrimination, there

is no additional amplification mechanism towards the brain input of educated labor, as both edu-

cated and uneducated women benefit equally from the fall in discrimination, τ f and average brawn

equals average brain for all education groups. That is, removing SBTC, BBTC and gender differ-

ences in brawn eliminates women’s extra incentive to educate. Without any technical change the

gender education gap widens slightly.

7.2 Technical Change Counterfactual

Having established that both SBTC and BBTC matter for the time-varying evolution of the edu-

cation and wage gaps, it is relevant to quantify the importance of each type of technical change in

driving these gender gaps. Figure 5 simulates the gender gap in education and wages by shutting

down either BBTC or SBTC using the benchmark calibration. SBTC explains all the reversal in

the gender education gap. BBTC has very little explanatory power on its own. In contrast, the gen-

der wage gap convergence is explained by both BBTC and SBTC together. The main difference is

that SBTC affects only the later acceleration of the transition. Without SBTC, fewer high-ability
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Figure 6: Counterfactual: Varying BBTC on Wages
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women enter the labor market, i.e., in the benchmark, women surpass men in educational attain-

ment only after 1990. This is consistent with the timing of the three effects highlighted in the

partial equilibrium model of Section 4. Thus, the positive supply effect through education only

dominates in later decades - removing SBTC removes the positive supply effect.

Since the model allows for different BBTC across education groups, it is possible to further

analyze the impact of BBTC separately for uneducated and educated labor. Figure 6 shuts down

each type of BBTC independently. BBTC for the uneducated generates a constant closing of the

gap. As with SBTC, the rise in BBTC for educated workers explains a larger portion of the closing

gap in the last two decades.

7.3 Home Productivity Counterfactual

In light of recent evidence that changes in home productivity matter for market versus home hours

allocation (Bridgman, 2016; Moro, Moslehi and Tanaka, 2017), the base model allows for changing

home productivity. The following counterfactual sets changes in home productivity to zero, gAh,0 =

gAh,1 = 0, and computes changes in the three gender gaps. The results in Table 7 show that home
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productivity is not a main driver in the evolution of the employment or wage gaps, and explains,

at most, one-third of the closing gender education gap (see Column “NoHP”). Moreover, the time-

varying gender wage gap path does not change, with the growth rate between the first and second

subperiods still quadrupling (subperiods not reported here). Similarly, the growth rate for the

education gap remains at zero percent prior to 1990, only showing positive growth from 1990 to

2010.

Table 7: Gender Gaps over Time: No Home Productivity

∆2010−1960
Data Model

(Base) (NoHP)
Education
Fraction C+ 0.06 0.06 0.04
Employment
All 0.41 0.33 0.30
Single 0.15 0.05 0.03
Married 0.43 0.39 0.35
Wage
All 0.29 0.17 0.14
Selection-Adjusted All 0.09 0.12 0.10

Notes: “Base” refers to the benchmark results and “NoHP” to the

counterfactual without changes in home productivity.

8 Conclusion

The purpose of this study is to assess the importance of labor demand changes on women’s labor

force participation, education and wages. For proper policy development, it is necessary to estab-

lish the extent to which the female labor market experience has been shaped by discrimination or

other factors. This study focuses on the changes in occupational brain and brawn requirements,

without ignoring the effects of standard SBTC usually used to explain most wage changes for men

since the 1970s.
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I establish a considerable rise in brain and fall in brawn requirements from the 1977/1991 DOT.

The model presented in this paper is successful in explaining a significant portion of the closing

gender gaps. Calibrating the model to the 1960’s US economy shows that SBTC, BBTC and

improvements in home technology are able to replicate the rise in female labor force participation,

the reversal of the gender education gap, and over half of the closing gender wage gap. Turning to

the time-varying path of the gender gaps in education and wages, the model shows that technical

change, unlike labor market discrimination, is able to replicate the general patterns seen in the US

data. That is, the model generates both the initial stagnation and later rise of the post-World War II

gender education and wage gaps. The shape of the transition is, in large part, driven by changing

selection and educational attainment due to SBTC and BBTC. More specifically, SBTC plays the

dominant role in shaping the reversal of the gender education gap. In contrast, both SBTC and

BBTC are necessary to generate the convergence between male and female wages. While BBTC

has a fairly constant effect on the closing gender wage gap, as suggested by the partial equilibrium

model, SBTC is essential in providing the later accelerated positive supply effect of educated

women.

Nonetheless, roughly 40 percent of the closing wage gap remains unexplained. Thus, the theory

put forth here is likely complementary to a host of other theories, such as increasing gender-biased

returns to experience, a decrease in labor market frictions and social learning.
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A Appendix: Skill Measures

The 1977 and 1991 DOT measures job characteristics in: (1) general educational development;

(2) specific vocational training; (3) required worked aptitudes; (4) temperaments or adaptabil-

ity requirements; (5) physical strength requirements; and (6) environmental conditions.21 General

educational development measures the formal and informal educational attainment required to per-

form a job effectively by rating reasoning, language and mathematical development. Each reported

level is primarily based on curricula taught in the US, where the highest mathematical level is ad-

vanced calculus, and the lowest level only requires basic operations, such as adding and subtracting

two-digit numbers. Specific vocational preparation is measured in the number of years a typical

employee requires to learn the job tasks essential to perform at an average level. Eleven aptitudes

required of a worker (e.g., general intelligence, motor coordination, numerical ability) are rated on

a five point scale, with the first point/level equivalent to the top ten percent of the population and

the fifth level compromising the bottom ten percent of the population. The remaining 90 percent

are split into three equal parts to make up the remaining levels. Ten temperaments required of a

worker are reported in the DOT, where the temperament type is reported without any numerical

rating. An example of a temperament is the ability to influence people in their opinions or judg-

ments. Physical requirements include a measure of strength required on the job, rated on a five

point scale from sedentary to very heavy, and the presence or absence of physical tasks such as

climbing, reaching, or kneeling. Lastly, environmental conditions measure occupational exposure

(presence or absence) to environmental conditions, such as extreme heat, cold and noise. The char-

acteristics reported in the DOT capture the heterogeneity across occupations and industries. While

they measure different specific job requirements, they can be grouped into broader categories of

skills in terms of their common underlying dimensions.

I compute brain using the average of standardized general educational development and spe-

21Data and documentation is available from the Inter-university Consortium for Political and Social Research
(ICPSR).
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cific vocational training. The brawn measure is composed of the average between physical strength

requirements and environmental conditions (see Table A.1 for actual measures). To combine dif-

ferent DOT variables, the original job requirements are rescaled. Vijverberg and Hartog (2005)

provide a detailed methodology for rescaling DOT variables. Pre-1977 skills are computed with

1977 DOT job characteristics, post-1991 skills use only 1991 DOT job characteristics, and a lin-

early weighted combination of both DOT job characteristics is used between 1977 and 1991. I

Table A.1: DOT Job Requirements

Job Characteristic Avg.1 PCA2

Brawn Factor
Climbing/Balancing x x
Stooping/Kneeling/Crouching/Crawling x x
Strength Requirement x x
Environmental Exposure3 x x
Indoor or Outdoor Work x x
Brain Factor
Reasoning Development x x
Mathematical Development x x
Language Development x x
Specific Vocational Preparation x x
General Intelligence x
Verbal Aptitude x
Numerical Aptitude x
Clerical Aptitude x
Talking and Hearing x
1 Average of normalized variables.
2 Estimated using maximum-likelihood principal component anal-

ysis.
3 Environmental conditions, such as the presence of heat, cold, and

humidity, were combined to one variable prior to the estimation.

show below that using the aptitude measures related to intellectual abilities (see bottom of Table

A.1) and reducing the DOT data-dimensionality via principal component analysis does not alter

the labor demand time trends observed for the US. That is, the brain and brawn measures are robust

to different specifications.
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To obtain population representative estimates, the occupations in the DOT must be weighted.

In the 1977 DOT, the Committee on Occupational Classification and Analysis of the National

Academy of Sciences funded by the Department of Labor and the Equal Employment Opportunity

Commission merged the 12,431 1977 DOT jobs to 7,289 unique occupation-industry pairs from

the 1970 United States Census. The reduction from 12,431 to 7,289 is the result of more detailed

occupational classifications in the DOT. For example, while there is only one “waiter/waitress” cat-

egory in the census classification, the DOT contains multiple categories, such as “waiter/waitress

formal,” “waiter/waitress, head,” “waiter/waitress, take out.” Given data availability, it is impossi-

ble to weight these finer occupational classifications by the actual workforce. Thus, the over 7,000

resulting occupational skill measures are merged with the 1960 US Census and the 1968 to 2010

Current Population Survey (CPS) to compute labor market trends.22 Since skills have no natural

scale, they are normalized to percentiles of the 1960 US skill distributions, respectively.23

Figure A.1 compares the brain and brawn estimates with the alternative specification using

principle component analysis. Only a small discrepancy between the two brain measures exists. In

conclusion, it is unlikely that ad hoc selection of measures used in the data analysis are driving the

results.

A.1 Brain versus Brawn across Sectors

Figure A.2 splits Figure 1 by broad sectors. The service sector is less brawn intensive in both 1960

and 2010 compared to the industrial sector. However, splitting the economy by sectors is not a

perfect fit for studying why women may have benefited from changes in labor demand over time.

22Census and CPS data is obtained from the IPUMS-USA (Ruggles et al., 2010) and the IPUMS-CPS project (King
et al., 2010). The IPUMS projects provide a consistent 1950 US Census classification of occupations and industries
over the years, which is used in merging 1977 and 1991 DOT factors.

23For details on the normalization see Autor, Levy and Murnane (2003). The scaling is done for both the 1977 and
1991 DOT skill measures to allow for consistent comparisons over time. Measures are assigned a percentile rank for
the US using 1960 Census population weights of individuals aged 25 to 65.
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Figure A.1: Evolution with PCA
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Source: See Figure 2 for details.

Figure A.2: Brain and Brawn across Sectors
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