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Abstract

The search for economically efficient policy instruments designed to promote the

diffusion of renewable energy technologies in liberalized markets has led to the in-

troduction of quota-based tradable ‘green’ certificate (TGC) schemes for renewable

electricity. However, there is a debate about the pros and cons of TGC, a quan-

tity control policy, compared to guaranteed feed-in tariffs, a price control policy. In

this paper we contrast these two alternatives in terms of social welfare, taking into

account that electricity markets are not perfectly competitive, and show that the

price control policy dominates the quantity control policy in terms of social welfare.
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1 Introduction

Electricity generation from renewable energy sources is increasingly recognized

to play an important role for the achievement of a variety of primary and sec-

ondary energy policy goals, such as improved diversity and security of energy

supply, reduction of local pollutant and global greenhouse gas emissions, re-

gional and rural development, and exploitation of opportunities for fostering

social cohesion, value added and employment at the local and regional level.

The plan of the European Commission of the 1990s to issue an EU Directive

on the promotion of electricity from renewables (CEC, 1998, 1999a,b), which

eventually led to the issuance of Directive 2001/77/EC (CEC, 2001), has trig-

gered an intensive political and intellectual debate over the pros and cons

of guaranteed feed-in tariffs (FIT) versus tradable green certificate (TGC)

schemes (e.g. Rader, 2000; Berry, 2002; Lauber, 2004; Palmer and Burtraw,

2005; Madlener and Stagl, 2005; Kildegaard, 2008). 1 Recently, a new and more

comprehensive EU Draft Directive for renewable energy promotion has been

published (CEC, 2008a), in which no clear preference for one or another in-

strument is indicated. According to an accompanying Commission staff work-

ing document (CEC, 2008b), however, and given the track record of the two

instruments so far, the preference of the Commission seems to have shifted

away from establishing a uniform European TGC scheme in favor of creating

an investor-friendly climate and optimizing existing national systems. 2

∗ Corresponding author. E-mail: rmadlener@eonerc.rwth-aachen.de (R. Madlener);

Tel. +49-241-80 97 162; Fax: +49-241-80 92 206
1 In the literature quota-based TGC schemes are sometimes also referred to as

Renewable Portfolio Standards (RPS).
2 This apparent shift has to be seen in light of the very ambitious and binding
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Guaranteed FIT provide certainty about the achievable per-unit revenues from

selling renewable electricity to the grid. While FIT have turned out to be very

effective in countries such as Austria, Denmark, Germany and Spain, they

cause market distortions to increase when electricity generation from renew-

ables expands. In contrast, TGC are based on competitive market princi-

ples, typically featuring mandatory quota targets and certificate trading (e.g.

Menanteau et al., 2003). Since TGC promise to enhance static and dynamic

efficiency, they have attracted considerable attention. Over the years, they

have been introduced in a number of countries with liberalized electricity

markets (e.g. Berry and Jaccard, 2001; Dinica and Arentsen, 2003; Langniss

and Wiser, 2003; Lorenzoni, 2003; Nielsen and Jeppesen, 2003; Verbruggen,

2004; Fan et al., 2005; Nishio and Asano, 2006; Sáenz de Miera et al., 2008).

More recently, the debate has been revolving around the interplay between

TGC markets and markets for tradable CO2 permits (e.g. Morthorst, 2001;

Jensen and Skytte, 2003; Söderholm, 2008), and between TGC markets and

liberalized power markets (e.g. Amundsen and Mortensen, 2001, 2002; Jensen

and Skytte, 2002; Morthorst, 2003; Amundsen and Bergman, 2004), respec-

tively. Another active strand of research concerns financial risk of investors

(Lemming, 2003; Dinica, 2006).

While FIT is similar to a subsidy for suppliers of renewables, TGC constitute

policy target of achieving a 20% share of renewables in energy consumption by

2020. FIT, due to their relative simplicity in design, seem to find higher political

acceptance and have become widespread in Europe and elsewhere in recent years.

In CEC (2008a) it is reported that by 2007, of all 27 EU member countries, 18 had

a FIT (or premium/bonus) system in place, seven a quota-based TGC system, and

only two a tender system (Denmark for offshore wind, France for large projects).
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an internalization mechanism in the Baumol-Oates standard-price tradition

(Baumol and Oates, 1988). In fact, comparisons between taxes or subsidies

and quota-based certificate schemes have so far been undertaken mainly in

environmental economics, and in particular with regard to emission control.

Denicolò (1999), for example, analyzes the effects of effluent charges and pollu-

tion permits when innovation is expected. Building on seminal work by Weitz-

man (1974, 1978), Pizer (1999a,b) studies the difference between a tax and

quota policy under uncertainty, finding that uncertainty causes the optimal

amount of emission reduction to increase, which justifies a preference for taxa-

tion over quantity control. In the context of renewable energy, Madlener et al.

(2009) assess the impact of pre-commitment by government with respect to

policy targets in the presence of cost-reducing innovation. In an empirical

study, Palmer and Burtraw (2005) analyze the cost-effectiveness of two dif-

ferent renewable electricity policies (TGC vs. tax credits for renewable power

production) in the U.S., and their impact on greenhouse gas emissions.

This paper is devoted to the issue of whether the diffusion of renewable power

generating technologies can be better promoted by means of FIT or TGC, and

in particular whether one of the schemes dominates the other in terms of cost-

effectiveness and social welfare. We find that, given imperfectly competitive

electricity markets, social welfare achieved under the optimal FIT policy is

at least as high and likely to be strictly greater than social welfare under the

optimal TGC policy, the latter importantly depending on the outcome of a

strategic game in the market for tradable certificates. Our paper is organized

as follows. Section 2 introduces the basic models used for contrasting effects

of TGC and FIT in perfectly and imperfectly competitive markets for power.

Under perfect competition, the equivalence of TGC and FIT is shown. This
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equivalence does not hold in a duopoly with quasi-symmetric costs, as demon-

strated in section 3. Section 4 contains an evaluation of the two policies in

terms of social welfare. Section 5 discusses policy implications, and section 6

concludes.

2 Promoting renewable electricity in a competitive market

We start our analysis with the simplest case, assuming that in a perfectly

competitive electricity market there are N firms with equal electricity gener-

ation costs. Let there be only two options to produce electricity, either from

fossil/nuclear or renewable resources (solar, wind, hydro, biomass etc.), with

the second referred to as ‘green electricity’. We assume that generation costs of

fossil/nuclear power are generally lower than those of green electricity. How-

ever, green electricity cannot only help to avoid negative externalities from

fossil/nuclear power generation, but also yield positive externalities in the

form of different kinds of socio-economic benefits (e.g. creation of new employ-

ment, local value-added and infrastructure, spillovers from R&D in innovative

energy technologies and systems). 3 The fact that these externalities are not

sufficiently taken into account in decisions regarding the type and level of elec-

tricity production and consumption may motivate policy interventions such

as the introduction of FIT and TGC.

3 Note that the use of green electricity may also lead to non-negligible negative

externalities (e.g. Abbasi and Abbasi, 2000; Tsoutsos et al., 2005), but we assume

here that these are generally smaller than the positive ones.
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2.1 FIT as a subsidy policy

The term ‘subsidy’ here refers to a transfer paid by the government or elec-

tricity consumers to the suppliers of green electricity. Thus, producers receive

a surcharge s per unit of green electricity. 4 Given a competitive market, a

representative generator of power faces the following optimization problem,

max
xb,xg

[pxb + (p + s)xg − Cb(xb)− Cg(xg)] , (1)

where xb and xg denote the amounts of electricity produced from fossil/nuclear

(‘brown’) fuels and renewable (‘green’) energy sources, respectively, Cb(xb) is

the cost function for electricity produced from fossil/nuclear fuel, Cg(xg) is

the cost function for green electricity, and p denotes the average market price

for electricity. For an interior solution, the f.o.c. are

p−C ′
b[x

∗
b] = 0 (2)

p +s− C ′
g[x

∗
g] = 0. (3)

Inserting (2) into (3), we find that in an optimum with xb > 0 and xg > 0,

the government subsidy s (or negative tax) has to be equal to the (absolute)

difference between the marginal costs of green and conventional electricity

evaluated at the optimum, C ′
g[x

∗
g] and C ′

b[x
∗
b], with C ′

g[x
∗
g] > C ′

b[x
∗
b]. The eco-

nomic intuition behind this result is that if s > C ′
g[x

∗
g]−C ′

b[x
∗
b], all generators

will supply green electricity only; in contrast, if s < C ′
g[x

∗
g]− C ′

b[x
∗
b], then no

green electricity at all will be provided.

4 In reality it is usually the power fed into the grid that counts, which due to on-site

electricity consumption and transmission losses may be considerably less than gross

production. This difference is neglected here for simplicity.
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2.2 TGC as a quota-based policy

Rather than subsidizing green electricity, the government can also impose a

green power production quota on each generator. 5 If a generator falls short

of the quota, it faces a fine that increases with the shortfall. For each unit of

green electricity produced, the generator obtains a certificate, providing proof

of partial satisfaction of the norm.

Initially, assume that certificates are non-tradable. This assumption is natural

given the assumption of identical costs across generators (no opportunity for

trading). In section 3 below, the non-tradability assumption will be relaxed

and a market for certificates introduced. For the situation of non-tradable

certificates, the objective function that applies to a generator can be stated

as:

max
xb,xg

[p · (xb + xg)− f · (x̄g − xg)− Cb(xb)− Cg(xg)] , (4)

where x̄g denotes the green electricity quota of the firm, f is the fine per unit

of shortfall from the norm, and p, xb, xg, Cb(xb), Cg(xg) are the same as

before. The f.o.c. with respect to xg read

p−C ′
b[x

∗
b] = 0 (5)

p +f − C ′
g[x

∗
g] = 0. (6)

Note the similarity of (6) and (3). In fact the fine f plays the same role as

the subsidy s, which therefore represents the shadow price of the quota. In an

optimum, the unit price of the certificate should be equal to (slightly lower

than) the value of the fine per unit.

5 Note that in practice it is often the wholesalers or retailers, and sometimes even

the final consumers of electricity, that are obliged to fulfil the quota.
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2.3 Equivalence of FIT and TGC given identical costs

To show the equivalence of FIT and TGC, i.e. subsidy and quota-based poli-

cies, in terms of social welfare, we state the problem of a social planner as

follows: 6

W (Q, xg) = max
Q,xg

∫ Q

0
p(ν)dν −N · Cb

(
Q

N
− xg

)
−N · Cg(xg) + E(Nxg),

(7)

where Q = N(xb+xg) stands for total electricity output produced by N firms,

p(ν) for the inverse demand function, and E(Nxg) for the monetary value of

the avoided negative and achieved positive externalities associated with green

electricity production. As f.o.c. one obtains

p[Q∗]− C ′
b[x

∗
b] = 0 (8)

C ′
b[x

∗
b] = C ′

g[x
∗
g]− E ′[Nx∗g], (9)

which determine the social optimum values of Q∗, x∗b and x∗g. Eq. (9) simply

says that optimal aggregate output of green electricity must be such that

the difference between the marginal cost and the marginal external benefit

of green electricity is equal to the marginal cost of conventional power. If

these quantities are known, the quota can be set as x̄g = x∗g. The optimal

subsidy level is given by s∗ = C ′
g[x

∗
g] − C ′

b[x
∗
b] from (3), and the optimal fine

by f ∗ = C ′
g[x

∗
g]− p from (6).

Obviously, subsidy and quota levels that are set according to the optimal

values determined by maximizing social welfare will lead to the same level

6 Seminal work on the equivalence of price and quantity control was provided by

Bhagwati (1969) in the context of foreign trade (tariffs vs. quotas) and by Weitzman

(1974) in the context of pollutant emission control (taxes vs. quotas), respectively.
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‘Deadweight loss’

due to underconsumption

of green power

Quantity

Price

xg
0

p
1

p
0
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0

S
*

D

x = xg g
*

s*

0

Fig. 1. Equivalence of subsidy and quota-based policy given equal costs.

of green electricity production, yielding the same welfare. In this sense, and

given our assumptions, the subsidy system and quota system are equivalent.

Figure 1 illustrates the basic intuition behind these results. Let S∗ denote

the supply schedule reflecting that green power creates an external benefit

to society. Therefore, it should be used at a rate x1
g > x0

g, with x0
g being the

outcome of supply S0 based on private (marginal) cost and demand D. Clearly,

the efficient quantity of green power can be attained by paying the optimal

subsidy s∗, or imposing the optimal quota x̄∗g.

3 Duopoly market and quasi-symmetric costs

Studying the case of imperfectly competitive power markets as a duopoly game

under quasi-symmetric costs can be justified on the following grounds. First,

power markets are dominated by a few major players. For example, EdF still
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has a monopoly in France, PowerGen (now E.ON) has a market share of about

22 percent in the UK, and the four biggest suppliers in Germany, RWE, E.ON

Energie, Vattenfall Europe and EnBW, together control more than two thirds

of the market (cf. Bower et al., 2001; Matthes et al., 2005). Second, assuming

the production costs of green power to be the same for all producers is not

compatible with certificate trading. Therefore, we extend the basic model to

the case of heterogeneous production costs in order to derive the potential for

trade of green certificates.

Assume there are two generators in the market, firm 1 and 2, that have iden-

tical technology and hence cost functions in using fossil/nuclear fuel but dif-

ferent costs of generating renewable electricity. In this sense, the firms are

‘quasi-symmetric’. The main reason to expect heterogeneous cost structures

for green power is that it does not constitute yet a mature technology like

that based on fossil or nuclear fuels, where competition presumably has forced

operators to adopt the least-cost alternative. Therefore, producers of green

power are assumed to employ different technologies, have more or less favor-

able siting of plants, use energy resources of different qualities, and employ

different vintage mixes of a given technology.

To keep our model simple and to avoid multiple equilibria, we assume the

cost function in using fossil/nuclear fuel Cb(xb) = cbxb to be linear and the

difference of marginal cost between firm 1 and firm 2, C ′
1g(y)−C ′

2g(y), to be a

positive constant. Without loss of generality, we assume C1g(y) > C2g(y) for

any y > 0. With some loss of generality, but considerable gain in simplicity,

let the demand function take on the following form,

p(x1b, x1g, x2b, x2g) = a− x1b − x1g − x2b − x2g, a > 0, (10)
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which implies that consumers’ willingness to pay is the same for fossil/nuclear

and green power.

We start with the subsidy policy, focussing on the Cournot solution because

power markets have been characterized by an absence of the fierce price com-

petition one would expect in a Bertrand world. Limited price competition may

be the result of collusion (Newbery, 2002), a variant of which is to stick to

Cournot strategies. Moreover, under certain circumstances (e.g., capacity con-

straints), Cournot strategies continue to be pursued even under Bertrand-type

competition (Kreps and Scheinkman, 1983). In such a market set-up, firm 1

(the leader) believes that firm 2 (the follower) will react to firm 1’s choice of

green power produced. Thus in equilibrium firm 1 will have chosen a higher

production level than in the case of a Cournot equilibrium and, consequently,

firm 2 a lower level. 7

3.1 Effect of subsidy on equilibrium

In this section, we assume that the subsidy is uniform, failing to take the

difference in cost into account; the case of a non-uniform subsidy is discussed

in section 3.2 below. Here, the two firms face the following decision problem,

max
xib,xig

(a− xib − xig − xjb − xjg)(xib + xig) + sxig − cbxib − Cig(xig), (11)

where i, j = 1, 2, and i 6= j.

We assume that the subsidy s is exogenous to and equal across firms. Gener-

alizing condition (3), one can distinguish three different cases for the subsidy

7 A Stackelberg variant of this model would be an interesting extension, which is

beyond the scope of this paper, however.
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level (denoted S1–S3).

3.1.1 Case S1: s ≤ C ′
2g[x

∗
2g]− cb < C ′

1g[x
∗
1g]− cb

If s < C ′
2g[x

∗
2g] − cb, it is obvious that no green electricity will be produced

because the subsidy does not make up for the efficient producer’s cost disad-

vantage. Accordingly, the standard Cournot solution to the game is (cf. Kreps,

1990, p. 326),

x∗1b = x∗2b =
a− cb

3
; x∗1g = x∗2g = 0. (12)

If s = C ′
2g[x

∗
2g] − cb, then generator 2 is indifferent between producing green

electricity and fossil/nuclear electricity.

3.1.2 Case S2: C ′
2g[x

∗
2g]− cb ≤ s < C ′

1g[x
∗
1g]− cb

In this case, the subsidy makes up for the cost disadvantage of green power

for generator 2, but fails to do so for the less efficient generator 1, who there-

fore refrains from producing green electricity. The Cournot solution remains

the same (in the sense that total electricity output of each firm remains un-

changed), as compared to the case of a uniform quota.

So if s > C ′
2g[x

∗
2g]− cb, then generator 2 switches to green electricity, i.e.,

x∗1b =
a− 2cb + C ′

2g[x
∗
2g]− s

3
(13)

x∗2g =
a− 2C ′

2g[x
∗
2g] + cb + 2s

3
(14)

x∗1g = x∗2b = 0. (15)

Note that x∗1b in (13) and x∗2g in (14) are larger than in (12).
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3.1.3 Case S3: s ≥ C ′
1g[x

∗
1g]− cb

If s > C ′
1g[x

∗
1g]− cb, then the subsidy overcompensates the cost disadvantage

of green power even for the less efficient generator 1. Therefore, both firms

produce green electricity only. Accordingly, the optimal solutions are now

x∗1g =
a + C ′

2g[x
∗
2g]− 2C ′

1g[x
∗
1g] + s

3
(16)

x∗2g =
a + C ′

1g[x
∗
1g]− 2C ′

2g[x
∗
2g] + s

3
(17)

x∗1b = x∗2b = 0. (18)

In the limiting case where s = C ′
1g[x

∗
1g]− cb, generator 1 is indifferent between

producing green and fossil/nuclear power, while generator 2, being efficient in

the production of green power, supplies green electricity only.

3.1.4 Optimal subsidy level

The results derived in the previous subsection show that the equilibrium so-

lutions to the Cournot game strongly depend upon the level of the subsidy.

This raises the issue of determining the optimal subsidy level. In analogy to

(7), let social welfare be given by

W j(Q, x1g, x2g; s) =
∫ Q

0
p(ν)dν − cb(Q− x1g − x1g)

−C1g(x1g)− C2g(x2g) + E(xg), (19)

with W j denoting the social welfare gains associated with case j (j = 1, 2,

and 3) of sections 3.1.1–3.1.3. We assume that in case 2, s is slightly greater

than C ′
2g[x

∗
2g] − cb, and in case 3 slightly greater than C ′

1g[x
∗
1g] − cb, in order

to avoid ambiguity.

To facilitate comparison between the cases, the externality function associated
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with green electricity takes the form E(xg) = βxg, β > 0. While it would

certainly be interesting to elaborate on possible alternative functional forms

of E(xg), and consequences for the outcome, such an analysis is beyond the

scope of this paper and saved for future research.

The parameter β (called ‘welfare parameter’ henceforth) implies a constant

marginal social benefit from producing green electricity. Using the equilibrium

values given in (11) to (17), the welfare associated with the three cases can be

written as follows:

W 1 =
(
a− Q

2

)
Q− cbQ (20)

W 2 =
(
a− Q

2

)
Q + βx2g − cb(Q− x2g)− C2g(x2g) (21)

W 3 =
(
a− Q

2

)
Q + βQ− C1g(x1g)− C2g(x2g). (22)

As is to be expected, whether or not the welfare parameter β exceeds the

marginal cost parameters is of crucial importance. For β > C ′
1g[x

∗
1g]− cb, the

welfare parameter is larger than the additional costs incurred by firm 1, so

that it is optimal if both firms produce green electricity. Conversely, if the

positive externality βx2b exceeds the extra costs of producing green electricity

for firm 2, it is optimal if firm 2 produces green instead of brown electricity.

More specifically, we can distinguish the following situations:

(A) if β > C ′
1g[x

∗
1g]− cb, then W 3 > W 2 > W 1. Hence the optimal subsidy is

the lower bound of the subsidy interval in case 3, i.e., s∗A = C ′
1g[x

∗
1g]− cb.

(B) if β = C ′
1g[x

∗
1g]− cb, then W 3 = W 2 > W 1. The welfare gains remain the

same for s∗B = C ′
1g[x

∗
1g] − cb and s∗∗B = C ′

2g[x
∗
2g] − cb, though the amounts of

green electricity produced are different.
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C´1g  [x1g*]– cb

C´1g  [x1g*]– cb

Optimal

values of s

C´2g [x2g*]– cb

C´2g [x2g*]– cb

0 

D

C
B

A

Fig. 2. Optimal subsidy levels vs welfare parameter β of green electricity, cases A

through D.

(C) if C ′
2g[x

∗
2g] − cb ≤ β < C ′

1g[x
∗
1g] − cb, then W 2 > W 3 and W 2 ≥ W 1. The

optimal subsidy is thus equal to the lower bound of the subsidy interval in

case 2, i.e., s∗C = C ′
2g[x

∗
2g]− cb.

(D) if β < C ′
2g[x

∗
2g]−cb, then W 1 > W 2 > W 3. Therefore, the optimal subsidy

is zero, because none of the rates are effective in promoting green power.

Figure 2 summarizes the optimal subsidy schedule for different values of the

welfare parameter β.

3.2 Quota-based policy

Building on (4) of section 2.2, the decision problem faced by the two firms in

a duopoly market can be written as

15



max
xib,xig

[(a− xib − xig − xjb − xjg)(xib + xig) + z(x̃ig − x̃jg)

− f(x̄g − xig − x̃ig)− cbxib − Cig(xig)],

s.t. xig + xjg = 2x̄,

(23)

with x̃ig (x̃jg) denoting the amount of certificates sold (purchased), respec-

tively, i, j = 1 or 2, and i 6= j, f denoting the fine per unit as in (4), and z

denoting the certificate price. Note that the constraint implies that the amount

of green certificates produced by the two firms must not exceed the industry

quota – i.e. we assume that once the quota is satisfied the certificate price

drops to zero. Thus, there is no incentive to produce more green electricity

than is required by the quota target.

In the above model, each firm has two choice variables. However, given the

assumption that the difference C ′
1g(y) − C ′

2g(y) is a positive constant for any

y > 0, generator 1’s choice of x1g boils down to a choice between 0 and x̄g,

depending on the ordering of f , z, and the level of the difference in marginal

costs of producing green and brown electricity (cf. figure 3). If it is in the

interest of generator 1 to purchase green electricity certificates at all, it must

also be (at least weakly) in its interest to go all the way. Therefore, we can

find a Nash equilibrium by comparing the firms’ payoffs for x∗1g ∈ {0, x̄g},
which will be shown in the following section. Before turning to the Nash

equilibrium, however, we briefly discuss the different possible cases, of which

we will examine the two that are desirable from a social welfare point of view.

First, the fine could fall short of the difference in marginal costs for firms 1

and 2, in which both firms prefer to pay the fine and produce conventional

electricity only.
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Second, if the fine is larger than the cost difference for firm 2 but lower than

the marginal cost difference for firm 1 of producing green instead of brown

electricity, then we can distinguish two sub-cases: either the certificate price

is larger or smaller than the fine. In the former case, firm 1 prefers to pay

the fine, rather than buying certificates from firm 2, while in the latter case it

would buy certificates from firm 2 up to its quota (provided, of course, that

trading is possible).

Third, the fine is set at a higher level than the difference in the marginal costs

of producing green instead of conventional electricity for both generators. In

this case we can again distinguish two sub-cases, one where z is lower than

the cost difference for firm 1 (so that it has an incentive to buy certificates

up to x̄ from generator 2) and a situation where it is higher (in which case

generator 1 would self-generate green electricity up to its quota 8 ).

In the following, we consider the two cases where certificate trading occurs

(case I) and the case where firm 1 self-produces green certificates (case II).

3.3 Nash equilibrium under the quota-based policy

We now elaborate the Nash equilibrium for the quota-based policy, by com-

paring the firms’ payoffs under the two socially desirable strategies stated at

the end of the previous section 3.2. Hence, in the discussion that follows, we

distinguish the two cases I and II.

8 Note that in this situation generator 1 would possibly be forced at some point to

leave the market, as its costs of producing green electricity are too high.
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Fig. 3. Effects of the TGC policy in a duopoly game

3.3.1 Case I: x∗1g = 0

Case I refers to a situation where the cost difference for firm 1 of producing

green instead of brown electricity is lower than the fine f but higher than the

certificate price z. Therefore, it is cheaper for firm 1 to buy certificates from

firm 2. Given that x∗1g = 0, generator 2 is required to produce at least 2x̄g

units of green electricity in order to satisfy the industry quota. This can be

summarized as follows,

x∗1g = 0 ⇔ f > C ′
1g[x

∗
1g]− cb > z > C ′

2g[x
∗
2g]− cb (24)

or as

C ′
1g[x

∗
1g]− cb > f > z > C ′

2g[x
∗
2g]− cb.
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Firm 1 solves the problem

max
x1b,x1g

Π1 = (a−x1b−x2b−x2g)x1b− cbx1b− zx̃g−max{0, f(x̄g− x̃1g)}, (25)

with f.o.c.:

∂Π1

∂x1b

= a− 2x∗1b − x∗2b − x∗2g − cb = 0. (26)

Observing the constraint x2g ≥ 2x̄g, firm 2 solves

max
x2b,x2g

L(x2b, x2g, λ) = (a− x1b − x2b − x2g)(x2b + x2g)− cbx2b + zx̃g

−max{0, f(x̄g − x2g + x̃g)} − C2g(x2g) + λ(2x̄g − x2g),

with λ ≥ 0 denoting the Lagrange multiplier. The f.o.c. read,

∂L

∂x2b

= a− x∗1b − 2x∗2b − 2x∗2g − cb = 0 (27)

∂L

∂x2g

= a− x∗1b − 2x∗2b − 2x∗2g − cb − C ′
2g(x

∗
2g) + f + λ = 0. (28)

From (26) and (27) we get x∗1b = (a− cb)/3, and from (27) and (28) we obtain

x∗2b + x∗2g = (a− cb)/3.

Given that firm 1 does not produce any green electricity, we need to distinguish

two subcases. In the first subcase (Ia, Appendix A), firm 2 self-generates its

own quota, while in the second subcase (Ib, Appendix A) it produces twice

the individual firm’s quota (and hence is able to sell the excess certificates to

firm 1, which faces higher production costs).

Eqs. (A.1) and (A.2) say that the two firms will produce the same total quan-

tity of electricity, determined by the maximum possible market demand and

the cost of producing electricity from fossil/nuclear fuel. From (27) and (28)

we obtain

λ = C ′
2g[x

∗
2g]− cb − f. (29)
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Eq. (29) indicates that if C ′
2g[x

∗
2g] − cb > f , such that λ > 0, generator 2

will only produce green electricity up to the industry quota as required by

our assumptions, due to the Kuhn–Tucker condition. Note that trading of

certificates is also possible as long as C ′
1g[x

∗
1g]− cb ≥ f . However, if C ′

2g[x
∗
2g]−

cb = f (and hence λ = 0), generator 2 has an incentive to produce at least

the quota required from the industry. Also note that different values of f ∈
[C ′

2g[x
∗
2g] − cb, C

′
1g[x

∗
1g] − cb] only affect the distribution of profits between

the two firms, with no impact on the amount of certificate trading and social

welfare. Therefore, we first focus on the case C ′
2g[x

∗
2g]−cb = f as a benchmark.

The optimal quota continues to be determined as in eqs. (7)–(9), except that

C ′
b[x

∗
b] = cb. Hence x̄g = x∗g/2 still holds. As long as 2x̄g ≤ (a − cb)/3 [see

eq. (A.2)], generator 2 produces (a − cb)/3 − 2x̄g units of electricity using

fossil/nuclear fuel and 2x̄g units of green electricity. As to 2x̄g > (a − cb)/3,

recall that a denotes the willingness to pay for the first kWh of electricity,

while cb symbolizes the (constant) marginal cost of fossil/nuclear power, which

makes a− cb a very large number. It is unlikely for x̄g to exceed one sixth of

that number, justifying that this case is neglected.

So far, we have assumed that generator 1 is the only buyer of generator 2’s

extra certificates. However, there may be another agent willing to purchase

the certificates at the market price, for example, an environmental protection

agency or a foundation promoting renewable energy. Since the equilibrium

price of certificates is determined in such a manner that generator 2 is indif-

ferent between producing green or fossil/nuclear fuel electricity, the presence

of an additional bidder might cause generator 2 to produce green electricity

in excess of the quota. However, this would make the system a combination of

quantity and price policies. The reason is that these extra purchases, resulting
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in an increase of the value of the certificates, can be viewed as a subsidy. It

is possible that such a policy mix is more effective in promoting green power

than either one of the two policy instruments individually. However, a detailed

analysis of such a mixed policy is beyond the scope of this paper.

3.3.2 Case II: x∗1g = x̄g

We now turn to the case of generator 1 producing green electricity to satisfy

the quota. This is possible if the difference in the marginal cost of producing

green and brown electricity is strictly lower than the certificate price (and the

fine), or formally,

x∗1g = x̄g ⇔ f > z > C ′
1g[x1g]− cb. (30)

With no external agent purchasing, the condition x1g = x̄g or x2g = x̄g con-

tinues to hold. Firm 1’s optimization problem now reads,

max
x1b,x1g

Π1 = (a− x1b − x2b − x̄g − x2g)(x1b + x̄g)− cbx1b − C1g(x̄g),

with f.o.c.,

∂Π1

∂x1b

= a− 2x∗1b − 2x̄g − x∗2b − x2g − cb = 0; (31)

while firm 2 solves the problem

max
x2b,x2g

Π2 = (a− x1b − x2b − x̄g − x2g)(x2b + x2g)− cbx2b − C2g(x2g) (32)

−max{0, f(x̄g − x2g)}.

Since x∗2g can only take on x̄g or 2x̄g as optimal values, we concentrate on

x∗2g ≥ x̄g and only consider the first-order condition concerning variable x2b,

which reads:

∂Π2

∂x2b

= a− 2x∗2b − 2x2g − x∗1b − x̄g − cb = 0. (33)
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From (31) and (33) we get x∗1b = (a− c)/3− x̄g and x∗2b = (a− c)/3− x2g.

As before, we have to distinguish two subcases (IIa and IIb in Appendix A), in

both of which firm 1 self-generates green electricity up to its individual quota,

while firm 2 either produces x̄g or twice x̄g.

Firm 1

Firm 2

x̄g 2x̄g

0 −fx̄g, −cbx̄g − C2g(x̄g) −zx̄g, (z − 2cb)x̄g − C2g(2x̄g)

x̄g cbx̄g − C1g(x̄g), cbx̄g − C2g(x̄g) cbx̄g − C1g(x̄g), 2cbx̄g − C2g(2x̄g)

Fig. 4. Payoffs to producers of green electricity under the TGC policy

If firm 2’s strategy is to produce the minimal quota, then firm 1’s best response

is x1g = x̄g if C1g(x̄g)− cbx̄g ≤ fx̄g. However, if firm 2’s strategy is to produce

twice the quota, then firm 1’s best response is x1g = 0 if C1g(x̄g)− cbx̄g ≥ zx̄g.

If firm 1’s strategy is to produce 0, then firm 2’s best response is 2x̄g, provided

the following condition holds: C2g(2x̄g)−C2g(x̄g) ≤ (z− cb)x̄g. This condition

holds due to the assumptions made in this paper. If firm 1’s strategy is to

produce the minimal quota, then firm 2’s best response is x̄g, provided that

the following condition is satisfied: C2g(2x̄g)−C2g(x̄g) ≥ cbx̄g. This condition

again holds due to the assumptions made. Therefore, if the condition zx̄g ≤
C1g(x̄g) − cbx̄g ≤ fx̄g is satisfied, this game has two Nash equilibria in pure

strategies: (0, 2x̄g) and (x̄g, x̄g).
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4 Welfare comparison between subsidy and quota-based policies

In spite of the simplifying assumptions made, a welfare comparison between

a price-subsidy and a quota policy may be worthwhile because it promises to

provide some guidance to policy-makers regarding the choice of instruments

for promoting renewable energy use.

4.1 Welfare gains under the subsidy policy

Since our main interest is to discuss how to efficiently promote green power,

case S1 (section 3.1.1) can be disregarded since it is fossil/nuclear only. In

addition, case S3 (section 3.1.3) is not realistic because it predicts that all

firms exclusively produce green power, which would presuppose extremely

high green electricity quota. Therefore, we only examine the case associated

with condition C ′
2g[x

∗
2g]− cb ≤ β < C ′

1g[x
∗
1g]− cb, i.e. case S2 of section 3.1.2.

The pertinent welfare function is repeated from (21) for convenience,

W s =
(
a− Q

2

)
Q− cb(Q− x2g)− C2g(x2g) + βx2g, (34)

where Q continues to be total production of both types of electricity. Remem-

ber that in case S2 we have x∗1g = x∗2b = 0 and the optimal subsidy is given by

s∗C = C ′
2g[x

∗
2g]−cb, thus the total production given the optimal subsidy scheme

can be determined as Qs = xs
1b + xs

2g = 2(a − cb)/3, with xs
2g = (a − cb)/3

denoting the amount of green energy produced by firm 2. Therefore, social

welfare achieved by the optimal subsidy scheme is

W s = (Qs)2 − C2g

(
Qs

2

)
+ (cb + β)

Qs

2
. (35)
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4.2 Welfare gains under the quota-based policy

If marginal costs of green power are increasing, the optimal quota cannot

be determined directly. To match the production of green electricity in the

subsidy case, we simply assume that x̄g is equal to (a − cb)/6, which may

constitute a rather frequent solution [see the discussion after eq. (29) in sec-

tion 3.3.1]. The welfare function for the quota-based certificate system can

then be specified as

W q =
(
a− Q

2

)
Q− cb(Q− x2g)− C2g(x2g) + βx2g. (36)

The total amount of energy Qq = 2(a− cb)/3 produced given the quota-based

policy is identical with Qs. However, w.r.t. to x2g, we have to distinguish the

following two possible pure Nash equilibrium outcomes of the game described

in section 3.3.2:

(i) Welfare achieved in the Nash equilibrium (xq1
1g, x

q1
2g) = (0, 2x̄g),

W q1 = (Qq)2 − C2g

(
Qq

2

)
+ (cb + β)

Qq

2
. (37)

Since Qq = Qs, the welfare under the quota-based policy realized in this

Nash equilibrium is equal to the welfare under the optimal subsidy policy.

(ii) Welfare achieved in the Nash equilibrium (xq2
1g, x

q2
2g) = (x̄g, x̄g),

W q2 = (Qq)2 − C2g

(
Qq

4

)
+ (cb + β)

Qq

4
. (38)

Note that the welfare level W q2 is lower than W q1 = W s if

C2g(2x̄g)− C2g(x̄g) < (cb + β)x̄g.

This condition is satisfied if the level of marginal social benefit of green elec-

tricity β is sufficiently high. Hence, the subsidy policy guarantees a welfare
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level which might not be achieved with the quota policy if the Nash equilib-

rium (x̄g, x̄g) is played. A comparison of both firms’ profits as well as of their

sum shows that only firm 1 is better off in the socially efficient equilibrium

(0, 2x̄g). Under our assumptions, both firm 2’s profit and total producer sur-

plus are likely to be higher in the socially less desirable equilibrium (x̄g, x̄g).

Therefore, even if the Cournot game were repeated an infinite number of times,

no cooperative equilibrium would occur with both firms choosing the socially

desirable strategies.

4.3 Welfare of subsidy and quota-based policies in a quasi-symmetric duopoly

Comparing welfare levels given in (35), (37), and (38), one sees that, for suffi-

ciently high marginal social benefits of green energy, W s = W q1 > W q2. This

result implies that even with imperfect competition and quasi-heterogeneous

costs, subsidies should be preferred to tradable certificates. This is intuitive,

since outcomes in a duopoly crucially depend on whether firms pursue price- or

quantity-oriented strategies and FIT could be said to be price-oriented whereas

TGC is quantity-oriented. However, the results established above given imper-

fectly competitive markets seem to hinge on two crucial assumptions. The first

is that TGC are tradable. This means that price is the signal to competitors,

precisely as the subsidy under FIT. And since the quota and the subsidy

are set as to optimally internalize the externalities present, the information

content of price is the same under both regimes. Second, competitors pursue

optimal duopoly strategies regardless of the choice of internalization policy

adopted by the government.

In addition to these two basic premises, there are simplifying assumptions that

25



should be kept in mind. Specifically, the cost of administering subsidies and/or

quota are neglected and therefore assumed equal. However, when it comes to

start-up costs, a certificate system may require more resources than a subsidy

system, especially for establishing appropriate regulation and regulatory con-

trol. Also, information regarding cost and marginal revenues on the part of

competitors as well as marginal positive externalities of green power on the

part of government was assumed perfect. Yet due to cost heterogeneity, the

amount of information required for calculating the optimal subsidy typically

increases with a growing number of firms. Although the setting of the optimal

quota requires similar information, the heterogeneity of firms does not en-

ter their determination, causing it to be relatively straightforward and hence

probably less costly than a subsidy system. These considerations also suggest

that a generalization from duopoly to oligopoly would be straightforward.

Further, we found that subsidies provide more incentives for green power pre-

cisely when its marginal social benefits are high (as in case S3 of section 3.1.3).

A pure quota-based TGC system lacks this feature.

5 Policy implications

Based on several models incorporating imperfect competitiveness of markets

for power for added realism, we find that the subsidy (FIT) approach, when

implemented at its socially optimal value, leads to a welfare gain, which is

not necessarily achieved with the quota-based (TGC) policy. Furthermore,

the subsidy policy is generally preferred by utilities, likely because it does

not call into question their right to cause a certain amount of pollution when

using fossil/nuclear fuel input. At the same time, subsidies do provide stronger
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incentives for pollution-abating innovation than quotas by directly favoring

production of green electricity. Since the future of green electricity importantly

depends on future technological progress for lowering its cost of production,

subsidies are also more efficient dynamically.

On the other hand, the financing of subsidies requires tax revenue. When the

(economic or political) cost of additional taxation is high, like in the United

States (but also in Scandinavian countries e.g.), the quota-based approach

may provide a viable alternative. As found in the present analysis, tradable

green certificates are more efficient than non-tradable ones regardless of market

structure. Trade in certificates is likely to develop because green power does

not yet rely on a mature cost-minimizing technology, contrary to fossil/nuclear

generation. Moreover, since the cost of running a market for certificates is

lower once the market is established, the disadvantage of the quota-based

policy will gradually wane, without however reaching the dynamic efficiency

of the subsidy approach.

6 Conclusions

This paper starts from the suspicion that the conventional wisdom, claim-

ing a tax/subsidy (FIT) and a quota/certificate (TGC) policy scheme to be

equivalent in terms of static efficiency, might not hold if markets for power

are imperfectly competitive. Based on a duopoly model in which the two com-

petitors differ in terms of their marginal cost of producing ‘green’ power, we

show that, if both schemes are implemented at their respective socially opti-

mal values, the subsidy policy is at least equivalent, but can be superior to

the quota policy depending on the outcome of the game in the market for
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green certificates. The subsidy and the tradable certificate contain the same

(correct) price information entering competitors’ strategy choices, which are

of the Cournot type regardless of the scheme considered. Interestingly, how-

ever, only one of two pure-strategy Nash equilibria under the quota-based

policy corresponds to the unique equilibrium outcome under the subsidy pol-

icy whereas the other Nash equilibrium (in which both firms produce green

energy) leads to a lower welfare level. In view of the technological heterogene-

ity of green power generation, it is important that certificates are tradable.

Also, the possible equivalence breaks down as soon as incentives for pollution-

abating innovation are considered as well. Thus, the subsidy is the preferable

approach; on the other hand, its financing may meet with a high marginal

cost of taxation.

Acknowledgements

The authors acknowledge comments received from Eberhard Feess, Kaushik

Deb, Michael Kuenzle and Julia Meyer, as well as participants in the 2006

Annual Meeting of the Swiss Society of Economics and Statistics (9-10 March

2006, Lugano, Switzerland) on an earlier version of the manuscript.

References

Abbasi, S. A. and Abbasi, N. (2000). The likely adverse environmental impacts

of renewable energy sources. Applied Energy, 65(1–4):121–144.

Amundsen, E. and Bergman, L. (2004). Green certificates and market power

on the Nordic power market. Expert Report for the SESSA Conference “Ad-

28



dressing Market Power and Industry Restructuring for Consumer Benefits”,

Stockholm, Sweden, 7–8 October 2004.

Amundsen, E. S. and Mortensen, J. B. (2001). The Danish Green Certificate

System: some simple analytical results. Energy Economics, 23(5):489–509.

Amundsen, E. S. and Mortensen, J. B. (2002). Erratum to “The Danish Green

Certificate System: some simple analytical results”. Energy Economics,

24(5):523–524.

Baumol, W. J. and Oates, W. E. (1988). The Theory of Environmental Policy.

Cambridge University Press, Cambridge.

Berry, D. (2002). The market for tradable renewable energy credits. Ecological

Economics, 42(3):369–379.

Berry, T. and Jaccard, M. (2001). The renewable portfolio standard: design

considerations and an implementation survey. Energy Policy, 29(4):263–277.

Bhagwati, J. N. (1969). Trade, Tariffs, and Growth. MIT Press, Cambridge,

Mass.

Bower, J., Bunn, D. W., and Wattendrup, C. (2001). A model-based analysis

of strategic consolidation in the German electricity market. Energy Policy,

29(12):987–1005.

CEC (1998). Draft Proposal for a Directive of the European Parliament and

of the Council on access of electricity from renewable energy sources to the

internal market in electricity. 13 October 1998, Commission of the European

Communities, Brussels.

CEC (1999a). Proposal for a Directive of the European Parliament and of

the Council on the promotion of electricity from renewable energy sources

in the internal electricity market. 23 November 1999, Commission of the

European Communities, Brussels.

CEC (1999b). Working Paper of the European Commission. Electricity from

29



renewable sources and the internal electricity market. March, Commission

of the European Communities, Brussels.

CEC (2001). Directive 2001/77/EC of the European Parliament and of the

Council of 27 September 2001 on the promotion of electricity from renew-

able energy sources in the internal electricity market. Official Journal of the

European Commission, L283: 33–40, Commission of the European Commu-

nities, Brussels.

CEC (2008a). Proposal for a directive of the European Parliament and of

the Council on the promotion of the use of energy from renewable sources.

COM(2008) 19 final, 23 Jan 2008, Commission of the European Communi-

ties, Brussels.

CEC (2008b). The support of electricity from renewable energy sources. Ac-

companying document to the Proposal for a Directive of the European Par-

liament and of the Council on the promotion of the use of energy from

renewable sources. Commission Staff Working Document, SEC(2008) 57,

23 Jan 2008, Commission of the European Communities, Brussels.
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A Appendix

Subcase Ia: x∗1b =
a− cb

3
; x∗1g = 0; x∗2b =

a− cb

3
− x̄g; x∗2g = x̄g

Market demand:

a− x1b − x2b − x2g =
a + 2cb

3
(A.1)

Firms’ profits:

Π1 =
a + 2cb

3
a− cb

3
− cb · a− cb

3
− fx̄g =

(a− cb)2

9
− fx̄g;

Π2 =
a + 2cb

3
a− cb

3
− cb ·

(
a− cb

3
− x̄g

)
+ zx̄g − C2g(x̄g)− fx̄g

=
(a− cb)2

9
− cbx̄g − C2g(x̄g)

Subcase Ib: x∗1b =
a− cb

3
; x∗1g = 0; x∗2b =

a− cb

3
− 2x̄g; x∗2g = 2x̄g

Market demand:
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a− x1b − x2b − x2g =
a + 2cb

3
(A.2)

Firms’ profits:

Π1 =
a + 2cb

3
a− cb

3
− cb

a− cb

3
− zx̄g =

(a− cb)2

9
− zx̄g;

Π2 =
a + 2cb

3
a− cb

3
− cb

(
a− cb

3
− 2x̄g

)
+ zx̄g − C2g(2x̄g)− fx̄g

=
(a− cb)2

9
+ (z − 2cb)x̄g − C2g(2x̄g)

Subcase IIa (symmetry): x∗1b = x∗2b =
a− cb

3
− x̄g; x∗1g = x∗2g = x̄g

Market demand:

a− x1b − x1g − x2b − x2g =
a + 2cb

3
(A.3)

Firms’ profits:

Π1 =
a + 2cb

3
a− cb

3
− cb

(
a− cb

3
− x̄g

)
− C1g(x̄g) =

(a− cb)2

9
+ cbx̄g − C1g(x̄g);

Π2 =
a + 2cb

3
a− cb

3
− cb

(
a− cb

3
− x̄g

)
− C2g(x̄g) =

(a− cb)2

9
+ cbx̄g − C2g(x̄g)

Subcase IIb: x∗1b =
a− cb

3
− x̄g; x∗1g = x̄g; x∗2b =

a− cb

3
− 2x̄g; x∗2g = 2x̄g

Market demand:

a− x1b − x1g − x2b − x2g =
a + 2cb

3
(A.4)

Firms’ profits:

Π1 =
a + 2cb

3
a− cb

3
− cb

(
a− cb

3
− x̄g

)
− C1g(x̄g) =

(a− cb)2

9
+ cbx̄g − C1g(x̄g);

Π2 =
a + 2cb

3
a− cb

3
− cb

(
a− cb

3
− 2x̄g

)
− C2g(2x̄g) =

(a− cb)2

9
+ 2cbx̄g − C2g(2x̄g)
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