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Abstract

Assuming that teachers are concerned with human capital formation and stu-

dents � with ability signaling, in this paper we model a teacher-student relationship

as an agency problem with con�icting interests. In our model, the teacher elicits

e¤ort from the student rewarding for it with a grade, the utility of which to the

student is an ability signal inferred by the job market. In the event that the job

market does not observe individual teachers�grading practice, teachers �nd grades

as costless rewards and optimally choose to be lenient in grading. As a result,

�the problem of the commons�of good grades emerges leading to the depreciation

of grading standards and grade in�ation. The prediction of the model that the

lower the expectations the teacher holds about her students�abilities, the �atter

the grading rules she sets up is empirically supported.

Keywords: Principal-agent model, teacher-student relationship, costless rewards,

grading rules, mismatch of abilities and grades, grade in�ation, teacher incentives.

JEL codes: C70, D82, D86, I20.

1 Introduction

In this paper, we approach a teacher-student relationship as a principal-agent model with

con�icting interests. Arguably, a teacher�s goal is to pass on knowledge to students� the

more, the better� while the students care for the teacher�s assessment of their performance�

grades. A justi�cation of this con�ict of interests could be the dichotomy of the role of

education: human capital formation versus job market signaling.1 Therefore, an interpre-

tation of our modeling framework to be presented is that the teacher is more concerned

with the human capital formation side, while the students� with the �ability signal�their

�I would like to thank Tore Ellingsen, Christian Ewerhart, Drew Fudenberg, Magnus Johannesson,
Karl Wärneryd, and seminar participants at the University of California, Santa Barbara.

yUniversity of Zurich, IEW, Winterthurerstrasse 30, CH�8006 Zurich, Switzerland. E-mail: rober-
tas.zubrickas@uzh.ch.

1See, e.g., Bedard (2001).

1



accomplished education carries along, treating knowledge obtained as abstract and use-

less outside academia. We are going to show that the grading patterns widely observed in

practice� a mismatch or low correlation between students�grades and their abilities and

coarse grading with implications to grade in�ation� can be the outcomes of our agency

problem, as studied from an individual teacher�s perspective.

We consider a grading rule� assigning grades to exam scores� as �a contract� that

the teacher o¤ers her student. With the help of grades, the teacher aims to elicit costly

learning e¤ort from� equivalently, to pass on knowledge to� her student, who comes from

a population of students with disparate abilities for the subject taught. The teacher has

a technology� the exam test� that allows her to assess the student�s knowledge level

attained, on which she conditions grades to be rewarded. We assume that a knowledge

level attained is in a direct and deterministic relationship with the student�s learning

e¤ort elicited (conditional on his ability type). The main constraint that we impose on

the teacher is that her grading rule needs to be incentive compatible, i.e., grades cannot

be conditioned on the student�s ability level, which is his private information.2

The key feature of this model is that grades are costless rewards for the teacher to

give but of a value to the student. We separately consider two sources of value of grades

to the student: 1) nominal� a grade is of a value on its own� and 2) relative� the value

of a grade comes in the form of an ability signal inferred by the job market. The latter

interpretation of the value of grades is in the tradition of treating education as job market

signaling (Spence (1973)), but the former is not a big departure from this tradition either.

A student may care for his grade at every class he takes not just because of its immediate

job-market-signaling value but for its contribution toward his �nal grade average at the

end of his study program, which later on will serve as an ability signal. Besides, external

criteria of academic performance� used, e.g., for scholarship application purposes� are

usually set in nominal grades.

The main distinction between the two approaches to modeling the utility of grades

can be expressed in terms of the scarcity of grades available to the teacher. In the �rst

case, the (ex ante) utility of a grade is independent of the frequency of the grade given

in the class� i.e., there is no scarcity of grades� while in the second case, where the

utility of a grade is equal to the expected ability inferred by the job market, grades

are scarce. However, the two approaches turn similar if we assume that the job market

cannot identify the teacher�s grading rule applied to grade the student and infers the

student�s ability from his grade based on its own perception of grading standards. Then,

2If a hidden-information framework seems restrictive� arguably, teachers have access to students�
previous records and can learn about their abilities� then, alternatively, we could require that the teacher
cannot discriminate among her students by applying ability-speci�c grading rules (i.e., the same exam
score needs to result in the same grade irrespective of the student�s ability level). With this alternative
formulation, the optimization problem would remain intact as in the case with the hidden-information
framework adopted, and, therefore, the latter is retained for its link with the existing literature.
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the teacher essentially �nds grades as costless and abundant rewards to give (but with

implications to the deterioration of grading standards as later discussed).3

All in all, we study a teacher-student relationship in the framework of a single-agent

model with hidden information. With the assumption that the teacher�s objective is to

maximize the student�s expected knowledge under the incentive compatibility constraint,

the goal of this paper is to analyze the properties of the grading rule �optimally�designed

by the teacher.

We obtain the following predictions about optimal grading patterns. In the event

when students value grades nominally, we observe the teacher pooling student ability

types for the highest grade. In other words and more generally, �the no distortion at the

top�property does not hold when the teacher (principal) can costlessly reward the student

(agent). This result arises because the gain from distorting incentives for students of the

highest ability outweighs the corresponding loss (unlike in the standard model with costly

transfers). For the case with the relative value of grades, if the student�s learning costs

are not too high (i.e., the e¤ort cost function is not too convex), then the teacher designs

a grading rule that perfectly screens student ability types.4 However, if the teacher�s

grading rule cannot be distinguished by the job market, we again obtain pooling student

types for the highest grade (for the same reasons as in the model with nominal grades). In

addition, our comparative statics analysis shows that if the teacher holds low expectations

about her students�abilities, then she should apply more lenient grading standards (in

order to elicit on average higher e¤ort levels), and vice versa. As a result, this can lead

to heterogeneous distributions of grades among classes di¤erent in student abilities� in

particular, to a mismatch and low correlation between students�grades and their abilities.

Signi�cantly, the existing empirical evidence strongly supports the �ndings of the

model, lending credibility to our chosen modeling strategy of a teacher-student relation-

ship. With regard to our comparative statics result, Goldman & Widawski (1976) report

a negative correlation between students�Scholastic Aptitude Test scores (which could be

seen as a proxy measure of students�abilities) and the grading standards in the classes

the students were majoring in. According to this study (conducted at University of Cal-

ifornia, Riverside), the negative correlation observed is due to the fact that professors in

a �eld consisting of students with high abilities tend to grade more stringently than do

professors in a �eld with lower-ability students� precisely as our model predicts. These

empirical �ndings were con�rmed by similar studies conducted at Dartmouth College

(Strenta & Elliott (1987)) and at Duke University (Johnson (2003)). Later in the text,

3In our model, the student is indi¤erent about the resultant distribution of grades in the class and,
accordingly, his class ranking as long as it does not a¤ect the ability-signaling value of his grade. We
do not model that the (ex ante) utility of a grade may also come in the form of status or class ranking,
unlike in Dubey & Geanakoplos (2009), a related paper discussed later, Moldovanu et al. (2007), or
Besley & Ghatak (2008).

4This result is in line with the results from related models modeling non-pecuniary rewards such as
status incentives; see Moldovanu et al. (2007); Besley & Ghatak (2008).
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we discuss this empirical evidence more thoroughly.

Our model can also o¤er an insight into the grade in�ation phenomenon� �an ongoing

rise in grade point averages without an accompanying rise in student ability or e¤ort.5�If

we take a dynamic perspective that over time, due to an increasing number of university

openings available (McKenzie & Tullock (1981)), the distribution for abilities of students

enrolled become gradually skewed to the end of lower-ability types6, then, according to our

model with nominal grades, the teacher should become more lenient with grading. The

reason for it is to extract more e¤ort from increasingly numerous lower-ability types (even

at the expense of distorting incentives for high-ability students even further). Along the

same lines, with the number of educational institutions increasing, an individual teacher�s

grading practice bears an increasingly smaller weight on the job market�s perception of

grades as ability signals. Then, similarly to the case with nominal grades, in the model

with relative grades teachers may �nd grades to be costless rewards to give and tend to

exploit good grades to their bene�t. As a result, �the problem of the commons�of good

grades arises, which leads to the deterioration of grading standards and grade in�ation in

the end. Hence, we argue that grade in�ation can arise from teachers�optimal response

to changes in the environment they work at.7

The key driver of our results obtained is the costlessness of rewards. The proposed

re�nement that, unlike the agent, the principal is indi¤erent to a transfer between them is

by no means new in the contract theory literature. It was formally studied, for example,

in Guesnerie & La¤ont (1984), one of the founding articles on mechanism design aimed

at providing an all-encompassing solution to a broadly de�ned principal-agent problem.

In particular, they distinguish between �type A�and �type B�preferences, where with

the former preferences the principal�s utility does not depend on a transfer, while with

the latter (conventional) preferences it does. In their study, however, the �type A�

preferences are primarily used to analyze a social planner�s problem of social welfare

maximization. There, a transfer between the social planner (principal) and the agent is

equivalent, �guratively speaking, to distributing money between two pockets of the same

jacket, leaving the social welfare intact. Therefore, the framework of Guesnerie & La¤ont

(1984) does not apply to the problem studied here. In our model, the principal is, in

fact, more of �type B�, i.e., she cares only about her own utility but does not pay for

5Dickson (1984). For more on grade in�ation, see, e.g., Sabot & Wakeman-Linn (1991) or Kuh & Hu
(1999) and other references cited therein.

6 ... which is consistent with the observation of declining college entrance test scores (Wilson (1999)).
7The recent papers by Chan et al. (2007) and Ostrovsky & Schwarz (Forthcoming) also show how

grade in�ation can arise in equilibrium. These papers model student grading as a signaling (cheap-talk)
game between schools and the job market, and they show that grade compression (and, accordingly, grade
in�ation) can be an equilibrium disclosure of information by schools about their students�abilities that
maximizes their expected wages (unlike expected learning e¤ort as in our model). However, these papers
do not attempt to explain the other empirical observation about grading patterns discussed, namely, the
low correlation between students�grades and their abilities. Later in the paper, we use their argument
when discussing policy applications of restricting grading rules applied by teachers.
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motivating the agent.

Nor does this paper stand alone in designing optimal grading rules from the perspec-

tive of a principal-agent model.8 Dubey & Geanakoplos (2009) target the question what

grading scale (�ner or coarser) a teacher should use in order to induce a higher e¤ort from

her students. They approach the problem of optimal grading schemes from a perspective

di¤erent from ours: they model a teacher-student relationship as a game of status with

stochastic output similar to a tournament. In their multiple-agent model, a student�s

utility of a grade depends on his or her class ranking, i.e., status, resulting from the

grade rewarded (but not on a grade per se even if a grade carries the same ability signal

irrespective of distribution for grades in the class). In addition, in their model the teacher

aims to incentivize all her students to put in maximal e¤ort rather than to obtain the

highest expected e¤ort. Given these modeling di¤erences, we draw di¤erent conclusions

about optimal grading schemes. Dubey & Geanakoplos (2009) �nd that teachers should

use coarse grading schemes and �pyramid�the allocation of grades: in equilibrium the

highest grade would be available to fewer students than the second-highest grade, and

so on.9 Our model predicts that teachers should apply coarse grading schemes, but only

when they can �costlessly�reward the student (e.g., when an individual teacher�s grading

practice cannot a¤ect the perception of the job market about the value of grades), other-

wise they should apply a �ne grading rule. In addition, in the case with costless grades,

we do not �nd �pyramiding�to be an optimal grading rule, especially, when there is a

large mass of less able students in the class.

The remainder of the paper is organized as follows. In Section 2, we introduce a

modeling framework. In Section 3, we solve the model for the case when students value

grades nominally, and in Section 4� for the case with the relative value of grades. In

Section 5, we discuss the main �ndings of the model(s) presented and relate them to

the grading patterns observed in practice; there, we also discuss policy applications of

the model(s). In Section 6, we review existing empirical evidence on mismatch between

students�grades and their abilities. The last section concludes the study.

2 Framework

There is a teacher teaching her class, made of one student, a particular subject. The

teacher�s goal is to pass on knowledge in her subject to the student . She has a technology�

the exam test� that allows her to assess the student�s knowledge level attained from his

8However, it needs to be reckoned that not much theoretical work has been done on modeling a teacher-
student relationship as a principal-agent model on its own, whereas this relationship has typically been
modeled as part of a more global game involving potential employers or university administration (see
Ostrovsky & Schwarz (Forthcoming) or Chan et al. (2007)). At the same time, more research has been
done on the empirical side of the problem (see Johnson (2003)).

9Moldovanu et al. (2007) makes a similar prediction as well.
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test score x 2 [0; x]. (The upper bound on test scores, x, is large enough to allow for an
interior solution.) We assume that the teacher�s technology is perfect in the sense that

there is a deterministic and direct relationship between test scores and knowledge levels,

both of which, therefore, are used synonymously throughout. Achieving a test score x

comes to the student at the e¤ort cost of C(x; �), where parameter � is the student�s pri-

vately known ability level for the subject studied, distributed in the population according

to a common prior distribution F over the ability space � =
�
�; �
�
, � > � > 0. The

properties of the e¤ort cost function C are Cx > 0; Cxx > 0; C� < 0, and Cx� < 0.

The student selects the class for exogenous reasons (e.g., it is compulsory in his cur-

riculum). The reward pursued by the student from participating in the class is the

teacher�s assessment, grade r 2 [0; r], of his class performance� knowledge attained. The
upper bound on grades, r, is assumed to be institutionally preset, as is the very grad-

ing framework, i.e., the assessment of student performance needs to done in the form of

grades only. As already said in the introduction, we separately consider two sources of

value of grades to the student: 1) a grade is of a value on its own (Section 3. Nominal

Value of Grades) and 2) the value of a grade comes in the form of an ability signal as

inferred by the job market (Section 4. Relative Value of Grades). The exact forms of the

student�s utility function of a grade are given in the corresponding sections.

The teacher and student�s relationship develops as follows. First, the teacher sets up

a grading rule that assigns grades r to test scores x. Then, after observing the grading

rule, the student decides on a learning e¤ort C(x; �) to achieve the test score x rewarding

the grade r. The teacher�s objective is to maximize her expected utility, which increases

in the student�s knowledge� equivalently, in his test score� and the student�s objective

is to maximize his utility of a grade less the e¤ort cost spent to obtain it.

Here, we impose some further structure on the model. The cumulative ability distri-

bution function F is twice di¤erentiable and its probability density function f is strictly

positive everywhere (f > 0). In addition, we impose the assumption that the hazard

rate, h(�) = f(�)=(1 � F (�)), monotonically increases in ability, i.e., h0(�) � 0. The

student�s e¤ort cost function C is separable in test score x and ability � and takes the

form of C(x; �) = y(x)=�, where y is an increasing and strictly convex function of x.

Then, denote the teacher�s utility of test score x elicited from the student by function

V : [0; x]! R+, Vx > 0, and assume, until further notice, that it is linear in x :

V (x) = x: (1)

The teacher�s linear utility can be interpreted that she equally cares about the per-

formance of low- and high-ability students. Later in the text, when discussing policy

applications of the model , the linear case serves as a benchmark for the cases when 1)

function V is convex (the teacher puts more weight on high-ability students), and 2)
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function V is concave (the teacher puts more weight on low-ability students).

Next, when formulating the teacher�s utility maximization problem� designing the

student-knowledge-maximizing grading rule� we, without loss of generality, restrict the

set of grading rules to direct grading rulesm = fx; rg, where test score schedule x : �!
[0; x] and grade schedule r : � ! [0; r] impose on the student the truthful revelation of

own ability type. Furthermore, we impose that functions x and r belong to the class

of piecewise continuously di¤erentiable functions (piecewise C1), which also need to be
non-decreasing for a grading rule fx; rg to be implementable. Given these restrictions on
x and r, denote the families of these functions by C1x and C1r , respectively.

3 Nominal Value of Grades

In this section, we model that the student values grades at their face value and derives

a higher utility from a higher grade independently of the grading rule applied by the

teacher. Given a grading rule fx; rg, the student�s net utility of reporting a type �̂ is
equal to

U(�; �̂) = r(�̂)� C(x(�̂); �); (2)

where parameter � is the student�s ability type. The student�s reservation utility of

participating in the class is normalized to zero (for all ability types).

3.1 The Teacher�s Problem

The teacher maximizes with respect to a grading rule fx; rg 2 C1x � C1r her expected
utility Z �

�

x(�)dF (�) (3)

subject to

U(�; �) � U(�; �̂); (4)

U(�; �) � 0; (5)

0 < r(�) � r; for all � and �̂ in �: (6)

In the above, (4) is the student�s incentive compatibility constraint, (5) � the individual

rationality constraint, where the function U is de�ned in (2); the last constraint imposes

an upper bound on the teacher�s rewards (though already imposed by requiring r 2 C1r ).
Under this speci�cation, the model resembles a standard static principal-agent model

with hidden information except for the transfer structure. The distinct feature of this

model is that, unlike in most agency models, the transfer function r does not enter the
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principal�s (teacher�s) utility function but only the agent�s (student�s), meaning that the

principal does not �pay�to motivate the agent. In other words, rewards are costless to

give for the principal but of a value to the agent.

Therefore, unlike in models with monetary transfers, in this model with costless re-

wards we do not have the intercomparison of the agent�s and principal�s utilities. To solve

the model, we approach it di¤erently from the standard solution method attributable to

Mirrlees (1971), which main idea is to obtain a functional equation with one unknown

by merging the agent�s and principal�s optimization problems through the transfer func-

tion. The key element in solving our model is the observation that it must be optimal

for the principal to reward the highest grade of r to the most e¢ cient agent, i.e., in the

solution r(�) = r, because the reward is costless. This observation allows us to reduce all

the constraints (4)�(6) into a single constraint and solve the model using the standard

Langragean methods.

3.2 Solution

We present the solution, the grading rule fx; rg maximizing (3) subject to (4)�(6), in
Proposition 1 below, relegating the details of solving the model to the Appendix. The

main property of the solution is the pooling of ability types from a non-empty interval�
��; �

�
for the highest score-grade allocation, which we discuss more thoroughly later.

Proposition 1 The score-grade allocations (x(�); r(�)), solving the optimization problem
(3)�(6), are characterized

� for ability types � in [�; ��), where

�� = minf� : (1� F (�))=(�f(�)) � 1; � 2
�
�; �
�
g; (7)

by

x(�) = y�1x

�
f(�)�2yx(x(�

�))

f(��)��2

�
(8)

for the score allocations x, and by

r(�) = C(x(�); �)�
Z �

�

C�(x(~�); ~�)d~� (9)

for the grade allocations r;

� for ability types � in
�
��; �

�
by the grade r(�) = r and the score allocation x(�) =

x(��), where x(��) is found from

r � C(x(��); ��) +
Z ��

�

C�(x(�); �)d� = 0: (10)
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Proof. See Appendix A.10

3.3 Results

Below we summarize the main properties of the optimal grading rule with nominal grades,

presented in Proposition 1.

3.3.1 Pooling at the top

To make it general, one of the main properties of the model studied is the optimality of

uniform allocations among most e¢ cient agent types when the principal does not bear or

does not internalize the cost of rewarding the agent. This result is in sharp contrast to

the �no distortion at the top�property of optimal contracts in most agency models with

costly rewards and hidden information.11

Result 1 In a single-agent and hidden-information agency problem with costless rewards,
the principal pools some of the most e¢ cient agent types for a uniform allocation.

The proof of this result has been given when deriving the condition for the starting point

of the pooling interval (7) in Proposition 1 (see Appendix A), where we showed that a

uniform score-grade allocation (x(��); r) applies to all the agent types from the non-empty

interval
�
��; �

�
(the starting point �� is bound to be strictly less than the highest ability

type �, since (1 � F (�))=(�f(�)) = 0 < 1). Moreover, neither the existence of an upper
bound on rewards nor its size, as imposed by constraint (6), is central to the result, what

is crucial is the costlessness of rewards. (In a principal-agent model with costly rewards,

imposing an upper bound on the reward function does not lead to pooling among the

most e¢ cient agent types as long as this constraint is not binding, i.e., when the upper

bound is large enough.)

The �nding that there is no perfect screening among the most e¢ cient agent types

should not be surprising. Suppose it were the case that in the solution only the most

e¢ cient type received the highest reward. To make this allocation incentive compatible,

the principal would need to suppress the motivation of other types in order to refrain the

most e¢ cient type from misreporting. But, as an alternative to the perfect screening,

consider the principal marginally �tilting up� the schedule of all the allocations but

10The problem is solved for the case with the linear utility function V . However, this has no e¤ect
on the qualitative properties of the solution obtained, which are invariant to the form of the teacher�s
utility function V (which needs to be �less convex�than the e¤ort cost function C). In particular, the
starting point of the pooling interval �� remains the same for any functional form of V .
11While the �no distortion at the top�property is characteristic of principal-agent models with mone-

tary rewards, see, e.g., Mirrlees (1971) , it has also been shown to hold for agency problems with status
incentives, see Moldovanu et al. (2007). (Recently, there have also been papers in which this property
does not hold in the optimum, see Levin (2003) or MacLeod (2003), where the result hinges on the
assumption that the agent�s e¤ort is not veri�able unlike in our model.)
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the last one� done at no cost� against the corresponding decrease in the performance

allocation of the most e¢ cient agent type. This change in the allocations is sure to be

expected performance increasing because the gain from it� the increases in performance

levels for almost all types� outweighs its corresponding loss� the decrease in performance

level of the most e¢ cient type happening with a very small probability. As a result, the

principal �nds it optimal to increase the probability mass of agent types subject to the

highest reward until the gains and losses described o¤set each other.

Referring back to the teacher-student relationship, where lenient grading is a wide-

spread phenomenon, pooling most e¢ cient types is even more prevalent when the distri-

bution for abilities is more skewed to the end of low types as discussed next.

3.3.2 Mismatch between grades and abilities

Here, we establish a relationship between the optimal grading rule and student ability

distribution, which has a strong empirical support from the literature on educational

measurement, described later in the paper.

Consider two classes of students, who come from two di¤erent student populations,

where abilities are distributed on the same support � according to distributions F1 and

F2, respectively. Denote the student types from the two classes by �1 and �2, respectively,

and let the student type �2 be smaller than �1 in the likelihood ratio order, i.e.,

f2(�)

f1(�)
decreases for all � in �,

where f1 and f2 are the probability density functions of the corresponding distributions.

The interpretation of this stochastic dominance condition is that students from the �rst

class are held more able than those from the second class. (Formally, this condition implies

that
R �00
�0 �f1(�)d� �

R �00
�0 �f2(�)d� for any interval [�

0; �00] � �, or for any restriction of

the ability space the expected student ability in the �rst class is greater than that in the

second class.)

Let fx1; r1g and fx2; r2g be the solutions to the optimization problem (3)�(6) for the
two classes, respectively. Then, the following holds.

Result 2 If the student type �2 is smaller than the student type �1 in the likelihood ratio
order, then the optimal grade allocations in the two classes satisfy r2(�) � r1(�) for every
student type � in �.

Proof. See Appendix B.
To put it in words, this result says that the lower the expectations the teacher holds

about her student abilities, the more lenient she should be when grading. The intuition

behind the optimality of more lenient grading rules in less able classes comes from the
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teacher�s attempt to extract more e¤ort from more numerous lower-ability student types,

and vice versa.

Results 1 and 2 are illustrated in Figure 1. It depicts the optimal grading rules for two

classes with the student ability type space � = [0:5; 1:5]; the student ability in the �rst

class, �1, is distributed according to the distribution with f1(�) = �, � 2 �, and in the
second class, the student ability �2 is distributed uniformly over � (the top diagram). The

e¤ort cost function takes the form of C(x; �) = x2=(2�) and the upper bound on grades

is set to r = 1. The middle diagram of Figure 1 shows the optimal score allocations (the

dashed line for the �rst class and the dotted line for the second class), and the bottom

diagram shows the optimal grade allocations for the two classes, respectively. As we can

see, both teachers pool some of the most e¢ cient student types. The teacher of the �rst

class, however, o¤ers the highest grade of r to fewer student types but against a higher

performance level, while the teacher of the second class optimally chooses to be more

lenient. Unlike the teacher of the more able class, the second teacher also o¤ers a �atter

score-grade schedule in her attempt to extract more e¤ort from less able but relatively

more numerous student types.

4 Relative Grades

In this section, we study the situation when the student values a grade only for its value

as an ability signal to the job market. In what follows, we distinguish between two cases

based on the scope of the market�s knowledge: 1) distinguishable grading rules� the job

market observes the grading rule applied to grade the student� and 2) indistinguishable
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grading rules� the job market does not observe the exact grading rule applied to grade the

student and infers the student�s expected ability from a grade based on its own perception

of grading standards applied.

4.1 Distinguishable Grading Rules

Here, we modify the previous model by having that 1) the student values a grade for

its ability signal, and 2) the job market observes the grading rule set up by the teacher

and correctly infers the student�s (expected) ability from his grade, as de�ned below.

Therefore, unlike in the previous section, here the value of a grade is dependent on the

distribution of grades across di¤erent ability types or, in other words, on the stringency

of the grading rule applied by the teacher.

Suppose the teacher designs a grading rule m = fx; rg. Let R(r) denote the range of
the grade schedule r. If r 2 R(r), r�1(r) is the set of all � 2 � such that r(�) = r. Let
��(r) = inf(r

�1(r)) and ��(r) = sup(r�1(r)). Using the monotonicity of grade schedule

r, we de�ne the ability type �r inferred by the job market from a grade r, �r : [0; r]! �,

by

�r(r) =

8>><>>:
r�1(r) if r 2 R(r) and ��(r) = ��(r);R ��(r)

��(r) �f(�)d(�)

F (��(r))�F (��(r)) if r 2 R(r) and ��(r) 6= ��(r);
0 if r =2 R(r).

(11)

As a technical detail, we set �r(r) = 0 if r =2 R(r) to mean that if the student�s grade is
outside the range of grades observed then this grade as a signal is meaningless.

The above de�nition also de�nes the student�s utility of a grade given the grading

rule m = fx; rg, and his net utility of reporting a type �̂ is equal to

U r(�; �̂) = �r(r(�̂))� C(x(�̂); �): (12)

The teacher�s problem

As before, the teacher�s problem is to set up a grading rule that elicits from the student

the highest expected performance on the test, i.e., the teacher maximizes her expected

utility with respect to a grading rule m = fx; rg 2 C1x � C1rZ �

�

x(�)dF (�) (13)

subject to

U r(�; �) � U r(�; �̂); (14)

U r(�; �) � 0; for all � and �̂ in �. (15)
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In the above, the constraints are the student�s incentive compatibility constraint to report

truthfully and individual rationality constraint, respectively, where the student�s utility

function U r is de�ned in (12), and �r, the ability signal for the job market, is de�ned by

(11).

In this version of the model, we can simplify the teacher�s problem (13)�(15) by

making it be maximized with respect to a score schedule x only. The reason for this

is that a grade does not bear any value on its own and, as a result, a score schedule x

can be implemented by any grade schedule r isomorphic to x achieving the same utility

levels. Therefore, without loss of generality, in the teacher�s problem we restrict the set

of grading rules C1x � C1r to such grading rules m = fx; rg, where the grade schedule r
takes the form of

r(�) = r
x(�)

x(�)
; for any � 2 �: (16)

All in all, the teacher maximizes (13) with respect to x 2 C1x subject to (14) and (15)
with the grade schedule r imposed by (16).

Solution

If the student values a grade for its ability signal, the teacher, when designing a grading

rule, needs to take into account the e¤ect the grading rule itself has on the value of a

grade for the student as determined by (11). Unlike in the previous model with nominal

grades, it follows that the more lenient the grading rule the teacher sets up, the lower the

utility the student gets from a given grade, adversely a¤ecting his learning e¤ort choice

decision. Below, we give a condition when the downside e¤ect of leniency in grading� the

job market�s �degrading�of students�grades� outweighs the upside e¤ect, which is more

e¤ort extraction from lower ability types.

First, we solve for the optimal score schedule x under the conjecture that the teacher

perfectly screens all the types.

Conjecture 1 The grading rule m solving the teacher�s problem (13)�(16) screens every

ability type � distinctly.

As it follows from the conjecture, we need to consider only strictly monotone piecewise

C1 performance functions x. Then, the solution to the teacher�s problem is uniquely

characterized by the student�s constraints (14) and (15) only. Given a score schedule x,

with the grade schedule r imposed by (16), the utility to the student of ability � from

reporting being a type �̂ is given by

U r(�; �̂) = �̂ � y(x(�̂))
�

;
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and, at a point of di¤erentiability, the incentive compatibility constraint implies that

@

@�̂
U r(�; �) = 0;

or

yx(x(�))x�(�) = �:

Next, it has to be that the individual rationality constraint of the lowest ability type �

needs to be binding (or, more precisely, that of the least e¢ cient type �contracted upon�

by the teacher, which we assume to be �). If there are no discontinuities� which we check

if it is the case later� the solution to the above di¤erential equation together with the

binding individual rationality constraint is

x(�) = y�1
�
�2 + �2

2

�
; (17)

for every � in �. The second-order condition for (17) to be the solution holds. Further-

more, since the derivative of x in (17) is positive for every type �, the constraint that x

be monotone also holds.

But suppose that there are (simple) discontinuities in the score schedule x that solve

the teacher�s problem. Denote the discontinuity point closest to the type � by �0, and

let x(�0�) 6= x(�0), where x(�0�) is a left-hand limit (the subsequent argument with
straightforward alterations also holds for the case x(�0+) = x(�0), where x(�0+) is a

right-hand limit). Then, (17) holds only for types � in [�; �0). But the allocation x(�0)

cannot be greater than the allocation determined by (17) for � = �0, because x(�0) would

not be incentive compatible: we could �nd a type ~� 2 [�; �0) such that U r(�0; �̂) > U r(�0; �0)
for every �̂ 2 (~�; �0). Then, x(�0) should be smaller than the allocation determined by
(17) for � = �0, which, though, is suboptimal from the teacher�s perspective. Hence, there

cannot exist a discontinuity at �0, nor at any other point for the same reason.

Therefore, under the conjecture that all types are screened perfectly, (17) uniquely

characterizes the optimal score schedule x for every � in �. Next, we need to give a

condition when this conjecture is valid. It turns out that the su¢ cient condition is the

convexity of the score schedule x in (17).

Proposition 2 If the score schedule x de�ned in (17) is convex, then it is optimal for
the teacher to screen every student ability type � 2 � when solving problem (13)�(16).

Proof. See Appendix C.
The idea of the proof is that, once the convexity condition is met, a grading rule

containing a uniform allocation for some types can be improved upon by separating

those types with distinct (and incentive-compatible) allocations as in (17). Furthermore,
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the convexity condition is equivalent to requiring the marginal disutility from e¤ort under

x as in (17) decrease in ability

@

@�
(Cx(x(�); �)) < 0 (18)

or, under the functional assumption of C(x; �) = y(x)=�;

yxx �
�yx
�

�2
;

which is to require that the e¤ort cost function be not �too convex� in scores x. (For

instance, this condition is met for the e¤ort cost function quadratic in x and, correspond-

ingly, for other cost functions �less convex�than the quadratic one).

However, if the score schedule x de�ned in (17) is not convex everywhere, then at

the restrictions of the type space �, where it is concave, we obtain pooling of types (by

reversing the argument in the proof of Proposition 2). Moreover, with a general form of

the teacher�s utility function V the condition for screening types is that the function

V

�
y�1

�
�2 + �2

2

��
is convex in �. With a concave (convex) utility function V , this condition holds, corre-

spondingly, less (more) often.

Given that the convexity condition holds, the �nding that the teacher screens all

the student types� when the student values grades for their signaling value and the job

market can observe the grading rule designed� is in stark contrast to the results obtained

for the case with nominal grades, where pooling of most e¢ cient types is always optimal

(see Result 1 of the previous section). This di¤erence in the optimal grading rules results

from the di¤erence in the utility of a grade perceived by the student in the two models

studied. However, as we show next, if the job market cannot distinguish between grading

rules and relate the student�s grade to the grading rule applied, then we should again

observe coarse grading rules with pooling types even if the student values a grade for its

signaling value only.

4.2 Indistinguishable Grading Rules

Here, we study the situation when the job market does not observe the grading rulem� in

particular, the grade schedule r ofm� that the teacher has designed to grade her student.

(This could happen when there are too many teachers for the job market to distinguish

among.) Instead, we assume that the market holds its own perception about the grading

standard applied, which we denote by � 2 C1r , and the student�s expected ability it infers
from a grade r is, accordingly, ��(r) de�ned by (11) for the grading standard � (i.e., in
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de�nition [11] r is replaced with �). The ability inferred, ��(r), also de�nes the student�s

value of a grade r. The assumption is that the grading standard � is public information.

4.2.1 The teacher�s problem

Now, the teacher�s problem is to design a grading rule m = fx; rg 2 C1x � C1r such that
it maximizes her expected utility against the grading standard �

Z �

�

x(�)dF (�) (19)

subject to

��(r(�))� C(x(�); �) � ��(r(�̂))� C(x(�̂); �); (20)

��(r(�))� C(x(�); �) � 0; for all � and �̂ in �. (21)

Unlike in the previous problem (13)�(15), here the teacher does not internalize the

e¤ect her grading rule m has on the student�s utility of a grade, ��, which is determined

by the job market�s grading standard �. In this respect, the problem is similar to the one

with nominal grades (3)�(6), and, therefore, the solution method, applied in Appendix

A when solving the model with nominal grades, would apply here, too.

4.2.2 Consistent grading standard

The focus of the analysis presented below is on the properties of grading standard �,

which we require to be consistent with the optimal grade schedule r designed by the

teacher against the grading standard �. First, we make the following de�nition.

De�nition 1 Let a mapping � : C1r ! C1r map a grading standard � into the grade

schedule r of the grading rule m solving the teacher�s problem (19)�(21) against the

grading standard �.

For analytical convenience, we assume that for any � there is a unique solution to the

teacher�s problem and, accordingly, a unique grade schedule r. Now, we call a grading

standard � consistent if it is a �xed point of the mapping �:

� = �(�);

meaning that the grade schedule r of the teacher�s best-response grading rule m against

the grading standard � is equal to the grading standard � itself.

We can immediately claim the following.
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Proposition 3 A grading standard � with perfect screening of ability types cannot be

consistent.

This result is a direct consequence of Proposition 1 (and Result 1), where we show that

in a model with costless rewards pooling of types is inevitable. In the event that the job

market perceives a grading standard � that all student types are screened perfectly, i.e.,

�(�1) > �(�2) if �1 > �2; �1; �2 2 �, the teacher�s problem (19)�(21) becomes essentially

identical to that with nominal grades (3)�(6), where the teacher can reward the student

with any ability signal �� by manipulating the grade schedule r. More precisely, we can

make the following identity transformations of (19)�(21) to make it look like (3)�(6):

set �(�) � ��(r(�)) and introduce a constraint � � �(�) � � for all � 2 �. Then,

the teacher maximizes her expected utility with respect to fx;�g, and the best-response
signal schedule � would pool types � in [��; �], where �� de�ned by (7) in Proposition 1,

for the reward of �, implying that the grading standard � cannot be consistent.

Next, we show that there exists a consistent grading standard �� a �xed point
of �. Consider a grading standard � such that

�(�) =

(
r� if � � �#;
r� otherwise.

(22)

It says that the job market perceives that student types greater than or equal to some

�# 2 � get the grade r�, others� the grade r�. Given the step grading standard � in

(22), the teacher becomes restricted to designing step grading rules m = fx; rg of the
form

x(�) =

(
x� if � � �0;
x� otherwise,

and r(�) =

(
r� if � � �0;
r� otherwise,

(23)

where the teacher�s choice variables are scores x�, x� and threshold type �
0. The question

is if there is a step grading standard � with threshold type �# such that the threshold

type �0 of the step grading rule m = fx; rg solving (19)�(21) is equal to the threshold
type �# of the grading standard �.

For a given threshold type �0, the optimal levels of scores x� and x� can be expressed

as the continuous functions of �0 from the binding IR and IC constraints, respectively.

Therefore, the teacher�s expected utility in (19) can be expressed as the continuous func-

tion of the threshold types �0 and �# only, which we denote by W : �� (�; �)! R (the
domain of �# is set to be an open set, which later is expanded to �). Let

~� = arg max
�02[�;�]

W (�0; ��) = !(��);

which characterize the teacher�s best-response threshold type ~� of the optimal grade

schedule r as a function of �# of the grading standard �. Now, the grading standard
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� is consistent if ~� = �#, i.e., if �# is a �xed-point of the solution function ! (we have

assumed the uniqueness of the solution for every �#, which is though irrelevant for the

following analysis).

By Berge�s Maximum Theorem, the solution function ! : (�; �) ! � is continuous

(because the function W is continuous and the constraint correspondence is compact-

valued and continuous: for any �# the teacher�s choice set of �0 is the whole ability space

�). The next step is to apply Brouwer�s Fixed Point Theorem, for which we need to

expand the domain of ! to �. De�ne function ~! : �! � by

~!(�) = lim�!� !(�);

~!(�) = !(�); 8� 2 (�; �);
~!(�) = lim�!� !(�).

The function ~! is continuous, its domain � is compact and convex, hence by Brouwer�s

Fixed Point Theorem it has a �xed point �fp

�fp = ~!(�fp);

which characterizes the consistent grading rule � with �# = �fp. Having said that, we

establish the following

Proposition 4 There exists a consistent grading standard �.

4.2.3 Dynamics of grading standards

Finally, within this modeling framework, we can iteratively analyze the dynamics of

grading standards, which we sketchily undertake here under the adaptive expectations

paradigm. To make a full-�edged analysis of dynamic properties feasible would require

putting more structure on the model; instead, we restrict the analysis only to investigating

the direction of the change of the interval of ability types pooled for the highest grade.

Suppose the initial grading standard �0 2 C1r is given and let it be a strictly increasing
function of � with �0(�) = r (i.e., the job market initially perceives that the teacher screens

every student type). The resultant grade schedule r0, maximizing the teacher�s utility

against the grading standard �0, is given by r0 = �(�0). Suppose the grade schedule ri�1;

i � 1, is given. We impose that the job market adjusts its perception of grading standards
by adapting the existing grade schedule as its new grading standard, i.e., �i = ri�1, i � 1.
Consider the grade schedule r0. It has the properties described in Proposition 1:

pooling types in [�0; �], where �0 = �� of Proposition 1, and screening the rest of types.

At iteration i = 1, the grading standard that the job market newly perceives is �1 = r0,
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which takes the form of

�1(�) =

(
r if � � �0;

r0(�) otherwise.

Now, the highest reward that the teacher can o¤er the student against the grading stan-

dard �1 is �
�1(r)� where ��1 is the (discontinuous) ability signal function de�ned by

(11)� and it has depreciated compared with the highest reward available under �0.

Next, consider the grade schedule r1 = �(�1). One can show that the starting point

�1 of the pooling interval [�1; �] of the grade schedule r1 is characterized by

1� F (�1)
f(�1)

= �1
yx(x(�

1))(x(�1)� x(�0))
y(x(�1))� y(x(�0))

;

where the score allocation x(�1) is designed for the types in the pooled interval [�1; �] and

x(�0) is the second-highest score allocation. The right-hand side of the above expression

is greater than �1� the second term of the product is greater than 1 (follows from the

Mean Value Theorem)� implying that the starting point of the new pooling interval

�1 is smaller than �0. Hence, after the initial iteration the pooling interval expands.

Furthermore, with the pooling interval expanded, the range of rewards� ability signals�

correspondingly shrinks.

To analyze tractably further change in pooling intervals [�i; �], i � 2, or to see if the
sequence f�ig is convergent or not, we would need to place more structure on the model,
which is beyond the scope of this paper. Arguably, with the range of rewards diminished,

the teacher is bound to apply more lenient grading rules in her attempt to extract more

e¤ort from lower types, for she is not anymore able to provide adequately high incentives

for higher types, leading to the gradual depreciation of grading standards in the end.

5 Discussion

Here, we discuss the main �ndings of the models presented here. Signi�cantly, the grading

patterns obtained closely match those observed in practice lending credibility to our

modeling framework of a teacher-student relationship. In this light, we also argue that

our model(s) can be used for policy applications such as designing merit-pay programs

for teachers.

5.1 Main Findings

5.1.1 Compression of grades and grade in�ation

The results obtained here show that if there is a reason to think that the principal does not

pay for or internalize the cost of rewarding the agent, then in attempt to elicit on average
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more e¤ort the principal chooses to be more generous with rewards than otherwise she

would have been. In particular, the �no distortion at the top�property, generally observed

in models with costly transfers, does not hold here. Now, referring to our teacher-student

relationship studied, if an individual teacher cannot credibly commit to her using the

same grading standards the job market holds and the job market cannot distinguish

among individual grading rules applied, then we face the situation when the teacher

treats grades as costless rewards. As a result, the compression of grades or leniency

in grading turns out to be the utility-maximizing outcome of the teacher�s grading rule

optimally designed: it aims to extract more e¤ort from lower-ability students with the

help of costless good grades. To put it di¤erently, good grades are �the commons�that

teachers exploit to their bene�t. But as in all problems of the commons, we inevitably

obtain the deterioration of the commons, which, in our case, takes the form of grade

in�ation.

From our model(s) studied, we can distinguish two factors contributing toward grade

in�ation. First, teachers become more lenient with grading in response to shifts in dis-

tribution for student abilities toward the lower end of the ability space (Result 2 of this

paper). Second, if an individual teacher �nds that her grading practice cannot a¤ect the

perception of the job market about the signaling value of grades, then the teacher tends

to overuse good grades (for whatever signaling value they carry along).

The two factors can both originate from the same source, namely, the expanding

availability of education (see, e.g., McKenzie & Tullock (1981)). Due to an increasing

number of educational institutions and study programs in recent decades, a larger number

of study places has been o¤ered, resulting in more lower-ability applicants being enrolled

(see, e.g., Wilson (1999)). Subsequently, this can lead to the emergence of the �rst factor

discussed. Similarly, with more issuers of educational certi�cates, the grading standards

applied by every issuer or teacher become less identi�able, resulting, correspondingly, in

the emergence of the second factor.12

5.1.2 Mismatch between grades and abilities

Our results obtained, in particular Result 2, can o¤er an explanation why teachers of

classes with less able students are more lenient in grading than others (see, e.g., Goldman

& Widawski (1976)). As we argue, this can be an outcome of the optimal design of

grading rules� i.e., the expected-performance-maximizing outcome� and not necessarily

an outcome of some teachers� rent-seeking behavior, as sometimes is suggested (e.g.,

12The expanding availability of education was discussed as a circumstance of the grade in�ation phe-
nomenon in McKenzie & Tullock (1981). Their hypothesized link is in the context of the demand for
and supply of university openings: in response to a higher competition for students� due to the in-
creasing number of university openings relative to the demand� universities engaged in lowering grading
standards in order to attract more students. According to McKenzie & Tullock (1981), this practice
eventually led to grade in�ation.
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Johnson (1997)). In particular, our model (with nominal grades) predicts that in classes

with less able students grading rules are (optimally) designed so that high grades are more

easily attainable, resulting in a mismatch and low correlation between students�grades

and their abilities. For instance, if the population of mathematics students contains more

talented people than, say, the population of economics students, then we should observe

stricter grading standards applied in mathematics classes (as ample empirical evidence

shows to be the case, which is explored in the following section).

Concerning the normative side of the di¤erential grading standards discussed, there

have been a number of papers proposing grade adjustment mechanisms (see, e.g., Johnson

(1997)) in order to make grades more informative of students�actual abilities. Without

going into the details of this literature, it is worth noting that there it is typically assumed

that the true reason for di¤erential grading standards lies with some personal features of

the instructor (e.g., the adaptation level, unwillingness to spend o¢ ce hours on dealing

with students�complaints about low grades, etc.). Therefore, proposed grade adjustment

mechanisms would attempt to correct for presumed instructor-speci�c factors failing to

recognize the possible endogeneity of those factors, which could lead a mechanism astray

from the projected goals.

5.2 Policy Applications

The modeling framework presented here can, arguably, be used to analyze the implications

of the introduction of merit-pay programs for teachers. In recent years, a number of

such programs have been introduced in various countries to foster incentives for teachers

in their endeavors to motivate more e¤ort from their students (see, Lavy (2002, 2009);

Atkinson et al. (2004); Lazear (2003)). Typically, these programs o¤er monetary bonuses

to teachers if their students improve upon their previous performance (as measured by

their scores achieved on standardized tests). The goals pursued by the developers of such

programs� social planners� range from improving average performance (in most cases)

to reducing the gap between poor and good performers (as, e.g., in the �No Child Left

Behind�initiative in the US).

In terms of our modeling framework, the incentives set forth by merit-pay programs

for teachers can have a direct e¤ect on the form of the teacher�s utility function, V , in (1).

In the case of the �No Child Left Behind�program, where teachers are rewarded for a

reduction in the gap between poor and good performers, the utility function V could turn

concave since the teacher would start putting relatively more weight on the performance of

lower-ability students. Then, with a concave utility function V , the model with nominal

grades of Section 313 predicts that, compared with the case of linear utility, the gap

13This model is perhaps more appropriate for modeling grading patterns in high schools, for ability-
signaling concerns should be of a lesser magnitude among high-school students.
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between low- and high-ability students would diminish. However, this reduction would

come from two directions, namely, from the teacher�s demanding more e¤ort from low-

ability students and demanding less e¤ort from high-ability students.14 Hence, according

to the model, a negative externality from the introduction of this program can arise: high-

ability students can be made get the same grades but for less e¤ort. On the contrary,

the gap between poor and good performance increases, if the teacher�s utility function

turns convex� as a result, for instance, of the social planner implementing a merit-pay

program that rewards for students�excellence only.

With the help our model(s), we can also o¤er an insight into the problem whether the

university administration should restrict the teachers�choice of grading rules by imposing

relative grading, i.e., grading on a curve. From the perspective of our model with relative

grades, when the job market observes the grading rule applied by the teacher, an optimal

grading rule is, actually, the one that perfectly screens student types. Then, imposing

grading on a curve would have no e¤ect since it were not binding. However, when the

job market does not observe grading rules, the teacher faces a commitment problem of

not overusing good grades, as we discussed before. In this event, grading on a curve

would actually bind and could possibly �x the commitment problem of the teacher. But

then, the question is what goals the university administration pursues. If they coincide

with the teacher�s, i.e., maximizing student knowledge, then grading on a curve would

be a desirable policy. But if the administration aims to maximize the expected wage

of its students, assuming it is proportional to the ability signal inferred by the market,

then the administration may want, as argued in Chan et al. (2007) and Ostrovsky

& Schwarz (Forthcoming), to refrain from imposing grading on a curve and rather have

grades compressed in order to disclose information about student abilities only coarsely.15

14With the concave utility function V , the optimal score allocations ~x(�) for � in [�; ��) are equal to

~x(�) = y�1x

�
f(�)�2Vx [~x(�)] yx [~x(�

�)]

f(��)��2Vx [~x(�
�)]

�
:

From this, we can immediately observe that it has to be the case that ~x(��) < x(��), where x(��) is
the pooling-interval e¤ort level of the linear-utility case. This is so because the ratio Vx [~x(�)] =Vx [~x(�

�)]
is strictly greater than 1, and if ~x(��) � x(��) then the whole score allocation schedule ~x is above the
allocation schedule x of the linear case. But it is not possible because ~x would be the solution to the
teacher�s problem in the linear case, not x. Then, the ratio (Vx [~x(�)] yx [~x(�

�)])=Vx [~x(�
�)] needs to be

greater than yx [x(�
�)] at least for some � in [�; ��), otherwise the score allocation of the linear case would

do better than ~x. Hence, if for some � ~x(�) > x(�); so it is for � = �. All in all, we have a reduction in
the gap between the highest and lowest performances, but this reduction comes from both directions.
15For more discussion on and empirical implications of making academic transcripts more informative,

see Bar et al. (2009).
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6 Empirical Evidence

Here we present empirical evidence in support of our Result 2� the lower the expectations

the teacher holds about her students�abilities, the more lenient the grading rule she sets

up.

In general, to test this theoretical prediction of the model, one would need university

data such as student grades and their ability proxy (like their performance on university

entry exams or Scholastic Aptitude Test [SAT] scores). Then, roughly speaking, one

would compare grading patterns for classes with di¤erent student ability distributions

and see if the prediction holds. However, there have been a number of empirical studies

of the kind in the special literature of educational measurement (e.g., in academic period-

icals such as the Journal of Educational Measurement or Educational and Psychological

Measurement). Most importantly, those studies without exception report results that are

fully in line with the model�s predictions: �elds with lower ability students studied as

compared with those with higher ability students employ less stringent grading criteria.

Even though many of those studies are comprehensive in empirical matters, they lack

any rigorous theoretical explanation for this phenomenon. Their explanations mainly

hinge on intuition or reference to similar phenomena from the adaptation-level theory

in psychological literature. In what follows, we attempt to review in detail some of the

empirical studies comparing grading standards over time and in di¤erent �elds, and to

show that our model proves helpful in explaining the empirical evidence observed.

Aiken (1963) is one of the �rst empirical studies that suggest that grading behavior is

dictated by the quality of students in the current class and not by some absolute invariant

standards. Aiken (1963) presents time-series evidence from the Woman�s College of the

University of North Carolina that could imply that, with more able students in a class

(as measured by their SAT scores and high-school rankings), teachers tend to apply

more stringent grading standards. As for the theoretical explanation for this �nding, the

study only brie�y mentions that it conforms to the adaptation-level theory or central

tendency phenomenon, which basically concerns the tendency of supervisors to evaluate

the performance of people supervised in relative terms rather than in absolute ones.

A much more comprehensive study Goldman &Widawski (1976) �rst notes the weak-

nesses of previous studies on grading patterns because of their using the total grade point

average (GPA) as the criterion of grading standards. As they rightly argue, GPAs are not

perfectly comparable either over time or among individual students because of the possi-

bly di¤erent composition of courses included to compute grade averages. To remedy that,

Goldman & Widawski (1976) employ a between-subjects design aimed at making grade

comparisons more e¤ective. They compute an index of grading standards using pairwise

comparisons of grades in 17 major �elds at the University of California, Riverside, from

a random sample of 475 students. In particular, they perform the comparison of grading
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standards in one class (say, psychology) against those in another class (say, biology) by

computing the di¤erence in average grades of only those students who took both classes.

After obtaining di¤erentials in grading standards between any two classes (from the 17

classes available in their study), they construct an index of grading standards for each

class, which is an average of all the di¤erentials between that particular class and the rest

of the classes. Finally, they correlate the computed indices of grading standards with the

average scores on the verbal and mathematical portions of the SAT test and high-school

GPAs (i.e., student ability proxies) of all the students majoring in those 17 classes. The

main empirical �nding in Goldman & Widawski (1976) is that the constructed index of

grading standards correlates highly in a negative direction with student ability proxies.

In other words, they conclude that professors in a �eld containing more able students

tend to grade more stringently than do professors in �elds with lower ability students.

As a result, they �nd that the past performance and abilities of students account for

only slightly more than 50 percent of the variance in grades, and suggest introducing

some grade adjustment mechanism to make grades more informative of students� true

abilities. Again, in giving an explanation for the empirical results obtained, they restrict

their argument simply by making a reference to the adaptation-level theory that people

are judged in comparison to their peers.

A similar study Goldman & Hewitt (1975), which along with presenting the empir-

ical results (which draw the same conclusions about grading behavior as in the studies

mentioned above), also provides a more elaborate theoretical explanation for the results

obtained. The authors think that the antecedents (e.g., student ability levels, work

habits, etc.) and consequences (grading standards) of college grading are inextricably

tied together by a personal characteristic of college instructors. This characteristic is

the phenomenon of adaptation level, and it is so pervasive among college instructors and

perhaps people in general, Goldman & Hewitt (1975) continue, as to be considered an al-

most inevitable factor in the college grading process. Consequently, through that personal

characteristic link, grading standards would be partly determined by the ability level of

the student population. However, along the lines of our model developed above, this

personal characteristic, as envisaged by Goldman & Hewitt (1975), is not some intrinsic

feature of human behavior but rather the outcome of optimal behavior.

A decade later, Strenta & Elliott (1987) replicated the study of Goldman &Widawski

(1976) using data from a di¤erent institution, Dartmouth College, just to �nd that the

di¤erential grading standards exist in the same magnitude and in roughly the same or-

der. Therefore, Strenta & Elliott (1987) argue that it remains the case that students

with higher SAT scores tend to major in �elds with more rigorous grading standards,

and that factors attracting more talented students result in their being graded harder.

(However, we would argue for the reverse direction of causation: since some �elds attract

more talented students, professors in those �elds will grade their students more strin-
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gently, which is optimal in order to extract more e¤ort.) As in previous studies, Strenta

& Elliott (1987) argue that these di¤erential grading standards serve to attenuate the

correlation between the GPAs and SAT scores of the students, and they also show that

the correlation increases sizably if GPAs are adjusted by accounting for di¤erences in

departmental grading standards. Finally, a similar study conducted at Duke Univer-

sity (Johnson (2003)) con�rmed the conclusions about systematic di¤erences in grading

standards from the previous studies.

7 Conclusion

In this paper, we consider a teacher-student relationship as a special type of an agency

problem featuring costless rewards. Our theoretical predictions o¤er a good match to

grading patterns empirically observed both from the static and dynamic perspectives.

This allows us to suggest the chosen framework of a principal-agent model is appropriate

to analyze a teacher-student relationship.

Appendix A. Proof of Proposition 1

Here, we solve the teacher�s utility maximization problem (3)�(6), namely, we look for

the grading rule fx; rg 2 C1x � C1r that maximizes (3) subject to (4)�(6). To start with,
we make the following conjecture.

Conjecture 2 In the solution to (3)�(6), all types are perfectly screened.

To put it di¤erently, we conjecture that the allocation schedules x and r are strictly

increasing in type �.

As it is standard, if fx; rg is optimal, then it has to be a boundary solution, where
the individual rationality constraint of the lowest type is binding

U(�; �) = 0;

and the utility levels for the rest of types � 2 (�; �], as can be expressed from the incentive
compatibility constraints, are equal to

U(�; �) = �
Z �

�

C�(x(~�); ~�)d~�: (24)

Next, we observe that since grades are costless for the teacher to reward, it must be that

r(�) = r. This observation allows us to obtain from the above expression for the utility
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level of the highest type � = �

r � C(x(�);�) +
Z ��

�

C�(x(~�); ~�)d~� = 0; (25)

which eliminates the grade schedule from the maximization problem and combines all the

constraints into one (because if it is satis�ed, so are all the other constraints by choosing

the �right�grade schedule).

Having reduced the initial problem, next we set up the Lagrangean, which is

L(x; �) =
Z �

�

x(�)f(�)d(�) + �[r � C(x(�);�) +
Z ��

�

C�(x(~�); ~�)d~�]:

The �rst-order conditions (FOCs) are

f(�) + �[�Cx(x(�);�) + Cx�(x(�);�)] = 0 (26)

with respect to allocation x(�), and

f(�) + �Cx�(x(�);�) = 0: (27)

with respect to allocations x(�); � 2 [�; �). These FOCs together with reduced constraint
(25) should characterize the optimal score schedule x.

However, if we combine through the Lagrange multiplier � the �rst-order condition

(26) with (27), we get
f(�)

f(�)
=
Cx(x(�);�)� Cx�(x(�);�)

�Cx�(x(�);�)
;

which should hold for any type �. But if we take the limit � ! � on both sides, we �nd

that the left-hand side converges to 1, while the right-hand side � to something strictly

greater than one:

Cx(x(�);�)

�Cx�(lim�!� x(�);�)
+

Cx�(x(�);�)

Cx�(lim�!� x(�);�)
� Cx(x(�);�)

�Cx�(lim�!� x(�);�)
+ 1 > 1:

Hence, there cannot exist a strictly monotonous score schedule x that satis�es the �rst-

order conditions and constraint (25). In other words, there is no shadow price � that can

balance all the incentives when screening all the types. Therefore, Conjecture 2 cannot

hold, and, in particular, it is not valid �at the top�of the ability space.

Instead, we proceed by pooling types � which are subject to the uniform allocation

with the highest grade of r. Let �� denote the starting value of the pooling interval [��; �].
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After following the same steps as before, the Lagrangean now takes the form of

L(x; �) =
Z ��

�

x(�)f(�)d(�) + (1� F (��))x(��) + �[r �C(x(��);��) +
Z ��

�

C�(x(~�); ~�)d~�]:

The FOCs are

f(��) + (1� F (��)) + �(�Cx(x(��);��) + Cx�(x(��);��)) = 0 (28)

with respect to allocation x(��), and, as before,

f(�) + �Cx�(x(�);�) = 0 (29)

with respect to allocations x(�); � 2 [�; ��). Combining the two conditions, we get

f(��) + (1� F (��))
f(�)

=
Cx(x(�

�);��)� Cx�(x(��);��)
�Cx�(x(�);�)

:

Before deriving the condition for the starting point of the pooling interval ��, we make

the following observation. In the solution, the score schedule x needs to be continuous

at the starting point of the pooling interval. If it were not, then the reward schedule r

would also be discontinuous (otherwise, the grading rule would not be incentive compat-

ible). But since grades are costless for the teacher, then at no cost she can improve her

utility by tilting up the segment of score allocations to the left from the discontinuity

point and accordingly adjusting the grade allocations to meet the incentive compatibility

constraints. Hence, the score schedule x cannot be discontinuous at the starting point of

the pooling interval.

Taking the limit � ! �� on both sides and using the continuity of x at �� we get the

condition for the starting point of the pooling interval [��; �] :

1� F (��)
f(��)

=
Cx(x(�

�);��)

�Cx�(x(��);��)
;

or, given our assumption that the e¤ort cost function C is separable in score and type,

C(x; �) = y(x)=�, this condition becomes

1� F (��)
f(��)

= ��: (30)
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Since there may be no type � in
�
�; �
�
for which condition (30) holds16, then the starting

value of the �pooling at the top�interval is de�ned as

�� = minf� : (1� F (�))=(�f(�)) � 1; � 2 �g; (31)

which is (7) in Proposition 1. Note that the expression (1�F (�))=(f(�)�) is monotonically
decreasing in � due to the monotone hazard rate assumption so that the pooling-interval

starting point �� is uniquely determined.

Suppose that �� > �. Denote the score-grade allocation for every type � in
�
��; �

�
by

(x(��); r), where the score allocation x(��) needs still to be determined. From (28) and

(30) we express the Lagrange multiplier � to be equal to

� =
f(��)��2

yx(x�(�
�))
: (32)

Plugging the above expression for � into remaining �rst-order conditions (29), we get

that for every � in [�; ��) the optimal score allocation x(�) is equal to

x(�) = y�1x

�
f(�)�2yx(x(�

�))

f(��)��2

�
; (33)

which is (8) in Proposition 1.

Finally, the highest score allocation, x(��), can be determined from the constraint

r � C(x(��); ��) +
Z ��

�

C�(x(�); �)d� = 0; (34)

after plugging in the expression for x(�) from (33), giving (10) in Proposition 2.

The constraint that the schedule of performance allocations x be non-decreasing is

met, which follows from (30) and the monotone hazard rate assumption.17

The optimal grade allocations r(�) for � in [�; ��) are found from (24) and are equal

to

r(�) = C(x(�); �)�
Z �

�

C�(x(~�); ~�)d~�; (35)

which is (9) in Proposition 1, concluding the solution to the optimization problem (3)�(6).

16The pooling interval comprises the whole type space if, for instance, student types � are uniformly
distributed with � � �=2.
17From equation (30) it follows that f(�)�=(1 � F (�)) < 1 for � in [�; ��), and from the monotone

hazard rate: f 0(�) > �f2(�)=(1 � F (�)). The two properties ensure that the derivative of (33), @x=@�,
is positive.
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Appendix B. Proof of Result 2

With reference to the pooling-interval condition (7), de�ne gi(�) = (1 � Fi(�))=(�fi(�)),
and let ��i = minf� : gi(�) � 1; � 2 �g, i = 1; 2. Since the likelihood ratio order implies
the hazard rate order (see Shaked & Shanthikumar (1994)), which is f1(�)=(1�F1(�)) �
f2(�)(1�F2(�)) for every �, it immediately follows that g1(�) � g2(�), leading to ��1 � ��2.
Hence, we have r2(�) = r � r1(�) for � 2

�
��2; �

�
.

Next, consider the score allocations xi(�), i = 1; 2, for types � in [�; ��2). Denote

the Lagrange multipliers from the two optimization problems by �1 and �2, de�ned by

(32) of Appendix A, respectively. Divide the �rst-order conditions for x1 and x2 (29) of

Appendix A to obtain for any � in [�; ��2)

yx(x2(�))

yx(x1(�))
=
�1
�2

f2(�)

f1(�)
;

which also holds at � = ��2 by the continuity of the score schedule x2 at � = �
�
2 as argued

in Appendix A.

Since the highest score x2(�
�
2) in the second class must be at least as large as x1(�

�
2),

which stems from the second teacher�s incentive to expand the pooling interval even

further (otherwise the score schedule could be improved upon by tilting it up), then at

� = ��2 the left-hand side of the above expression is greater than or equal to 1, and so

is the right-hand side. Due to the decreasing likelihood ratio f2=f1, the right-hand side

stays greater than 1 for any � in [�; ��2), and so does the left-hand side, implying that

x2(�) � x1(�) for every � in [�; ��2), which subsequently leads to r2(�) � r1(�) from (9) in
Proposition 1.

Appendix C. Proof of Proposition 2

De�ne the teacher�s expected utility V : C1x ! R from implementing a score schedule x

by

V(x) =
Z �

�

x(�)f(�)d�:

Let the score schedule x� with the grade schedule r imposed by (16) solve the teacher�s

problem (13)�(15) and suppose that there is a non-empty pooling interval [�0; �00] at which

x�(�) = x0 and r(�) = r0 (the arguments below are also valid if we consider a half-open or

open pooling interval). We need to consider two cases 1) �0 = � and 2) �0 > �, and in each

case it is su¢ cient to restrict attention to those performance allocations that satisfy the

optimality conditions: the binding individual rationality constraint of the lowest-ability

type and the set of downward-binding incentive compatibility constraints, respectively.

In the �rst case, 1) �0 = �, the score allocation x�(�) = x0 with grade r0 for all �
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in [�; �00] need to satisfy the binding individual rationality constraint of the lowest-ability

type:

�r(r0)� y(x
0)

�
= 0;

or

x0 = y�1[�r(r0)�];

where the function y�1 is the inverse of y and �r is the ability type inferred as de�ned by

(11). The teacher�s expected utility from implementing the score schedule x� is given by

V(x�) = F (�00)y�1[�r(r0)�] +
Z �

�00
x�(�)f(�)d�:

As an alternative to the score schedule x�, consider the following score schedule x̂ :

for � in [�; �00] set (distinct and incentive compatible) performance allocations x̂(�) =

y�1[(�2 + �2)=2], as in (17), and for � in (�00; �] � x̂(�) = x�(�). The case of interest is

the situation when the monotonicity of the new score schedule x̂ is preserved. Otherwise,

when the monotonicity not preserved, i.e., if x̂(�00) > x̂(�) = x�(�) for some � > �00, the

teacher can increase her expected utility by simply setting x̂(�) = x̂(�00) for all � > �00

such that x̂(�) < x̂(�00) and leave the remaining allocations intact. The teacher�s expected

utility from implementing the score schedule x̂ is equal to

V(x̂) =
Z �00

�

x̂(�)f(�)d� +

Z �

�00
x�(�)f(�)d�:

The second terms of V(x�) and V(x̂) are identical, and so any di¤erence in the utilities
needs to come from the di¤erence in the �rst terms. Since the suggested performance

allocation schedule x̂ is convex on the restriction [�; �00]� from the condition of Proposition

2� then by Jensen�s inequalityZ �00

�

x̂(�)f(�)d(�) � F (�00)x̂(

Z �00

�

�f(�)d(�)=F (�00)) = F (�00)x̂(�r(r0))

= F (�00)y�1[(�r(r0)2 + �2)=2] > F (�00)y�1(�r(r0)�);

which is equal to the �rst term of V(x�), and where the last inequality stems from the

fact that the arithmetic average is greater than the geometric one and y�1 is strictly

increasing.

Hence, instead of pooling ability types at the bottom the teacher can do better by

screening them since V(x̂) > V(x�).
In the second case, �0 > �, the allocation x�(�) = x0 for all � in [�0; �00] together

with grade r0 need to satisfy the downward binding incentive compatibility constraint of
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the ability type �0, which can be expressed as

�r(r0)� y(x
0)

�0
= �r(r00)� y(x

00)

�0
;

where the allocation (x00; r00) is the best alternative to type �0. Since the teacher screens

the types in [�; �0) and the optimal way of doing it is as in (17)� otherwise, the score

schedule x� is not optimal� then the score allocation x00 = sup�<�0 x
�(�) = y�1[(�02+�2)=2]

and the ability signal �r(r00) = sup�<�0 � = �
0. The score allocation x0 can, accordingly,

be expressed as

x0 = y�1
�
�0�r(r0)� �

02 � �2

2

�
;

and the resulting expected utility to the teacher from implementing the grading rule x�

is equal to

V(x�) =
Z �0

�

x�(�)f(�)d� + (F (�00)� F (�0))x0 +
Z �

�00
x�(�)f(�)d�:

Similarly to the previous case, consider the following grading rule x̂ : for � in [�0; �00] set

performance allocations x̂(�) = y�1[(�2+�2)=2] and for � in [�; �0)[(�00; �] � x̂(�) = x�(�).

(The monotonicity of the grading rule x̂ is preserved on the restriction [�; �00] by the

construction of x̂(�) for � in [�0; �00], and regarding the monotonicity over (�00; �] the same

argument as in the �rst case studied above applies.) The teacher�s expected utility from

implementing x̂ is equal to

V(x̂) =
Z �0

�

x�(�)f(�)d� +

Z �00

�0
x̂(�)dF (�) +

Z �

�00
x�(�)f(�)d�:

Given the condition that x̂(�) is convex for � in [�0; �00], by Jensen�s inequality we have

for the second term of V(x̂) thatZ �00

�0
x̂(�)dF (�) � (F (�00)� F (�0))x̂(�r(r0)) =

= (F (�00)� F (�0))y�1[(�r(r0)2 + �2)=2] >
> (F (�00)� F (�0))y�1[�0�r(r0)� (�02 � �2)=2];

which is the second term of V(x�), and where the last inequality stems from the fact

that �r(r0) > �0 and y�1 is strictly increasing. From this derivation, we have again that

V(x̂) > V(x�), which concludes the proof of Proposition 2 that pooling student types
cannot be optimal for the teacher.
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