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Abstract

Research on happiness has produced valuable insights into the sources of subjective
well-being that are of importance to economics. A major finding from this literature is
that people exhibit a “baseline” level of happiness that shows persistent strength over
time. Here we explore the extent to which baseline happiness is influenced by genetic
variation. Using data from Add Health, we employ a twin study design to show that ge-
netic variation explains about 33% of the variation in happiness, and that the influence
of genes varies by gender (women 26%, men 39%) and tends to rise with age. We also
present evidence that variation in a specific gene predicts happiness. Individuals with
a transcriptionally more efficient version of the serotonin transporter gene (SLC6A4 )
are significantly more likely to report higher levels of life satisfaction—having one or
two alleles of the more efficient type raises the average likelihood of being very satisfied
with one’s life by 8.5% and 17.3%, respectively. Finally, using data from an indepen-
dent source (the Framingham Heart Study) we show that a linked single nucleotide
polymorphism (rs2020933) in the SLC6A4 gene also predicts life satisfaction. These
results are the first to identify a specific gene that may be associated with baseline
levels of happiness.

∗Corresponding author: Jan-Emmanuel De Neve, London School of Economics, Houghton Street, London
WC2A 2AE, United Kingdom (email: j.c.de-neve@lse.ac.uk). The authors thank Dan Benjamin, Chris
Chabris, Chris Dawes, Pete Hatemi, David Laibson, Jaime Settle, Albert Vernon Smith, and Piero Stanig.
This paper also benefited from comments at the Integrating Genetics and Social Sciences conference (Boulder,
CO) and the UCL Institute of Neurology seminar. De Neve benefited from the generous hospitality of the
Institute for Empirical Research in Economics (IEW) at the University of Zurich and the Center for Research
in Economics, Management and the Arts (CREMA). Research was supported by National Institute on Aging
grant P-01 AG-031093 and National Science Foundation grant SES-0719404

mailto:j.c.de-neve@lse.ac.uk


So our happiness depends on our genes and our experience (past and present). Any
social reformer has to be mainly interested in the role of experience since that is all
that we can change. But we will never understand that bit unless we understand the
complete reality, and the complete reality includes a strong role for the genes.

—Lord Richard Layard, Lionel Robbins Memorial Lecture, LSE. February 27, 2003.

1 Introduction

Happiness research has become one of the liveliest subjects in economics in recent years1.

Its main goal is to explain the determinants of individual life satisfaction or subjective

well-being (often loosely called happiness). Economists have mainly dealt with economic

influences, in particular, income and its distribution, labor market regulation, unemployment

and inflation. For example, Di Tella, MacCulloh and Oswald (2001) used happiness surveys

to determine the welfare costs of inflation and unemployment, showing that unemployment

depresses reported well-being more than does inflation. In fact, their longitudinal study of

life satisfaction reports enabled these authors to estimate that people would trade off a 1

percentage-point increase in the unemployment rate for a 1.7 percentage-point increase in

the inflation rate. Systematic influences on life satisfaction have also been found for socio-

demographic factors (age, gender, race, marital status, children, and social networks) as well

as for political and cultural factors (such as democracy, decentralization, and religiosity).

While variables like socio-economic status, income, marriage, education, and religiosity are

significantly associated with individual happiness, none typically accounts for more than 3%

1Books are e.g. Kahneman, Diener and Schwarz (1999), Graham and Pettinato (2002), Frey and Stutzer
(2002a), Van Praag and Ferrer-I-Carbonell (2004), Layard (2005), or Frey (2008); articles are e.g. Easterlin
(1974), Clark and Oswald (1996), Frey and Stutzer (2002b), Di Tella, MacCulloh and Oswald (2003), Luttmer
(2005), Di Tella and MacCulloh (2006), Rayo and Becker (2007), Dolan, Peasgood and White (2008), Fowler
and Christakis (2008), Urry, Nitschke, Dolski, Jackson, Dalton, Mueller, Rosenkranz, Ryff, Singer and
Davidson (2004) or Clark, Frijters and Shields (2008).
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of the variation (Layard 2005, Frey 2008). Moreover, changes in these variables appear to

yield only short term changes to happiness. For example, the “Easterlin Paradox” (Easterlin

1974, 2004, Clark, Frijters and Shields 2008) suggests that increases in real income either

have no lasting effect on happiness, or only a quite small one (Stevenson and Wolfers 2008).

This is because happiness levels tend to revert toward what psychologists describe as a “set

point” or “baseline” of happiness that is influenced by personality and genetic predispositions

(Kahneman et al. 1999, Diener and Lucas 1999).

Although previous studies have shown that baseline happiness is significantly heritable

(Lykken and Tellegen 1996), none has so far identified a specific gene associated with sub-

jective well-being. In this article we replicate the earlier work showing that happiness is

significantly influenced by genetic variation in a nationally-representative sample, and then

we present evidence of a specific gene that is associated with life satisfaction. We find that

individuals with a transcriptionally more efficient version of the serotonin transporter gene

(SLC6A4, also known as 5-HTT) are significantly more likely to report higher levels of life

satisfaction and we replicate this association on an independent data set.

Before we detail our genetic association approach and results, we explore the general in-

fluence that genes may have on happiness through a twin study design. A growing number of

studies use twin research techniques to gauge the relative importance of genetic and environ-

mental influences on economic behaviors (e.g. Cesarini, Dawes, Johannesson, Lichtenstein

and Wallace (2009)). We estimate the heritability of subjective well-being at 33%, indicat-

ing that about one-third of the variance in individual life satisfaction can be attributed to

genetic influences. We also find that there are meaningful differences across gender (women

26%, men 39%) and that the heritability of happiness tends to increase with age.

Although twin studies are an important step in establishing the influence of genes in sub-

jective well-being, they do not identify the specific genes involved. The increasing availability

of genotypic information now allows us to test hypotheses about targeted genes and their

effects. One place to start the search for such genes is among those that have already been
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shown to account for variation in emotional states. Among these, SLC6A4 is a prime can-

didate. The SLC6A4 gene encodes a transporter in the cell wall that absorbs serotonin into

the pre-synaptic neuron in parts of the brain that influence mental states (Hariri, Mattay,

Tessitore, Kolachana, Fera and Goldman 2002, Bertolino, Arciero, Rubino, Latorre, Candia

and Mazzola 2005, Heinz, Braus, Smolka, Wrase, Puls, Hermann and et al. 2005, Canli and

Lesch 2007). SLC6A4 has been studied for more than twenty years and much is known

about the way different versions of this gene influence transcription, metabolism, and signal

transfers between neurons, all of which may influence personality. In particular, less tran-

scriptionally efficient variants of this gene have been shown to moderate the influence of

life stress on depression (Caspi, Sugden, Moffitt, Taylor, Craig, Harrington, McClay, Mill,

Martin, Braithwaite and Poulton 2003); and the more transcriptionally efficient alleles have

been linked to optimism (Fox, Ridgewell and Ashwin 2009). As a result, economists have

specifically identified SLC6A4 as a candidate gene for further study (Benjamin, Chabris,

Glaeser, Gudnason, Harris, Laibson, Launer and Purcell 2007).

Using data from two independent sources, the National Longitudinal Study of Adolescent

Health (Add Health) and the Framingham Heart Study (FHS), we analyze the relationship

between variants ofSLC6A4 and life satisfaction. We find evidence of significant association

in both data sets, suggesting that the SLC6A4 gene may play a role in explaining subjective

well-being. While we do not claim that SLC6A4 determines happiness, nor do we exclude

the possibility that several other genes may play a role, we do think that the results suggest

at least one possible causal pathway able to account for the influence of genes on happiness.

And to our knowledge, this is the first study to identify a specific gene involved in the process.

2 The Add Health Data

This research is based on genetic and survey data collected as part of the National Lon-

gitudinal Study of Adolescent Health (Add Health). The study was designed to explore

the health-related behavior of adolescents in grades 7 through 12, but it has been em-
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ployed widely across disciplines and has made recent contributions in economics (Echenique,

Fryer and Kaufman 2006, Echenique and Fryer 2007, Alcott, Karlan, Mobius, Rosenblat and

Szeidl 2007, Norton and Han 2009). In the first wave of the Add Health study (1994–1995)

80 high schools were selected from a sampling frame of 26,666. based on their size, school

type, census region, level of urbanization, and percent of the population that was white.

Participating high schools were asked to identify junior high or middle schools that served as

feeder schools to their school. This resulted in the participation of 145 middle, junior high,

and high schools. From those schools, 90,118 students completed a 45-minute questionnaire

and each school was asked to complete at least one School Administrator questionnaire. This

process generated descriptive information about each student, the educational setting, and

the environment of the school. From these respondents, a core random sample of 12,105

adolescents in grades 7-12 were drawn plus several over-samples, totaling more than 27,000

adolescents. These students and their parents were administered in-home surveys in the first

wave.

Wave II (1996) was comprised of another set of in-home interviews of more than 14,738

students from the Wave I sample and a follow-up telephone survey of the school administra-

tors. Wave III (2001–02) consisted of an in-home interview of 15,170 Wave I participants.

Finally, Wave IV (2008) consisted of an in-home interview of 15,701 Wave I participants.

The result of this sampling design is that Add Health is a nationally representative study.

Women make up 49% of the study’s participants, Hispanics 12.2%, Blacks 16.0%, Asians

3.3%, and Native Americans 2.2%.2 Participants in Add Health also represent all regions of

the United States: the Northeast makes up 17% of the sample, the South 27%, the Midwest

19%, and the West 17%.

In Wave I of the Add Health study, researchers created a sample of sibling pairs including

all adolescents that were identified as twin pairs, half-siblings, or unrelated siblings raised

together. The sibling-pairs sample is similar in demographic composition to the full Add

2A breakdown for those providing DNA samples is presented in the Appendix.
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Health sample (Jacobson and Rowe 1998). The number of identical (monozygotic) and non-

identical (dizygotic) twins who participated in Wave III was 1,098 (434 MZ and 664 DZ),

with 872 twins (434 MZ and 438 DZ) in same sex pairs. The Add Health data has been

widely used for twin studies (Harris, Halpern, Smolen and Haberstick 2006, Fowler, Baker

and Dawes 2008).

Allelic information for a number of genetic markers were collected for 2,574 individuals

as part of Wave III. The genes chosen for inclusion in the study are known to affect brain

development, neurotransmitter synthesis and reception, and hormone regulation. Allelic

information includes markers that identify alleles (variants) of the serotonin transporter

gene or SLC6A4. The promotor region of SLC6A4 (called 5-HTTLPR) contains a variable

number tandem repeat (VNTR) sequence that influences transcriptional activity—the “long”

528 base-pair allele is associated with a much higher basal activity than the “short” 484 base-

pair allele. Allele frequency for the short allele is 43% and for the long allele is 57%. Details

of the DNA collection and genotyping process are available at the Add Health website (Add

Health Biomarker Team 2007).

In Wave III, subjects were asked “How satisfied are you with your life as a whole?”

Answer categories ranged from very dissatisfied, dissatisfied, neither satisfied nor dissatisfied,

satisfied, to very satisfied. Alternative answers were “refused” or “don’t know” and these

were discarded for the purpose of this study (less than 1% of interviewees gave such a

response). This question and answer formulation is standard in the economics of happiness

literature (Di Tella et al. 2001, Di Tella et al. 2003, Kahneman and Krueger 2006, Frey 2008).

The distribution of answers to the life satisfaction question is shown in Appendix. In line

with the happiness literature, a large majority of respondents report being satisfied or very

satisfied (Frey and Stutzer 2002a). That most people, in fact, report a positive level of

subjective well-being is the object of a paper by Diener and Diener (1996), where the authors

find this distribution to be representative in a wide cross-national analysis.
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3 Twin Design

3.1 Methods

Twin studies compare the traits, behaviors, and other outcomes (called “phenotypes”) of

twins who share 100% of their genetic material (identical or monozygotic twins) to those

who share 50% of their genetic material (fraternal or dizygotic twins) in order to estimate

the relative importance of genetic and environmental influences. If we assume that the influ-

ence of the environment on the phenotype is the same for monozygotic (MZ) and dizygotic

(DZ) twins (the “common environments” assumption), and there are no gene-environment

interactions, then the variance in happiness can be decomposed into additive genetic effects

(A), common or shared environmental influences (C), and unshared or unique environmen-

tal influences (E). The ACE model does not allow us to observe environmental and genetic

influences directly, but it does allow us to estimate these effects by observing the covariance

across MZ and DZ twins.

Although the assumptions underlying the ACE model are strong, the method produces

results that have been validated in numerous other studies. For example, studies of twins

reared apart generate similar heritability estimates to those generated by studies of twins

raised together (Bouchard 1998). More recently, Visscher, Medland, Ferreira, Morley, Zhu,

Cornes, Montgomery and Martin (2006) utilize the small variance in percentage of shared

genes among DZ twins to estimate heritability without using any MZ twins, and they are able

to replicate findings from studies of MZ and DZ twins reared together. Moreover, personality

and cognitive differences between MZ and DZ twins persist even among twins whose zygosity

has been miscategorized by their parents, indicating that being mistakenly treated as an

identical twin by ones parents is not sufficient to generate a difference in concordance (Scarr

and Carter-Saltzman 1979, Kendler, Neale, Kessler, Heath and Eaves 1993, Xian, Scherrer,

Eisen, True, Heath, Goldberg, Lyons and Tsuang 2000).

The ACE model can be formally expressed as:
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yij = µ+ Aij + Cj + Eij

where y is the measure of the phenotype, j denotes the family, i denotes the individual twin

in the family, µ is the mean of this phenotype across all observations, Aij ∼ N(0, σ2
A) is

the additive genetic component, Cj ∼ N(0, σ2
C) is the shared environment component, and

Eij ∼ N(0, σ2
E) is the unshared environment component. Notice that these assumptions

imply:

V ar(y) = σ2
A + σ2

C + σ2
E.

If we further assume that the unshared environment is uncorrelated between twins

(COV (E1j, E2j) = 0), that genes are perfectly correlated between MZ twins (COVMZ(A1j, A2j) =

σ2
A), and the covariance between DZ twins who share half their genes on average is half that

of identical twins (COVDZ(A1j, A2j) = 1
2
σ2

A), then we have two additional equations

COVMZ(y1j, y2j) = σ2
A + σ2

C ,

COVDZ(y1j, y2j) =
1

2
σ2

A + σ2
C

The covariance equations reflect the fact that DZ twins share on average 50% of their

genes whereas MZ twins share all of their genes. Based on these equations, we can estimate

the ACE model via a random effects regression model with the 2 × 2 variance-covariance

matrix specified as:

Ωj =

 σ2
A + σ2

C + σ2
E Rjσ

2
A + σ2

C

Rjσ
2
A + σ2

C σ2
A + σ2

C + σ2
E


where R is the genetic relatedness of the twin pair equaling 1 for MZ twins and 1

2
for DZ

twins. We use the variances of the random effects to generate estimates of heritability,
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common environment, and unshared environment.3

To generate the ACE estimates we use the structural equation modeling program OpenMx

developed by Neale, Boker, Xie and Maes (2010). In addition to estimating ACE models,

we estimate all of the possible submodels to compare model fit. These include an AE model,

which assumes only genes and unshared environment influence the phenotype (C=0), a

CE model which assumes only common and unshared environment influence the phenotype

(A=0), and an E model (A=0 and C=0). If a submodel fits better than the general ACE

model, this suggests the parameters left out of the submodel are not significantly contributing

to model fit. To compare the submodels we use the Akaike Information Criterion (AIC) in

maximum likelihood estimation, where smaller values indicate better fit.

3.2 Twin results

When assessing the role of genetic influences, the first step is to compare the correlation

in phenotype among MZ twin pairs to that of DZ twin pairs. For life satisfaction, the

correlation coefficient for MZ twins is 0.345 and for DZ twins is 0.129. The difference in

correlations is significant (p = 0.032, one sided). These correlations show that identical

twins are significantly more similar in their level of happiness than fraternal twins, which

suggests that genetic factors might play a role in this trait.

In Table 1 we report results from several variance decomposition models described above.

Note that the ACE model yields a heritability estimate of 33%, while the estimate for

common environment is 0% and the estimate for unshared environment is 67%. In other

words, about a third of the variance in happiness in our sample can be attributed to variance

in genetic factors. We also examine the submodels and find that the models with lowest AIC

all include A, suggesting that the finding that happiness is heritable is robust to different

model specifications.4.

3They are defined as σ2
A

σ2
A+σ2

C+σ2
E

, σ2
C

σ2
A+σ2

C+σ2
E

, and σ2
E

σ2
A+σ2

C+σ2
E

respectively.
4When we split our twin sample by sex we find that there are significant differences between men and

women. As in Table 1, Table 3 in the Appendix shows that the AE models fit happiness best according to
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Life satisfaction Fit statistics
a2 c2 e2 ep -2ll df AIC diff -2ll diff df p

ACE 0.331 0.000 0.669 4 1878.9 795 288.9 - - -
AE 0.331 - 0.669 3 1878.9 796 286.9 0 1 1
CE - 0.257 0.743 3 1882.9 796 290.9 4 1 0.05
E - - 1 2 1907.2 797 313.2 28.3 2 0

Table 1: Summary of ACE twin model results. Note: The models consist of additive genetic
factors (A), shared or common environmental factors (C), and unshared environmental factors (E).
The model includes 217 MZ and 219 DZ same-sex twin pairs.

Compared to previous studies of happiness, our heritability estimate of 33% is on the

lower end of reported estimates. In fact, the seminal paper by Lykken and Tellegen (1996)

estimated heritability at about 50%, and subsequent estimates ranged from 38% (Stubbe,

Posthuma, Boomsma and De Geus 2005) to 36–50% (Bartels and Boomsma 2009) to 42–

56% (Nes, Roysamb, Tambs, Harris and Reichborn-Kjennerud 2006). However, the Add

Health study includes other questions that suggest the heritability of happiness rises as

people age. The standard life satisfaction question used in this paper is only asked of Add

Health subjects in Wave III (2001–02), but in other interview waves the following question

is asked of participants: “How often was the following true during the past seven days? You

felt happy.” Answers range from “never or rarely” to “most of the time or all of the time.”

Figure 3 shows the MZ and DZ twin pair correlations of the time series that combines the “life

satisfaction” and “You felt happy” questions. The basic heritability estimates that result

from comparing MZ and DZ correlations range from 22% in Wave I (1994) to 54% in Wave

IV (2008). This longitudinal analysis is consistent with a growing body of longitudinal twin

research that shows that the heritability of a number of traits (e.g. intelligence) increases

with age (Plomin, DeFries, McClearn and McGuffin 2008). It also shows that the finding

that happiness is heritable is robust to a variety of measures and time periods over the life

course.

the AIC values. However, the heritability estimate for males is 39%, whereas for females it is 26%.
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4 Genetic Association

Twin studies are important because they allow us to gauge the relative influence of our

genetic makeup on subjective well-being. However, twin studies do not give insight into

which specific genes may be involved in explaining the heritability of happiness. Because

Add Health collected a number of specific genetic markers, it presents us with a unique

opportunity to move beyond a twin design study. Below we introduce some basic concepts

in genetics, our genetic association research design, and present results for our candidate

gene study.

4.1 Basic Concepts in Genetics

Human DNA is composed of an estimated 21,000 genes that form the blueprint for molecules

that regulate the development and function of the human body. Genes are distinct regions

of human DNA that are placed in the 23 pairs of chains, or chromosomes, that make up all

human DNA. Almost all human cells contain the same DNA they inherited at the moment

of conception.

Individuals inherit one half of their DNA from each parent, with one copy of each gene

coming from the mother and one copy from the father. Some genes come in different versions,

known as “alleles”—for example, sickle cell disease results from a particular allele coding for

abnormal rather than normal hemoglobin. Each parent has two separate copies of an allele

at each “locus”, or location, on the chromosome, but each sperm or egg cell contains only

one of these alleles. Thus a child has a 50% chance of receiving a particular allele from a

particular parent. For example, suppose that at a given locus there are two possible alleles,

A and B. If both parents are “heterozygous” at that locus, meaning they each have an A

and a B allele (AB or BA—order is irrelevant), then a given offspring has a 25% chance

of being “homozygous” for A (AA), a 25% chance of being homozygous for B (BB) and a

50% chance of being heterozygous (AB or BA). If an individual is heterozygous at a locus, a
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“dominant” allele may impose itself on the “recessive” allele and the expression of the latter

allele will not be observed.

Genes transcribe proteins that begin a cascade of interactions that regulate bodily struc-

ture and function. Many of the observable traits and behaviors of interest, referred to as

“phenotypes”, are far downstream from the original “genotypes” present in the DNA. While

in some cases one allele can single-handedly lead to a disease (such as Sickle Cell Anemia,

Huntingtons disease, and cystic fibrosis), the vast majority of phenotypes are “polygenic”,

meaning they are influenced by multiple genes (Mackay 2001, Plomin et al. 2008), and are

shaped by a multitude of environmental forces. As a result, association models between

genotypes and phenotypes are an important first step, but they are not the end of the story.

It is also important to investigate the extent to which genetic associations are moderated by

environmental factors and other genes.

4.2 SLC6A4, Serotonin, and Happiness

One strategy in behavioral genetics is to start with a “candidate” gene that is thought to

influence behaviors or processes in the body that are related to the phenotype of inter-

est. For subjective well-being, this means focusing on genes that affect brain development,

neurotransmitter synthesis and reception, hormone regulation, and transcriptional factors

(Damberg, Garpenstrand, Hallman and Oreland 2001, Benjamin et al. 2007).

We choose a candidate gene that has already received a great deal of attention for its

association with mental states. The SLC6A4 gene is critical to the metabolism of serotonin

in the brain. As shown in Figure 1, serotonin is a chemical that is released by a neuron

and sensed by a receptor on the receiving neuron, passing an electric potential across a

gap called a nerve synapse (the nerve that emits the serotonin is on the “pre-synaptic”

side of the gap). Signals are carried throughout the body by the sequential release of a

neurotransmitter by one neuron after another across these synapses. The SLC6A4 gene

codes for the serotonin transporters (5-HTT or SERT) that are placed in the cell wall and
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reabsorb the neurotransmitter serotonin from the synaptic cleft. Most serotonin is recycled

after use and the serotonin transporter allows serotonergic neurons to restock. The serotonin

transporter gene has been studied extensively and much is known about the way different

versions of this gene influence serotonergic neurotransmission which, in turn, is found to

influence personality and mental health (Hariri et al. 2002, Hariri and Holmes 2006, Canli

and Lesch 2007).

Figure 1: Representation of the long/short variant of the SLC6A4 gene and the release, reception,
and recycling of serotonin in neurons. Adapted from Canli & Lesch (2007), with permission from
the Nature Publishing Group.

The SLC6A4 gene contains a 44 base-pair variable-number tandem repeat (VNTR) poly-

morphism5 in the promoter region6(5-HTTLPR) that is believed to be responsible for vari-

5A VNTR polymorphism is a repeated segment of DNA that varies among individuals in a population.
6A promoter region is the regulatory region of DNA that tells transcription enzymes where to begin.
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ation in transcriptional efficiency. The “long” (528 bp) and “short” (484 bp) polymorphism

produce the same protein but the long allele is associated with an approximately three times

higher basal activity than the shorter allele. Consequently, the long variant produces sig-

nificantly more 5-HTT mRNA7 and protein (Lesch, Bengel, Heils, Sabol, Greenberg, Petri

and et al. 1996, Little, McLaughlin, Zhang, Livermore, Dalack and McFinton 1998, Glatz,

Mössner, Heils and Lesch 2003, Canli and Lesch 2007). The long polymorphism thus re-

sults in increased gene expression and more serotonin transporters in the cell membrane. In

turn, more serotonin is reintroduced into the pre-synaptic cell. This process is also shown

in Figure 1.

Functional variation in the serotonin transporter gene is increasingly understood to exert

influence on parts of the brain regulated by serotonergic neurotransmission. In particular,

research shows increased amygdala activation to negative emotional stimuli among carriers

of short alleles (Hariri et al. 2002, Heinz et al. 2005, Munafò, Brown and Hariri 2008, Peza-

was, Meyer-Lindenberg, Drabant, Verchinski, Munoz, Kolachana, Egan, Mattay, Hariri and

Weinberger 2005, Canli, Omura, Haas, Fallgatter and Constable 2005). A morphometrical

study of this genetic association reports reduced gray matter volume in short-allele carriers

in limbic regions critical for processing of negative emotion, particularly perigenual cingulate

and amygdala (Pezawas et al. 2005). These authors conclude that 5-HTTLPR induced vari-

ation in anatomy and function of an amygdala-cingulate feedback circuit critical for emotion

regulation implicates a genetic susceptibility for depression (Pezawas et al. 2005). Another

morphometrical study corroborates the finding that short-allele carriers show decreased vol-

ume in the affective division of the anterior cingulate and decreased gray matter density in

its pregenual region (Canli et al. 2005). The same study also finds that the 5-HTTLPR

polymorphism is associated with activation changes to positive stimuli, suggesting a general

role in emotional regulation, rather than negative valence specifically (Canli et al. 2005).

These promoter regions typically lie upstream from the genes they control.
7Messenger ribonucleic acid (mRNA) is a type of RNA that carries information from DNA to ribosomes.

In turn, these ribosomes “read” messenger RNAs and translate their information into proteins.
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Myriad behavioral studies also suggest that serotonin and SLC6A4 play an important role

in emotional regulation (Heils, Teufel, Petri, Stober, Riederer, Bengel and Lesch 1996, Hariri

et al. 2002, Hariri and Holmes 2006). Specifically, variance in 5-HTTLPR was found to be

be associated with variation in mental health outcomes (Lesch et al. 1996) and subsequent

studies report that about 10% of the variance in anxiety-related traits depends on variation

in serotonin transporters (Sen, Burmeister and Ghosh 2004, Risch and et al. 2009, Munafò,

Clark and Flint 2005). A recent study by Fox et al. (2009) also suggests that 5-HTTLPR may

influence optimism. The authors obtained DNA from about 100 participants and compared

reaction times to pictures with positive, negative, and neutral emotional valence (replicating

a common experiment in psychopathology research). The results show that individuals with

the transcriptionally more efficient 5-HTTLPR alleles display a significant bias towards pro-

cessing positive information and selectively avoiding negative information. This emotionally

self-protective pattern does not obtain in individuals carrying one or both short alleles.

Not all studies show a direct relationship between a gene variant and a phenotype.

Instead, developmental or concurrent environments may moderate an association between

genes and phenotypes. A well-known study by Caspi et al. (2003) identifies a gene-environment

interaction for the influence of life stress on depression. The authors find that individuals

with short 5-HTTLPR alleles gene are more vulnerable to stress-induced depression. Among

those individuals that had experienced a relatively large number of stressful life events, about

33% of the carriers of the less efficient short allele were cases of diagnosed depression as com-

pared to only 17% of the individuals that carried both long alleles. Thus, in the Caspi et al.

(2003) study the gene itself is not associated with depression. Rather, it is the combination

of both gene and environment that yields a significant association. In this study we do not

report on a gene-environment interaction, but the direct association between the number

of long 5-HTTLPR alleles and life satisfaction. Future research may produce new insights

from exploring how environmental factors moderate the association between 5-HTTLPR and

happiness.
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4.3 Association methods

Genetic association studies test whether an allele or genotype occurs more frequently within

a group exhibiting a particular phenotype than those without the phenotype. However, a

significant association can mean one of three things: (1) The allele itself influences subjective

well-being; (2) the allele is in “linkage disequilibrium” with an allele at another locus that

influences subjective well-being; or (3) the observed association is a false positive signal due

to population stratification.8

Population stratification occurs because groups may have different allele frequencies due

to their genetic ancestry. Subjective well-being in these groups may be the product of

their environments, alleles other than the one of interest, or some unobserved reason. For

example, two groups may not have mixed in the past for cultural reasons. Through the

process of local adaptation or genetic drift these groups may develop different frequencies of

a particular allele. At the same time, the two groups may also develop divergent behaviors

that are not influenced by the allele but solely by the environment in which they live. Once

these two groups mix in a larger population, simply comparing the frequency of the allele to

the observed behavior would lead to a spurious association.

There are two main research designs employed in association studies, case-control designs

and family-based designs. Case-control designs compare the frequency of alleles or genotypes

among subjects that exhibit a phenotype of interest to subjects who do not. As a result,

case-control designs are vulnerable to population stratification if either group is especially

prone to selection effects. A typical way to control for this problem is to include controls

for the race or ethnicity of the subject or to limit the analysis to a specific racial or ethnic

group. Family-based designs eliminate the problem of population stratification by using

family members, such as parents or siblings, as controls. Tests using family data compare

8Given our data, we cannot differentiate between 1 and 2. In order to do so we would need additional
genetic information about loci in close proximity to the locus of interest. Thus, a significant association
means that either a particular allele, or one likely near it on the same gene, significantly influences subjective
well-being.
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whether offspring exhibiting the trait receive a risk allele from their parents more often than

would be expected by chance. This design is very powerful in minimizing type I error but also

suffers from much lower power in detecting a true association. Xu and Shete (2006) show,

based on extensive simulation work, that a case-control association study using mixed-effects

regression analysis outperforms family-based designs in detecting an association while at the

same time effectively limiting type I error.

To test for genetic association we employ a mixed-effects OLS regression model:9

Yij = β0 + βGGij + βkZkij + Uj + εij

where i and j index subject and family respectively. For the SLC6A4 gene, G = 2 if the

subject’s genotype is LL, G = 1 for genotypes LS or SL, and G = 0 if the subject’s genotype

is SS (where L represents having a copy of a 528 base-pair “long” allele, and S represents

having a copy of a 484 base-pair “short” allele). Z is a matrix of variables to control for the

underlying population structure of the Add Health sample as well as potentially mediating

factors such as age, gender, education, religiosity, marriage, job, welfare, or medication that

may all influence subjective well-being. Finally, the variable U is a family random effect that

controls for potential genetic and environmental correlation among family members, and ε

is an individual-specific error.

To control for the effects of the underlying population structure, we include indicator

variables for whether a subject self-reported as Black, Hispanic, or Asian (base category is

White). Following the policy of the United States Census, Add Health allows respondents

to mark more than one race. Since this complicates the ability to control for stratification,

9The choice between OLS and ordered probit regression analysis rests on whether the categories of the
life satisfaction are considered cardinal or ordinal. Economists typically consider these happiness scores as
ordinal and have mainly opted for the ordered type of analysis. Psychologists and sociologists interpret
happiness categories as cardinal and therefore use OLS. Ferrer-i-Carbonell and Frijters (2004) survey and
test both empirical literatures to conclude that assuming cardinality or ordinality of happiness surveys makes
little difference in studies where the dependent variable is measured at a single point in time. We opted for
OLS, but other analyses using ordered probit reveal no meaningful differences in coefficients or significance.
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we exclude these individuals (N = 117), but a supplementary analysis including them yields

substantively equal results.

4.4 Association results

Table 2 shows the results of several specifications of the models to test the hypothesis that the

5-HTTLPR long allele is associated with subjective well-being. Each of these specifications

includes variables for age, gender, and race to control for population stratification. Model

1 shows that the long allele is significantly associated with increased life satisfaction (p =

0.012). In Figure 2 we summarize the results for 5-HTTLPR by simulating first differences

from the coefficient covariance matrix of Model 1. Holding all else constant and changing the

5-HTTLPR variant for all subjects from zero to one long allele would increase the reporting

of being very satisfied with one’s life in this population by about 8.5%. Similarly, changing

the 5-HTTLPR variant from zero to two long alleles would increase the reporting of being

very satisified by about 17.3%.

Model 2 includes a number of socio-economic factors that are known to influence subjec-

tive well-being. In particular, having a job, education, marriage, divorce, religiosity, welfare

assistance, and being on medication. This model also suggests that there is a statistically

significant association (p = 0.005) between the 5-HTTLPR long variant and the reporting of

life satisfaction. Notice also that the coefficient actually increases a bit, suggesting that the

association cannot be explained by a mediation effect this genotype may have on any other

variables included in the model.10

Following Xu and Shete (2006), as a robustness test for population stratification, we also

include Model 3 that is a case-control association model for those subjects that uniquely

identified themselves as being white. The coefficient on 5-HTTLPR and its p-value (p =

10We also report the results of association tests with 5-HTTLPR for each of these socio-economic factors
in the appendix. An association with medication is nearly significant (p = 0.08) but loses its significance
(p = 0.17) when controlling for age, gender, and race. Hence, medication cannot be considered a mediating
variable (Baron and Kenny 1986).
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Model 1 Model 2 Model 3
Coeff. SE P-value Coeff. SE P-value Coeff. SE P-value

5-HTTLPR long 0.059 0.023 0.012 0.065 0.023 0.005 0.070 0.029 0.017
Black -0.111 0.048 0.021 -0.114 0.049 0.020
Hispanic 0.198 0.117 0.092 0.216 0.118 0.067
Asian -0.196 0.073 0.007 -0.221 0.071 0.002
Age 0.004 0.009 0.705 -0.011 0.009 0.262 -0.031 0.012 0.008
Male 0.014 0.033 0.682 0.028 0.033 0.406 0.039 0.041 0.341
Job 0.093 0.041 0.024 0.104 0.057 0.071
College 0.115 0.033 0.001 0.238 0.042 0.000
Married 0.232 0.041 0.000 0.318 0.050 0.000
Divorced -0.313 0.153 0.041 -0.310 0.155 0.047
Religiosity 0.103 0.017 0.000 0.082 0.023 0.000
Welfare -0.236 0.098 0.017 -0.121 0.153 0.432
Medication -0.045 0.032 0.162 -0.095 0.041 0.021
Intercept 4.078 0.208 0.000 4.096 0.210 0.000 4.514 0.262 0.000

N 2545 2528 1446
R2 0.01 0.06 0.08

Table 2: OLS models of association between 5-HTTLPR and life satisfaction. Variable definitions
are in the Appendix. Standard errors (SE) and P-values are also presented.

0.017) suggest that population stratification between self-reported racial categories is not

driving the association between 5-HTTLPR and life satisfaction.

5 Replication: The Framingham Heart Study

Specific genotypes usually only account for a very small amount of the variance in complex

social behaviors, which means the tests often have low power. As a result, it is very important

to replicate results in independent samples. Here, we utilize the Framingham Heart Study

(FHS), a population-based, longitudinal, observational cohort study that was initiated in

1948 to prospectively investigate risk factors for cardiovascular disease. Since then, the

FHS has come to be composed of four separate but related cohort populations: (1) the

Original Cohort enrolled in 1948 (N=5,209); (2) the Offspring Cohort (the children of the
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Figure 2: Increasing the number of “long,” more efficient 5-HTTLPR alleles yields significantly
higher life satisfaction. First differences, based on simulations of Model 1 parameters, are presented
along with 95% confidence intervals. All other variables are held at their means.

Original Cohort and spouses of the children) enrolled in 1971 (N=5,124); (3) the Omni

Cohort enrolled in 1994 (N=508); and (4) the Generation 3 Cohort (the grandchildren of the

Original Cohort) enrolled beginning in 2002 (N=4,095). Published reports provide details

about sample composition and study design for all these cohorts (Cupples and D’Agnostino

1988, Kannel, Feinleib, McNamara, Garrison and Castelli 1979).

The Framingham Heart Study makes available genetic markers for its participants. Out

of the 14,428 members of the three main cohorts, a total of 9,237 individuals have been

genotyped (4,986 women and 4,251 men) for single nucleotide polymorphisms (SNPs). These

are specific locations on human DNA where a single pair of nucleotides varies for some

part of the human population.FHS makes available a data set of expected genotypes for

all 2,543,887 SNPs in the European ancestry HapMap sample that was computed from the

550,000 observed SNPs from an Affymetrix array using the program MACH (for information
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on how this data set was constructed, see de Bakker (n.d.)). Although this data does

not contain the same VNTR polymorphism marker for SLC6A4 that we analyze in Add

Health, it does contain a nearby marker called “rs2020933”, and the “A” allele of this

marker is associated with higher transcriptional efficiency of serotonin transporters (Martin,

Cleak, Willis-Owen, Flint and Shifman 2007, Wendland, Martin, Kruse, Lesch and Murphy

2006, Lipsky, Hu and Goldman 2009, Fahad, Vasiliou, Haddley, Paredes, Roberts, Miyajima,

Klenova, Bubb and Quinn 2010). It is also known to be in positive linkage disequilibrium

with the long allele of 5-HTTLPR (Huezo-Diaz, Rietschel, Henigsberg, Marusic, Mors, Maier,

Hauser, Souery, Placentino, Zobel, Larsen, Czerski, Gupta, Hoda, Perroud, Farmer, Craig,

Aitchison and McGuffin 2009).

The FHS also asked 3,460 participants in the offspring cohort a variant of the life sat-

isfaction question: “Indicate where you think you belong between these two extremes ...

satisfied with job or home life OR ambitious, want change.” Respondents were given a 7

point scale to choose from, and we reverse coded the scale so that higher values indicated

greater satisfaction with life (mean=4.7, SD=1.7). Although this question is not exactly like

the one asked in Add Health, if there is a real association between SLC6A4 and happiness,

we expect it to show up in spite of variations in the way the question is asked.

We merged the gene and life satisfaction data and conducted an association test using a

linear regression with a general estimating equations (GEE) approach to account for within-

family correlation of errors. As shown in Model 1 in Table 3, this association is significant

(p = 0.05) and in the expected direction. In Model 2 we include additional controls for

age and gender. We also include the first ten principal components of a singular value

decomposition of the subject-genotype matrix in the regression (see Appendix), which has

been shown to effectively control for population stratification (Price, Patterson, Plenge,

Weinblatt, Shadick and Reich 2006). Once again, the replicated association is significant

(p = 0.05).
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Model 1 Model 2
rs2020933 “A” alleles 0.22 0.11 0.05 0.21 0.11 0.05
Age 0.04 0.00 0.00
Male -0.00 0.06 0.99
Principal Component 1 -0.88 1.57 0.58
Principal Component 2 0.04 6.43 0.99
Principal Component 3 -3.32 2.21 0.13
Principal Component 4 -1.08 2.33 0.64
Principal Component 5 -3.30 2.64 0.21
Principal Component 6 1.13 2.45 0.65
Principal Component 7 2.21 1.97 0.26
Principal Component 8 -2.10 2.21 0.34
Principal Component 9 -0.52 2.06 0.80
Principal Component 10 -1.82 2.26 0.42
Intercept 4.68 0.04 0.00 2.90 0.16 0.00

N 2843 2831
R2 0.01 0.05

Table 3: GEE models of association between rs2020933 and life satisfaction. Variable definitions
are in the Appendix. Standard errors (SE) and P-values are also presented.

6 Discussion

The main goal of this paper is to provide empirical evidence that genes matter for subjective

well-being and to encourage economists to consider the importance of biological differences.

The results we present here address one possible source of the “baseline” or “set point”

for happiness that prior work has identified (Kahneman et al. 1999, Graham 2008). The

existence of a baseline does not mean that the socio-economic influences on happiness so far

identified by researchers are unimportant. Rather, our results complement these studies and

suggest a new direction for research. As indicated by the R2 value in Table 2, the SLC6A4

gene explains less than one percent of the variation in life satisfaction but our twin analysis

suggests that all genes account for about a third of the total variance. Therefore, there are

probably many other genes which, in conjunction with environmental factors, help to explain

how baseline happiness varies from one person to another. The association with SLC6A4 is
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probably the first of a number of associations that will likely be identified over the course of

the next few years.

While the Add Health study presents us with a valuable opportunity to explore a genetic

basis of subjective well-being, we want to emphasize a limitation of the data. The Add Health

sample is restricted to individuals who are 18-26 years old during Wave III, so our results

apply only to the subjective well-being of young adults and not to people in different age

categories. However, the strong similarity in the distribution of answers in the Add Health

data as compared to other life satisfaction surveys used in the happiness literature suggests

that the age limits are not likely to gravely distort our results (Di Tella et al. 2001, Di Tella

et al. 2003, Kahneman and Krueger 2006, Frey 2008). Moreover, our successful replication in

the Framingham Heart Study, which has a much wider age range, further suggests a degree

of generalizability.

A second important limitation is that we use a case-control method that is vulnerable to

population stratification. Because of limited mobility, local adaptation, and genetic drift, it

is possible that people from different cultures have a different incidence of certain genotypes,

which could lead to a spurious association between genotype and cultural attributes. We limit

this potential threat to the validity of our results by including controls for race and limiting

the analysis to a specific racial or ethnic group in Add Health. Moreover, we successfully

replicate a related association in the Framingham Heart Study that controls for the first

ten principal components of a singular value decomposition of the subject-genotype matrix,

which has been shown to effectively deal with the problem of population stratification (Price

et al. 2006).

The estimates of the influence of socio-demographic, economic, and cultural covariates

on life satisfaction in Table 2 corroborate the generally identified systematic effects of these

variables in the literature (for a survey, see Dolan et al. (2008)). In particular, gender does

not systematically affect happiness. Higher age has a negative, though not statistically

significant effect (this is not surprising considering that our sample refers to young adults).
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African Americans and Asian Americans are systematically less happy than are Whites, while

Latinos are somewhat happier, but not in a statistically significant way. Better educated

and married individuals report having significantly higher life satisfaction, while divorced

people are more unhappy. Having a job strongly raises life satisfaction. This reflects the

psychic benefits of being occupied and integrated into society. At the same time it suggests

that having an income raises life satisfaction. In contrast, persons on welfare are much less

happy than those employed which reflects the psychic costs of unemployment. Religious

individuals are significantly more happy than those without religious beliefs. Persons with

less good health, as measured by the need to be on medication, are also less happy. As is the

case with most research on happiness, these estimates identify correlations, not causality,

given the difficulty in disentangling endogeneity. Once again, consistency with previous

studies suggests that results using the Add Health data may generalize to other populations

and a wider demography in terms of age.

The life satisfaction question and answer formulation used in Add Health is standard in

the economics and psychology literatures (Diener and Diener 1996, Di Tella et al. 2001, Kah-

neman and Krueger 2006, Frey 2008). This question has been cross-validated with alterna-

tive measures that gauge subjective well-being (Kahneman and Krueger 2006, Bartels and

Boomsma 2009) and Oswald and Wu (2010) provide objective confirmation of life satisfaction

as a measure of subjective well-being. Still, the life satisfaction question has been criticized

for inducing a focussing illusion by drawing attention to people’s relative standing rather

than moment-to-moment hedonic experience (Kahneman, Krueger, Schkade, Schwarz and

Stone 2006).

7 Conclusion

Our results suggest that genetic factors significantly influence individual subjective well-

being. In fact, using twin study techniques we estimate that genetics explains about 33% of

the variance in individual happiness. Moreover, using alternative methods we have identi-
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fied one particular gene—SLC6A4 —as having a positive association with self-reported life

satisfaction in two independent samples. By moving beyond a twin study and focusing on

specific genes, our analysis is able to suggest potential causal pathways through which genes

influence happiness levels. A significant body of research has shown that the serotonin trans-

porter gene influences the human psyche via its impact on neurological processes, thereby

establishing a potential causal chain leading from this genotype to self-reported life satis-

faction. Given prior research linking the “short,” less trancriptionally efficient alleles of the

SLC6A4 gene to mood disorders, and the “long,” more efficient alleles to optimism bias, we

hypothesized that carriers of the “long” alleles would be more likely to report being happy,

and this intuition is supported in both the Add Health and Framingham Heart Study data.

The causal structure must be further studied once additional data reporting the genetic

endowment of individuals coupled with data on their subjective well-being become available.

We have stressed that genetic factors complement, rather than substitute for, the ex-

isting studies showing the influence of socio-demographic, economic and cultural variables

on life satisfaction. This study seeks to show the combined influences of biological and en-

vironmental influences on subjective well-being; but it is only a beginning and may open

up a fascinating new research frontier. Future work should attempt to identify other genes

or gene-environment interactions that are implicated in subjective well-being. Finding out

which genes they are and what physical function they have will improve our understanding of

the biological processes that underlie well-being and may also shed light on their evolution-

ary origin (Fitzpatrick, Ben-Shahar, Smid, Vet, Robinson and Sokolowski 2005). While the

SLC6A4 gene may explain a significant portion of the variation in happiness, it is important

to re-emphasize that there is no single “happiness gene.” Instead, there is likely to be a set

of genes whose expression, in combination with environmental factors, influences subjective

well-being.

More broadly, these results suggest a tentative new step forward for economics as a

discipline. They show that integrating the unique biology of each individual, in addition to
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studying experience and environment may usefully complement existing models and up their

explanatory power (Caplin and Dean 2008). We also believe that genetic association studies

such as ours may be a new catalyst for two important lines of research. First, economics

places a high premium on causal inference. Provided that robust genetic associations are

available and that exclusion restrictions are met, genotypes could function as instrumen-

tal variables to disentangle the reverse causality in important relationships that have been

plagued by endogeneity. First attempts at using genes as instruments have been tried on

the link between health and educational attainment (Fletcher and Lehrer 2009, Norton and

Han 2009, von Hinke Kessler Scholder, Smith, Lawlor, Propper and Windmeijer 2010). We

foresee this to be an exciting new avenue in economic research and we will also turn our at-

tention to estimating the causal influence of happiness on a number of important economic

variables such as health and income using SLC6A4 genotypes as instrumental variables.

Second, integrating genetic variation and neuroscientific research may further advance our

understanding of the biological underpinnings of individual behavior. For example, the work

by Urry et al. (2004) presents neural correlates of subjective well-being. Some of the neuro-

logical variation they observe may result from differences in genotype and could thus inform

and stimulate new candidate gene association studies. Since genes are upstream from neu-

rological processes, understanding them may bring us closer to understanding the objective

sources of subjective well-being.
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Appendix

Variable Definitions

5-HTTLPR long is an variable for having 0, 1, or 2 of the 528 base-pair alleles of the SLC6A4

gene (as opposed to the 484 base-pair version). The race/ethnicity indicator variables are

based on the questions “Are you of Hispanic or Latino origin?” and “What is your race?

[white/black or African American/American Indian or Native American/Asian or Pacific

Islander]”. Age is self-reported age and Male is an indicator taking the value of 1 if the

respondent is a male and 0 for a female. Job is the response to the question “Do you currently

have a job?” College is an indicator variable taking the value 1 if the respondent completed

at least one year of college and 0 for no college. It is based on the question “What is the

highest grade or year of regular school you completed?” Married and Divorced are dummies

derived from the population subset that have married and answered “Are you still married?”

Religiosity relies on “To what extent are you a religious person?” and takes a value between

0 and 3 for very religious. Welfare is a dummy for “Are you receiving welfare?” Medication

is a dummy for “In the past 12 months, have you taken any prescription medication—that

is, a medicine that must be prescribed by a doctor or nurse?” DRD4 is the number of r7

alleles (0, 1, or 2) as opposed to r4 alleles. DRD2 is the number of a2 alleles (0, 1, or 2) as

opposed to a1 alleles. DAT1 is the number of r9 alleles (0, 1, or 2) as opposed to r10 alleles.

MAOA is the number of “High” alleles (0, 1, or 2) as opposed to “Low” alleles. rs2304297

is the number of G alleles (0, 1, or 2) for this SNP on CHRNA6 (as opposed to C alleles).

rs892413 is the number of C alleles (0, 1, or 2) for this SNP on CHRNA6 (as opposed to A

alleles). rs4950 is the number of G alleles (0, 1, or 2) for this SNP on CHRNB3 (as opposed

to A alleles). rs13280604 is the number of G alleles (0, 1, or 2) for this SNP on CHRNB3

(as opposed to A alleles). rs2020933 is the number of A alleles (0, 1, or 2) for this SNP on

SLC6A4 (as opposed to T alleles).

Principal Component 1-10 is the individual loading for each individual on the 10 principal

components associated with the 10 largest eigenvalues of a singular value decomposition of
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the subject-genotype matrix. These 10 values contain information about population struc-

ture, so including them in an association test helps to control for population stratification

(Price et al. 2006). Because principal component analysis assumes independent observations,

we did not use our entire (family-based) FHS sample to construct the principal components.

Instead we used a subsample of 2,507 unrelated individuals to calculate the principal com-

ponents of the genotypic data and then projected the other individuals in the sample onto

those principal components, thus obtaining the loadings of each individual on each of the

top 10 principal components.
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Table 4: ACE twin models of life satisfaction, by gender

Life satisfaction (females) Fit statistics
a2 c2 e2 ep -2ll df AIC diff -2ll diff df p

ACE 0.205 0.050 0.745 4 919.8 388 143.8 - - -
AE 0.263 - 0.737 3 919.8 389 141.8 0.05 1 0.83
CE - 0.205 0.795 3 920.3 389 142.3 0.53 1 0.47
E - - 1 2 928.0 390 148.0 8.24 2 0.02

Life satisfaction (males) Fit statistics
a2 c2 e2 ep -2ll df AIC diff -2ll diff df p

ACE 0.389 0.000 0.611 4 951.3 400 151.3 - - -
AE 0.389 - 0.611 3 951.3 401 149.3 0 1 1
CE - 0.308 0.692 3 955.0 401 153.0 3.73 1 0.05
E - - 1 2 972.4 402 168.4 21.11 2 0
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Figure 3: Longitudinal cross-twin correlations
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Table 5: OLS models of association between 5-HTTLPR and life satisfaction that include all
available Add Health genetic markers. Standard errors (SE) and P-values are also presented.

Model 1 Model 2 Model 3
Coeff. SE P-value Coeff. SE P-value Coeff. SE P-value

5-HTTLPR: long 0.061 0.026 0.021 0.066 0.025 0.009 0.080 0.032 0.011
MAOA: high -0.014 0.022 0.518 -0.020 0.021 0.336 -0.017 0.027 0.528
DRD4: r7 -0.000 0.033 0.993 0.001 0.032 0.970 0.024 0.039 0.548
DRD2: a2 0.008 0.030 0.777 -0.000 0.029 0.991 0.048 0.036 0.243
DAT1: r10 0.043 0.032 0.169 0.045 0.030 0.135 0.047 0.036 0.191
rs2304297: G -0.028 0.061 0.647 -0.012 0.059 0.842 0.018 0.085 0.837
rs892413: C -0.010 0.051 0.837 -0.024 0.050 0.628 -0.024 0.073 0.744
rs4950: G -0.042 0.065 0.520 -0.039 0.062 0.528 0.006 0.077 0.939
rs13280604: G 0.066 0.065 0.035 0.036 0.061 0.555 0.013 0.073 0.863
Black -0.138 0.065 0.035 -0.150 0.065 0.020
Hispanic 0.294 0.160 0.067 0.256 0.147 0.081
Asian -0.205 0.083 0.014 -0.250 0.079 0.002
Age 0.006 0.010 0.581 -0.009 0.010 0.390 -0.027 0.013 0.033
Male 0.046 0.037 0.212 0.061 0.037 0.097 0.039 0.046 0.384
Job 0.108 0.046 0.019 0.104 0.057 0.071
College 0.154 0.037 0.000 0.245 0.048 0.000
Married 0.218 0.048 0.000 0.259 0.057 0.000
Divorced -0.285 0.154 0.065 -0.265 0.159 0.096
Religiosity 0.160 0.020 0.000 0.131 0.026 0.000
Welfare -0.205 0.112 0.068 -0.100 0.165 0.546
Medication -0.072 0.037 0.053 -0.129 0.046 0.005
Intercept 3.960 0.246 0.000 3.932 0.243 0.000 4.227 0.304 0.000
N 1939 1910 1110
R2 0.015 0.087 0.102
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Summary Statistics

Table 6: Sample means.

Mean Std Dev Min Max
Life satisfaction 4.20 0.79 1 5
5-HTTLPR long 1.14 0.72 0 2
Age 21.9 1.7 18 26
Religiosity 1.43 0.92 0 3

Table 7: Percentage of subjects exhibiting these characteristics.

Percent
White 70.9
Black 19.0
Hispanic 14.7
Asian 8.2
Male 47.8
College 54.9
Married 17.3
Divorced 1.4
Welfare 4.2
Medication 61.2
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Figure 4: Distribution of life satisfaction
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Table 8: Cross-tabs

5-HTTLPR long
Life satisfaction 0 1 2 Total
Very dissatisfied 4 4 5 13

(0.8%) (0.3 %) (0.6 %) (0.5%)
Dissatisfied 17 35 13 65

3.3% 2.9% 1.6% 2.6%
Neither 72 149 97 318

14.2% 12.6 % 11.3 % 12.4%
Satisfied 226 544 394 1,164

44.4% 45.9% 45.7% 45.6%
Very satisfied 190 453 353 996

37.3% 38.2 % 41.0 % 39.0%
Total 509 1,185 862 2,556

100% 100% 100% 100%
(20%) (46%) (34%)

Table 9: Life satisfaction and genotype, by race

Race Mean
White

Life satisfaction 4.24
5-HTTLPR long 1.12

Black
Life satisfaction 4.13
5-HTTLPR long 1.47

Hispanic
Life satisfaction 4.22
5-HTTLPR long 0.93

Asian
Life satisfaction 4.01
5-HTTLPR long 0.69
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Potential Mediators

5-HTTLPR long
DV p− value
Job 0.17
College 0.99
Married 0.33
Divorced 0.16
Religiosity 0.48
Welfare 0.25
Medication 0.08

Table 10: Table presents p values for 5HTT long in models with job, college attendance, married,
divorced, religious, welfare, and medication as dependent variables. Regressions also include race,
age, and gender controls.
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