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Abstract 

This paper analyzes individual decision making under risk. It is assumed that an individual 

does not have a preference relation on the set of risky lotteries. Instead, an individual 

possesses a probability measure that captures the likelihood of one lottery being chosen 

over the other. Choice probabilities have a stochastic utility representation if they can be 

written as a non-decreasing function of the difference in expected utilities of the lotteries. 

Choice probabilities admit a stochastic utility representation if and only if they are 

complete, strongly transitive, continuous, independent of common consequences and 

interchangeable. Axioms of stochastic utility are consistent with systematic violations of 

betweenness and a common ratio effect but not with a common consequence effect. Special 

cases of stochastic utility include the Fechner model of random errors, Luce choice model 

and a tremble model of Harless and Camerer (1994). 
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Stochastic Utility Theorem 
I. Introduction 

Experimental studies of repeated decision making under risk demonstrate that 

individual choices are often contradictory. For example, Camerer (1989) reports that 31.6% 

of subjects reversed their choices when presented with the same binary choice problem for 

the second time. Starmer and Sugden (1989) find that 26.5% of all choices are reversed on 

the second repetition of a decision problem. Hey and Orme (1994) report an inconsistency 

rate of 25% even when individuals are allowed to declare indifference. Wu (1994) finds 

that 5% to 45% of choice decisions are reversed (depending on a lottery pair) when decision 

problem is repeated. Ballinger and Wilcox (1997) report a median switching rate of 20.8% 

Although experimental data convincingly show that choice under risk is generally 

stochastic, this finding remains largely ignored in the theoretical work (e.g. Loomes and 

Sugden, 1998). The majority of decision theories assume that individuals are born with a 

unique preference relation on the set of risky lotteries, which typically does not allow for a 

possibility of stochastic choice (unless individuals happen to be exactly indifferent). As a 

notable exception, Machina (1985) and Chew et al. (1991) develop a model of stochastic 

choice as a result of deliberate randomization by individuals with quasi-concave 

preferences. However, Hey and Carbone (1995) find that randomness in the observed 

choices cannot be attributed to conscious randomization.  

Deterministic decision theories derive representation of unique preference relation 

and predict that repeated choice is always consistent (except for decision problems where 

an individual is exactly indifferent). Strictly speaking, all deterministic theories are falsified 

by experimental data. However, a common approach is to embed a deterministic decision 
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theory into a model of stochastic choice and fit this compound structure to empirical data. 

Three models of stochastic choice have been suggested in the literature. 

The simplest model is a tremble model of Harless and Camerer (1994). Individuals 

have a unique preference relation on the set of risky lotteries but they do not choose 

according to their preferences all the time. With probability 0>p  a tremble occurs and 

individuals choose an alternative which is not their preferred option. With probability p−1  

individuals act in accordance with their preferences. Carbone (1997) and Loomes et al. 

(2002) find that this constant error model fails to explain the experimental data and it is 

essentially “inadequate as a general theory of stochastic choice”. 

The Fechner model of random errors was originally proposed by Fechner (1860). 

Individuals possess a unique preference relation on the set of risky lotteries Λ  but they 

reveal their preferences with a random error as a result of carelessness, slips, insufficient 

motivation etc. (e.g. Hey and Orme, 1994). Preference relation is assumed to have utility 

representation R→Λ:U  so that it is possible to evaluate a relative advantage 

( ) ( )21 LULUd −=  of a lottery 1L  over another lottery 2L . If there were no random errors, 

an individual would choose lottery 1L  whenever 0>d . Since actual choices are affected 

by mistakes, an individual chooses lottery 1L  if 0>+εd , where ε  is a random error.  

In a classical Fechner model, random error ε  is drawn from a normal distribution 

with zero mean and constant standard deviation (e.g. Hey and Orme, 1994). Hey (1995) and 

Buschena and Zilberman (2000) assume that error term is heteroscedastic i.e. the standard 

deviation of ε  is higher in certain decision problems, for example, when lotteries have 

many possible outcomes. Blavatskyy (2005) develops a model where random error ε  is 

drawn from a truncated normal distribution.  
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Finally, the third model of stochastic choice is a random utility model. Individuals 

are endowed with several preference relations over the set of risky lotteries and a 

probability measure over those preference relations. When faced with a decision problem, 

individuals first draw a preference relation and then choose an alternative which they prefer 

according to the selected preference relation (e.g. Loomes and Sugden, 1995). 

This paper uses alternative framework for analyzing decision making under risk. 

Since repeated decisions are often inconsistent, a natural interpretation of this fact is that 

individuals do not have a unique preference relation on the set of risky lotteries. It is 

assumed that individuals possess a probability measure that captures the likelihood of one 

lottery being chosen over another lottery. These choice probabilities serve as primitives of 

choice and they admit stochastic utility representation if they satisfy five intuitive axioms. 

A preference relation can be easily translated into choice probabilities. Thus, there is no 

need for a stochastic choice model as a mediator between a deterministic preference 

relation and an empirical stochastic choice pattern. A related axiomatization of choice 

probabilities for riskless alternatives is given in Debreu (1958) and for risky lotteries—in 

Fishburn (1978). In particular, Fishburn (1978) represents choice probabilities by an 

increasing function of the ratio of incremental expected utility advantages of two lotteries.  

The remainder of this paper is organized as follows. Section II introduces a new 

framework, where primitives of choice are choice probabilities rather than a deterministic 

preference relation. Section III presents five intuitively appealing properties (axioms) of 

individual choice probabilities. Section IV contains the main result of the paper—a 

representation theorem (stochastic utility theorem) for choice probabilities and discusses its 

main implications and possible extensions. Section V concludes. 
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II. Framework 
Let { }nxxX ,...,1=  denote a finite set of all possible outcomes (consequences). 

Outcomes are not necessarily monetary payoffs. They can be, for example, consumption 

bundles or portfolios of assets. Objects of choice are risky lotteries. A risky lottery 

( )nppL ,...,1  is a probability distribution on X  i.e. it delivers outcome ix  with probability 

[ ]1,0∈ip , { }ni ,...,1∈ , and 1
1

=∑ =

n

i ip . A compound lottery ( ) 21 1 LL αα −+  yields a risky 

lottery 1L  with probability [ ]1,0∈α  and a risky lottery 2L  with probability α−1 . The set 

of all risky lotteries is denoted by Λ . 

An individual (decision maker) does not have a preference relation on Λ. Instead, 

an individual possesses a probability measure on Λ×Λ , which serves as a primitive of 

choice. For two risky lotteries Λ∈21, LL  a choice probability ( ) [ ]1,0,Pr 21 ∈LL  denotes a 

likelihood that an individual chooses 1L  over 2L  in a repeated binary choice. Choice 

probability ( )21 ,Pr LL  is clearly observable from a (relative) frequency with which an 

individual chooses 1L  when he or she is asked to choose repeatedly between 1L  and 2L . 

A deterministic preference relation can be easily converted into a choice probability. 

If an individual strictly prefers 1L  over 2L , then ( ) 1,Pr 21 =LL . If an individual strictly 

prefers 2L  over 1L , then ( ) 0,Pr 21 =LL . Finally, if an individual is exactly indifferent 

between 1L  and 2L , then ( ) 21,Pr 21 =LL . Thus, a deterministic binary preference relation 

on Λ , which is a starting building block of nearly all decision theories, can be considered 

as a special case of a more general framework where individual decisions are governed by 

choice probabilities. 
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III. Axioms 
Axiom 1 (Completeness) For any two lotteries Λ∈21, LL  there exist a choice 

probability ( ) [ ]1,0,Pr 21 ∈LL  and a choice probability ( ) ( )2112 ,Pr1,Pr LLLL −= . 

Axiom 1 immediately implies that ( ) 21,Pr =LL  for any Λ∈L . In a binary choice 

between 1L  and 2L  only two events are possible—either an individual chooses 1L  over 2L  

or an individual chooses 2L  over 1L  (but not both at the same time). This distinguishes 

Axiom 1 from completeness imposed on a binary preference relation. Axiom 1 can be 

extended by allowing for a “neutral” event when an individual does not care about a choice 

problem and delegates choice decision to an arbitrary third party (but bears consequences 

of the third party decision). However, empirical evidence suggests that such option, when 

available, is seldom used (Camerer, 1989) and it is not necessary for a theoretical analysis. 

Axiom 2 (Strong Stochastic Transitivity) For any three lotteries Λ∈321 ,, LLL  if 

( ) 21,Pr 21 ≥LL  and ( ) 21,Pr 32 ≥LL  then ( ) ( ) ( ){ }322131 ,Pr,,Prmax,Pr LLLLLL ≥ . 

Axiom 3 (Continuity) For any three lotteries Λ∈321 ,, LLL  the sets 

[ ] ( )( ){ }21,1Pr 1,0 321 ≥−+∈ LLL ααα  and [ ] ( )( ){ }21,1Pr 1,0 321 ≤−+∈ LLL ααα  are 

closed. 

Intuitively, continuity insures that a small change in the probability distribution over 

outcomes does not result in a significant change in the choice probabilities.  

Axiom 4 (Common Consequence Independence) For any four lotteries 

Λ∈4321 ,,, LLLL  and any probability [ ]1,0∈α : ( ) ( )( ) =−+−+ 3231 1,1Pr LLLL αααα  

( ) ( )( )4241 1,1Pr LLLL αααα −+−+= . 
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The intuition behind Axiom 4 is the following. In a choice between two lotteries a 

choice probability is independent of the consequences that are common to both lotteries. 

When risk is resolved, an individual receives only one realized outcome of a risky lottery. 

Thus, if two risky lotteries yield identical chances of the same outcome (or, more generally, 

if two compound lotteries yield identical chances of the same risky lottery) this common 

consequence does not affect the choice probability. Axiom 4 is weaker than condition 

( ) ( ) ( )( )323121 1,1Pr,Pr LLLLLL αααα −+−+=  for any three lotteries Λ∈321 ,, LLL  and any 

probability [ ]1,0∈α . The latter condition can be interpreted as a stochastic version of the 

independence axiom of expected utility theory. 

Axiom 5 (Interchangeability) For any three lotteries Λ∈321 ,, LLL  if 

( ) ( ) 21,Pr,Pr 1221 == LLLL , then ( ) ( )3231 ,Pr,Pr LLLL = . 

Intuitively, if an individual chooses between two lotteries at random then he or she 

does not mind which of the two lotteries is involved in another decision problem. If in a 

direct binary choice an individual is equally likely to choose either of the two lotteries then 

he or she does not favor either lottery. Thus, these two lotteries can be interchanged in any 

other decision problem without affecting choice probabilities. Axiom 5 holds trivially for a 

transitive binary preference relation.   
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IV. Stochastic Utility Theorem 
Theorem 1 (Stochastic Utility Theorem) Probability measure on Λ×Λ satisfies 

Axioms 1-5 if and only if there exist an assignment of real numbers iu  to every outcome 

ix , { }ni ,...,1∈ , and there exist a non-decreasing function [ ]1,0: →Ψ R  such that for any 

two risky lotteries ( ) ( ) Λ∈nn qqLppL ,...,,,..., 1211 : ( ) ( )∑∑ ==
−Ψ=

n

i ii
n

i ii qupuLL
1121 ,Pr . 

Proof is presented in the Appendix. 

Function ( ).Ψ  has to satisfy a restriction ( ) ( )xx −Ψ−=Ψ 1  for every R∈x , which 

immediately implies that ( ) 210 =Ψ . If a vector { }nuuU ,...,1=  and function ( ).Ψ  represent 

a probability measure on Λ×Λ  then a vector baUU +=′  and a function ( ) ( )a.. Ψ=Ψ′  

represent the same probability measure for any two real numbers a  and b , 0≠a . Vector 

{ }nuuU ,...,1=  can be regarded as a vector of von Neumann-Morgenstern utilities that 

capture the “goodness” of outcomes { }nxx ,...,1 . Function ( ).Ψ  can be regarded as a 

measure of relative advantage of one lottery over another. 

Several popular models of stochastic choice emerge from a general stochastic utility 

representation in Theorem 1 as special cases. For example, when function ( ).Ψ  is a 

cumulative distribution function of the normal distribution with mean zero and constant 

standard deviation 0>σ , stochastic utility representation becomes the Fechner model of 

random errors (e.g. Fechner, 1860; Hey and Orme, 1994). When function ( ).Ψ  is a 

cumulative distribution function of the logistic distribution, i.e. ( ) ( )( )xx λ−+=Ψ exp11 , 

where 0>λ  is constant, stochastic utility representation becomes Luce choice model (e.g. 

Luce and Suppes, 1965; Camerer and Ho, 1994; Wu and Gonzalez, 1996). Finally, if 
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function ( ).Ψ  is the step function (piecewise constant function) of the form ( ) px =Ψ  if 

0<x , ( ) 21=Ψ x  if 0=x  and ( ) px −=Ψ 1  if 0>x ,  where 0>p  is constant, stochastic 

utility representation becomes a tremble model of Harless and Camerer (1994). 

Axiomatization of stochastic utility allows characterizing the above mentioned 

models in terms of the properties of individual choice probabilities that are observable from 

empirical data and that can be directly tested in a controlled laboratory experiment. In 

particular, axioms allow us to relate stochastic utility theory to the well known stylized 

empirical facts about individual choice behavior under risk. Unlike expected utility theory, 

stochastic utility theory is consistent with systematic violations of betweenness and a 

common ratio effect. However, a subjective probability measure that admits stochastic 

utility representation cannot exhibit a common consequence effect. 

For two lotteries Λ∈21 , LL and [ ]1,0∈α  let event A  denote a choice of 1L  over 2L  

and a choice of ( ) 21 1 LL αα −+  over 1L  and let event B  denote a choice of 2L  over 1L  and 

a choice of 1L  over ( ) 21 1 LL αα −+ . Systematic violations of betweenness are observed if 

A  happens more frequently than B  or vice versa (e.g. Camerer and Ho, 1994). If binary 

choices are independent then ( )BA  is observed more frequently than ( )AB  when ( )21 ,Pr LL  

is greater (smaller) than ( )( )211 1,Pr LLL αα −+ . If a probability measure on Λ×Λ  satisfies 

Axioms 2 and 4 then ( )21 ,Pr LL  is greater (smaller) than ( )( )211 1,Pr LLL αα −+  when 

( )( )211 1,Pr LLL αα −+  is greater (smaller) than one half. Thus, stochastic utility can exhibit 

a pattern known as systematic violations of betweenness (e.g. Blavatskyy, 2006). 

Let 3=n  and lotteries have monetary outcomes 0123 =>> xxx . A common ratio 

effect is observed when ( ) ( )4321 PrPr LLLL ff >  for lotteries ( )0,1,01L , ( )ppL ,0,12 − , 
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( )0,,13 θθ−L , ( )ppL θθ ,0,14 −  and probabilities ( )1,0, ∈θp  (e.g. Allais, 1953). Choice 

probabilities that have stochastic utility representation can exhibit a common ratio effect. If 

choice probabilities satisfy Axiom 4 then ( ) ( )( )12143 1,Pr,Pr LLLLL θθ −+= . When they 

additionally satisfy Axiom 2 then ( ) ( )( )12121 1,Pr,Pr LLLLL θθ −+≥  if 

( )( ) 211,Pr 121 ≥−+ LLL θθ . Thus, stochastic utility is consistent with a common ratio 

effect ( ) ( ) 21,Pr,Pr 4321 ≥≥ LLLL  but it cannot explain a common ratio effect 

( ) ( )4321 ,Pr21,Pr LLLL ≥≥  (e.g. Loomes, 2005).  

A common consequence effect is observed when ( ) ( )4321 ,Pr,Pr LLLL >  for 

lotteries ( )0,1,01L , ( )qpqpL ,1,2 −− , ( )0,,13 ppL − , ( )qqL ,0,14 −  and probabilities 

( )1,0, ∈qp , qp >  (e.g. Allais, 1953). Choice probabilities that admit stochastic utility 

representation cannot exhibit common consequence effect because Axiom 4 implies 

( ) ( )4321 ,Pr,Pr LLLL = . To accommodate a common consequence effect within stochastic 

utility framework Axiom 4 can be replaced with a stochastic analogue of one of the axioms 

of non-expected utility theories. For example, Axiom 4 can be weakened into Axiom 4a. 

Axiom 4a (Betweenness) For any Λ∈21 , LL and any [ ]1,0,,, ∈δγβα  such that 

δγβα −=− : ( ) ( )( ) ( ) ( )( )21212121 1,1Pr1,1Pr LLLLLLLL δδγγββαα −+−+=−+−+ . 

Probability measure on Λ×Λ  that satisfies Axioms 1-3, 4a and 5 can be 

represented by implicit stochastic utility ( ) ( ) ( )( )2121,Pr LULULL −Ψ=  for any Λ∈21 , LL , 

where R→Λ:U  is implicit expected utility of a lottery (e.g. Dekel, 1986). Thus, 

stochastic utility theorem can be extended to represent choice probabilities that do not 

necessarily exhibit common consequence independence.  
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V. Conclusion 
One of the robust findings from experimental research on repeated decision making 

under risk is that individuals often make contradictory choices when they face the same 

binary choice problem within a short period of time. This evidence suggests that 

individuals do not possess a unique preference relation on the space of risky lotteries Λ . 

Either individuals have multiple preference relations on Λ  that can be represented by a 

random utility model (recently axiomatized by Gul and Pesendorfer, 2006) or individuals 

have a probability measure on Λ×Λ  that can be represented by stochastic utility model.  

This paper shows that choice probabilities admit a stochastic utility representation if 

and only if they are complete, strongly transitive, continuous, independent of common 

consequences and interchangeable. Axioms of stochastic utility are consistent with several 

choice patterns (such as systematic violations of betweenness and a common ratio effect) 

that contradict to the axioms of expected utility framework.  Special cases of stochastic 

utility representation include the Fechner model of random errors, Luce choice model and a 

tremble model of Harless and Camerer (1994). 

At least one axiom of stochastic utility—common consequence independence—has 

been extensively tested in controlled experiments and it is known to be frequently violated. 

However, interchangeability axiom is likely to be problematic too. When lottery outcomes 

are monetary, choice among outcomes for certain is deterministic. In fact, when one lottery 

transparently first-order stochastically dominates the other lottery, subjects seldom choose a 

dominated alternative (e.g. Loomes and Sugden, 1998). Thus, reality appears to be 

somewhere between a deterministic decision theory derived from a preference relation on 

Λ  and a stochastic decision theory derived from a probability measure on Λ×Λ .  



 12

Apparently, an individual possesses a preference relation on a non-empty subset of 

Λ  (that includes, for example, the set of lottery outcomes) and a probability measure on 

Λ×Λ . The preference relation allows to make cognitively undemanding decisions, e.g. 

when one alternative clearly dominates the other alternative, and the probability measure 

governs the remaining decisions. Such a hybrid model of decision making can be 

characterized within the framework of choice probabilities introduced in this paper because 

a deterministic preference relation can be easily translated into choice probabilities. A 

restriction on the interchangeability axiom so that it holds only when lotteries do not 

transparently dominate each other appears to be a necessary first step for extending 

stochastic utility theorem along these lines.  
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Appendix 

Proof of Theorem 1 

It is straightforward to verify that if a probability measure on Λ×Λ  has a stochastic 

utility representation then it satisfies all Axioms 1-5. We will now prove that if a 

probability measure on Λ×Λ  satisfies Axioms 1-5 then it has a stochastic utility 

representation. Since the set of possible outcomes X  is finite, completeness and strong 

stochastic transitivity imply that there exist “the best” and “the worst” lottery in Λ  i.e. 

Λ∈∃ LL,  such that ( ) 21,Pr ≥LL  and ( ) 21,Pr ≤LL  for any Λ∈L .  

Consider first the case when ( ) 21,Pr =LL . If ( ) 21,Pr =LL  and ( ) 21,Pr ≥LL  for 

any Λ∈L  (by definition of L ) strong stochastic transitivity implies that ( ) 21,Pr ≥LL . 

Since ( ) 21,Pr ≤LL  by definition of L , it must be the case that ( ) 21,Pr =LL  for any 

Λ∈L . If ( ) 21,Pr 1 ≥LL  and ( ) 21,Pr 2 =LL  for any Λ∈21, LL , strong stochastic 

transitivity implies that ( ) 21,Pr 21 ≥LL . If ( ) 21,Pr 21 ≥LL  and ( ) 21,Pr 12 ≥LL  it must be 

the case that ( ) 21,Pr 21 =LL  for any Λ∈21, LL  and this degenerate probability measure 

can be represented by assignment 0=iu , { }ni ,...,1∈ , and ( ) 210 =Ψ . Therefore, from this 

point onwards only the case when ( ) 21,Pr >LL  is considered. 

Continuity axiom implies that the sets [ ] ( )( ){ }21,1Pr 1,0 ≥−+∈ LLL ααα  and 

[ ] ( )( ){ }21,1Pr 1,0 ≤−+∈ LLL ααα  are closed for any Λ∈L . Completeness axiom 

guarantees that every [ ]1,0∈α  belongs to at least one of these two sets. Since both sets are 

nonempty ( 1=α  belongs to the first set and 0=α  belongs to the second set), there is at 
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least one α  that belongs to both sets. Thus, for any Λ∈L  there exist [ ]1,0∈Lα  such that 

( )( ) 21,1Pr =−+ LLL LL αα . We will now prove that Lα  is unique for every Λ∈L . 

Suppose there is LL αα ≠′  such that ( )( ) 21,1Pr =′−+′ LLL LL αα . Assume without a 

loss of generality that LL αα >′  and let LL ααδ −′= . If ( )( ) 21,1Pr =′−+′ LLL LL αα  and 

( )( ) 211,Pr =−+ LLL LL αα  then ( ) ( )( ) 211,1Pr =−+′−+′ LLLL LLLL αααα  by strong 

stochastic transitivity. Common consequence independence implies 

( ) ( )( ) ( )( ) 21,1Pr1,1Pr =−+=−+′−+′ LLLLLLL LLLL δδαααα . If ( )( ) 21,1Pr =−+ LLL δδ  

then  ( ) ( )( ) 211,212Pr =−+−+ LLLL δδδδ  by common consequence independence and 

( )( ) 21,212Pr =−+ LLL δδ  by strong stochastic transitivity. Applying this reasoning 

{ }δα Lk ′= int  times we obtain that ( )( ) 21,1Pr =−+ LLkLk δδ . 

By a similar pattern, common consequence independence implies 

( ) ( )( ) ( )( ) 211,Pr1,1Pr =+−=−+′−+′ LLLLLLL LLLL δδαααα . If ( )( ) 211,Pr =+− LLL δδ  

then ( ) ( )( ) 21221,1Pr =+−+− LLLL δδδδ  by common consequence independence and 

( )( ) 21221,Pr =+− LLL δδ  by strong stochastic transitivity. Applying this reasoning 

( ){ }δα Lm −= 1int  times we obtain that ( )( ) 211,Pr =+− LmLmL δδ . 

We prove next that ( ) ( )( ) 211,1Pr =−+−+ LLLL ννηη  for any [ ]LL αανη ′∈ ,, . 

( ) ( )( ) ( ) ( )( ) 21,1Pr1,1Pr ≥+−+−=−+−+ LLLLLLL LLLL αηαηααηη  with equality due 

to common consequence independence and inequality due to definition of L . Similarly, 

( ) ( )( ) ( ) ( )( ) 21,1Pr1,1Pr ≥+′−+−′=−+′−+′ LLLLLLL LLLL ηαηαηηαα . Strong stochastic 
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transitivity then implies ( ) ( )( ) ≥=−+′−+′ 211,1Pr LLLL LLLL αααα  

( ) ( )( )LLLL LL ααηη −+−+≥ 1,1Pr . Therefore it must be the case that 

( ) ( )( ) 211,1Pr =−+−+ LLLL LL ααηη  for any [ ]LL ααη ′∈ , . If 

( ) ( )( ) 211,1Pr =−+−+ LLLL LL ααηη  and ( ) ( )( ) 211,1Pr =−+−+ LLLL LL αανν  strong 

stochastic transitivity then implies ( ) ( )( ) 211,1Pr =−+−+ LLLL ννηη  for any 

[ ]LL αανη ′∈ ,,  

Since [ ]LLk ααδ ′∈ ,  and [ ]LLm ααδ ′∈− ,1  by our choice of integers k  and m  it 

follows that ( ) ( )( ) 211,1Pr =−++− LkLkLmLm δδδδ . Strong stochastic transitivity then 

implies ( )( ) 211,Pr =−+ LkLkL δδ  and ( ) 21,Pr =LL . However, we already considered 

this case at the beginning of this proof. Therefore it must be the case that LL αα =′ . In other 

words, for any Λ∈L  there exist unique [ ]1,0∈Lα  such that ( )( ) 21,1Pr =−+ LLL LL αα . 

Interchangeability implies ( ) ( ) ( )( )LLLLLL LLLL 2211
1,1Pr,Pr 21 αααα −+−+=  for 

any two risky lotteries Λ∈21 , LL . If 
21 LL αα >  then a common consequence independence 

implies ( ) ( ) ( )( ) ( )
212121

,1Pr,Pr 21 LLLLLL LLLLL αααααα −Ψ≡+−+−= . If 
21 LL αα <  then 

a common consequence independence implies 

( ) ( ) ( )( )LLLLL LLLL 1212
1,Pr,Pr 21 αααα +−+−=  and completeness additionally implies 

( ) ( ) ( )( ) ( ) ( )
21121212

1,1Pr1,Pr 21 LLLLLLLL LLLLL αααααααα −Ψ≡−Ψ−=+−+−−= .  

Notice that function ( ).Ψ  is non-decreasing. For any [ ]1,0, ∈μλ  such that μλ >  

common consequence independence implies ( ) ( )( )=−+−+ LLLL μμλλ 1,1Pr  
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( ) ( )( ) 21,1Pr ≥+−+−= LLL μλμλ  with the last inequality due to definition of L . Since 

( ) ( )( ) 211,1Pr ≥−+−+ LLLL μμλλ  and ( )( ) 21,1Pr ≥−+ LLL μμ  (again by definition of 

L ), strong stochastic transitivity implies ( )( ) ( )( )LLLLLL ,1Pr,1Pr μμλλ −+≥−+ . 

Therefore, ( ) ( )μλ Ψ≥Ψ  for any [ ]1,0, ∈μλ  such that μλ > . 

Interchangeability axiom implies that for any [ ]1,0∈β  and any three lotteries 

Λ∈321 ,, LLL  a choice probability ( )( )321 ,1Pr LLL ββ −+  can be rewritten as 

( )( ) ( ) ( )( )( )3,111Pr
2211

LLLLL LLLL ααβααβ −+−+−+ . After rearranging terms we obtain 

( )( ) ( )[ ] ( )[ ]( ) =⋅−−−+⋅−+=−+ 3321 ,111Pr,1Pr
2121

LLLLLL LLLL αββααββαββ  

( )( )
321

1 LLL ααββα −−+Ψ= . Thus, assignment of numbers Lα  is linear in probabilities i.e. 

( ) ( )
2121

11 LLLL αββαα ββ −+=−+ .  

To summarize, for every outcome ix , { }ni ,...,1∈ , we can find a number [ ]1,0∈iu  

such that ( )( ) 21,1Pr =−+ iii xLuLu . For any two risky lotteries 

( ) ( ) Λ∈nn qqLppL ,...,,,..., 1211   a choice probability ( )21 ,Pr LL  can be then written as 

( ) ( )∑∑ ==
−Ψ=

n

i ii
n

i ii qupuLL
1121 ,Pr . Q.E.D. 


