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Abstract

We analyze the dynamics of neighbourhood watch programs in a local interaction frame-
work. Agents can watch their neighbours’ houses and thus deter burglars from breaking in.
At the same time, agents also try to recruit their neighbours to join the neighbourhood watch
program. The probability of an agent joining the neighbourhood watch program depends
on the success of the program, i.e., whether burglaries continue to occur. We show that
the punishment of burglars plays a dual role in this context. On the one hand, punishment
deters burglaries if the level of punishment is sufficiently high. On the other hand, it also
affects the probability of an agent joining the neighbourhood watch program. In particular,
we show that if recruitment is harder when burglaries do not occur, a legal policy attempting
to improve deterrence using more severe punishment is suboptimal. In a second part, we
extend our model to the study of norm enforcement in public goods dilemmas and show
that our results remain valid if agents can punish each other (instead of burglars) for not
contributing to the public good. Our paper thus provides a first analysis of the evolution of
“altruistic punishment” in large populations with local interaction.
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“[Punishment] does not serve, or serves only
incidentally, to correct the guilty person or to
scare off any possible imitators. Its real func-
tion is to maintain inviolate the cohesion of so-
ciety by sustaining the common consciousness
in all its vigour.”

— Emile Durkheim (1893)

“It’s an unfortunate fact that when a neigh-
borhood crime crisis goes away, so does enthu-
siasm for Neighborhood Watch. Work to keep
your Watch group a vital force for community
well-being.”

— Los Angeles Police Department (2004)

1 Introduction

When a burglar breaks into a house nobody is in a better position to report the crime to the
police than a neighbour, the most likely person to observe suspicious movements or hear suspicious
noises. If called, the police can intervene and the state can prosecute and punish. For all practical
purposes, however, the state cannot substitute for the watchful eyes of neighbours. This is what
has made neighbourhood watch programs so successful over the last two decades (see, for example,
Sims 2001), despite the costs involved. Neighbours who want to report a possible crime have to
interrupt what they are doing and might be ashamed if the alarm turns out to be false. This
makes the issue of recruitment of new members vital for any neighbourhood watch program.

In this paper, we analyze the conditions under which neighbourhood watch programs can be
successfully sustained in the long run, when recruitment is an issue. In particular, we examine
how the legal framework (for example, punishments of burglars) interacts with the recruitment
dynamics of a neighbourhood watch program. This interaction turns out to be quite subtle. In
particular, we find that increasing punishment for burglary can actually increase the number of
burglaries in the long run. The intuition for this finding is basically summarized in the above
quote from the LAPD. Neighbourhood watch programs can fall victim to their own successes. If
recruitment of new members is easier as long as there are some crimes, a neighbourhood watch
can deteriorate when crime rates fall as a reaction to more severe punishments of criminals. In
fact, the deterioration may lead to the complete dissolution of a program, at which point the crime
rates will again increase.

While most of our paper focuses on neighbourhood watch programs where the danger comes
from a third party (the burglar), we also show how our model can be extended to norm enforcement
in public goods dilemmas. Interestingly, it turns out that the dynamics of cooperation and pun-

ishment follow similar paths to those identified for the neighbourhood watch case (these themes



have recently attracted considerable attention in the experimental literature; see, e.g. Fehr and
Géchter 2000, Masclet, Noussair, Tucker, and Villeval 2003). In particular, excessive punishment
can destroy cooperation in the long run.!

Our paper thus carries a twofold message. First, our model emphasizes the dynamics that
underlie active participation of individuals in society. Participation cannot be taken for granted
and may depend on institutions such as the law in rather subtle ways. Second, we show that
punishment is a two-edged sword in this context. On the one hand, punishment deters burglars
from burglarizing and induces free riders to cooperate if sufficiently high. On the other hand,
punishment also affects participation, i.e., individuals’ contributions in combating deviant be-
haviour. The latter process can induce surprising non-monotonic relations, meaning that higher
punishment can actually cause more deviant behaviour. The intuition for this is that a certain
degree of deviant behaviour and consequential punishment has to exist in order to remind society’s
members constantly of the given problem. Our model thus provides an analytical foundation for
an intuitive argument, formulated at the end of the 19th century by Emil Durkheim in his analysis
of the cohesion of modern society (see the quote above), which still plays an important role in
current social and economic policy.

Finally, on a purely methodological level we also introduce some new and quite powerful
techniques from particle system theory (see Liggett 1985 for an excellent introduction) in order to
analyze local recruitment and interaction dynamics between neighbours. Particle system theory
has been used earlier, for example, in models of evolutionary game theory (Blume 1993, Kosfeld
2002) and social interaction (Glaeser, Sacerdote, and Scheinkman 1996). Our main results are
based on new findings from this theory.

The paper is organized as follows. Section 2 introduces the model of neighbourhood watch and
presents our main results. Section 3 extends the analysis to norm enforcement in public goods
dilemmas. Finally, section 4 provides a discussion and concludes. All proofs are collected in an

appendix.

2 Neighbourhood Watch

We analyze a community that faces a threat from burglars. Burglars can only be detected if a
neighbour sees and reports them to the police. (For convenience, we assume that burglars never
try to rob a house when the owner is at home.) However, reporting suspicious behavior is costly
and there are no immediate rewards for doing so. In particular, people might feel ashamed if the
alarm turns out to be false. This is why the community sets up a neighbourhood watch program.

Essentially, members of a neighbourhood watch program engage in two activities: they call the

1Recent papers by Bohnet, Frey, and Huck (2001) and Rege (2004) have analyzed a similar crowding out effect
of government policy.



police when they see something suspicious and they try to recruit their neighbours to join the
program. Thus, recruiting means basically convincing a neighbour that calling the police is the
right thing to do if he observes something suspicious. Insofar, we will say that agents will call the
police if and only if they have joined the program.

More specifically, we consider a population of agents located on the one-dimensional set of
integers Z. Each agent is identified by his location and denoted by z,v,z € Z.2 Agents have two
neighbours located to their left and right. Thus, for each agent x € Z, the set of neighbours is
equal to {x — 1,z + 1}. There are two alternatives for each agent: either being a member of the
neighbourhood watch program or not. M; C Z denotes the set of members at time ¢.

The number of neighbours who are members of the neighbourhood watch program determines
both whether the police are called and whether the burglars are actually captured. We assume
that a burglar who breaks into agent x’s house is caught with probability a; > 0 if only one
neighbour is a member of the neighbourhood watch program, and with probability as > «y if
both neighbours are members. If neither neighbour is a member of the neighbourhood watch,
nobody calls the police and therefore the probability of a burglar being caught is zero. A burglar
whom the police capture receives a punishment p > 0 that the state sets. If we normalize a
burglar’s utility from robbing and not robbing an agent’s house to one and zero respectively,
and assume that burglars are risk-neutral, it follows that burglaries will be deterred if ap > 1,
while burglaries occur if ap < 1, where o € {ay, a2} depends on the number of members from
the neighbourhood watch program in agent x’s neighbourhood. More precisely, there exist two
thresholds p = a% <p= ail, such that if p is small (p < ]_9), a burglary occurs regardless of how
many neighbours watch agent z’s house. If p is intermediate (p < p < p), a burglary occurs if only
one neighbour is a member but is deterred if both neighbours are members. If p is large (p > p), a
burglary is deterred if at least one neighbour is a member of the program. Obviously, if a; = ao,
i.e., the probability of getting caught is independent of how many neighbours keep an eye on z’s
house, p and p coincide and hence the intermediate case vanishes.

The recruitment of new members for the neighbourhood watch program is modelled by a

continuous-time Markov process. Our main assumptions are the following:

1. (Drift) There is a constant positive probability for any agent x € M, to leave the set M,.
This drift captures some general laziness and the tendency to leave voluntary organizations

at some later point in time for all sorts of exogenous reasons.

2. (Recruitment) A neighbour must convince a perspective member to join M;. Hence, if

neither neighbour of x is a member, the probability of  becoming a member of M, is zero.

2Thus, the population of agents considered in our model is infinite. The analysis of an infinite model is legitimate
because (i) the behavior of the infinite model captures important features of large finite population models at large
finite times and (i) the analysis of these features is simpler in an infinite than in a finite model (cf. Liggett 1999,

pp71).



If, on the other hand, at least one neighbour is in M, there is a strictly positive probability

of x joining M, as well.

3. (Crime Crisis) The likelihood of becoming a member of M; may depend on the success of
the neighbourhood watch program. It may be easier to convince someone to join the program
when it has been very successful and there is little crime (no crime crises). Alternatively,
people might find it more compelling to become a member of M if lots of burglaries occur

(crime crises).

The transition probabilities of the Markov process are given by individual Poisson rates
m(x, M;) with € Z and M; C Z. These rates determine the probability that agent = will
change his membership status within an infinitesimally short period of time, given the state of the
process M,.* Let ni(z) € {0,1,2} denote the number of agent x’s neighbours who are members
of the neighbourhood watch program at time ¢, i.e., ny(z) = [MyN{x — 1,2+ 1}|. Then rates are

defined as follows:

€ it e M,

m(z, My) = { f(n(x),p,a1,00) if = ¢ M,. (1)

The parameter € > 0 captures the constant drift away from membership due to different ex-
ogenous reasons, of which laziness might be one. The function f models the recruitment dynamics
at the local level. As described above, it depends on the number of members in agent x’s neigh-
bourhood and whether burglaries occur or not (the latter depending on the punishment level p
and the probabilities a; and as). We assume that f takes value y > 0 if at least one neighbour
is already a member and burglaries occur (crime crisis) and value m > 0 if at least one neighbour
is a member but burglaries do not occur (no crime crisis). If neither neighbour is a member, the

agent cannot be recruited and f is therefore zero:

0 if ny(z) =0,
f(n(z),p,on,00) =< X if ny(z) > 1 and burglaries occur, (2)
T if ny(x) > 1 and no burglaries occur.

Recall from above that burglaries occur only if p < p, or if p < p < p and ny(z) < 1. In all
other cases, i.e., if p<p <pandn, =2, orif p>pandn, > 1, no burglaries happen because
the neighbourhood watch together with a sufficiently high punishment level successfully deters
burglars.

3The Markov process we consider is a so-called interacting particle system. See Liggett (1985) for an introduc-
tion. Intuitively, just as in the case of a standard Poisson process, rates (that take values in [0, c0]) and probabilities
(that take values in [0, 1]) form a monotone relation: the higher the rate, the higher the probability of a type change
within a short period of time. For example, a Poisson rate equal to infinity implies an instantaneous type change,
i.e., the probability of a type change equals one. On the other hand, a Poisson rate equal to zero corresponds to a
situation where the probability of a type change is zero, as well.



Our goal is to analyze the evolutionary dynamics of {M;};>0. In particular, we are interested
in the effects of an exogenous increase in the punishment level p on the stability of neighbourhood
watch. To analyze the dynamics we need, of course, some assumptions about the initial state
— basically we have to ensure that there are a sufficient number of initial program members to
initiate the recruitment process at all. More technically, we take the following approach. Suppose
that each agent is programmed at time zero with probability ¢ of watching his neighbours’ house
and is not programmed to do so with remaining probability 1 — ¢q. For example, the government
and the local police may start a large policy campaign in favour of neighbourhood watch. Suppose
that ¢ is strictly positive (however small). The following questions then arise: first, can M; be
non-empty at every time ¢ > 0 and second, can it have sufficient density asymptotically.* The
following three results provide an answer to the first question. All proofs are collected in the

appendix.

Proposition 1 For every € > 0 there exists a critical value s(€) < oo such that:

(A) if max{m, x} < s(e€), independently of p the unique limit of M, is the empty set,

(B) if min{m, x} > s(€), independently of p with probability one M, is non-empty for every t > 0.
Upper and lower bounds for s(€) are given by 1.224e < s(e) < 2.17e.

Proposition 1 gives a precise condition on transition rates for ensuring non-emptiness of M,
for all ¢ > 0. Simply said, both 7 and y must have sufficient size. More precisely, they must
be larger than a finite critical value s(e). If both rates are smaller, the neighbourhood watch
program will disintegrate. The value of s(¢) depends purely on the drift rate € and, as bounds on
s(e) indicate, this dependency is monotonic: the larger €, the larger is s(e€). Thus, the result in
Proposition 1 can also be formulated the other way round. If the rates m and y are fixed, then
a positive value exists such that M; is non-empty for all ¢ > 0 if the drift rate is smaller than
this value. In consequence, it is not necessary to let the drift rate go to zero to ensure asymptotic
non-emptiness of the set M;.> The program can permanently lose some members and yet survive.

Note that the optimal policy for deterring burglaries in case (B) is to choose a punishment
level p > p. In case (A), any level of p is obviously ineffective and hence irrelevant.

The following two Propositions deal with the cases where 7 and x lie on opposite sides of the
critical value s(e), i.e., either x < s(e¢) < m (Proposition 2) or 7 < s(e) < x (Proposition 3). In
view of the preceding result, we say that the neighbourhood watch breaks down if, as in case (A),
the unique limit of M, is the empty set, whereas the neighbourhood watch survives if, as in case

(B), the set M, is always non-empty.

4Note that once M, is empty, it will remain empty forever as the empty set forms a trap for the process.
50ur model differs with this respect from standard mutation models in evolutionary theory that assume that
mutations eventually disappear (e.g., Kandori, Mailath, and Rob 1993, Young 1993).



Proposition 2 Let € > 0 and suppose x < s(e) < m < 2x. There exists a critical value §(0,¢) <
s(€) that depends on the ratio 6 = % such that:

(C) the neighbourhood watch program breaks down for p < p and survives for p > p if x > 5(6,€),
(D) the neighbourhood watch program breaks down for p <D and survives for p > p if x < 5(0,€).

Proposition 2 shows that an increase in p can only lead to survival of the neighbourhood watch
program. If x is larger than a certain threshold §(0, ¢), survival will already occur at p > p; if not,
survival occurs at p > p. Therefore, an increase in p is an optimal policy for a legislator. The
intuition behind Proposition 2 is that both deterrence and recruitment effects are raised. Figure

1 illustrates the four possible cases that can arise if y < 7.

(4) (D) (€) (B)
|
[ [ [

breakdown STf) 5(0,¢) s(€) survival

Figure 1: x < s(e) <7 <2y

While an increase in p is always optimal in Propositions 1 and 2, the next result shows that this
is no longer true if the asymmetry between 7 and y is reversed, i.e., when recruitment probabilities
decrease as burglaries disappear and parameters do not lie on the same side of the critical value.
Unfortunately, the evolution of {M;};>¢ is harder to analyze in this case. The reason is that the
process is no longer attractive, the latter requiring that the probability of an agent joining M is
non-decreasing in the number of neighbours who are already in M;. In consequence, we do not

have a picture as complete as before.5

Proposition 3 Let € > 0 and suppose m < s(e) < x.
(E) The neighbourhood watch program survives for p < p and breaks down for p > p.

Proposition 3 reveals an important result in our model which supports the intuition of the Los
Angeles police department stated at the beginning of the paper. As before, consider a legislator
who may influence the level of punishment p. Suppose that the initial situation is such that
p < p. Since x is large enough, the neighbourhood watch survives. However, burglaries happen
because p is too low to deter effectively. A plausible strategy is to increase p. Indeed, if p > p
burglaries are successfully deterred whenever both neighbours of x are members of the program.

However, exactly these situations also result in a lower recruitment effect on agent = (namely 7).

SPrecisely, in case (E) we can neither guarantee survival nor breakdown if p < p < p. Note, however, that this
case does not exist if o = as.



In consequence, we can no longer guarantee survival. If p is further increased to p > p to make
deterrence even more effective, the neighbourhood watch eventually breaks down. In this case
the “standard policy” of achieving better deterrence by more severe punishment is suboptimal.

Figure 2 summarizes the scenario if 7 < x.

(A) (E) (B)

|
{

breakdown S (6 ) policy trap 0 survival

Figure 2: m < s(e) < x

Given that we can ensure survival of the process, a key question concerns the asymptotic
frequency of the neighbourhood watch program members in the overall population. An answer
to this question is important because only a sufficiently large fraction of members will be able to
create a reasonable deterrence on the global level. For simplicity, we consider only the boundary
cases where exactly one recruitment effect is at work.” That is, either p < p, so the recruitment
rate equals y if n > 1 and zero otherwise, or p > p, in which case the rate equals 7 if n > 1
and zero otherwise. The latter is of particular interest for a policy maker, since it can induce the
highest degree of deterrence. Recall from Proposition 1 that the threshold guaranteeing survival
is min{m, x} > 2.17e.

Proposition 4 Let € > 0 and suppose min{r, x} > 2.17¢. Then the asymptotic probability of an

agent x € Z being a member of M, is bounded below,

1
tlim Prob(z € M;) > m (3)
where 1 is given by the equation
A—1
=A— 3\ /A2 =2 — —— 4
=2y L (@)

and X equals the relative recruitment rate X if p < pand T if p > .

Remark. The left hand side in equation (3) is indeed independent of z since the limiting
distribution of M, is translation invariant (cf. Konno 1994).

Note first that as the relative recruitment rate A approaches infinity, i.e., either 7 and x go to
infinity or € goes to zero, ¥ converges to one. Thus, the asymptotic probability of agents joining
the program converges to one as well: every agent is a member. Secondly, this probability is

already quite large for relatively small values of A. Figure 3 illustrates % for different values of \.

"These are the only cases if a1 = as.
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Figure 3: Asymptotic density of neighbourhood watch

For example, if recruitment rates are four times larger than the drift rate, the asymptotic
probability of any agent being a member of the program is larger than 0.75. In other words, there
are three members in the population for every non-member. If recruitment rates are five times
larger, only every fifth agent does not join the program. Even if recruitment rates only exceed
the drift by a factor of 2.5, asymptotically more than 60% of the population are members of the
neighbourhood watch program. This shows that, once the program attains survival, the fraction

of members will be large; and it will be large even for relatively small values of \.

3 Norm Enforcement

We considered a situation of neighbourhood watch in the previous section where agents keep an
eye on their neighbour’s house in order to deter burglaries. In this section, we show how the
model can be extended to study the dynamics of cooperation and punishment in local public
goods games.

Following the work of Fehr and Géchter (2000, 2002), the experimental analysis of so-called
“altruistic punishment” has attracted considerable attention in recent years (see, e.g., Falk, Fehr,
and Fischbacher 2001, Anderson and Putterman 2003, Carpenter 2003a,b, Masclet et al. 2003).
These studies have provided solid evidence for the fact that many individuals are willing to punish
free-riding behaviour in social dilemma games, even if punishment is costly and players face a one-
shot interaction. Falk et al. (2001) show that non-strategic factors (such as norms of fairness or
spite), rather than strategic concerns (as, e.g., reputation or future payoff calculations) largely
are the major drivers of the motivation to punish. While the authors are “unable to detect a

significant impact of strategic forces on sanctioning behavior, non-strategic sanctions are large



and significant” (Falk et al. 2001, p4). Given this empirical evidence, an important question
is how altruistic punishment and norm enforcement might evolve in a large society where some
agents are willing to punish free-riding behaviour while others are not, and repeated game effects
are absent. In particular, the question is whether non-strategic motives will suffice for the survival
of altruistic punishment, or whether norm enforcement will eventually die out if players do not
take future payoffs into account. Fortunately, we can directly apply our model from the previous
section to give an answer to this question.

Suppose that neighbours play the following simple public goods games. Each agent = € Z
has one unit of an endowment, which he can invest in a local public good or keep for himself.
Investment in the public good decreases one’s own payoff by one and at the same time also
increases each neighbour’s payoff by one. Thus, investing is costly on an individual basis but
beneficial overall. Denoting the investment decision of agent x by i, € {0, 1}, the payoff of agent

x is equal to

M=1—i,+ Y i (5)
ye{z—1a+1}
Assuming that agents maximize their individual payoffs, no one will invest in the public good.
In consequence, each agent earns a payoff of 1 while agents could earn a payoff of 2 if everyone
invested in the public good. But now suppose that agents can try to punish any neighbours who
did not invest in the public good, for example, by “naming and shaming” them. Agents who have
been named and shamed might be ostracized, in which case they experience a utility loss p.
Following the experimental evidence, we assume that punishment of defectors is a matter of
agents’ types rather than a consequence of future payoff calculations, i.e., there are some agents
who punish (P-types) and others who don’t. This gives rise to a setup very similar to that in
the previous section. A defector’s payoff is reduced by p with probability a;(az) if one (two)
neighbour(s) are P-types. In consequence, agents will cooperate if p is sufficiently high and at
least one neighbour “names and shames”.® In particular, cooperation is optimal if p > p = ail
and at least one neighbour is a P-type or it p > p > p = alg and both neighbours are P-types.
Investment in the public good is not optimal in all other cases.
As above, agents can change their types, where imitation of role models (in combination with
a constant drift) drives the dynamics of type change.® This means we assume agent x will become
a P-type with positive probability if at least one neighbour is a P-type. Furthermore, agent z’s

likelihood of becoming a P-type depends on whether his neighbours’ types successfully deter him or

8We assume that also P-types maximize their monetary income in the public goods game for the following two
reasons. First, we do not want to make our lives too easy. If there was a link between punishing and cooperation,
there would always be weakly more cooperators across any given population compared to the present model.
Second, experimental evidence also shows that punishers do not cooperate all the time (Falk et al. 2001).

9See Offerman, Potters, and Sonnemans (2002) who provide experimental evidence for imitation of “exemplary
behaviour”.



not. In the first case, x experiences only the threat of being named and shamed (which successfully
deters him). In the second case, he actually experiences ostracism after having defected. Both
experiences may change z’s type. In both cases, x may also become a P-type, as his neighbours
may serve as a role model. In analogy to our previous analysis, we can assume that a rate y drives
the likelihood of agent x becoming a norm-enforcing P-type himself in the latter situation, where
punishment is actually executed, while a rate m drives it in the former situation, where there is
only the (successful) threat of punishment.

This setup of norm enforcement is identical to the previous model of neighbourhood watch,
with the only difference that the neighbours themselves (instead of burglars) can behave badly.
While neighbourhood watch in our earlier analysis is supposed to deter crime from the outside,
punishment is supposed to induce cooperation among neighbours in this case. The previous results
can be transferred one-to-one to the present setup. As a consequence, we find that increasing levels
of ostracism can actually cause more defection in the long run. The intuition is as before. As
long as the utility loss from ostracism is low, agents will defect and they will be ostracized for
not contributing to the public good. If the level of ostracism is raised, at some point (p > p)
defection no longer pays if at least one neighbour names and shames. Agents now cooperate and
in consequence also ostracism no longer takes place. If, however, the actual experience of ostracism
induces agents to name and shame, the disappearance of ostracism will cause the number of P-
types to decline steadily. This will continue until naming and shaming eventually disappears

completely, at which point defection will take over and will become the norm.

4 Conclusion

We have studied the (local) dynamics of neighbourhood watch programs and norm enforcement,
and how public policy setting fines for criminal or deviant behavior can drive the rise and fall of
such programs. Surprisingly, we found that increasing punishment can have adverse consequences.
If the survival of neighbourhood watch programs depends on successful recruiting, deterrence
can be too effective. As crime rates fall, recruitment for neighbourhood watch programs can
become harder and, ultimately, programs might be destroyed by their own success. Once they are
destroyed, crime rates can and will pick up again. This suggests that optimal policy might aim at
a tolerable low crime rate rather than total prevention of crime. Of course, should neighbourhood
watch programs actually become victims of their own success, the state has also the option of
campaigning for neighbourhood watch programs or subsidizing them. Such campaigns would
be equivalent to a second drift term in our model, which would transform non-members into
(founding) members of (new) programs. Obviously, such campaigns would, if vigorous enough,
offset the deterioration caused by the “bad” drift term.

We also show that the dynamics of cooperation and punishment in public goods provision
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schemes, that has recently attracted considerable attention in the literature, can follow similar
paths. In particular, we show that self-enforcing systems of cooperation and punishment can sur-
vive if a tendency to punish deviant behaviour is “learned” from punishing neighbours. However,
as in the neighbourhood watch model, we find that punishment can be too severe. A successful
dynamic system of cooperation and punishment needs a constant influx of new agents who are
willing to spend resources on punishment. And this might require punishment sometimes be ac-
tually carried out. Again, mild levels of antisocial behaviour can actually help sustain a system of
norm enforcement. Our analysis therefore suggests in some sense, that policy targets combatting
antisocial or criminal behaviour should not be too ambitious. Furthermore, our analysis also spells
out a rather pronounced warning that the standard law-and-order approach, assuming that higher
punishments will always reduce crime, may not necessarily work.

Two avenues for further research seem obvious. Theoretically, an analysis of the dynamics in
more complex spaces and, in particular, in endogenously formed neighbourhoods (that is in models
where agents can move) would be of interest. However, neighbourhood watch and any forms of
local social control are also in desperate need for more empirical work. Searching Google for
“neighborhood watch” in edu-domains or “neighbourhood watch” in ac.uk-domains yields dozens
and dozens of neighbourhood watch programs which universities participate in, but virtually
no data and research. This is particularly surprising, as neighbourhood watch programs are a
rather interesting object from the perspective of the broader social capital, trust, and reciprocity

literature.
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Appendix: Proofs

Proposition 1 to 4 are implications of results for a particular class of stochastic processes: the
contact process, the threshold contact process, and the 0-contact process (Liggett 1991, Konno
1994). The contact process is a continuous-time Markov process with state space {A|A C Z}.
Sites in A are regarded as infected, whereas the other sites are regarded as being healthy. The
contact process has transition rates where each infected site independently recovers at rate 1, and
a healthy site becomes infected at rate A times the number of neighbours that are infected, with
A > 0. The transition rates of the threshold contact process are such that an infected site recovers
at rate 1, while a healthy site is infected at rate A > 0 if at least one neighbour is infected. The
f-contact process forms a generalization of the two processes: each infected site recovers at rate
1; a healthy site is infected at rate A if one neighbour is infected, and it is infected at rate O\ if
both neighbours are infected, where 1 < 6 < 2. Obviously, the #-contact process coincides with
the basic contact process if § = 2 and coincides with the threshold contact process if 8 = 1.

The model of neighbourhood watch in this paper represents a particular combination of the
threshold and the #-contact process. To see this, simply regard each infected site as an agent being
a member of M;. By dividing Poisson rates by € we can transform our model into an equivalent
contact-process model that has rate 1 for an infected site to recover, and rates £ and Z for a
healthy site to become infected (or, in our terminology to become a member of the neighbourhood
watch program). The two models are equivalent in the sense that their asymptotic behavior is
the same. The division by the positive number € only affects the time scale.

Now, if only one kind of recruitment effect is at work (either 7 or x), our model is equivalent to
the threshold contact process. If both effects are at work and y < 7 < 2y, the model is equivalent
to the #-contact process with 6§ = § In fact, if both effects are at work and 7 < y, our model is
also a f-contact process; however this time # < 1. Unfortunately, not so much is know in this case
as the process is not attractive, which requires that the probability of a site becoming infected
does not decrease in the number of neighbouring sites that are infected.

However, If § > 1 the #-contact process is attractive. A well-known consequence (Liggett 1985,

Theorem 2.3, Chapter III) is that the so-called upper invariant measure

t—o0

exists. Here dz denotes the Dirac measure that puts probability one on the state where every site
is infected and S(t) denotes the semigroup (the continuous-time analogue to the transition matrix)
of the process. Of course, it may well be that 7 = dy, the latter denoting the Dirac measure where
with probability one no site is infected. A main result, however, is that this is not the case if \ is
large enough.

Precisely, for the threshold contact process there exists a critical value \. such that 7 = ¢y if
A < A and T # 0y if X > A.. Moreover, if A > ), it holds that 7(()) = 0, so in this case with
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probability one the set of infected sites is non-empty. In consequence, it is said that the process
survives if A > A\, and that it dies out if A < A\.. If the process survives, we obtain convergence
to 7 from any translation invariant distribution putting mass zero on (). In particular, there is
convergence starting from the Bernoulli product measure with strictly positive infection probability
q > 0. Liggett (1991) and Konno (1994) provide lower and upper bounds for the critical value A.
of the threshold contact process showing that

1.224 < \, < 2.17. (7)

The #-contact process has a critical value A\.(f) as well, such that survival occurs if A > A\.(6)
and the process dies out if A < A.(f). For 1 < 6 < 2, it can be shown that A.(#) is strictly
decreasing in 6 and that O\.(0) is strictly increasing in 6 (Durrett and Griffeath 1983). Obviously,
Ae(1) = .. This implies that ¢ < A.(6) < A..

Via multiplication with ¢ > 0 we obtain the equivalent critical values for our model. For
example, . translates into s(e) = e\.. Similarly, the critical value 5(f,¢) is obtained through

5(0,€) = eAc(#). This provides us with enough information to prove our results.

Proof of Proposition 1: Case (A): Suppose

m = max{m,x} < s(e€) (8)

PR Ae- (9)
€

Then the threshold contact process with infection rate A = ** dies out. Equivalently, the system
of neighbourhood watch with single recruitment rate m breaks down. By definition of m, and
using a standard dominance argument, the original neighbourhood watch program with rates =

and x must break down as well. Case (B): Suppose

m = min{m, x} > s(e) (10)
PRULEEN Ae- (11)
€
In this case the threshold contact process with infection rate A =  survives. Equivalently,

neighhourhood watch with single recruitment rate m survives. Again, by the same dominance
argument, the same holds for the original process The bounds for s(e) follow immediately from
those for A.. O

Proof of Proposition 2: Suppose y < s(e) <7 < 2y. If p < p, burglaries occur and the
recruitment rate is always equal to y. Hence, the process of neighbourhood watch is equivalent
to the threshold contact process with infection rate A = X. If p > p, no burglaries occur and the

recruitment rate is always equal to 7. Thus, in this case the process is equivalent to the threshold
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contact process with infection rate A= Z. Since x < s(€) < m, or equivalently, A < A\. < 5\, the
threshold contact process with infection rate A dies out but the threshold contact process with
infection rate A survives. We are thus left with the situation where p<p<p. Let 0= § Case
(C): If x > 5(0,¢), the f-contact process with infection rate A\ = 2 survives. Equivalently, the
neighbourhood watch program with recruitment rates xy and 7 survives. Case (D): If x < §(0,¢),
the f-contact process with infection rate A = X dies out and therefore also the neighbourhood

watch program with recruitment rates y and 7 breaks down. O

Proof of Proposition 3: If p < p, burglaries occur and the recruitment rate is always equal
to x. Hence, the process of neighbourhood watch is equivalent to the threshold contact process
with infection rate A = X. If p > P, no burglaries occur and the recruitment rate is always equal
to 7. Thus, in this case neighbourhood watch is equivalent to the threshold contact process with
infection rate A\ = T. Since m < s(€) < x, or equivalently, A< A < A, the threshold contact
process with infection rate A survives, but the threshold contact process with infection rate A dies

out. O

Proof of Proposition 4: The result follows from Katori and Konno (1993), who prove that
the density of the upper invariant measure of the 6-contact process has the following lower bound.

Let 1 <6 < 2. Define
2—10

& = \ +(0-1), (12)
n = (2—10)+0\, (13)
and
oy 2148 1€
¢_1+£<1 \/1 n n? ) 14
Then
v(Alz e A) > % (15)

for any « € Z and A > Ay (6), where A\ (0) is the upper bound for the critical value of the §-contact

process, which is given by the largest root of the cubic equation
ON* — (30 —2)A* = 3(2— )\ + (2 —0) = 0. (16)
As Proposition 4 considers the case of the threshold contact process only, i.e., § = 1, the above

equations become much simpler. First, £ = % and 7 = 1 + A. Putting this into equation (14) and

using some basic algebra leads to

A—1
= A=/ A2 -2 ———, 1
V=2 \/A AT (17)

If 0 =1, \y(0) coincides with the upper bound for the critical value of the threshold contact
process, which is 2.17, thereby concluding the proof. O
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