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Abstract

This work gives a brief overview of the portfolio selection problem following the mean-risk
approach first proposed by Markowitz (1952). We consider various risk measures, i.e. variance,
value-at-risk and expected-shortfall and we study the efficient frontiers obtained by solving
the portfolio selection problem under these measures. We show that under the assumption
that returns are normally distributed, the efficient frontiers obtained by taking value-at-risk
or expected-shortfall are subsets of the mean-variance efficient frontier. We generalize this
result for all risk measures having the form γσ − µ for some positive parameter γ, where µ
is the mean and σ the variance and we show that for these measures Tobin separation holds
under some restriction on the choice of γ.

Keywords: decision under risk, mean-risk models, portfolio optimization, value-at-risk, ex-
pected shortfall, efficient frontier.
JEL Classification: G11.

1 Introduction

The mean-risk approach for portfolio selection first proposed by Markowitz (1952) is very intuitive
and, due to its simplicity, is also commonly used in practical financial decisions. In his seminal
paper, Markowitz (1952) proposed the variance as measure of risk. The advantage of using the
variance for describing the risk component of a portfolio, is principally due to the simplicity of the
computation, but from the point of view of risk measurement the variance is not a satisfactory
measure. First, the variance is a symmetric measure and “penalizes” gains and losses in the same
way. Second, the variance is inappropriate to describe the risk of low probability events, as for
example the default risk. Finally, mean-variance decisions are usually not consistent with the
expected utility approach, unless returns are normally distributed or a quadratic utility index is
chosen. We address our attention to this last point in an other work (see De Giorgi 2002).
As already suggested by Markowitz (1959), other risk measures can be used in the mean-risk
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strasse 10, CH-8006 Zürich and RiskLab, D-MATH, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092
Zürich.
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approach. In this work we consider value-at-risk (V aR) (Jorion 1997, Duffie and Pan 1997) and
expected-shortfall (ES) (Acerbi, Nordio, and Sirtori 2001), which are quantile-based risk mea-
sures.
We show that under the assumption that return are normally distributed, the efficient frontiers re-
sulting from the mean-V aR and from the mean-ES optimization are subsets of the mean-variance
efficient frontier. The equivalence of these optimization problems under multivariate normal distri-
bution has been first stated by Rockafellar and Uryasev (1999, Proposition 4.1). The equivalence
of mean-ES and mean-variance analysis has been also proved by Hürlimann (2002), but for a more
general class of distribution function for the returns, i.e. the class of elliptic distributions. In this
work we restrict our attention to the multivariate Gaussian case and we give a precise statement
on the efficient frontiers. We will see that although mean-variance, mean-V aR and mean-ES anal-
ysis are equivalent under multivariate Gaussian distributed returns, the mean-variance efficient
portfolios can been inefficient under mean-ES or mean-V aR portfolio selection. Leippold (2001)
(and for a more general framework, Leippold, Vanini, and Troiani (2002) and other authors cited
in this last reference) has considered the impact of value-at-risk and expected-shortfall limits on
the mean-variance portfolio allocation and has shown for multivariate Gaussian returns that V aR
and ES constraints reduces the set of efficient portfolio allocations: this results will follows di-
rectly from our analysis. In the case that a risk-free asset is available, the set of efficient portfolios
resulting from mean-V aR or from mean-ES portfolio selection are identical to the mean-variance
efficient frontier, unless they are empty. This results allows an extension of the Tobin separation
also for the case where investors use V aR or ES for describing their risk.

The paper is organized as follows. Section 2 introduces our notation and definitions. Section 3
consider value-at-risk and expected shortfall for normal distributed returns. Section 4 and Sec-
tion 5 are devoted to the portfolio optimization problem without and with risk-free asset. Section 6
extends the optimization problem for expected shortfall to the case where returns are not neces-
sarily normally distributed. We present an example based on the Swiss Market Index, where the
mean-ES portfolio selection is identical to the mean-variance portfolio selection, in spite of the
fact that we are not assuming that returns are multivariate distributed. This is not surprising,
since the work of Hürlimann (2002). Finally, Section 7 concludes.

2 Notation and definitions

Let (Ω,F , P) be a probability space. We suppose that K risky assets with return R1, . . . , RK

respectively are available (random variables on (Ω,F , P)). With R′
1 = (R1, . . . , RK) we denote

the vector of risky returns1. The risk-free asset, if it exists, is denoted by R0 and R′ = (R0,R′
1).

We write the boldfaced index 1 for K-dimensional vectors and no index for (K + 1)-dimensional
vectors. The last K components of a (K +1)-dimensional vector are also denoted with a boldfaced
index 1 (this will be helpful when we write the optimization problem with the risk-free asset).
Let ∆K−1 = {w1 ∈ RK |

∑K
k=1 wk = 1} denote the set of all portfolios of risky assets. Analogously,

∆K = {w ∈ RK+1 |
∑K

k=0 wk = 1} denotes the set of portfolio of risky assets and the risk-free
asset. We sometime call the portfolio weights λ1 (or λ) a strategy, since they fully characterize
the portfolio decision of an investor. We do not impose short-sales constraints or diversification
constraints. For an element λ1 ∈ ∆K−1 (or λ ∈ ∆K), the portfolio return is given by

Rλ1 =
K∑

k=1

λkRk = R′
1λ1 (Rλ = R′λ).

1The apostrophe near the vector means ”transpose”.
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We assume that P
[
ω ∈ Ω |Rk(ω) < R0

]
> 0 for all k = 1, . . . , K, i.e. if the risk-free asset exists,

risky assets have smaller return than the risk-free return with positive probability. This ensures
that a risky asset does not dominate the risk-free asset.
Let µk = E

[
Rk

]
denote the expected return of asset k for k = 0, . . . , K. Obviously, µ0 = R0.

Moreover, for two risky assets Rj and Rk (j #= k), V jk = Cov(Rj , Rk) denotes the covariance
between asset j and asset k. For j = k we have V jk = V ar(Rj) = σ2

j is the variance of asset j.
V = (V jk)1≤j,k≤K is the variance-covariance matrix. For a portfolio λ1 ∈ ∆K−1 we have

E
[
Rλ1

]
= µλ1 = λ′

1µ1, (1)

V ar(Rλ1) = σ2
λ1

= λ′
1V λ1. (2)

Analogously for λ = (λ0, λ1) ∈ ∆K , µλ = λ′µ = λ0µ0 + λ′
1µ1 and σ2

λ = σ2
λ1

.

We now introduce the definition of value-at-risk and expected-shortfall.

Definition 2.1 (Value-at-Risk). Let α ∈ (0, 1) be a given probability level and λ1 ∈ ∆K−1.
The value-at-risk at level α for the return Rλ1 is defined as

V aRα(Rλ1) = − inf{x |P
[
Rλ1 ≤ x

]
≥ α} = −F−1

Rλ1
(α). (3)

The function F−1
Rλ1

(defined by the left hand side of the last equality sign) is called the generalized
inverse of the cumulative distribution function FRλ1

(x) = P
[
Rλ1 ≤ x

]
of Rλ1 and gives the

α-quantile of Rλ1 .

V aRα(Rλ1) is the maximal potential loss that portfolio λ1 can suffer in the 100(1−α)% best
cases, i.e. with a small probability α the portfolio return is smaller than −V aRα(Rλ1). Therefore,
for fixed α we would like to minimize the V aRα over the set ∆K−1.

Remark
Let λ ∈ ∆K , λ′ = (λ0, λ′

1), then

V aRα(Rλ) = − inf{x |P
[
Rλ ≤ x

]
≥ α}

= − inf{x |P
[
Rλ1 ≥ x − λ0µ0

]
≥ α} = V aRα(Rλ1) − λ0µ0.

For general multivariate distribution functions for the returns R1, it is usually not possible to
obtain a useful (i.e. an explicit function of the weights λ1) analytical expression for the V aRα of
a portfolio. The portfolio selection problem should be solved numerically and also the numerical
approach is challenging since V aRα is not a convex measure (see Gaivoronski and Pflug 2000,
Vanini and Vignola 2001). The return of a portfolio is essentially given by a linear combination of
K random variables and thus one should look at the multivariate distribution of the assets’ returns
and how the univariate distribution is affected by the weights of the portfolio. This is usually a
non-trivial task. An alternative approach considers separately the univariate distributions of the
single assets’ returns and the dependence structure through the copula (see for example Embrechts,
Höing, and Juri 2002, Juri 2002, Corbett and Rajaram 2002). A detailed introduction to the copula
and its applications in finance can be found in Juri (2002) and Embrechts, Lindskog, and McNeil
(2001). Here we just consider the simple case where returns are normally distributed, i.e. the
multivariate distribution of the returns R1 is a Gaussian multivariate distribution with mean µ1

and variance-covariance matrix V . This assumption strongly simplifies the analysis, as we will see
in the next section.
We now proceed with the definition of expected shortfall.
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Definition 2.2 (Expected-Shortfall). Let α ∈ (0, 1) be a given probability level and λ1 ∈ ∆K−1.
The expected-shortfall at level α for the return Rλ1 is defined as

ESα(Rλ1) = − 1
α

(
E
[
Rλ11{Rλ1≤x(α)}

]
− x(α)

(
P
[
Rλ1 ≤ x(α)

]
− α

))
, (4)

where x(α) = F−1
Rλ1

(α).

Acerbi and Tasche (2001a) shown that ESα is the limit (in probability) of a natural estimator
for the expected losses in the 100α% worst cases, i.e. the average over the 100α% worst outcomes,
multiplied by −1. Moreover they shown that ESα is a coherent risk measure in the sense of
Artzner, Delbaen, Eber, and Heath (1999). There is some confusion in the literature about the
nomenclatures of the various quantile-based risk measures. Some authors identify the expected-
shortfall with the tail conditional expectation (Pflug 2000), other authors use the terminology
conditional value-at-risk (Rockafellar and Uryasev 2001) for the expected shortfall just introduced.
We give the definition of tail conditional expectation (which differs from the definition of ES
already formulated) and we show that this measure is identical to the expected shortfall only
under some conditions.

Definition 2.3 (Tail Conditional Expectation). Let α ∈ (0, 1) be a given probability level and
λ1 ∈ ∆K−1. The tail conditional expectation at level α for the return Rλ1 is defined as

TCEα(Rλ1) = −E
[
Rλ1 |Rλ1 ≤ x(α)

]
, (5)

where x(α) = F−1
Rλ1

(α).

The tail conditional expectation is a coherent risk measure only for continuous distribution
functions. In fact it may violate the subadditivity for general distributions (see Acerbi and Tasche
2001b). Moreover, as pointed out by Acerbi and Tasche (2001a), TCE does not answer the
question about the expected loss incurred in the 100α% worst cases, since the set {Rλ1 ≤ x(α)}
could have a probability larger than α if the distribution function is not continuous. On the
other side, for continuous distribution functions, we have P

[
Rλ1 ≤ x(α)

]
= α and thus equation

(4) implies ESα = TCEα. This last equation explains why some authors refer to the expected
shortfall with the terminology “conditional value-at-risk”.
In general we have the following results (Pflug 2000):

ESα(Rλ1) = TCEα(Rλ1) + (β − 1) (TCEα(Rλ1) − V aRα(Rλ1)) ,

where β = 1
αP

[
Rλ1 ≤ −V aRα(Rλ1)

]
.

3 V aR and ES with normal distributed returns

In this section we make a strong assumption on the multivariate distribution of the return vector
R1. We assume that R1 ∼ N (µ1, V ), i.e. R1 is multivariate Gaussian distributed with mean
µ1 and variance-covariance matrix V . We have the following result for value-at-risk and expected
shortfall

Lemma 3.1. Let α ∈ (0, 1) and R1 ∼ N (µ1, V ). Then Rλ1 ∼ N (µλ1 , σ
2
λ1

) and

(i)

V aRα(Rλ1) = z(α)σλ1 − µλ1 , (6)

where z(α) = Φ−1(1−α), Φ(·) is the cumulative distribution function of the standard normal
distribution, Φ(x) = 1√

2π

∫ x
−∞ e−

1
2 z2

dz.
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(ii)

ESα(Rλ1) =
ρ(z(α))

α
σλ1 − µλ1 , (7)

where ρ(·) is the density of the standard normal distribution, ρ(z) = 1√
2π

e−
1
2 z2

.

Proof. (i) Since Rλ1 ∼ N(µλ1 , σ2
λ1

), then Rλ1−µλ1
σλ1

∼ N(0, 1). Therefore we have:

inf{x |P
[
Rλ1 ≥ x

]
≥ α} = σλ1 inf{x |P

[Rλ1 − µλ1

σλ1

≤ x − µλ1

σλ1

]
≥ α} + µλ1

= σλ1Φ
−1(α) + µλ1 = −σλ1Φ

−1(1 − α) + µλ1

= −σλ1z
(α) + µλ1 .

Take the minus sign, and the first statement of the Lemma follows.

(ii) Since the normal distribution is continuous, we can calculate the ESα as TCEα. From the
first part of this proof we know that V aRα(Rλ1) = z(α)σλ1 − µλ1 . We obtain

P
[
Rλ1 ≤ x |Rλ1 ≤ −V aRα(Rλ1

]
=

1
α

P
[
Rλ1 ≤ x

]
1{x≤−V aRα(Rλ1 )}

=
1
α

P
[
Rλ1 ≤ x

]
1{x≤−z(α)σλ1+µλ1}

.

Therefore

E
[
Rλ1 |Rλ1 ≤ −V aRα(Rλ1)

]
=

=
1
α

∫ −z(α)σλ1+µλ1

−∞
z

1√
2πσλ1

exp

(
−1

2

(
z − µλ1

σλ1

)2
)

dz

=
1
α

∫ −z(α)

−∞

1√
2π

(σλ1u + µλ1) exp
(
−1

2
u2

)
du

=
1

α
√

2π

[
σλ1

∫ −z(α)

−∞
u exp

(
−1

2
u2

)
du + µλ1

∫ −z(α)

−∞
exp

(
−1

2
u2

)
du

]

=
1
α

[
−ρ(−z(α))σλ1 +Φ(−z(α))µλ1

]
=

1
α



−ρ(z(α))σλ1 + (1 − Φ(z(α)))︸ ︷︷ ︸
=α

µλ1





= −ρ(z(α))
α

σλ1 + µλ1 .

Take the minus sign and the second statement of the Lemma follows.

The Lemma shows that under the assumption of normal distributed returns, value-at-risk and
expected shortfall can be fully characterized by the mean and the variance of the portfolio, i.e. we
have the following general form

risk(Rλ1) = γ(α)σλ1 − µλ1 , (8)

where γ(α) is a function of the level α taking the value z(α) for value-at-risk and ρ(z(α))
α for

expected shortfall. This is naturally a very special case due to the special distribution. For
a general continuous distribution function we obtain the following representation for ESα and
V aRα (Rockafellar and Uryasev 1999):
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Lemma 3.2. Let Rλ1 be the return of the portfolio λ1 ∈ ∆K−1 and suppose that Rλ1 has a
continuous cumulative distribution function. Then

ESα(Rλ1) = inf{a +
1
α

E
[
(−Rλ1 − a)+

]
|a ∈ R} (9)

and

V aRα(Rλ1) ∈ arg inf{a +
1
α

E
[
(−Rλ1 − a)+

]
|a ∈ R}, (10)

where x+ = max(x, 0).

The Lemma already suggest the difficulty to solve the optimization problem for V aRα under
general continuous distribution functions, since in fact the problem is usually not a convex one
and the solution may be not unique.

4 Portfolio optimization and efficient frontiers

The mean-risk approach for portfolio selection essentially consists in minimizing the risk of the
portfolio return over the set of strategies, given a fixed expected return that must be reached.
Mathematically the portfolio optimization can be written as the following problem (Mrisk)2: find
w∗ ∈ ∆ that solves

min
w∈∆

risk(Rw)

s.t. E
[
Rw

]
= µ

where ∆ is equal ∆K−1 if no risk-free asset is available, or ∆K if the risk-free asset exists. We call
the portfolio w∗ an optimal portfolio for the expected return µ: we will see later that an optimal
portfolio may be inefficient. We denote by B(µ,risk) the (µ, risk)-boundary, i.e. the subset of R2

containing all pairs (risk(Rw∗), µ) where w∗ is the optimal portfolio for the expected return µ.
Here, the function risk(·) can take the following forms:

(i) risk(Rw) = σw;

(ii) risk(Rw) = V aRα(Rw) for some α ∈ (0, 1),

(iii) risk(Rw) = ESα(Rw) for some α ∈ (0, 1),

where w denotes a strategy in ∆. From the previous section we know that when returns are
multivariate Gaussian distributed, then both the risk(·) functions in (ii) and (iii) have the form
γ(α)σw−µw for some fixed parameter γ(α) depending on the choice of the level α. We additionally
suppose that α ∈ (0, 0.5) (usually α take value smaller than 0.1) so that we can assume that
γ(α) > 0 for both value-at-risk and expected shortfall. When the risk(·) function has the form
riskγ(Rw) = γσw −µw for some γ > 0, then the optimization problem (Mrisk) has obviously the
same solution on ∆ as the analogous optimization problem with the standard deviation as measure
of risk (we denote this problem by (Mσ)), but naturally the corresponding minimal values for the
risk functions are different. Equivalence of the optimization problems, concerns the mathematical
solutions. Due to the analogy of the optimization problems (Mrisk) and (Mσ), with risk some
measure of the form γσw − µw, γ > 0, we first give a characterization of the solutions of (Mσ)
and we then extend some of the results to the case (Mrisk).

2A remark on the notation. In this paper we use the italic letter M for denoting the Markowitz problem. The
risk measure is expressed in the index of the M.
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4.1 Mean-variance portfolio optimization

We now consider the problem (Mσ) for the case that the risk-free asset is not available. We have
the following optimization problem

min
λ1∈∆K−1

σλ1

s.t. µλ1 = µ.

From equations (1) and (2) we obtain a quadratic objective function with linear contraints. Under
the assumption that V (the variance-covariance matrix) is strictly positive definite, that the vectors
µ1 and e1 = (1, . . . , 1)′ ∈ RK are linearly independent and that all the first and second moments
exist, a portfolio λ∗

1(µ) ∈ ∆K−1 solves the optimization problem (Mσ) if and only if:

λ∗
1(µ) = µ λ∗,0

1 − λ∗,1
1 (11)

where

λ∗,0
1 =

1
D

(BV −1µ1 − CV −1e1),

λ∗,1
1 =

1
D

(CV −1µ1 − AV −1e1),

and

A = µ′
1V −1µ1,

B = e′1V −1e1,

C = e′1V −1µ1,

D = AB − C2.

This result follows directly from the first order conditions. Note that D > 0 by the Cauchy-Schwarz
inequality. The parameter µ enters in the characterization of the optimal portfolio only in equation
(11). Equation (11) can be viewed as a “mutual fund” representation, since in fact it states that
homogeneous investors3 still choose a combination of λ∗,0

1 and λ∗,1
1 , where the proportion invested

in λ∗,0
1 depends on the target expectation µ. Moreover, from equation (11) one can find the

relation between µ and the optimal standard deviation σλ∗
1(µ). This gives us the mean-variance

boundary B(µ,σ). Note that by equation (11), there is a one-to-one correspondence between B(µ,σ)

and the subset of optimal portfolio in ∆K−1 under the assumptions on V and µ1 given above. We
have

(σ, µ) ∈ B(µ,σ) ⇐⇒ σ2

1/B
− (µ − C/B)2

D/B2
= 1. (12)

The right hand side of equation (12) defines an hyperbole in R+ × R.

Definition 4.1 (Global minimum risk portfolio). A portfolio w ∈ ∆ is a global minimum
risk portfolio in ∆, if and only if

w ∈ argmin
{
risk(Rw) |(risk(Rw), µw) ∈ B(µ,risk)

}
.

We denote the global minimum risk portfolio by mrisk.
3“Homogeneous investors” means investors that have the same beliefs about the probability P.
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From equation (12) it follows that the global minimum variance on the mean-variance boundary
can be obtained with µ = C

B . The corresponding optimal portfolio is the global minimum variance
portfolio and is given by equation (11), we have

mσ
1 =

1
C

V −1µ1. (13)

Moreover, for µ < C
B the corresponding optimal portfolio λ∗

1(µ) given by equation (11) has the
same variance has the portfolio λ∗

1(2C
B − µ), but the latter provides an higher expected return,

since 2C
B − µ > µ. Thus optimal portfolios λ∗

1(µ) for µ < C
B will never be selected by a rational

investor, i.e. they are not efficient. This motivate the following definition.

Definition 4.2 ((µ, risk)-efficient portfolio, (µ, risk)-efficient frontier). A portfolio w ∈
∆ is (µ, risk)-efficient in ∆, if and only if no portfolio v ∈ ∆ exists such that µv ≥ µw and
risk(Rv) ≤ risk(Rw) where at least one of the inequalities is strict. ∆ denotes as before the set
∆K−1 if no risk-free asset is available, and ∆K else. The (µ, risk)-efficient frontier, denoted by
E(µ,risk), is the subset of R2 defined by

E(µ,risk) = {(risk(Rw), µw) ∈ R2 |w ∈ ∆ is (µ, risk)-efficient}.

Remark
A necessary condition for a portfolio to be efficient is that it is optimal for some µ. As we have
already shown for the (µ, σ) portfolio optimization, an optimal portfolio could be inefficient. For
the (µ, σ) optimization, there is a one-to-one correspondence between the set of (µ, σ)-efficient
portfolios and the (µ, σ)-efficient frontier.

The following Proposition characterize the (µ, σ)-efficient frontier.

Proposition 4.1.

E(µ,σ) =
{

(σ, µ) ∈ B(µ,σ) |µ ≥ C

B

}
. (14)

Proof. Follows directly from equation (12) and the Definition 4.2.

4.2 Mean-riskγ portfolio optimization

In this subsection we consider the following problem (Mriskγ ):

min
λ1∈∆K−1

riskγ(Rλ1)

s.t. µλ1 = µ,

where riskγ(Rλ1) = γσλ1 − µλ1 , γ > 0. It follows

B(µ,riskγ ) =
{

(riskγ , µ) ∈ R2 |(riskγ + µ

γ
, µ) ∈ B(µ,σ)

}
. (15)

Thus the set of (µ, σ) optimal portfolios remains unchanged under the (µ, riskγ) portfolio decision.
From equation (15) we obtain the following Proposition.

Proposition 4.2. The global minimum riskγ portfolio exists if and only if γ >
√

D
B . In this case

it is given by

mrisk
1 = µmin(γ)λ∗,0

1 − λ∗,1
1 , (16)

where µmin(γ) = C
B +

√
D
B

(
γ2

Bγ2−D − 1
B

)
.
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Proof. Generalization of Proposition 1 in Alexandre and Baptista (2000).

Corollary 4.1. The global minimum riskγ portfolio, if it exists, is also (µ, σ)-efficient.

Proof. From equation (14) since obviously µmin(γ) > C
B for γ >

√
D
B .

Corollary 4.2. Suppose the R1 ∼ N (µ1, V ), then

(i) the global minimum V aRα portfolio exists if and only if α < 1 − Φ
(√

D
B

)
;

(ii) the global minimum ESα portfolio exists if and only if ρ(z(α))
1−Φ(z(α))

>
√

D
B .

Proof. Under the assumption of multivariate normally distributed returns we have V aRα = riskγ

with γ = z(α) = Φ−1(1 − α) and ESα = riskγ with γ = ρ(z(α))
1−Φ(z(α))

.

Remark
The equation ρ(z(α))

1−Φ(z(α))
=

√
D
B cannot be solved explicitly for z(α). Nevertheless, we observe that

the function ρ(z(α))
1−Φ(z(α))

is increasing in z(α) on R+ and thus decreasing in α on (0, 0.5). Moreover,

for α ↗ 0.5, ρ(z(α))
1−Φ(z(α))

↘ 2√
2π

and for α ↘ 0, ρ(z(α))
1−Φ(z(α))

↗ ∞. Thus, we should still be able to find

a maximal level β such that for α ∈ (0, β) the inequality ρ(z(α))
1−Φ(z(α))

>
√

D
B holds. Finally, since

ρ(z(α))
1−Φ(z(α))

> z(α) for α ∈ (0.0.5), the maximal level β ∈ (0, 0.5) for which ρ(z(α))
1−Φ(z(α))

>
√

D
B holds in

(0, β), is greater than the level 1 − Φ
(√

D
B

)
from the previous Corollary for V aR.

Corollary 4.3. Let λ1 ∈ ∆K−1 be a (µ, σ)-efficient portfolio and suppose that µλ1 > C
B , then

λ1 = mriskγ

1

for

γ =

√
D

B
+

D2/B3

(µλ1 − C/B)2
.

Proof. Solve the equation

µλ1 = µmin(γ) =
C

B
+

√
D

B

(
γ2

Bγ2 − D
− 1

B

)

for γ. Proposition 4.2 ensure that the portfolio defined by equation (16) is the global minimum
riskγ portfolio with return µλ1 .

The last Corollary suggests that under the assumption of multivariate distribution for assets’
returns, one can find, for every (µ, σ)-efficient portfolio λ1 which differs from the global minimum
variance portfolio mσ

1 , a level α such that this portfolio corresponds to the global minimum V aRα

portfolio. The same holds for ESα and a different level α. In the case of V aRα, the Corollary
also suggests that for levels of α converging to 1−Φ(D

B ) from below, the variance of the minimum
global V aRα portfolio converges to infinity.
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Example
We consider two assets Rk (k=1,2) with V ar(R1) = 0.02, V ar(R2) = 0.01 and corr(R1, R2) = 0.9.

Then D
B = 4.951415 and thus 1 − Φ

(√
D
B

)
= 0.01303466. It follows that the global minimum

V aRα portfolio exists only for α < 0.01303466.
Moreover, for α = 0.013 we have that V ar(RmV aR

1
) ∼= 9, i.e. the variance of the global minimum

V aR1.3% portfolio is quite large.

We now address the question whether the set of (µ, σ)-efficient portfolios and the (µ, σ)-efficient
frontier also remain unchanged under the (µ, riskγ) portfolio optimization. We have already seen,
that the global minimum riskγ portfolio is (µ, σ)-efficient, if it exists. The following Proposition
characterizes the (µ, riskγ)-efficient frontier.

Proposition 4.3. (i) If γ >
√

D
B , then

E(µ,riskγ ) =

{
(riskγ , µ) ∈ B(µ,riskγ )

∣∣∣µ ≥ C

B
+

√
D

B

(
γ2

Bγ2 − D
− 1

B

)}
. (17)

Moreover, every (µ, riskγ)-efficient portfolio is (µ, σ)-efficient, but the opposite is not true. A

(µ, σ)-efficient portfolio λ1 is (µ, riskγ)-efficient if and only if µλ1 ≥ C
B +

√
D
B

(
γ2

Bγ2−D − 1
B

)
.

Particularly, the global minimum variance portfolio is never (µ, riskγ)-efficient.

(ii) If γ ≤
√

D
B , then

E(µ,riskγ ) = ∅. (18)

Remark (i) If γ is small, then the risk measure riskγ is dominated by µ. In this case, since
short sale is allowed, one could still reduce the risk by taking still more long positions on
assets with high expected return and still more short positions on assets with low expected
return. This operation simultaneously increases the expected return of the portfolio and thus
no (µ, riskγ)-efficient portfolio will be found. In the extreme case that γ = 0, this is obvious
from the fact that the (µ, riskγ)-boundary is a straight line with slope -1 (see Figure 1).

(ii) For γ1 > γ2, then µmin(γ1) < µmin(γ2) and thus the set of (µ, riskγ2
)-efficient portfolios is

strictly contained in the set of (µ, riskγ1
)-efficient portfolios.

Corollary 4.4. Suppose the R1 ∼ N (µ1, V ), then

(i) if α < 1 − Φ
(√

D
B

)

E(µ,V aRα) =

{
(V aRα, µ) ∈ B(µ,V aRα)

∣∣∣µ ≥ C

B
+

√
D

B

(
(z(α))2

B (z(α))2 − D
− 1

B

)}
, (19)

else if α < 1 − Φ
(√

D
B

)
, E(µ,V aRα) = ∅.

(ii) if ρ(z(α))
1−Φ(z(α))

>
√

D
B

E(ESα,µ) =




(ESα, µ) ∈ B(µ,ESα)

∣∣∣µ ≥ C

B
+

√√√√D

B

( (
ρ(z(α))/α

)2

B
(
ρ(z(α))/α

)2 − D
− 1

B

)


 , (20)

else if ρ(z(α))
1−Φ(z(α))

≤
√

D
B , E(µ,ESα) = ∅.
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Figure 1: (µ, riskγ)-boundary for various values of γ. For decreasing γ, the (µ, riskγ)-boundary

approaches to a straight line with slope -1. If γ ≤
√

D
B , than the (µ, riskγ)-boundary degenerates

since the contribution of µ in the risk measure dominates. In this case, the (µ, riskγ)-boundary
suggests that one could infinitely increase the expected return and decrease the riskγ . Thus, no
portfolio will be efficient.

Example (Continued)
With the same assets as in the previous example, the mean-V aRα efficient frontier is empty for
α > 0.01303466. The mean-ESα efficient frontier is empty for α > 0.03347571.

Remark
Since ρ(z(α))

α ≥ z(α) for α ∈ (0, 0.5), then by Remark 4.2 (ii) the set of (µ, V aRα)-efficient portfolios
is a strictly subset of the set of (µ, ESα)-efficient portfolios.

Figure 2 gives an overview of the results from Proposition 4.3 and the Corollary.

Remark
The impact of V aRα or ESα constraints for (µ, σ) investors, can be analyzed directly by consider-
ing the analogies stated in the previous Corollary. Let us consider V aR. First, we observe that if
for some α ∈ (0, 1) the constraint V aRα is smaller than V aR(mV aRα), then no optimal portfolio
allocation could exists for (µ, σ) investors (and also for (µ, V aRα) investors).
Thus, we assume that V aRα ≥ V aR(mV aRα). In this case the restricted mean-V aRα boundary
can be easily computed and is equal to B(µ,V aRα) ∩ {(x, y) ∈ R2 |x ≤ V aRα}. The restricted
(µ, σ) boundary follows from equation (15). As already stated by Leippold (2001), two kind of
(µ, σ) investors could be affected by the V aRα restriction: investors who select high variance
(µ, σ)-efficient portfolios and investors who select low variance (µ, σ)-efficient portfolios, which are
not (µ, V aRα) efficient. The first type of investors are asked to reduce the variance, in order to
satisfy the V aRα restriction. The second type of investors instead, are asked to select a portfolio
with higher variance (see Figure 3).
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Figure 2: (µ, σ)-boundary with the global minimum variance portfolio, the global minimum V aR5%

portfolio and the global minimum ES5% portfolio. The efficient frontiers under the various mea-
sures, are the subset of boundary above the corresponding minimum global risk portfolios. We see
that under V aR5% and ES5% the set of efficient portfolios is reduced with respect to the variance.
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Figure 3: (µ, V aR5%)-boundary with the global minimum variance portfolio. Portfolios on the
(µ, V aR5%)-boundary between the global minimum V aR5% portfolio and the global minimum vari-
ance portfolio, are (µ, σ)-efficient. The V aR constraint (vertical line) could force (µ, σ) investors
with high variance to reduce the variance and (µ, σ) investors with low variance to increase the
variance, to be on the left side of the V aR constraint.
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5 Portfolio optimization with risk-less asset and Tobin sep-
aration

In this section we take ∆ = ∆K and we solve the portfolio optimization problem (Mrisk) intro-
duced at the beginning of the previous section. As before we start our analysis with the problem
(Mσ) and we extend some results to the case where the risk measure has the form γσ − µ for
some γ > 0. To make clear that we are now in an economy with the risk-less asset, we add to our
previous notation for the (µ, risk)-boundary, the (µ, risk)-efficient frontier, . . . an exponent R.

5.1 Mean-variance portfolio optimization with risk-free asset

The portfolio optimization (M)R
σ can be easily solved from the first order conditions. We make

the same assumptions on V and µ as in the previous section. We obtain that a portfolio λ∗ ∈ ∆K

is (µ, σ)R-optimal if and only if

λ∗
1 = ν(µ)V −1(µ1 − µ0e1), (21)

λ∗,0 = 1 − λ′
1e1, (22)

where ν(µ) = µ−µ0
A−2µ0C+µ2

0B
. Let D(µ0) = A − 2µ0C + µ2

0B. We can easily show that D(µ0) ≥
D/B > 0 and D(µ0) = D/B if and only if µ0 = C/B. Note that ν(µ0) = 0 and thus the optimal
portfolio for µ0 is the risk-free asset. The parameter µ enters in equations (21) and (22) only
through the function ν(µ).
We can characterize the (µ, σ)R-boundary directly form equations (21) and (22) in the following
way

(σ, µ) ∈ BR
(µ,σ) ⇐⇒ σ =

|µ − µ0|√
D(µ0)

⇐⇒ µ = µ0 ± σ
√

D(µ0), σ ≥ 0. (23)

It is clear from the last equation that the (µ, σ)R-boundary is given by two straight lines in the
(σ, µ)-plane crossing in (0, µ0). Moreover, from equation (23), we see that the lower branch of
the (µ, σ)R-boundary is dominated by the upper branch, since optimal portfolios in the upper
branch provide an higher return with the same risk. We have the following characterization of the
(µ, σ)R-efficient frontier

(σ, µ) ∈ ER
(µ,σ) ⇐⇒ µ = µ0 + σ

√
D(µ0), σ ≥ 0. (24)

We now address our attention to the following question: do can we find a portfolio in ∆K ∩∆K−1

which is (µ, σ)R-efficient and simultaneously (µ, σ)-efficient? First, this portfolio should satisfy
equations (11) and (21), i.e. it should be (µ, σ)-optimal and (µ, σ)R-optimal. Second it should
have and expected return bigger than min{C

B , µ0} by Proposition 4.1 and equation (24). We start
with equation (21), i.e. with an (µ, σ)R-optimal portfolio, and we impose that it belongs to ∆K−1.
Let denote this portfolio by λtang

1 . Since λtang
1 ∈ ∆K−1 we have

e′
1λtang

1 = 1, and λ0,tang = 0

and thus by equations (21) and (22) we find

λtang
1 =

1
C − µ0B

V −1(µ1 − µ0e1). (25)

The portfolio λtang
1 is uniquely defined by this last equation and we can easily show that it

also satisfies equation (11) with µtang = A−µ0C
C−µ0B , i.e. it is (µ, σ)-optimal. The last step of our
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construction consists in verifying whether or not µtang > min{C
B , µ0}. If this last inequality holds,

then λtang
1 is both (µ, σ)-efficient and (µ, σ)R-efficient. We have

Proposition 5.1. The portfolio λtang
1 defined by equation (25) is (µ, σ)-efficient and (µ, σ)R-

efficient if and only if µ0 < C
B .

Proof. Follows directly from above, together with the last trivial step of verifying that µtang >
min{C

B , µ0} iff µ0 < C
B .

The portfolio λtang
1 is called the tangency or market portfolio. The terminology tangency

portfolio follows from the fact the (µ, σ)R-efficient frontier ER
(µ,σ) is tangent to the (µ, σ)-efficient

frontier E(µ,σ) in the point (σtang, µtang), where σtang denotes the variance of the portfolio λtang
1 .

The pair (σtang, µtang) is the only intersection point of the two frontiers (see Figure 4).
From equation (25) we see that the tangency portfolio does not depend on the investors expected
return µ, but only on assets’ characteristics. Moreover, we can rewrite equation (21) and equation
(22) as follows

λ∗ = (1 − ν̃(µ))
(

1
0

)
+ ν̃(µ)

(
0

λtang
1

)
. (26)

where ν̃(µ) = (C − µ0B) µ−µ0
D(µ0) . Note that ν̃ is an affine function of µ. We obtain the Tobin

separation, which states that any (µ, σ)R-efficient portfolio is the combination of two other (µ, σ)R-
efficient portfolios: the portfolio which invests only in the risk-free asset and the tangency portfolio.
Therefore, homogeneous investors differ exclusively by the weights they put on these two portfolios,
i.e. on the specific target expected return µ they have. Under the assumption that market
participants use mean-variance portfolio optimization with same beliefs about the probabilities (i.e.
they are homogeneous), then in equilibrium the relative market capitalization of each risky asset
is equal to the corresponding weight in the tangency portfolio (see Eichberger and Harper 1997).
That’s the reason why the tangency portfolio is often called market portfolio. Here, we would
like to point out that Tobin separation holds independently from equilibrium consideration and
that the tangency portfolio corresponds to the market portfolio only if all investors have the same
beliefs about probabilities (and thus the same inputs for V and µ). From Tobin separation we
also get that for all (µ, σ)R-efficient portfolio λ∗ ∈ ∆K ,

λtang
1 =

1
e′
1λ∗

1

λ∗
1. (27)

Proof. From equation (26) we obtain

λ∗
1 = ν̃(µ)λtang

1 and e′
1λ∗

1 = ν̃(µ)e′
1λtang

1︸ ︷︷ ︸
=1

= ν̃(µ).

Equation (27) follows immediately.

Tobin separation suggests an alternative (and desirable) way to formulate the mean-variance
portfolio selection. We suppose that investors possess utility functions satisfying the following
properties:

(i) U(R) = W (σ(R), µ(R)),

(ii) W is strict quasi-concave,

(iii) ∂W
∂σ < 0 and ∂W

∂µ > 0.
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Figure 4: Mean-variance efficient frontier with and without risk-less asset. The mean-variance
efficient frontier with risk-less asset is the linear combination of the risk-less asset and the tangency
portfolio.

We denote the class of utility functions with (i)-(iii) by Uσ. The first property just say that the
utility function depends only on mean and variance. The second property ensures that indifference
curves define strictly convex set in the (σ, µ)-plane and thus each investor prefers exactly one pair
(σ, µ) on the efficient frontier. The third property is a sort of “rationality postulate” and asserts
that investors utilities are strictly decreasing in σ and strictly increasing in µ, i.e. investors strictly
prefer more return and less risk. The utility function U ξ(R) = W ξ(σ(R), µ(R)) = µ(R)− ξ

2σ(R)2
for some parameter ξ > 0 satisfies the three properties (i)-(iii) and is quite simple for writing down
the optimization problem.
Tobin separation ensures that investors, independently of the preferences they have within the class
Uσ, select a combination of risk-free asset and tangency portfolio. It follows that an alternative
way for computing the tangency portfolio, consists in maximizing the utility of some investor
satisfying (i)-(iii) over the space ∆K and then, due to equation (27), we get the tangency portfolio
by normalization. Since this results hold independently of the utility functions chosen in the class
Uσ, it makes sense to solve the maximization problem with a utility function in Uσ which can
be easily handled analytically. We choose the function U ξ for some positive ξ. We obtain the
following optimization problem (MW ξ

σ ):

max
λ∈∆K

λ′µ − ξ

2
λ′

1V λ1. (28)

We can rewrite the objective function as

λ′µ − ξ

2
λ′

1V λ1 = µ0 + (µ′
1 − µ0e

′
1)λ1 − ξ

2
λ′

1V λ1,
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using that λ0 = 1 − λ′
1e1. Therefore, the optimization problem (MW ξ

σ ) is equivalent to

max
λ1∈RK

µ0 + (µ′
1 − µ0e

′
1)λ1 − ξ

2
λ′

1V λ1.

The first-order condition is given by

µ1 − µ0e1 = ξV λ1

and thus

λ∗
1 = ξ−1V −1(µ1 − µ0e1).

We normalize and we obtain the tangency portfolio of equation (25).

5.2 Mean-riskγ portfolio optimization with risk-free asset

We now consider the problem (MR
riskγ ):

min
λ∈∆K

riskγ(Rλ1)

s.t. λ′µ = µ,

where riskγ = γσ − µ for some γ > 0. Due to the particular form of riskγ we obtain the
(µ, riskγ)-boundary

BR
(riskγ ,µ) =

{
(riskγ , µ) ∈ R2

∣∣∣
(

riskγ + µ

γ
, µ

)
∈ BR

(µ,σ)

}
,

i.e.

(riskγ , µ) ∈ BR
(µ,riskγ ) ⇐⇒ riskγ =






µ(γ−
√

D(µ0))−γµ0√
D(µ0)

if µ ≥ µ0,

µ(−γ−
√

D(µ0))+γµ0√
D(µ0)

if µ < µ0.
(29)

It follows that geometrically the (µ, riskγ)R-efficient frontier is given by two straight lines in the
(riskγ , µ)-plane, with intersection (−µ0, µ0).
We resume in the following Proposition the main results for the (µ, riskγ)R portfolio optimization.

Proposition 5.2. (i) If γ >
√

D(µ0) then a portfolio is (µ, riskγ)R-efficient if and only if it
is (µ, σ)R-efficient.

(ii) If γ ≤
√

D(µ0) then no (µ, riskγ)-efficient portfolio exists.

Proof. For γ >
√

D(µ0), by equation (29), the lower branch of the (µ, riskγ)-boundary is domi-
nated by the upper branch. Thus the (µ, riskγ)R-efficient frontier is given by the upper branch
of the boundary. Each (µ, σ)R-efficient portfolio generates a pair (µ, riskγ) which belongs to the
(µ, riskγ)R-efficient frontier. Moreover, a pair (µ, riskγ) in the (µ, riskγ)R-efficient frontier be-
longs to a (µ, riskγ)R-efficient portfolio, which is also (µ, σ)R-efficient.
For γ ≤

√
D(µ0), the (µ, riskγ)-boundary degenerates (both the upper and the lower branch are

geometrically given by a straight line with negative slope), and one could still decrease the risk by
simultaneously increasing the return, thus no (µ, riskγ)-efficient portfolio can exist.
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Corollary 5.1. If γ >
√

D(µ0) and µ0 < C
B , then the tangency portfolio λtang

1 defined by equation
(25) is the unique portfolio which is (µ, riskγ)-efficient and (µ, riskγ)R-efficient.

Proof. If γ >
√

D(µ0), then γ >
√

D
B . Thus by Proposition 4.3 the set of (µ, riskγ)-efficient

portfolios is the the subset of (µ, σ)-efficient portfolios with expected return greater or equal
C
B +

√
D
B

(
γ2

Bγ2−D − 1
B

)
. The expected return of the tangency portfolio corresponds to A−µ0

C−µ0

and it can be easily shown that this value is larger than C
B +

√
D
B

(
γ2

Bγ2−D − 1
B

)
if µ0 < C

B

and γ >
√

D(µ0). Thus the tangency portfolio is (µ, riskγ)-efficient. Moreover, by the previous
Proposition, if γ >

√
D(µ0) then each (µ, σ)R-efficient portfolio is also (µ, riskγ)R-efficient.

Suppose now that another portfolio is (µ, riskγ)-efficient and (µ, riskγ)R-efficient. Then by the
previous Proposition and by Proposition 4.3 it must also be (µ, σ)-efficient and (µ, σ)R-efficient.
But this contradicts the fact that the tangency portfolio is the unique (µ, σ)-efficient and (µ, σ)R-
efficient portfolio.

The Corollary implies that Tobin separation also holds for (µ, riskγ) investors, i.e. for γ big
enough the efficient asset allocation of a (µ, riskγ) investors is given by a combination of the risk-
free asset and the tangency portfolio. The same statement can be also obtained by considering the
utility function approach already introduced for the mean-variance case. Let us consider a utility
function Ũ with the following properties:

(i) Ũ(R) = W̃ (riskγ(R), µ(R)),

(ii) W̃ is strict quasi-concave,

(iii) ∂W̃
∂riskγ < 0 and ∂W̃

∂µ > 0.

We denote the set of utility function with (i)-(iii) by Uriskγ
. We define the function W (σ, µ) =

W̃ (riskγ , µ) = W̃ (γσ − µ, µ). Then U given by U(R) = W (σ(R), µ(R)) belongs to Uσ and

(i) ∂W
∂σ = γ ∂W̃

∂riskγ ,

(ii) ∂W
∂µ = ∂W̃

∂µ − ∂W̃
∂riskγ .

Let λ = (λ0, λ′
1) ∈ ∆K , then

µλ = µ′λ,

riskγ
λ = riskγ(Rλ) = γ

(
λ′

1V λ1

) 1
2 − µ′λ.

The optimization problem for the (µ, riskγ) investor with utility function W̃ is (MW̃
riskγ ):

max
λ∈∆K

W̃ (riskγ
λ, µλ). (30)

The first-oder-conditions are:

∂W̃

∂riskγ
(riskγ

λ, µλ)
∂

∂λj
riskγ

λ +
∂W̃

∂µ
(riskγ

λ, µλ)
∂

∂λj
µλ + θ = 0, for j = 0, 1, . . . , K,
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where θ is the Lagrange multiplier. These are equivalent to:

∂W̃

∂riskγ
(riskγ

λ, µλ)
(
γ(λ′

1V λ1)−
1
2 (V λ1)j − µj

)
+
∂W̃

∂µ
(riskγ

λ, µλ)µj + θ = 0, j = 1, . . . , K,

∂W̃

∂riskγ
(riskγ

λ, µλ)(−µ0) +
∂W̃

∂µ
(riskγ

λ, µλ)µ0 + θ = 0.

We rewrite the left hand-side of the first K equations using the vector notation. From the second
equation we obtain θ; it follows:

0 =
∂W̃

∂riskγ
(riskγ

λ, µλ)
(
γ(λ′

1V λ1)−
1
2 V λ1 − µ1

)
+
∂W̃

∂µ
(riskγ

λ, µλ)µ1 +

+

(
∂W̃

∂riskγ
(riskγ

λ, µλ) − ∂W̃

∂µ
(riskγ

λ, µλ)

)
µ0e1 =

=

(
− ∂W̃

∂riskγ
(riskγ

λ, µλ) +
∂W̃

∂µ
(riskγ

λ, µλ)

)
(µ1 − µ0e1) +

+
∂W̃

∂riskγ
(riskγ

λ, µλ)γ(λ′
1V λ1)−

1
2 V λ1 =

=
∂W

∂µ
(riskγ

λ, µλ)(µ1 − µ0e1) +
∂W

∂σ
(riskγ

λ, µλ)(λ′
1V λ1)−

1
2 V λ1 =

=
∂W

∂µ
(σλ, µλ)∇λ1µλ +

∂W

∂σ
(σλ, µλ)∇λ1σλ − ∂W

∂µ
(σλ, µλ)µ0e1.

This last equation together with

∂W

∂µ
(σλ, µλ)

∂

∂µ0
µw + θ = 0,

are exactly the first-order-conditions for the problem (MW
σ ). We know from the previous section

that the normalized solution of (MW
σ ) is the tangency portfolio.

We come back to our original question about the efficient frontiers of a (µ, V aRα) and a (µ, ESα)
investor in an economy with a risk-free asset. In this subsection we have shown that if the returns
are multivariate Gaussian distributed, then some of the results we obtain in a (µ, σ) “world” re-
main unchanged when we use V aRα or ESα. This follows from the fact that both V aRα and ESα

have the form riskγ for some γ. The exact expression for the parameter γ has been given in the
previous section. More precisely, the sets of efficient portfolios in the presence of a risk-free asset
remain unchanged under the various risk measures considered in this work, on condition that all
efficient sets are not empty (see Proposition 5.2).
Since long horizon returns are often well fitted by the normal distribution, we suggests that
(µ, risk) portfolio selection under V aRα or ESα does not really represent an improvement with
respect to the classical (µ, σ) approach. Naturally this is true only when the portfolio returns are
multivariate Gaussian distributed or can be well approximated by a Gaussian distribution. In the
next section we introduce a general framework for portfolio decision with ESα. We will present an
example based on a daily dataset from the Swiss Market Index and we will see that the (µ, ESα)
portfolio decision look very similar to the (µ, σ) asset allocation.
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6 Generalization

Up to now we have assumed that returns are normally distributed. This assumption simplify
the analytical formulation of the mean-risk optimization problem, where risk can be taken to
be value-at-risk, expected-shorfall or every measure of the form riskγ(Rλ) = γσλ − µλ. In the
general case where return are not normally distributed, the mean-risk problem maybe provides
degenerated solutions, as shown by Lemus Rodriguez (1999).
We consider the mean-ESα optimization problem under the assumption that returns have con-
tinuous distribution functions. In this case ESα coincides with TCEα and by Lemma 3.2 we
have

ESα(Rλ) = inf{a +
1
α

E
[
(−Rλ − a)+

]
|a ∈ R}.

Let Fα(Rλ , a) = a + 1
αE

[
(−Rλ − a)+

]
. Rockafellar and Uryasev (1999) show that

min
w∈∆

ESα(Rw) = min
(w,a)∈(∆×R)

Fα(Rw, a), (31)

where ∆ ⊂ RK denotes as usual the convex set of available portfolios. The optimization problem
(MESα) can be written as follows:

min
(λ1,a)∈∆×R

a +
1
α

E
[
(−Rλ1 − a)+

]

s.t. E
[
Rλ1

]
≥ µ.

We introduce an auxiliary random variable Z ≥ 0. Then an equivalent formulation of the previous
problem is the following (M∗

ESα
)

min
(λ,a,Z)∈∆×R×L0(R)

a +
1
α

E
[
Z
]

s.t. E
[
Rλ

]
≥ µ

Z ≥ −Rλ − a, with probability 1
Z ≥ 0.

Proof. Note that Z = (−Rλ − a)+ satisfies the constraints of (M∗
ESα

). Moreover, whenever a
triple (λ, a, Z) ∈ (∆× R × L0(R)) satisfies the constraints of (M∗

ESα
), then

a +
1
α

E
[
Z
]
≥ a +

1
α

E
[
(−Rλ − a)+

]

and the inequality is strict if P
[
Z > (−Rλ − a)+

]
> 0. Thus the minimum in (M∗

ESα
) is attained

for some triple (λ∗, a∗, Z∗) where

P
[
Z∗ = (−Rλ∗ − a∗)+

]
= 1.

This complete the proof.

The advantage of this formulation is that we obtain a linear program, with convex contraints.
This assure that independently of the distribution of Rλ, the solution set is a convex poyhedron.
This makes the mean-ESα criterion more attractive than the mean-V aRα criterion. The latter in
fact can only be reduced to a non-convex problem and thus several local minima may occur. The
disadvantage of the mean-ESα problem formulated above is that it has usually infinite dimension,
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since whenever the sample space is not finite, the set {ω ∈ Ω |Z(ω) ≥ −Rλ(ω) − a} is also not
finite. For practical purposes, we consider a discrete version of (M∗

ESα
). Let R be the vector of

asset returns and ξi ∈ RK (or RK+1 if the risk-free asset exists), for i = 1, · · · , N be N realizations
of R. Moreover, we assume that each ξi has probability 1

N to occur.
The discrete version of the optimization problem is the following

min
(λ,a,z)∈∆×R×RN

a +
1

αN

N∑

i=1

zi

s.t. λ′µ ≥ µ

zi ≥ −λ′ξi − a, for i = 1, . . . , N

zi ≥ 0, for i = 1, . . . , N.

This last problem is a finite dimensional linear optimization problem and can be solved using a
linear program algorithm. Note that one can also include short-sell constraints or lower-upper
bounds for the weights λi without changing the structure of the problem.
We apply this procedure to our data set, consisting in the 252 daily observations in 1999 of 19
stocks in the Swiss Market Index and the risk-free asset. We compute the optimal strategies
for different values of µ and a given fixed α. Table 1 shows the results for some level of µ and
Figure 5 gives the efficient frontier with and without risk-free asset. The tangency portfolio from
the (µ, σ)-analysis corresponds to the tangency portfolio in the (µ, ES1%)-efficient frontier, as one
would expect in the multivariate Gaussian case.

µ 0.2 0.1 0.05
ESα 2.772 1.261 0.506
Risk-free 28.8 67.4 86.7
ABB Ldt 26.2 12.0 4.9
Adecco 4.7 2.1 0.9
Holderbank 12.8 5.9 2.4
Swatch 27.5 12.6 5.1

Table 1: Optimal strategy in percentage with ESα, α = 1%. We impose short-sale constraints.
All other 15 stock has not been selected.

7 Conclusion

In this work we have analyzed the portfolio selection problem following the mean-risk approach,
where the risk measure takes the three forms standard deviation, value-at-risk and expected
shortfall. We have shown that under the assumption of multivariate Gaussian distributed returns,
the set of efficient portfolios under value-at-risk and expected shortfall is a subset of the set of
efficient portfolios under the standard deviation: (µ, σ)-portfolio selection could be inefficient under
value-at-risk or expected shortfall, but the opposite never occurs. Moreover, the set of efficient
portfolios under value-at-risk is a proper subset of the set of efficient frontier under expected
shortfall. We have also shown that (µ, V aRα) and (µ, ESα) efficient frontiers could be empty for
value of α greater than a given level. This suggests that the choice of the level α needs some
precaution. In the presence of a risk-free asset, the set of efficient portfolios under the various risk
measures are identical, unless one of these is empty. This allows an extension of Tobin separation
in the case of (µ, V aRα) or (µ, ESα) portfolio selection. Finally, using a general procedure for
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Figure 5: Mean-ESα efficient frontier with and without risk-less asset.

portfolio selection under expected-shortfall, we have computed the portfolio optimization for a
date set from the Swiss Market Index and we obtained an asset allocation similar to the mean-
variance allocation.
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