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Abstract

This paper investigates the role of fiat money in decentralized markets, where pro-
ducers have private information about the quality of the goods they supply. Money
is divisible, terms of trade are determined endogenously, and agents can finance
their consumption with money or with real production. When the fraction of high
quality producers in the economy is given, money promotes the production of high-
quality goods, which improves the quality mix and welfare unambiguously. When
this fraction is endogenous, however, we find that money can be valued even though
it decreases welfare relative to the barter equilibrium. The origin of this inefficiency
is that money provides consumption insurance to low-quality producers, which can
result in a higher fraction of low-quality producers in the monetary equilibrium.
Finally, we find that most often agents acquire more information in the monetary
equilibrium. Consequently, money is welfare-enhancing because it promotes useful
production and exchange, but not because it saves information costs.
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‘‘The recognition that information is imperfect, that obtaining
information can be costly, that there are important asymmetries
of information, and that the extent of information asymmetries is
affected by actions of firms and individuals ... has provided ex-
planations of economic and social phenomena that otherwise would be
hard to understand.’’ Joseph Stiglitz (2000)

1 Introduction

This paper studies the role of money in decentralized markets where agents have private
information about the quality of the goods they supply. We address three issues that
are at the crossroads of the economics of information and the pure theory of money (see
the Joseph Stiglitz quotation above). First, we explore how money affects the supply of
high-quality goods (the quality mix) when the fraction of high-quality producers in the
economy is exogenous. This question is related to Akerlof’s (1970) paper on “lemons”
and the adverse selection problem. Second, we endogenize the fraction of high-quality
producers and consider how money affects agents’ incentives to engage in opportunistic
behavior, i.e., to produce lemons. Along the lines of Williamson and Wright (1994), this
analysis addresses the role of money in alleviating the moral hazard problem. Third, we
consider how money affects agents’ decision to acquire information. We investigate the
validity of Brunner and Meltzer’s (1971) and King and Plosser’s (1986) claim that money
is a substitute for information acquisition.!

To analyze these issues, we build a search model of money along the lines of Shi (1999)
and Berentsen and Rocheteau (2000a), where the exchange process and the formation of
the terms of trade are made explicit. Money and goods are perfectly divisible, and the
terms of trade are determined in bilateral meetings through alternating offer bargaining
games. In contrast to most matching models of money, all agents in the market are endowed
with money and production opportunities, which allows them to finance their purchases
through real production, money, or both. In order to abstract from the double coincidence
problem, we assume that a commodity of a given quality provides the same utility to all
agents. This setting allows us to focus on private information, which, according to Alchian
(1977), is the principal friction underlying the institution of monetary exchange.

We first show how money affects the terms of trade, that is, the quantities produced

IThere is a voluminous literature that studies the functioning of markets with asymmetric information.
For a survey, see Stiglitz (1987). There also are a large number of articles that attempt to explain the use
of money. There are only a few articles that connect these two fields. Among them are Alchian (1977),
Banerjee and Maskin (1996), Brunner and Meltzer (1971), King and Plosser (1986), Trejos (1999), and
Williamson and Wright (1994).



and consumed in each meeting. We identify two effects. The first effect is related to the
recognizability property of money. With valued money, sellers can ask to be paid with
money, an object of universally recognizable quality, instead of with goods of uncertain
quality. This possibility crowds out the use of real production as a means to finance
consumption. This crowding out of real goods payments by monetary payments is what
we call the recognizability effect of money.

The second effect is the insurance effect of money. With money, buyers consume more
relative to what they consume in the barter economy because money disconnects what
buyers can buy from how they are perceived. In this sense, money acts as consumption
insurance. In particular, this insurance allows low-quality producers to consume even
when they are recognized as lemon producers. In contrast, in a barter economy, recognized
low-quality producers cannot consume, because low-quality goods are worthless.

The first part of the paper investigates the adverse selection problem. We assume
that the fraction of high-quality producers is exogenous. The supply of low- and high-
quality goods, however, is endogenous, because the quantities produced and consumed are
negotiated between agents in bilateral meetings. The key result of this section is that
both an increase in the real value of money and an increase in the level of information
improve the quality mix.? We also show that moving from barter to monetary exchange is
strictly welfare-improving, because money promotes the production of high-quality goods
and reduces the production of lemons. Thus, money is a device to partially overcome the
adverse selection problem that arises in barter.

In the second part of the paper, we endogenize the fraction of high-quality producers to
study how money affects agents’ incentives to become either high- or low-quality producers.
We assume that prior to each match all agents choose the quality of the good they will
supply and that this decision is irrevocable once the match is formed. The recognizability
effect raises the benefit of being a high-quality producer, and therefore induces agents
to produce high-quality goods more often. In contrast, the insurance effect increases the
benefit of being a low-quality producer. This effect, therefore, induces agents to take more
risks, that is, to become lemon producers more often. Consequently, money can exacerbates
the moral hazard problem.

Which effect dominates depends on the severity of the information problem. If the
information problem is severe, that is, if most often agents do not recognize the quality
of the goods, then the recognizability effect of money dominates the insurance effect and
the fraction of high-quality producers is larger in the monetary equilibrium than in the
barter equilibrium. When the level of information increases, the recognizability effect

becomes relatively less important and is eventually dominated by the insurance effect. As

2In this sense, money and information are substitutes. The quality mix is the ratio of the production

of high-quality goods to the production of all goods.
2



a consequence, if the information problem is not too severe, the fraction of high-quality
producers is smaller in the monetary equilibrium than in the barter equilibrium. Moreover,
for some parameter values welfare is strictly lower in the monetary equilibrium than in the
barter equilibrium. Finally, if information is abundant, no monetary equilibrium exists,
whereas a barter equilibrium exists where all agents produce high-quality goods: there is
no need for money in an economy where nobody cheats.

In the third part of the paper, we endogenize the level of information by allowing
agents to invest in a costly inspection technology. This investment improves their ability
to recognize the quality of the goods supplied in the market. We find that there is always
a positive fraction of cheaters in equilibrium. Hence, heterogeneous quality is a natural
outcome when the information structure of the economy is endogenized. We show that for
most parameter values agents invest more in information in the monetary economy than
in the barter economy. Moreover, when information costs are high there is no active barter
equilibrium, whereas an active monetary equilibrium always exists. Thus, in contrast
to Brunner and Meltzer (1971) and King and Plosser (1986), our model suggests that
information acquisition and money are complements.®> The basis for this result is that
money by providing consumption insurance increases the return of information, which
induces agents to acquire more information than in the barter equilibrium.

Our paper is most closely related to the random-matching models of money of Williamson
and Wright (1994), Kim (1996), and Trejos (1999).* Like Williamson and Wright (1994),
we consider an environment where in the absence of private information there is a double
coincidence of real wants in each meeting. This allows us to abstract from the double
coincidence of real wants problem that is most often used to explain money (e.g. Kiyotaki
and Wright (1991, 1993)), and to focus on asymmetric information as an explanation for
why agents use fiat money. In contrast to Williamson and Wright (1994) and Kim (1996),
who consider environments where both money and goods are indivisible and where agents
can hold at most one object at a time, we have divisible money, divisible goods, and no
inventory restrictions on money holdings. In contrast to Trejos (1999), in our analysis
money is perfectly divisible and the cost of cheating is endogenous because it depends on
the equilibrium terms of trade. Furthermore, Trejos (1999) rules out barter trades, which
implies that money has a welfare-improving role even in the absence of a private informa-

tion problem. Finally, Banerjee and Maskin (1996) consider the adverse selection problem

3Quoting Brunner and Meltzer (1971, p.799): “For individuals, money is a substitute for investment in
information and labor allocated to search. By using money, individuals reduce the amount of information

they must acquire, process, and store.”
4Private information problems in search models of money have also been studied by Cuadras-Moraté

(1994), Li (1995), Green and Weber (1996), Haegler (1997), Trejos (1997), and Velde et al. (1999). All

these papers, however, concentrate on issues quite different from the ones we treat.



in a Walrasian framework, where each good can be produced in two qualities. They show
that the commodity that has the smallest discrepancy between the two qualities will emerge
endogenously as the medium of exchange. In this sense, they derive rather than assume
the recognizability property of money.

In contrast to most random-matching models of money, our framework does not rely
on the indivisibility of money and inventory restrictions. In particular, divisible money
allows us to study the effects of changes in the growth rate of the money supply on the
quality mix and the incentive to produce high-quality goods. Interestingly, it also greatly
simplifies the typology of equilibria. In particular, under the Friedman rule we generically
find uniqueness of the monetary equilibrium. Another important difference with respect to
the standard search literature is that we allow matched agents to finance their consumption
with money, real production, or both, which makes it clear that matched agents face neither
an explicit nor an implicit cash-in-advance constraint. Moreover, divisible money breaks
the artificial link between the quantity of money and the fraction of buyers. In fact, an
important characteristic of the model is that money is neutral but not superneutral.’

The remainder of the paper is organized as follows. In Section 2 we present the envi-
ronment. Section 3 describes the equilibrium and identifies the recognizability effect and
the insurance effect of money. Section 4 addresses the adverse selection problem when the
fraction of high-quality producers is exogenous. In Section 5, the fraction of lemon produc-
ers is endogenized. Section 6 endogenizes the information level in the economy. Section 7
concludes.

°In contrast to most search models of money, in our divisible money framework money is neutral,
and without search externalities or private information the Friedman rule holds (see Berentsen 2001).
Therefore, our model is not subject to Banerjee and Maskin’s (1996, p. 960) critism that “one may run
into trouble when basing the theory of money on search frictions while relying on the Walrasian model for

one’s other macroeconomic intuitions.”



2 Environment

We consider a random-matching model with divisible goods and divisible money along
the lines of Shi (1999). The economy is populated with a large number of infinitely-lived
households, each consisting of a continuum of members of measure one that regard the
household’s utility as the common objective. In the market, household members attempt
to exchange money or their production good for consumption goods. In this attempt
household members follow the strategy that has been given to them by their households.
After trading, household members return home, where they pool their money holdings.
This assumption allows us to abstract from distributional issues and to focus on the effect
of private information on the formation of the terms of trades and on the incentive to
produce high-quality goods within a representative household framework.

We consider symmetric equilibria only, where all households consume and produce the
same quantities. In the following we refer to an arbitrary household as household h. De-
cision variables of this household are denoted by lowercase letters. Capital letters denote
other households’ variables, which are taken as given by the representative household h.
Because we will only consider the steady state equilibria where all real variables are con-
stant, we most often omit the time index. Nevertheless, because in a steady state nominal
variables are not necessarily constant, the index 41 refers to a variable at the following

period, and the index -1 to the variable at the previous period.

2.1 Technology preferences

There is a continuum of nonstorable goods, where each good can be produced in low or
high quality. We assume that the quality of goods is an inspection attribute: the only way
to discover the quality of a good is to consume it. Household h has the technology to
produce one good, and it derives utility from consuming all high-quality goods other than
its production good.

Producing ¢ units of a good of high quality yields disutility ¢ (¢) = ¢. Producing low-
quality goods (lemons) costs nothing. The instantaneous utility of consuming ¢ units of a
commodity of high quality is u(q), where u(q) is increasing and twice differentiable, and
satisfies u (0) = 0, v/ (0) = oo, and u” (¢) < 0. Furthermore, there exists ¢* > 0 such
that u/(¢*) = 1. Consuming a lemon generates no utility. Goods cannot be stored, and
production is instantaneous. The utility of a household in one period is the sum of the

consumption utilities of its members minus their disutility of production. The discount

6 A family construct of this type was introduced by Lucas (1990). In search models of money it was
first used by Shi (1997, 1999).



factor is 5 € (0,1).7

In sections 3 and 4 we assume that the fraction of household members that produce high
quality, denoted by II, is exogenous and identical across households. Holding II constant
allows us to study the relation between money and the adverse selection problem. In
section 5 we endogenize II to see how money affects this choice.

In addition to the consumption goods, there is also an intrinsically worthless, storable,
and fully divisible object called fiat money. At the beginning of each period, each household
has m units of money per member.

The chronology of events within a period is as follows. First, the money stock is
divided evenly between ex ante identical household members, and each member receives
m units of money.® Second, the household members are endowed with the production
technology allowing them to produce in the market. Third, they leave the household to
search for trading partners. Prior to the matching phase, a fraction II of all household
members receives a technology shock that allows them to produce high-quality goods. The
remaining fraction of household members can only produce low-quality goods. Fourth,
household members are matched and carry out their exchanges according to the prescribed
strategies. Within a period, a member of the household cannot transfer money balances to
another member of the same household. After trading, members bring back their receipts
of money, and each agent consumes the goods he has bought. At the end of a period, the
household receives a lump-sum money transfer 7, which can be negative, and then carries
the stock my; tot + 1.

The quantity of money in the economy is assumed to grow at the gross growth rate ~.
We restrict v to be larger than the discount factor 3. The (indirect) marginal utility of
money is denoted by w. It is equal to BV'(m.1), where V(m) is the steady-state lifetime

discounted utility of a household holding m units of money.

2.2 Information

Time is discrete. In each period, household members meet pairwise and at random. We
normalize the length of a period so that in each period each household member meets
another member. When two traders meet they bargain over the terms of trade. Before we
discuss the bargaining game, however, let us determine what information matched traders
have and how they use this information to assess the quality of the good produced by their

partner.

"Throughout the paper, when we present simulations we use the specification u(q) = a~'¢® and 3 =
0.99.
8Because all household’s members have the same level of money holdings, there is no signaling through

wealth.
9This condition guarantees the existence of a steady state monetary equilibrium.
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When matched, the traders receive some information about the quality of the goods
produced by their partners that they use to form Bayesian beliefs. In appendix Al we
model this information as a signal that each trader receives prior to bargaining, which is
imperfectly correlated with the true characteristic of the good produced by his partner in
the match. The signals, which are common knowledge in a match, differ in their reliability
taking into account that agents are heterogeneous in their ability to assess the quality of
a specific good.!? We assume that all goods of a given quality (high or low) are exante
identical in the following sense: They have the same chance that their quality is perceived
in a certain way by an individual chosen at random.

Consider agent ¢ who is randomly matched to some partner j. From the point of
view of 4, the match type is the pair (g;,¢;), where ¢; € [0,1] (¢; € [0,1]) denotes the
probability that agent j (agent ¢) attributes to agent i (agent j) to be a high-quality
producer. Conditional on the information available to ¢ at the beginning of the period,
g; and €; are two independent random variables. The variable ¢; is distributed according
to the cumulative distribution Fy(.) with density fg(.) if ¢ is a high-quality producer,
and according to the cumulative distribution Fp(.) with density f7(.) if 7 is a low-quality
producer, and ¢; is distributed according to the unconditional distribution F'(.) with density
f(.) defined as follows:

f@) =Ufu(z)+ QA1) fr(z)  Vzel0,1] (1)
It is shown in appendix A2 that

This first-order stochastic dominance of F(.) by Fy(.) reflects the fact that on average
agent ¢ will benefit from a better assessment from his partner if he is a high-quality producer
rather than a low-quality one. Furthermore, we show in appendix A2 that the density

functions f(.) and fy(.) are related as follows:
zf(z) =1fy(z)  Vre|0,1] (2)

Equation (2) is a property of conditional expectations. It states that when making their
Bayesian calculations, agents use all relevant information. Equation (2) also implies that
fol z dF(z) = II. Individuals do not make mistakes on average: their beliefs are consistent
with the fractions of high-quality producers in the economy.

Equation (2) can be used to express the means of the distributions F(.) and Fg(.),
denoted by Ep, [¢;] and Eg [}, as a function of the information that is available to the

100ne way to think about this information structure is related to Alchian (1977), who suggested that
each agent is a specialist in some goods in the economy and a novice in others. A specialist in a good

recognizes the quality of the good with a high probability, a novice with a low probability only.
7



agents when they bargain. To see this, multiply each side of equation (2) by x and integrate

with respect to x to get
Byle] = 0lpemy + (1=0)T1  x=H, L (3)

where 1,—py is the indicator function that is equal to one if x = H, and where 0 is a
function of the variance o} of the distribution F'(.) that satisfies

2
9f

= om @)

According to (3), the mean of the distribution F,(.) is a weighted mean of the beliefs of
informed agents (¢; = 1if x = H, and ¢; = 0 if x = L) and the beliefs of agents that
are completely uninformed (II). The weight on the beliefs of the informed agents is 6.
Therefore, throughout the paper we consider the parameter 6 to be a measure of the level
of information available in the economy.

An information structure satisfying (1) and (2) is used by Williamson and Wright
(1994). With probability 6 agent ¢ recognizes perfectly the quality of a commodity (g; = 1
or ¢; = 0), and with probability 1 — € he has no information (g; = II). Consequently, the
distribution of probabilities fy, f1, and f take the following forms:!'!

fu(0) =0 fa)=1-60 fy(1)=10
fr(0) = o) =1-0 f.(1)=0 (5)
fO)=0(1-1I) fI)=1-06 f(1) =011

Throughout the paper we use this information structure when we derive closed form solu-

tions or when we present simulations. It can be checked from (5) that 6 satisfies (4).

2.3 Bargaining

Terms of trade are determined in alternating offer bargaining games. In what follows we
consider the bargaining between agents ¢ and j. The match type is characterized by the
initial beliefs of each player about the quality produced by his partner, that is the match

type is € = (&;,¢;). Consequently, the space of match types is £ = [0, 1.

2.3.1 Rules of the game'?

Suppose that it is agent ¢’s turn to make an offer and that he proposes the terms of
trade (g%, ¢¢,z.), where ¢’ is the quantity of goods produced by agent j and consumed by

HBecause the space of beliefs is discrete, f(.), fx(.), and f1(.) are not density functions.
12We formalize the bargaining game as closely as possible to Berentsen and Rocheteau (2000a). This

allows us to use several results of that paper in the following. A more detailed description of the bargaining
game in the barter economy is available at http://www-vwi.unibe.ch/staff/berentsen/aleks.htm.
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agent ¢, ¢° is the quantity of goods delivered by agent i, and x. is the quantity of money
exchanged. If z. > 0, agent i delivers z. units of money to agent j, and if z. < 0, he
receives x. units of money. The subscript € indicates that these quantities will depend on
the beliefs € = (g;,¢;). These beliefs are common knowledge in the match.

Two important features of the bargaining are that (i) bargaining strategies are deter-
mined at the household level but are carried out by household members, and (ii) households’
strategies depend on the match type € and on the distribution of their potential bargaining
partners’ characteristics, which is degenerate in equilibrium. They do not depend on the
specific level of money holdings of the partner in the match.!3

The bargaining proceeds as follows. Each period is divided into an infinite number of
subperiods of length A where A is small. If, in a given subperiod, it is agent i’s turn to
make an offer and agent j rejects the offer, in the following subperiod it is agent j’s turn to
make a counteroffer. If an offer is refused, the negotiation breaks down with probability 6 A
(6 > 0). The possibility of an exogenous breakdown of the negotiation gives an incentive
to traders to agree immediately. Furthermore, we assume that the players can always
retract their offers and that if an offer is retracted, the game ends.!* Allowing retractable
offers guarantees that no agent is forced to trade after he has recognized his partner is a
low-quality producer.

When two randomly chosen agents ¢ and j meet, they do not know whether their
partner is a high-quality or a low-quality producer. Hence, the bargaining game is a game
with two-sided incomplete information. In the following, we argue that an equilibrium
cannot be a separating equilibrium where high- and low-quality producers are recognized
by their offers or acceptance rules in the bargaining game. Suppose, to the contrary, that
there is a separating equilibrium where at some stage of the game low-quality producers
are recognized with certainty. In this equilibrium, they could never trade, because there is
no gain from buying a lemon.!® Consequently, low-quality producers have an incentive to
deviate from the strategy that supposedly sustains a separating equilibrium by imitating
the strategy of a high-quality producer. Therefore, a separating equilibrium cannot exist.

In the following, therefore, we focus on pooling equilibria. Moreover, we restrict the
profile of strategies to be stationary in the following sense. At each information set, a
player’s strategy only depends on his own belief about his partner’s type and the belief of

his opponent about his own type. Hence, if in two different informations sets of the game

13For a discussion of this assumption, see Berentsen and Rocheteau (2001).
14We impose the rule that a game ends after a player has retracted his offer for tractability. In general,

there is no reason that the players cannot continue to negotiate, since ex-post — after an offer is retracted
— they will have an incentive to do so. See Muthoo (1999) for an analysis of retractable offers in bargaining

games.
15Recall that a player can retract his offer at any time, so no trader is ever forced to trade with an agent

that is recognized as a low-quality producer.



the beliefs of the two players are equal, and if it is player i’s turn to make an offer, he will

make the same offer, and agent j will apply the same acceptance rule.

2.3.2 A refinement of sequential equilibrium

Many sequential pooling equilibria can be sustained, depending on how the players’ beliefs
after they observe an out of equilibrium move are specified. The reason for this multiplicity
is that the concept of sequential equilibrium imposes few restrictions on the formation of
the beliefs after an out-of-equilibrium move. Many of these beliefs act as “unreasonable”
threats. In order to exclude such beliefs and to attain a unique equilibrium, we impose
restrictions regarding the beliefs that agents hold when they observe actions that are not
consistent with the equilibrium strategies.'¢

The idea of the refinement is that if there is an unexpected move by one player, the
responding player evaluates (rationalizes) for which type such a deviation is beneficial if he
accepts it. There are two rules: First, we allow for pessimistic conjectures in the following
circumstances. If a player deviates with respect to his equilibrium strategies by proposing
to supply more goods, and if this proposal lowers the expected payoff of the deviating player
if he is a high-quality producer, then the responding agent assumes that the offer is from
a low-quality producer with certainty. Second, we do not allow for optimistic conjectures.
For all other deviations, the responding agent does not update his belief.

To define and explain the first rule, consider an e-meeting, and suppose that it is agent

s

,Q%, X.) the equilibrium offer — or the offer made

#’s turn to make an offer. Denote by (Q°
by other agents in the same type of meetings — and by (qﬁ, q, mg) the offer by i. Agent
7 will update his belief after i’s proposal if and only if the following two inequalities are

satisfied:

eu(ql) — ¢ — 2 < u(Q2) — Q- X.Q (6)
@ > @ (7)

Inequality (6) means that agent i’s offer (qg, q, mg) does not increase the surplus of agent ¢
if he is a high-quality producer, and inequality (7) means that agent ¢ proposes to produce
more than what others producers propose to supply in the same match types. Inequality
(7) captures the fact that the only way for a low-quality producer to improve his situation
is by proposing to produce more, because production is costless to him.'”

16 A refinement similar in spirit is described in Osborne and Rubinstein (1990, Section 5.5), or in Cho

and Kreps (1987).
7Tf producers are constrained to supply a given quantity g2, both high- and low-quality producers will

choose the same values for ¢° and z. in order to maximize their expected surpluses subject to the acceptance
rule of their partner and the constraints on money holdings. Thus, high- and low-quality producers only

10



Our refinement has the following implications. First, the first rule implies that if an
agent has an offer (qg, q, xg) that improves the situation of a high-quality producer com-
pared to ( b Qs XE), this proposal will not be interpreted as coming from a low-quality
producer: He is not punished by the beliefs of his partner. Thus, beliefs that act as “un-
reasonable” threats are not possible. Second, high-quality producers cannot signal their
nature, because their partners never upgrade their initial assessment. This rule comes from
our focus on pooling equilibria. Third, low-quality producers always propose to supply Q?
units of their output, and adopt the same acceptance rule than high-quality producers.
Fourth, the refinement generates a unique equilibrium. Indeed, under these rules high-
quality producers can always maximize their payoff subject to the reservation value of
their partner without the risk of being punished because of some “unreasonable” beliefs.
Consequently, there is a unique equilibrium strategy for high-quality producers, which also

pins down the equilibrium strategies of low-quality producers.

3 Equilibrium

In this section we describe the program of the household when the fraction of high-quality
producers II is exogenous. We assume that II < 1, so that there is a positive fraction of

cheaters in the economy.!®

3.1 The offers

In the monetary economy each agent holds m units of money when matched. To derive the
offers, without loss of generality, we restrict our attention to an (g;, €;)-meeting between
member ¢ of household h and some agent j from another household. Remember that from
the point of view of agent j the match type is ¢’ = (¢;, ;).

In the alternating offer game, offers and counteroffers converge to the same limiting
proposal when A goes to zero. Consequently, the first-mover advantage vanishes when
A goes to zero.!'” Because of this and because it facilitates the derivation of the envelope
condition, we let members of household ~ make the first offer in all meetings. In equilibrium
all households have the same characteristics: as a consequence, first offers of household h

are always accepted. Moreover, because the length of time between two consecutive offers

differ in the quantity of goods they would like to supply. Because for low-quality producers production is

costless, they would like to produce unbounded quantities.
18 A monetary equilibrium with IT = 1 does not exist, because there is no need for money in an economy

where nobody cheats and where in each meeting there is a symmetric double coincidence of real wants.
19This argument is standard in the bargaining literature. See, for example, Muthoo (1999, chapter 3),

Osborne and Rubinstein (1990, chaper 3).
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is infinitesimal, the first offers are equal to the counteroffers that would have been made

by h’s partners.

Agent i is a high-quality producer. Suppose that ¢ proposes the terms of trade
(qg, q, xg), and denote by {2 the marginal value of money of other households (including
j). If agent j accepts the offer (qf:’, q, :L’E) and if x. > 0, the acquired amount of money
z. will add to the money balances of j’s household at the beginning of the next period,
whose value today is Q.. If R. denotes the reservation value of a high-quality producer
from another household, any optimal offer (qf:’, q, :rg) must make a high-quality producer
just indifferent between accepting or rejecting the offer:

gju (¢) - qg + 2.0 = Ro (8)

By stating this optimality condition we take the following facts into account: First, as
discussed in the previous section, as long as high-quality producers maximize their expected
surplus in the match subject to the acceptance rule of their partner, inequalities (6) and
(7) are never satisfied simultaneously, and consequently according to our refinement ¢
remains unchanged. Thus, when a high-quality producer maximizes his own payoff subject
to the reservation value R./, he can take the belief ¢; as given. Second, agent 7 is only
concerned whether the offer (qg, q, .’IZE) is acceptable by a high-quality producer. Third,
the reservation value R.. is taken as given by the household of agent .

Agent i is a low-quality producer. By similar reasoning, an optimal offer (¢, ¢¢, Z.)

by a low-quality producer must satisfy
~3 ~b ~ _
gju(q) — ¢+ 2.0 = Ra (9)

In equilibrium, any offer (¢, ¢¢, . ) that satisfies (9) and which is distinct from (Q2, Q2, X.)

will satisfy (6). Therefore, our refinement implies that low-quality producers cannot pro-

pose to produce more than ()? otherwise they reveal themselves as low-quality producers:
¢ =Q: (10)

Finally, the reservation utility of agent j if j is a high-quality producer is defined as follows.
If it is agent j’s turn to make an offer, he proposes the terms of trade (QIE’,, Q2 Xez). Thus,
the reservation value of a high-quality producer when the match type is &’ = (g;,¢;) is
given by

Ro = (1— 6A) [0 (Q4) — Q% — X0 (11)

Note that X,/ is a monetary transfer from j to i.
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Finally, note that at the equilibrium of this bargaining game, a low-quality producer
has no incentive to refuse the equilibrium offer and to delay the agreement in order to make
a counteroffer that is identical to those made by high-quality producers.?’

3.2 The program of the household

When the household determines the trading strategies, it is subject to two sets of con-

straints. First, household members cannot spend more money than what they have:
ze<m z.<m VeekE (12)

Second, household members cannot ask for more money than what their bargaining partner
holds:
—x. < M —z. <M Vee B (13)

Note that (12) and (13) are not cash-in-advance constraints, because in each match agents
can also finance their purchases with their own production. As previously mentioned, ¢¢ =
Q%. Then, a household’s trading strategy consists of the terms of trade (qg, Q@ e, ¢, ZE'E)
for each € € F, and an acceptance rule for each offer (Qé’,, QX 6/) by another household.
Agent i from household h makes the first offer, which is immediately accepted by j. For each
period, the household chooses {mH, (&4, @82, @, 72 E} to solve the following dynamic

programming problem:?!

V(m) = max i {W/E [eiu (a2) — &¢] fu(e;) f(e;)dede; (14)

(dazwedt @),

+(1—m) /Eeiu (@g) fr(e;) fe;)deide; + ﬁV(mH)}

20This point is demonstrated explicitly in the case of the barter economy. For more details see our

extended description of the bargaining game at http://www-vwi.unibe.ch/staff/berentsen/aleks.htm.
21 Alternatively, the program can be written as follows:

Vo=, wex L[ fu(al) - 62 e fuleidends

(42,48,2¢,8,%c) . grMm41

/ —q2] fu(e;) fr(ei)dede;
E

f1-mn / (@) Fu(e;) frr(ei)deade; + BV(m+1)}

This equation has the following interpretation. In a fraction wIl of the meetings, both agents in the
match are high-quality producers. Then, households’ members both enjoy utility of consumption and
suffer disutility of production. In a fraction (1 —II) of the meetings, household members are high-quality
producers whereas their partners are lemon producers. In this case, households’ members only suffer
the disutility of production. In a fraction (1 — 7)IT of the meetings, household members are low-quality
producers whereas their partners are high-quality producers. In this case, households’ members only enjoy
utility of production. In the remaining meetings, both traders are low-quality producers.
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st. (8), (9), (12), (13), and
myr —m=T7T — W/ExsfH(gj)f(Ei)dEidgj — (1 — W)/}Efef[/(ffj)f({ii)df:id&j (15)

The variables taken as given in the above problem are the state variable m and other
households’ choices (the uppercase variables). Moreover, in this section the fraction =
of high-quality producers of the household is assumed to be exogenous and equal to II.
The first integral in equation (14) aggregates the net expected utilities of all high-quality
members in all meetings, where high-quality producers offer the trades (qf;, q:, xs), which
are immediately accepted by their trading partners. The second integral aggregates the net
expected utilities of all low-quality members where low-quality producers offer the trades
(Zf;, a, EE), which are also immediately accepted by their trading partners. Equation (15)
specifies the law of motion of the household’s money balances. The first term on the right-
hand side is the amount of the lump-sum transfer the household receives each period. The
second and third terms are the net amounts of money that high-quality and low-quality

producers receive in each period.

3.3 The symmetric steady state equilibrium

In the following we assume that the length of time between an offer and a counteroffer is in-
finitely small (A — 0), and we focus on symmetric equilibria where all households make the
same offers and adopt the same acceptance rules. Because low- and high-quality producers
make the same offers ((qf_:’, q, me) = (ng? q, :?5) Ve € E; see the appendix) and because I1
is exogenous, the symmetric steady state equilibrium of this economy corresponds to the
equilibrium of the complete information model of Berentsen and Rocheteau (2000a). In
the appendix A3 we show that there is a unique steady state monetary equilibrium (w > 0)
and a unique barter equilibrium (w = 0), and we demonstrate that the terms of trade and
the marginal value of money can be determined as follows. First, for a given w, the terms

of trade solve

(¢4, ¢¢, z.) = argmax [gu(q?) — ¢f — z.w] [eju(qd) — ¢ + zew], Vee E (16)

st. — m<z.<m

Second, for given terms of trade (qg,qj,xg), the marginal value of money satisfies the
following envelope condition:

woq = ﬁ/EmaX [eitd (Q)w, w] f(e:) f(e;)deide; (17)

Hence, the model has a very simple structure: The terms of trades correspond to the Nash

bargaining solution (16), and the marginal value of money satisfies a standard asset pricing
14



equation (17), which has the following interpretation. For the household, the value of an
additional unit of money received at the end of the previous period is w_;. In the current
period, this unit of money can be either spent or saved. If it is saved, the value of this
unit of money from the point of view of the previous period is simply Sw. If it is spent in
an e—meeting, the additional utility of consumption is ;u/(¢?)w. Indeed, from equations
(8) and (9), one additional unit of money buys w units of real commodity, where each unit
provides g;u'(q%) additional utility. Accordingly, an additional unit of money is spent if
and only if the marginal utility of consumption is larger than the marginal value of money;,
ie., if /(2w > w.

Definition 1 A monetary steady state equilibrium is a w > 0 and a set of offers
{(&4, ¢, x0) )y that satisfy (16) and (17).

Note that in a monetary steady state equilibrium the quantities ¢ and ¢° and the
real value of money holdings mw are stationary. Therefore, if the money supply is not
stationary (v # 1), the marginal value of money w will not be stationary either. The Nash
bargaining solution (16) implies that the terms of trade in an e-meeting, (qg, q:, xg), satisfy

the following two equations:

g (' (¢f) =1 (18)
1 gu(g) - ¢+ zw
e (q2)  eu(qd) — ¢ — zew

(19)

Furthermore, if neither i nor j is constrained by their money holdings, ¢* = ¢** and ¢ = ¢**,
where ¢%* and ¢¢* satisfy e;u/(¢%*) = 1 and £;u/(¢%*) = 1, respectively. Note that the terms of
trade in the barter equilibrium are simply obtained by setting w = 0 in equation (19). Note
further that in any asymmetric meeting (g; # ¢;), if &; > ¢; (&; < ¢;), there is a transfer of
money from agent ¢ to agent j (j to ¢). In contrast, in any symmetric meeting (&; = ¢;)
no money is exchanged, because there is no need for compensation, and consequently in
symmetric meetings the terms of trade are the same as in the barter equilibrium. Finally, in
a monetary equilibrium there is some positive production and consumption in all meetings
except when both agents are recognized as lemon producers (g; = €; = 0). In contrast, in
the barter equilibrium, if one agent is recognized as a low-quality producer (either ¢; = 0

or €; = 0), no trade takes place.

Using the fact that y = -~ = ==, the envelope condition (17) satisfies

m_1

% = /Emax [Qu’(qg), 1] f(ei) f(e))deide; (20)

Note that money is neutral in this model. However, it is not superneutral, because changing

the gross growth rate of the money supply v affects the real value of money holdings mw
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and the terms of trade. Second, for Il and € given, the Friedman rule v — [ maximizes mw.
Consequently, throughout the paper we will often compare the barter equilibrium with the

monetary equilibrium under the Friedman rule, because they are benchmark cases.??

3.4 Money and terms of trade

In this subsection we consider how money affects the terms of trade, that is, the quantities

produced and exchanged in each meeting.

Proposition 1 Consider a meeting between agents i and j where j is more likely to be

a high-quality producer than i (g; > €;), and assume that i is constrained by his money
holdings. Then ¢ - () gnd 22 < 0.

omw omw

Proof: See equations (18) and (19).H
Proposition 1 considers a meeting between agents ¢ and j with &; > ¢; where ¢ is

constrained by his money holdings.?®

Proposition 1 states that an increase in the real
value of money holdings increases the production of those agents who are more likely to
produce high-quality goods and decreases the production of those agents who are more
likely to produce lemons. Thus, an increase in the real value of money holdings promotes
the production of high-quality goods and reduces the production of lemons.

To understand this result, consider first the quantities produced in the barter economy.
In the barter equilibrium, equations (18) and (19) imply that ¢ < ¢¢, that is, agent i, who
is more likely to produce lemons than j, produces a larger quantity than j. The origin
of this inefficiency is the quid pro quo requirement: agent j wants to be compensated for
the higher risk of receiving lemons. In a barter economy, the only way to satisfy this
requirement is that ¢ produces a large quantity of his good (which is more likely a lemon)
and that 7 produces a small quantity of his good (which is more likely of high quality).
In contrast, in the monetary economy under the Friedman rule, equations (18) and (19)
imply that ¢ > ¢2: that is, agent i, who is more likely to produce lemons than j, produces
a smaller quantity than j.

In order to disentangle the effects of money on agents’ behavior, we will call agent i the
buyer, because he spends money, and agent j the seller, because he receives money (see
Proposition 1). This allows us to distinguish an effect on the quantity the buyer supplies
and the seller receives (¢f), and an effect on the quantity the seller supplies and the buyer

receives (¢°) in the match.

22At v = 3 there exists a continuum of stationary monetary equilibria with identical terms of trade,
which only differ in their stationary value of mw. By considering the limit when 8 — ~, we select the

value of mw that is just sufficient to buy the efficient quantity ¢* (see Berentsen and Rocheteau 2001).
231f agent 4 is not constrained by his money holdings, an increase of the real value of money does not

affect production and consumption decisions. It only affects the amount of money transfered.
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The recognizability effect of money (;Zi < 0) In the monetary economy, sellers
can ask to be paid with money — an object of universally recognizable quality — instead
of with goods of uncertain quality. This possibility reduces the use of real production
as a means to finance consumption. Crowding out of payments with real production by

monetary payments is what we call the recognizability effect of money.

The insurance effect of money (% > (0) In the monetary economy, buyers can
finance their consumption with money, real production, or both. This possibility discon-
nects what buyers can consume from how they are perceived by their trading partners.
In particular, this insurance allows low-quality producers to consume even when they are
recognized as lemon producers. In contrast, in a barter economy recognized low-quality
producers cannot consume, because they cannot acquire consumption goods. The presence
of this “consumption” insurance in the monetary economy is what we call the insurance

effect of money.

In the following sections we will investigate how the recognizability and the insurance
effects of money affect the adverse selection, the moral hazard, and the incentive to acquire

information.

4 Money and adverse selection

This section investigates how money affects the quality mix and welfare when the fraction

IT of high-quality producers is constant and exogenous.

4.1 Information and the quality mix

The quality mix is defined as the ratio of high-quality output to total output:

b= HfE qu(Ei)fH(Ej)dEidé‘j
[ @2 f(ei) f(e;)dede;

We interpret an increase in ¢ as a reduction of the adverse selection problem.

(21)

Increasing 6 has two effects on the quality mix: First, there is a direct effect because
it changes the distribution of the types of meetings.?* Second, there is an indirect effect
because a change in # modifies the real value of money and the terms of trade. In the barter
economy there is the direct effect only, which is strictly positive for the Williamson-Wright

information structure, i.e., increasing ¢ increases the quality mix in the barter economy.

24Tn Section 2.2 we have shown that an increase in @ corresponds to a mean-preserving increase in the

spread of the distribution F(.), and this — all other things equal — directly affects ¢.
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In the monetary economy both effects arise. Thus, to analyze the overall effect on ¢
one has to take into account how the real value of money holdings and the terms of trades
are affected in all matches when 6 changes. Because this cannot be done analytically, we
consider the effect of a change in 6 by means of simulations for the information structure
of Williamson and Wright (1994). Figure 1 displays the fraction of high-quality output ¢
as a function of # for the Friedman rule (one percent deflation), for price stability, for five
and ten percent inflation, and for the barter economy when II = 0.1.

A robust feature of all our simulations is that the ratio ¢ is increasing in 6 for any
value of Il and for any inflation rate. Thus, as expected, if the information problem gets
more severe, the quality mix deteriorates. Note that if # = 0, ¢ = II: If no information is
available, all meetings are of type e = (II, IT) and the traders exchange the same quantities.
Consequently, the ratio of high-quality output to total output is II. In contrast, if § = 1,
¢ = 1: When lemon producers are recognized with certainty, only high-quality goods will

be produced, and consequently the ratio of high-quality output to total output is 1.2
¢ I=0.1

1

0.8

0.6

0.4

0.2

‘0.2‘ | ‘0.4‘ | ‘0.6‘ | ‘0.8‘ “ 1
Figure 1: Information and the quality mix.

From Figure 1 one can see that lowering inflation improves the quality mix ¢. Thus,
fighting inflation reduces the adverse selection problem. Our simulations also suggest
that the Friedman rule is the optimal monetary policy when the fraction of high-quality

producers, II, is given. Note that the insurance effect of money has a strictly positive

2 The envelope condition (20) implies that if § = 0, mw = 0. If all agent are uninformed, traders are
in the same position when they bargain, and they need no money to compensate each other. In contrast,
if § = 1, agents recognize each other in each match, and consequently ¢; = 0 with probability 1 — IT and
€; = 1 with probability II. There are now asymmetric meetings where agents differ by their willingness to
trade.
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impact on ¢ because it increases the production of high-quality goods. The recognizability
effect has a positive impact too, because it reduces the production of low-quality goods.
To summarize the previous discussion, note that there are two ways to increase the
quality mix ¢: by increasing information for some given inflation rate, which corresponds
to a movement along one of the curves in Figure 1, or by decreasing inflation for some
given information level, which corresponds to a movement across the curves in Figure 1.
Thus, money and information are substitutes in the sense that both improve the quality

mix.

4.2 Information and welfare

In this section we first compare the outcome of the decentralized economy with the alloca-
tion that a social planner would choose. After this we look at how an increase in the level
of information € or a change in the growth rate of the money supply affect welfare.

In appendix A4 we demonstrate that a social planner that maximizes the representative

household’s welfare chooses the terms of trade such that
¢=q Vee E

where ¢* satisfies u/(¢*) = 1. This condition states that welfare is maximized if, in each
match, the agents produce and exchange the same quantities ¢*. There is no welfare loss or
gain when low-quality producers produce, because production of lemons costs nothing and
consumption of lemons provides no utility. Consequently, the planner requires everybody
to produce as if he were a high-quality producer. Notice that the first best outcome cannot
be reached, because under the Friedman rule (y — (3) agents exchange the quantities ¢**
and ¢**, where ¢**, ¢** < ¢* Ve. Thus, in a market with private information, even under the
Friedman rule, which is the optimal monetary policy in this environment, agents produce
too little relative to what a social planner would dictate.

We now consider by means of simulations how an increase in the level of information as
measured by 0 affects welfare. Figure 2 displays welfare (a household’s lifetime utility) as
a function of @ for the Friedman rule (one percent deflation), for five, ten, and fifty percent

inflation, and for the barter economy for IT = 0.1.
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Figure 2: Inflation and welfare.

In a monetary economy, if inflation is not too high, welfare is strictly increasing in the level
of information 6 (see Figure 2). In contrast, in the barter economy, if « is not too large,
welfare is decreasing in 0.2° To see why, note that in the barter economy an increase in 6
has two effects. On the one hand, lemon producers are more often recognized and no trade
takes place; on the other hand, there are more matches between recognized high-quality
producers in which agents produce large quantities for each other. To see this, note that in
Figure 2, which is drawn for II = 0.1, if # = 1, only one percent of the meetings generate
a trade. In contrast, if § = 0, in each meeting the traders produce and consume, although
the quantities are small relative to the quantities in a match where both traders recognized
each other as high-quality producers.

Finally, for any value of #, the Friedman rule maximizes welfare. Note also that under
the Friedman rule, when 6 approaches 1, the economy attains the first best: in each match
with a high-quality producer, the high-quality producer trades ¢* either for money or for
¢* units of another high-quality good.

5 Money and moral hazard

In the previous section we have seen that an increase in the real value of money improves
the quality mix and welfare. In this section we investigate how money affects households
incentives to produce high-quality goods by endogenizing and comparing the fraction of
high-quality producers, II, in the barter and the monetary economy. Throughout this

26Recall that for all simulations we use the utility function a~!q® that has elasticity of substitution
(1 — @)=t If households are not eager to smooth consumption across their members or across time (if «
is large), welfare in the barter equilibrium is increasing in 6.
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section we consider the information structure of Williamson and Wright (1994), because
this allows us to relate in an easy way the endogenous fraction II to the severity of the

information problem, represented by the parameter 6.

5.1 The program of the household

When the representative household h chooses the fraction of its members that are high-
quality producers, m, it takes the average decision of other households, II, as given. By
choosing member 7 to be either a high- or a low-quality producer, the household determines
the distribution of probabilities for the beliefs ¢; (e, is how i’s production is assessed by
i’s trading partner). If ¢ is a high-quality producer, the distribution is given by fu(e;),
and if ¢ is a lemon producer, the distribution is given by f1(e;). Note that these two
distributions depend on II only, because the choice of 7 by a household is assumed to be
private information.

The chronology of events within a period is as follows. First, the household divides its
money holdings evenly across its members. Again, because all the household’s members
have the same level of money holdings, there is no signaling through wealth. Second, it
chooses the probability 7 at which each of its member will be a high-quality producer in
the market. After agents have left the household but before they are matched, they receive
a technology shock that lasts one period. The technology shock endows a given member
with the high-quality technology with probability 7. Third, the members are matched at
random with members from other households. When matched, members cannot produce
another quality than the one that has been assigned to them by the technology shock.

The derivative D of the right-hand side of (14) with respect to 7 equals

D(IT) = 3., cheqomny? [Eu (@) — @& — wew] f(ei) fu(e))
- Z(Si,Sj)e{O,H,1}2 [giu (qg) - $5w] f(gi)fL(gj)

The optimal choice of 7 by the household satisfies

(22)

T =1  ifD) >0
x o= 0 D) <0 (23)
m € [0,1] otherwise

5.2 Symmetric equilibrium

We look for symmetric Nash equilibria where all households choose the same fraction of

high-quality producers. The value(s) of II that sustain a symmetric Nash equilibrium are
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defined as follows:
=1 if D(1) >0

IM=0 it D(0) <0 (24)
D(II) =0 otherwise
In the following we call an equilibrium with a positive production of high-quality goods, i.e.,
IT > 0, an active equilibrium. An active equilibrium can be either a barter or a monetary

equilibrium. In a barter equilibrium, w = 0 in equation (22).

Definition 2 An active equilibrium is a {(qg, q, ze, )} satisfying (16), an w satisfying

(17), and a I > 0 satisfying (24).

eeE

In the following proposition we characterize the barter equilibrium and the monetary
equilibrium under the Friedman rule v — (. Note that under the Friedman rule, traders

are never constrained by their money holdings.

Proposition 2 Assume that the fraction of high-quality producers, 11, is endogenous.
Then the following is true:

(i) If 6 = 0, the unique equilibrium is nonactive.

(it) For all 6 > 0, a nonactive and an active barter equilibrium exist. An active barter
equilibrium with 11 = 1 exists iff 0 > 0 = ﬁi) < 1.

(iii) Under the Friedman rule v — (3, there exists an active monetary equilibrium iff
0<0<0u= it
producers is strictly increasing in 6.

< 1. The equilibrium is unique, and the fraction of high-quality

Proof: See appendix.ll

According to Proposition 2, there is always a nonactive barter equilibrium: if a house-
hold expects all other households to produce lemons, a best response is to choose m = 0.%7
If agents receive no information prior to the bargaining (# = 0), there is no active equilib-
rium. For all # > 0 there is also an active barter equilibrium. Moreover, if the fraction of
informed agents is sufficiently large (§ > 0p), a barter equilibrium exists where all agents
produce high-quality goods.

Under the Friedman rule there exists a unique active monetary equilibrium if # is not too
large. If the probability of being recognized is high, then agents have no incentive to cheat
and money is valueless. In accordance with intuition, if a monetary equilibrium exists,

the fraction of high-quality producers is strictly increasing in the level of information 6.

2TWhen @ > 0, nonactive barter equilibria are unstable in the following sense: If a household anticipates
that a small fraction of agents in the market will produce high quality, its best response is to set m = 1.
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Nevertheless, in Trejos (1999) and Williamson and Wright (1994) an increase in information
sometimes decrease the fraction of high-quality producers.?®
The following proposition ranks the barter and monetary equilibria with respect to the

endogenous fraction of high-quality producers in the market.

Proposition 3 Assume v — (3. Then, if 0 is close to 0, the fraction of high-quality
producers is larger in the monetary equilibrium than in any barter equilibrium. If 6 €

(05,0n), it is lower in the monetary equilibrium than in the barter equilibrium.

Proof: See appendix.ll

According to Proposition 3, money has ambiguous effects on the incentives to produce
lemons. If the problem of information is severe (6 < 6p), the fraction of high-quality
producers is larger in a monetary economy. Thus, if information is scarce, valued fiat money
disciplines producers. In contrast, if the information problem is not severe (6 € (0g,6,)),
then there is a unique active barter equilibrium where everyone produces high quality, and
there is a unique monetary equilibrium where only a fraction of producers produce lemons
(see Figure 3). Consequently, if § € (65,0,), money can be valued even though that it is
strictly welfare-decreasing.

5.3 Closed form solutions

In this section we adopt the iso-elasticity utility function u(q) = o 1¢® with 0 < a < 1,
which allows us to derive closed form solutions for the endogenous fraction of high-quality
producers in the barter and in the monetary economy under the Friedman rule. The
elasticity of substitution of consumption across household members is given by (1 —a)~*.%
Proposition 4 Assume u(q) = a ¢, 0 < a < 1, and v — 3. Then, for 8 > 0, there is

a unique active barter equilibrium where the fraction of high-quality producers is

(-a)(14a)

My = [%] : if6 <0 =a

= 1 otherwise

28There are more results that differ from Trejos (1999) and Williamson and Wright (1994). First, under
the Friedman rule we have an unique monetary equilibrium, while those authors find multiple monetary
equilibria. Second, if all agents produce high quality, no monetary equilibrium exists in our model, while
there exist monetary equilibria in those papers. In Trejos (1999) this is so because there are also single
coincidence meetings. In Williamson and Wright (1994) there is a monetary equilibrium where sellers are

indifferent between trading and not trading the good for money.
29This expression is also the intertemporal elasticity of substitution of a member chosen at random.
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Forall0 <0 <6y = 12+_aa7 there is a unique active monetary equilibrium where the fraction

of high-quality producers is
0(1— ) ] e
)

Mar = [204(1—6’

Proof: See appendix.ll

Proposition 4 not only confirms Proposition 2, but it also establishes the uniqueness of
the active barter equilibrium when u(q) = a~1¢®. It is illustrated in Figure 3 for o = 0.5.
The grey curve labelled I1g represents the fraction of high-quality producers in the barter
economy, and the solid black curve labelled II,; the fraction of high-quality producers in
the monetary economy under the Friedman rule. Note that they are both strictly increasing
in the level of information 6 until they eventually hit the upper bound IT = 1.3

Corollary 1 compares the fraction of high-quality producers in the barter and in the
monetary equilibrium under the Friedman rule.
Corollary 1 Define 6 = m Then, 0 < 0 < 0p < 0. Moreover, the fraction of
high-quality producers can be ranked as follows:

If0 < 0, then I > Il5.

If 0 € (5, HM), then Il < Ilp.

If 0 > 0y, then llg = 1 and there is no monetary equilibrium.

Proof: See appendix.ll

According to Corollary 1 (see also Figure 3), there is a threshold # such that if § < 6,
money increases the incentive to produce high quality, whereas if # > 6, it increases the
incentive to cheat. Note that @ is increasing in . Thus, money is a less effective device to
alleviate the moral hazard problem in an economy, where households have a high aversion
to inequalities across members, because the desire to smooth consumption across members

already disciplines households.

30Note also that in both the barter and the monetary equilibrium, an increase in « increases the fraction
of high-quality producers for small values of # and reduces the fraction of high-quality producers for large

values.
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5 o, 0,
Figure 3: Incentive to produce quality.

5.4 Moral hazard

The key result in the previous subsection is that the fraction of high-quality producers can
be smaller in the monetary equilibrium. In this subsection we show that this is so because
the recognizability effect of money and the insurance effect of money have countervailing

implications for a household’s incentive to cheat.

The recognizability effect The recognizability effect of money raises an agent’s incen-
tive to be a high quality producer. In the monetary economy, when a high-quality producer
does not recognize his trading partner, he can ask to be paid with money instead of being
paid with a good of uncertain quality. In contrast, in the barter economy high-quality
producers are always paid with commodities of uncertain quality. Accordingly, the recog-
nizability effect of money improves the gains from trade for high-quality producers, which

induces households to choose a larger fraction of high-quality producers.

The insurance effect In contrast, the insurance effect of money raises agents’ incentive
to engage in opportunistic behavior, because it allows low-quality producers to consume
even when they are recognized as lemon producers. This consumption insurance induces
households to choose riskier behavior by increasing the fraction of low-quality producers

compared to their choices in the barter equilibrium.?!

31In an overlapping generations model where agents have private information about their investment

activities, Kitagawa (2001) shows that money can be welfare-decreasing because of a moral hazard problem.

25



Which effect dominates depends on the severity of the information problem. When
0 is low, the recognizability effect dominates and the fraction of high-quality producers
is larger in the monetary equilibrium than in the barter equilibrium. As the level of
information increases, the recognizability effect fades away, and eventually the insurance
effect dominates the recognizability effect, which results in a larger fraction of high-quality
producers in the barter equilibrium than in the monetary equilibrium for intermediate
values of . Consequently, the insurance effect of money exacerbates the moral hazard
problem.

In order to isolate the positive effect of money on the incentive to produce high quality,
we eliminate the insurance effect by introducing the following trading restriction: house-
holds members refuse to trade if they discover that their partner is a low-quality producer.®?
Under this rule, low-quality producers cannot benefit from the insurance services of money
when they are recognized, because they cannot trade. In appendix A8 we show that in this
restricted trade environment, money unambiguously increases the fraction of high-quality
producers. Consequently, it is the insurance effect of money that is responsible for the fact
that the fraction of lemon producers can be larger in the monetary equilibrium than in
the barter equilibrium. This can be seen in Figure 3, where the dotted curve labelled I1g
represents the fraction of high-quality producers in the restricted trade equilibrium under
the Friedman rule.

Finally, we have also explored the relationship between inflation, information, and
the endogenous fraction of high-quality producers II by means of simulations.?® All our
simulations suggest that the results we have obtained under the Friedman rule v — [ are
robust. For example, we always find that for small value of # money alleviates the lemon
problem, whereas for large values of # the fraction of cheaters is larger in the monetary
equilibrium. One difference, however, is that there are always two monetary equilibria
when 0 € (0p,0)). Note also that when the inflation rate becomes very large, the fraction
of high-quality producers in the monetary economy approaches asymptotically the fraction

of high-quality producers in the barter economy.

6 Information acquisition

In the previous sections, the information available to the households has been an exogenous
parameter. In reality, however, agents have several ways to acquire information about the

quality of the commodities they buy. This section analyzes how money affects agents’

Note, however, that the moral hazard problem in Kitagawa (2001) is quite different from the one we treat.
32We simply assume this restriction here. However, one could imagine a society where people are simply

so offended when they discover that an agent is a cheater that they do not want to trade.
33The simulations are available by request.
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incentives to acquire information.

Following Kim (1996), we introduce information acquisition by assuming that at the
beginning of each period households have the opportunity to invest in a costly inspection
technology, which is equally shared by all household members. Acquiring this technology
costs C'(0).3* Tt allows each member to recognize the quality of a commodity with probabil-
ity 6. The acquired inspection technology fully depreciates after one period. Accordingly,
households bear the cost C'(f) in each period. The cost of this inspection technology has
the following properties: C’(.) > 0, C"(.) > 0, C(0) = 0, C'(0) = 0. An explicit form we
consider is C(0) = A% with A > 0.

The choice of # affects how the members of households h assess the quality produced by
their trading partners. Consider member i, and denote by f(e;,0) the density function of
€;, where ¢; is 1’s belief about the quality of the good produced by his partner in the match.
Denote by fy(e;,0) the partial derivative of f(e;,#) with respect to 6. Note that beliefs
of i’s trading partners only depend on other households’ information choices, denoted by
©. Accordingly, we denote by f1(e;;©) and fy(e;; ©) the conditional distributions of the
beliefs of ¢’s partners.

6.1 The program of the household

The program of household h is analogous to the program (14) apart from an additional
term reflecting the cost of the inspection technology and the fact that the distribution of
beliefs of the household depends on its information choice. For simplicity, we assume that
the terms of trade, the marginal value of money, and the fraction of high-quality producers
are at their equilibrium level that we derived in the previous sections. The choice of
information of the household is then given by the following program, where we have taken
into account the fact that 7 = II. From (2) and (14) we get

V' (m) = max Z [&'U (qi’) - qug} f(ei:0) f(e5:0) — C(0) + BV (m41) (25)

0
(51'75]')6{071_[71}2

st. myg—m=r71— Z z.f(ei;0)f(5;0)

(Ei,€j)€{0,n,l}2

and (12) and (13)

34In Kim (1996) low-quality producers, high-quality producers, and money holders differ in their invest-
ments in the inspection technology.
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By differentiating the right-hand side of (25) with respect to 6 we obtain the first-order
condition that determines the choice of 6. Define the function (0, ©) as

700,0)= Y [au(q) —&q —xw] foli0)f(;;0) — C'(6) (26)

(61' 76j)€{01H71}2

Note that Z(6,©) is a decreasing function of §. Accordingly, household h’s optimal choice

of information is

6 = 1 ifZ(1,0)>0
6 = 0 ifZ(0,0)<0 (27)
Z(0,©) = 0  otherwise

6.2 Symmetric equilibrium

We consider symmetric Nash equilibria where all households choose the same information
level and the same fraction of high-quality producers: m = Il and § = ©. For a given II,

© € [0, 1] sustains a symmetric Nash equilibrium if and only if

I(1,1) > 0  fe=1
7(0,0) < 0  fO=0 (28)

7(0,0) = 0  if©e]o,1]

IN IV

Definition 3 An active equilibrium is a {(qg, q, Te, )} satisfying (16), an w satisfying

(17), a 11 > 0 satisfying (24), and a © satisfying (28).

eek

Lemma 1 In a symmetric equilibrium, households never invest in a perfect information

technology (© < 1), and there is always a positive fraction of low-quality producers (I1 < 1).

Proof. See appendix.Hl

The intuition of this result is clear. If all agents produce high-quality goods, there is no
reason to acquire information; hence, households choose to be uninformed. But if everyone
is uninformed, nobody is producing high-quality goods.

Proposition 5 describes the optimal choice of information for the barter and for the
monetary economy under the Friedman rule when the fraction of high-quality producers,

I, is given.

Proposition 5 Assume that the level of information, ©, is endogenous, and that u(q) =

a~1q® and C"" (0) > 0. Then for given 11 the following is true:

(i) In the barter economy, the level of information is a function O (I1) such that ©p (I1) >
28



0 for all Il € (0,1) and O©p (0) = Op (1) = 0.

(#1) In the monetary economy under the Friedman rule, the level of information is a function
O (IT) such that Oy (I1) > 0 for all T € (0,1), O (0) =0, and limp_; Oy (II) = 0.
(iii) If 11 is close to 0, Oy (II) > O (II).

Proof. See appendix.ll

Proposition 5 describes the level of information as a function of II in the barter and
in the monetary economy under the Friedman rule. It is illustrated in Figure 4 for the
utility function u (q) = 2,/g and the cost function C'(0) = 0.2%. The curves labelled ©p
and O, represent the equilibrium value of 6 as a function of Il. In the barter and in the
monetary equilibrium, households stop to invest in information if either II is close to 0 or
it is close to 1. The reason for this is that if all agents are uniform (if either all agents are
high-quality producers or if all are lemon producers), the return of information is small.
In contrast, the heterogeneity among agents, and consequently the return of investments

in information, reaches a maximum at some intermediate value of II.

0
0.6T1

0,/

0,(I1)

u(g)=2\q c(e):o.z%

Figure 4: Information aquisition as a function of II.

Figure 4 suggests that — in contrast to what is claimed in Brunner and Meltzer (1971)
and King and Plosser (1986) — for some given II households invest more in information in
the monetary equilibrium than in the barter equilibrium. However, in this respect Figure
4 is partly misleading, because — depending on the specification of the utility function and
the values for II — the opposite can happen if I is large.?

To improve our understanding of the role of money on the incentive to acquire informa-
tion, we again look how the recognizability effect and the insurance effect of money affect

the decision to acquire information.

35This can occur if « is large. For instance, if @ = 0.8, then for large values of 1T, © g (IT) > O, (1I).
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The recognizability effect Recall that in the monetary economy sellers can ask to be
paid with money rather than with a good of uncertain quality. This possibility affects the
terms of trade and the incentive to acquire information. For example, consider a high-
quality producer (the seller) who is matched with a low-quality producer (the buyer). In
the barter economy, for the seller the gain from being informed is the disutility he saves by
not producing. In contrast, in the monetary economy the gain is the additional amount
of money he receives. Whether the gain from being informed in the monetary economy
is larger than the gain in the barter economy depends on the specification of the utility
function. If households are eager to smooth consumption across their members or across
time (if « is small), the additional units of money received in the monetary economy are
more valuable than the saved production cost in the barter economy. The opposite is true
if the elasticity of substitution is large (if « is large). The dependence of this effect on the
parameter « leads to the ambiguity of the results in Proposition 4.

The insurance effect The “insurance to consume” provides higher incentives to identify
the quality of goods. To see this, consider a recognized low-quality producer. In the barter
economy, he has no benefit of being informed, because he cannot trade, and accordingly
information is useless to him. In contrast, in the monetary economy he has a benefit,
because information reduces the probability that he spends money for lemons.
Proposition 5 characterizes the barter equilibrium and the monetary equilibrium under
the Friedman rule for the quadratic cost function C(0) = A% when both II and © are

endogenous.

Proposition 6 Assume that II and © are endogenous, and that u(q) = a~'q* and C(0) =
A%. Then there is threshold A = (1 — oz)cv_12 (1+ a)a_12_1 such that the following is true:
(i) If A > A, no active barter equilibrium exists; if A = A, there exists a unique active
barter equilibrium; and if A < A, two active barter equilibria exist.

(ii) Under the Friedman rule, there exists a unique active monetary equilibrium for all

values of A.

Proof. See appendix.ll

Proposition 6 is illustrated in Figure 5 for a = 0.5 (first column) and o = 0.95 (second
column). It shows the endogenous fraction II of high-quality producers, the endogenous
level of information ©, and welfare as functions of A for the barter economy (grey curves)

and the monetary economy (black curves). The dotted curve represents the critical value

A.
As stated in Proposition 6, if A > A, no barter equilibrium exists, whereas if A < A4,
two barter equilibria exist. This multiplicity of equilibria reflects a self-fulfilling mechanism

that can generate coordination failures. An increase in the cost of the inspection technology
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(an increase in A) has different consequences in the two equilibria. In the high equilibrium
(the equilibrium with a high IT and a high ©), it leads to a decrease in the fraction of
agents that produce high quality and a decrease in the fraction of informed agents. In the
low equilibrium (the equilibrium with a low II and a low ©), the opposite happens.

In contrast, in the monetary economy under the Friedman rule, there exists a unique
active monetary equilibrium for all values of A. Consequently, when the information prob-
lem is sufficiently severe (A > A), this is the only active equilibrium. This illustrates the
strong spillover effect between the incentive to produce high quality and the information
choice in the monetary equilibrium. Furthermore, the monetary equilibrium has the same

properties as the high barter equilibrium.
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Figure 5: II, ©, and welfare as functions of A.

Our simulations suggest that welfare, the fraction of high-quality producers, and the

level of information are most often higher in the monetary equilibrium under the Friedman
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rule than in the barter equilibrium. This is certainly true for those values of A where no
active barter equilibrium exists (A > A). However, we find that this is also true for A < A
if a is not too large (our simulations suggest if « is smaller than 0.9). As an illustration, see
the case a = 0.5 in figure 5. Thus, for most parameter values our model does not support
the claim of Brunner and Meltzer (1971), King and Plosser (1986), and Kim (1996) that
money and information acquisition are substitutes. Rather, it suggests that they are most
often complements. Moreover, our model does not support the widely held belief that the
benefit of money comes from its ability to save information costs.

Nonetheless, for large values of « and very small values of A (see the case o = 0.95 where
A = 0.04 in Figure 5), our model exhibits results that are in accordance with the previously
mentioned papers. Indeed, if « is very large and A very small, (approximately A = 0.038),
the fraction of high-quality producers and/or the level of information can be smaller, and
welfare higher in the monetary equilibrium under the Friedman rule. This suggests that

the welfare gain for these parameter values could come from saving information costs.

7 Conclusion

We have investigated the role of fiat money in environments where producers have private
information about the quality of the goods they supply. In such environments three issues
are at the centre stage: adverse selection, moral hazard, and the incentive to acquire costly
information. In order to discuss these issues, we have first studied how money modifies the
quantities produced and exchanged in bilateral meetings.

We have identified two effects of money on these quantities. The recognizability effect
of money states that money crowds out real goods payments. The origin of this effect is
that agents prefer to be paid with money — an object of universally recognized quality —
rather than with goods of uncertain quality, and this desire gives rise to an endogenous role
for money. It is this reduction of uncertainty, that, at least since Menger (1892), has been
considered to be an important advantage of monetary exchange over barter. The insurance
effect of money states that money crowds in consumption. The origin of this effect is that
money provides insurance by disconnecting the quantities that agents can buy from how
they are assessed by their trading partners. In particular, this insurance allows agents to
consume even when they are recognized as low-quality producers.

Our models supports the notion that money is a device for overcoming the adverse
selection problem. When the fraction of high-quality producers and the level of information
are exogenous, money promotes the production of high-quality goods and reduces the
production of lemons. These changes in production increase welfare unambiguously. In

contrast, when the fraction of high-quality producers is endogenous, money can be welfare-
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decreasing. This is so because while the recognizability effect of money raises the benefit of
being a high-quality producer, the insurance effect of money increases the benefit of being a
lemon producer. If the information problem is not severe, the insurance effect dominates the
recognizability effect, and consequently the fraction of high-quality producers and welfare
are lower in the monetary economy. Thus, valued fiat money sometimes exacerbates the
moral hazard problem.

Interestingly, when both the fraction of high-quality producers and the information
level are endogenous, the level of information and welfare are most often larger in the
monetary economy. The reason for this result is the insurance effect of money. With a
valued money, buyers consume more, which raises their incentive to acquire information
in order to identify the quality of what they consume. This result does not support the
widely held view (Brunner and Meltzer, 1971; King and Plosser, 1986; Kim, 1996) that
money has a welfare-improving role by saving information costs.

Divisibility of money has allowed us to study inflation. In general, we find that inflation
is welfare-decreasing, because it reduces the real value of money, which adversely effects
the quality of the goods produced and exchanged. A money that little value is a less useful
device to overcome the adverse selection problem than a highly valued money. Nevertheless,
for those parameter values for which money exacerbates the moral hazard problem, it is
better to remove it from circulation. Divisible money has also allowed us to focus on
the monetary equilibrium under the Friedman rule, for which we have derived several
tractable analytical expressions. In particular, under the Friedman rule the active monetary
equilibrium is unique.

There are several extensions to this paper that are worth considering. First, it would
be interesting to introduce signaling into the model. Wealth (money holdings) could be
modelled as a signaling device. Costly advertising of product quality is another device.
Second, money is only one possible institution to overcome asymmetric information prob-
lems. Intermediaries and middlemen are other institutions whose role is to alleviate those
problems. Third, other assets could be viewed as alternative to money. The role of credit
in such an economy would be worth studying. Fourth, throughout the paper we have
assumed that money is an object whose quality is identifiable by everybody. It would be

interesting to see how robust our results are in a model that allows for counterfeiting.
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APPENDIX

A1l. The information structure.

In this appendix we describe how traders obtain information about their partners and
how they form their beliefs. When two traders ¢ and j meet, each agent receives information
prior to the bargaining about the quality of the good produced by his partner. This
information arrives in the form of two signals st and s!, where si € {L, H} (s] € {L,H} )
is the signal received by agent i (j) about the quality of the good produced by agent j ().
If s5 = H (s} = L), the signal suggests to i that j is a high (low) quality producer.

Unfortunately, signals are imperfect. If x;, € {L, H} denotes the true nature of agent
i, then signal reliability (or type) is described by the pair (py, p;) € [0, 1], where pj; and
py, are defined as follows:

PH:P[
PL:P[

Thus, py is the conditional probability that the signal is H when x; = H and p;, is the
conditional probability that it is 4 when x; = L. We assume that p; > p;, so that the
signals and the true nature of the bargaining partners are positively correlated.

After having received a signal, the traders update their beliefs about their trading
partner. The Bayesian beliefs satisfy

Pl =Hl|s=H] = pHH—i—p,;ILn(l—H)ZH (29)
_ j_ _ (1—py)l
Pho=tls=t] = g e ppa-m =" &

If py; > p, the signal reveals some information, i.e., Py, = H|s; = H] > II. In contrast,
if py =pp, then Py, =Hl|s;, =H|]=P[x;,=H|s; = L] =1L

To describe the fact that traders are heterogeneous in their abilities to recognize a

certain good, we assume that there are many signals that differ in their reliability. In fact,
we assume that there is a distribution of signal types with density v (py, p;). For instance,
it py =1 and p; = 0, the trader is an expert in the good produced by his partner, and
he is able to recognize its quality with certainty. In contrast, if p; = p;, the trader is
ignorant about the quality of the good produced by his partner. As shown in appendix
A2, the distribution of the signals generates a distribution of beliefs ¢;.

A2. Belief distributions : Fy(u), Fr(u), and F(u)
As described in appendix 1, when an individual meets a partner, he receives a signal about

the quality of his partner’s output. The signal type p = (pg,p) is a random variable
34



characterized by the density function ¢ (z,y) and defined on A = {(z,y) € [0,1]* |z >y }.

We impose the following restriction on the density function:

¢($,I) :¢(y7y)v Vz,y € [0’ 1] (31)

This restriction permits us to avoid a discontinuity point in the density functions fy(.),

fu(.), and f(.).
Let €; € [0, 1] denote the updated belief of player j after he has received a signal about
the quality of the output produced by player ::

e = u(p)1(s,=m + (p)L(s,=1) (32)

where p = (py, py) is the signal type, S, € {H, L} the signal received by the individual,
and 1T (p) and II.(p) the conditional probabilities given by (29) and (30):

T _ prll
alo) = pull + pp (1 —1I)
ﬁL(P) = U= o)1

(I—pp) I+ (1—py)(1-1)

Note that the signal S, and the updated beliefs I (p) and II.(p) depend on the signal
type p, which is a random variable.

1st step. The distribution Fy(.)

We take the point of view of player ¢, and we determine the distribution of beliefs of 7’s
partners about ¢’s output. The function Fy(.) describes this cumulative distribution when
1 is a high-quality producer:

Fy(u)=Ple; <ulx; = H] (33)

where x; is true type of agent i. Because S, = H implies €; > Il and S, = L implies
g; <II, it is convenient to distinguish between u > II and u < II.
Assume first that u > II. Then ¢; > u is equivalent to ﬁH(p)l(Sp:H) > u. In this case,

it is convenient to compute 1 — Fiy(u):
1= Fy(u) = Pl >uly; = H]
= /IP’ [ﬁH(p)l(SP:H) > ulp € (dz,dy) , x; = H] Plp € (dz,dy)|x; = H]
Note that p and y; are independent random variables. Consequently,
1= Fu(u) = /IP’ [ﬁH(w, Vs, ,=m > ulx; = H] Plp € (dz, dy)]
— [ PISuy = Hx; = H) Ly (2,6 (2.) dady

— /xlA(u)(x,y)z/) (x,y) dxdy
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where

A(u) = {(x,y) e A mii_n) >u}

and 14, (x,y) is equal to one if (z,y) € A(u). Finally, this last equation can be rewritten

as follows:
O

1—FH(u):/01x/0x[ﬂl_H

Assume now that u < II. Then ¢; < u is equivalent to ﬁL(p)l(Sp: 1) < u. Consequently,

Y (x,y)dyde  Yu>1I (34)

we have
Fru(u) = Ple>ulx; = H]

= /IP’ [ﬁL(,O>1(Sp:L) <ulp € (dz,dy), x; = H] Plp € (dz,dy) [x; = H]
Using the fact that p and y; are independent, we get
Fy(u) = /IP’ [ﬁL(x,y)l(sx,y:m <uly; = H] Plp € (dz,dy)]
— [ BlSuy = Llxi= H) Lagy o) (2.3 dady
— [0~ ) Lo (0.0 6 (a,0) dedy

where
(1—2)II

u—xﬂr+a—yﬂl—n><“}

5w = { (e € 4|

Finally, we obtain

1 gz
Fu(u) = / (1— x)/ U W(ay)dyde Vu<TI (35)
0 0
>From (34) and (35) we deduce the density function fg(u):
! II T\ 2 o
fa(u) = /0 A= <E> 7,b(:r,:13 T >d$ Yu > 11, (36)

1 2
_ /0 (1 ux> : ?Hz/) (1:,1 - ((11 _"?{?u u“)> de  Yu<I (37)
Under the restriction (31), the density fg(.) is continuous at u = II.
2nd step. The distribution F(.)
The distribution FJ,(.) is the distribution of beliefs of i’s partners about i’s output when
1 is a low-quality producer:
Fo(u) = Ple; < ulx, = L (39)
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Similar reasoning to the above gives

1— Fr(u / / (z,y) dydx
/ / (40)

. Then, from (39) and (40) the density function fy(u) satisfies
LI T\ 2

_ 9/01(1;33)21{[H¢ (x’l_(l—x)ﬂ(l—u)

d IT (42
- ) r VYu< (42)
From (36), (37), (41), and (42) we deduce the following relationship

ifl:l

,_;

Vu > 11

(39)

— )¢ (z,y) dydx

Vu < 11
Define o = [

—1 [

II

U

u(l =T fr(u) = (1 — u)llfu(u)

Vu € 10, 1]
Consequently,

(43)

fu(w) > fr(u)

fu(u) < fu(u)
3rd step. The distribution F'(u)

Yu > 11
Yu < I1I

The distribution F(.) represents the distribution of i’s beliefs about the quality of a partner
chosen at random:

Plei<u] =P[e; <u|x; =H|P[x; =H| +P[e; <u|x; = L|P[x; = L]
Then
F(u) = Fy(u) + (1 — 1) Fy (u) (44)
and so
fu) =T fp(u) + (1 —10) fr(u) (45)
From (43) and (45), we have
uf(u) = 1 fu(u) (46)

A3. First-order conditions of the household program
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Part 1. Terms of trade Denote by A. and XE the multipliers associated with con-
straints (12). The multipliers associated with constraints (13) will be denoted by 7. and
7., respectively. Consider, first, the first-order conditions for the high-quality producers:

Ae —
el () = ++“’ Vee E (47)
Q
o (S — E 4
(@) = Ve (18)
A(m—z) = 0 VeekFE (49)
n.(M+z) = 0 Vee E (50)

The first-order conditions for the high-quality producers are exactly the same as in Berentsen
and Rocheteau (2000a). We therefore do not discuss them here.
Consider, now, the first-order conditions for lemon producers:

el (@) = 27T e (51)
X(m—%) = 0 VeeE (52)
n.(M+7%.) = 0 VecE (53)

Note that in equilibrium, for each ¢ € E, (62,555,}5,?7'5> = (g%, zc, Ac,7.). Indeed, under
the condition ¢¢ = ¢2, the equations that determine (qg Loy Ae, 775), i.e., equations (8), (47),
(49), and (50), are analogous to the equations that determine (Z]ﬁ.’, Te, Xe,'ﬁg), ie., (9), (51),
(52), and (53). Consequently, low-quality producer make the same offers as high-quality
producers.

Equation (18) follows directly from (47) and (48). To derive equation (19) note that
in a symmetric equilibrium uppercase variables and lowercase variables are equal: w = €2,

m =M, and (¢4, ¢¢,z.) = (Q% Q:, X.) for all e. Then equations (8) and (11) yield

eu(qt) — qd + zew = (1 — 6A) [gju () — g5 — zow] (54)

Equation (54) and an equation that is analogous to (54) but where € = (g;, ¢;) is replaced
by ¢ = (gj,¢;) determine equation (19). For more details, see Berentsen and Rocheteau
(2000a).

Part 2. The envelope condition The envelope condition is

% — / gide + (1 — @-)Xa fei)f(gj)deide; +w (55)
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Taking into account that XE = )., we can rewrite the envelope condition as follows:

W_1

g

>From (47), the envelope condition becomes

_ / M F(&) f(e)derde; +w
E

% = / max [&-u’(qg)w —w,0] f(e:)f(e;)deide; +w
E

and hence

W= ﬁ/EmaX [eid (Q)w,w] f(&:) f())desde;

The demonstration of the uniqueness of the barter and the monetary equilibrium is provided
by Berentsen and Rocheteau (2000a).

A4. The program of the social planner
We assume that the social planner cannot observe the types of the players in a meeting.3°
Consequently, the terms of trade he chooses must satisfy ¢® = ¢¥. Furthermore, the social
planner treats all households in a similar way. Therefore, what an individual must produce
if he is in a match of type (g¢,£1) equals what he receives when he is in a match of type
(e1,€0), Le., @& = ¢

The social planner maximizes the utility in a period of the representative household.
Note that the social planner does not care about the money holdings of the household.

Accordingly, the planner solves the following program:
Jmax T [ (e (d) = ] S ) deades + (=10 [ 2w (@) £ fales) deade,
e:9z92-4e E E

st. d=¢and g =q

By using the fact that I1fy(e;) =¢;f(e;) and (1 —1II) fr(er) = (1 —¢;) f(g;), the program
of the social planner can be rewritten as follows:

max / leiu (¢2) — 5a2] f(e0) f(e;) deide;

92,92 JE

st. ¢ =’

This program can be rewritten as

max

qquf? \/{(Ei,Ej)€[0,1}26i>Ej }

36The assumption that the planner cannot recognize the types of the players is not important for this

[eiu (0) — i} + eju(qf) — ;2] f(e0) f(g5) deide;

welfare criterion. If he could recognize their types, he could apply the same rule to maximize welfare,
because producing lemons cost nothing and consuming them provides no utility.
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Differentiating with respect to ¢° gives the following first-order conditions:
() =1 Veelo,1)”

A5. Proof of Proposition 2
Equation (22) can be rewritten as follows:37

D)= ), Fﬁj e (@) — ¢ — o] — 72 [eau (&) — 2] | S(ep)(er) (56)

(ei,sj)e{O,H,1}2

The proof proceeds in six parts.

Part 1. For all § > 0, a nonactive barter equilibrium exists. If Il = 0, an agent
who is not recognized is perceived as a low-quality producer. Accordingly, beliefs are either
0 or 1. In the barter economy, a trade takes place between agents ¢ and j if and only if
¢; = €; = 1. Thus, according to (56),

D(0) = [ular,) — i) fr(D)F(1) = ulay ) fr(1)F(1)

From (5), if I = 0, f(1) = 0. Therefore, D(0) = 0. Consequently, if II = 0, the best
response of any household is to choose any 7 € [0,1]. Thus, 7 = IT = 0 is a fixed point of
(24).

Part 2. If 0 = 0, the unique equilibrium is nonactive. According to (5), if § = 0,
then f(II) = 1. Hence, (56) can be rewritten as follows:

D) = —qr <0 it II>0
B 0 if 1 =0

Consequently, without arrival of information the only equilibrium is II = 0.
Part 3. An active barter equilibrium with II = 1 exists iff 6 > 0p = #;*). In the
barter economy, if one of the traders in a match is recognized as a low-quality producer
(ie., & = 0 or ; = 0), then no trade takes place (i.e., ¢¢ = ¢¢ = 0). Hence, using (5), we

can rewrite D(II) as
D(IT) = 6°11 [u (¢}1) — gi1] + (1 = 0) 0 [Tu (¢fr1) — i1
—011 (1= 0) g5y — (1 — 0)* iy

An equilibrium where all traders are high-quality producers exists if and only if D(1) > 0.
Using the fact that ¢}, = ¢;, = ¢*, this condition yields § > p = #;*). Note that 65 < 1.

(57)

1

3"Note that because 7= f(g;) = fr(e;) and F f(g;) = fu(e;), the factor in large brackets is well defined

at II =0and II = 1.
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Part 4. For all 0 € (0,0p), an active barter equilibrium with II < 1 exists. We
first establish the following result:

0,

a—0 1z
From the strict concavity of the utility function and the fact that w(0) = 0, we have
% > u/(x). Because u'~!(.) is a decreasing function, we have

= (Eﬁfl) <o va (58)

T
Multiplying each side of the inequality (58) by @, we obtain
@u’_l <M> <u(z) Vx (59)
T T
Define p(z) = .25. We have ¢/(z) > 0 and lim, p(z) < liné ﬁ = 0. Inequality (59)

can be rewritten as follows:
1

Er (ﬁ) <u(z) Ve

Taking the limit when x approaches 0 and denoting X = ¢(x) we have

SR i A
>From (18) and (19), ¢y ;; satisfies ITu/(¢f; ;) = 1. Hence, ¢f; = «'~' (§). From (60) we
deduce that
lim S0 _ (61)

II—-0

Since w = 0 in the barter equilibrium, (19) implies

Hu (QIIZI,I) - CIii[,l = I/ (Chbj,l) [u (Q15'1,1) - Q%,J (62)

Consequently, D(IT) given by (57) can be rewritten as

D(ID) = T1{6” [u (a71) — i) + (1 —0)0u' (qfry) [u (gf11) — atrs]
~0(1—0) g — (1-0) B2}
The last two terms within the braces go to zero when I approaches zero. The first term is
strictly positive and independent of II. The limit of the second term when II approaches
zero is a priori indeterminate. Consequently, in the neighborhood of IT = 0, D(II) can be
approximated by

D) ~T1{6* [u (V1) — i) + (1 —0)0u' (ap1) [u(gf11) —ana]} >0 VII€]0,¢]
where ¢ is arbitrarily close to zero.

Furthermore, for all § < 0p, D(1) < 0. Consequently, we deduce from a continuity
argument that for all § < fp, there is a II € |0, 1] such that D(II) = 0.

41



Part 5. Derivation of D(II) in the monetary equilibrium when v — (5. Berentsen
and Rocheteau (2000) show that when v — [, the traders produce and exchange the
following quantities:

b _ s __ b s _ b _ s __ %
Gin = 411 =49%,0 =49, =490 =491 — 4

b _ s __ 8 _ b _ b s %
4, = qim = 49non =~ 4quono = 9o = 90,1 — 91
b _ s _ b _ s _ b _ s _
do0 = 40,0 = 90,1 = 91,0 = 90,1 = 91,0 — 90

where ¢* satisfies u/(¢*) = 1, ¢f; satisfies ITu/(¢f;) = 1, and ¢§ = 0. Moreover, when v — 3,
in each meeting agents use a monetary transfer in order to split the total surplus of the

match evenly. Hence,
eiu (qr) — @, — ejuld,) + ¢,

Tew = 5 (63)
For all (¢;,¢;) € {(0,1I), (II, II), (1, II)} we have
. 1—¢.
5 e () — 2 — ] — 125 e () — 5] = g (01

Furthermore, using the fact that f(0) = (1 — II) and f(1) = OII (see equation (5)) we
have

, 1 e
Z [gﬁ] [eiu (42) — g2 — wew] — 1 _i—} leiu () — a:gw}] f(g) =0—q" + (e, 0w — T, 1W)]
Sje{o,l}

Replacing z, ow and z., jw by their expression given by (63), we obtain

2 [%ﬂ v (af) — g2 — ] — 7= [evu (af) xaw]} flej) =0 (%) (65)

;€{0,1}

Using (64) and (65), (56) can be rewritten as

uld) —q "
o = (=)~ (1 0)a; (66)
Part 6. Monetary equilibrium under the Friedman rule Note, first, that for
all @ > 0, we have D(0) > 0, and that D(II) is strictly decreasing in II. Consequently, a
monetary equilibrium with IT < 1 exists if and only if D(1) < 0. >From (66), this condition

yields
2q*

u(q*) +q'
Note that 6, < 1 because ¢* < u (¢*). Because D(II) is strictly decreasing in II, the mon-

9<6)MZ

etary equilibrium is unique. Note also that (66) implies that in the monetary equilibrium

one has (9(;;5‘ > (0 and therefore Bg_eM > (. Finally, recall that if II = 1, all meetings are

symmetric and consequently money is not valued.
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AG6. Proof of Proposition 3
We consider the fraction of high-quality producers (IIg) when 6 is close to 0. The condition
D(Ilp) = 0 can be rewritten as

dir, = 0015 [u (a1,) — ai1] + (1= 0) [Hpu (af,1) — diryn] — e (1—60) a1, + (0 +2)ar, |
(67)
From (66), the fraction of high-quality producers in the monetary equilibrium (I1,,) sat-

i, =04 (ML) + i, } (63)

From (67) and (68), if 0 is close to 0, Iz and II;; must also be close to zero. Consequently,

isfies

u(q) —q* u(q*) —q
— i, ¥

>

Ol [u(q},) — ¢5] + (1 —0) Hpu(qh,1) — ai,1] — s (1 —0) ¢, + (6 +2)gf, ~0

Because ¢ is increasing in II, we deduce from (67) and (68) that I, > Ilp.

AT7. Proof of Proposition 4 and Corollary 1
From equations (18) and (19), one can verify that the terms of trade in the barter equilib-

rium satisfy

o 1 1
s Taara) b _ — = s _ bk _ _ _ % _ TT1i=a
g =00, gy =IT=owe, g, =g =q¢ =1, dqn=dn=q =1

Substituting these expressions into (57), we obtain

l—«a
«

D(II) = ¢°I1 < >+(1 — 9) pIIT T (1 ;a) 91— ) ITHT (1 — 9’ s
(70)

The condition D(II) = 0 can be rewritten as

7042 —_ — % @
GQHWC a)+(1—«9)9<1 “)_9(1_9)Hm+(1_9)2nm (71)

(07 (0%

The LHS of (71) is decreasing in II whereas the RHS is increasing in II. Hence, for any 6
there is a unique IT satisfying (71). A solution of (71) is given by

l1—a 0
HB_< «Q 1—9)
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The expression for I, is obtained by replacing gj; with TI™= in the first-order condition
(66). Finally, note that IIp < I, if and only if:
«

b<b a+2*(1—a)

AS8. Restricted Trade Equilibrium

Part 1: Characterization of the restricted trade equilibrium The restricted trade
rule specifies that when a trader in a match is recognized as a low-quality producer (g; = 0
or £; = 0), no trade takes place. The program of the household is given by (14) when all
terms with €, = 0 or ¢; = 0 are eliminated. The choice II that sustains a symmetric Nash
equilibrium is given by:

MI=1if Dr(1) >0

II=0if Dg(0) <0

Dg(II) = 0 otherwise

where Dy is given by (22) when all terms with €; = 0 or €; = 0 are eliminated:

Dr(M) = [u(q71) — a7,1] 0* 115 n0(1—0)1+ [TTu (g7,) — gy — zmaw] (1-0)0—gf 1 (1-6)?

(72)
Let us first determine the necessary and sufficient conditions for an equilibrium without
low-quality producers. Using the fact that when II = 1 money is not valued, we find that
Dgr(1) = Dp(1). Consequently, a necessary and sufficient condition for an equilibrium
without lemon producers is 6 > 0.

Of course, the marginal value of money is affected by the restricted trade rule. Nonethe-
less, under the Friedman rule the constraints on money holdings of households’ members
are not binding and we have
Mu(gr) — i +u(g) — ¢

2

u ((hbm) — Gy — W =

Consequently, (72) can be rewritten as follows:

Mu(qyy) — ai +u(q*) — ¢
9

Dl = 11 fu ') - ]+6(1-6) { b= 1= ot ai1-6)°
(73)
Let us consider equilibria with IT € (0,1). Then we have Dg(II) = 0. For all § € (0,05)

we have Dg(0) > 0 and Dg(1) < 0. Consequently, an active monetary equilibrium exists.

Part 2: Comparison of the barter equilibrium and the restricted trade equilib-

rium. According to (57), in the barter equilibrium

D(IT) = 6°I[u(q") — ¢"] + 0 (1 - 0) [Hu(q{z,i) —qiny] — (1= 0)10q3  — (1 — 0)°qiy (74)



To demonstrate that the fraction of high-quality producers in the restricted trade equilib-
rium is larger than in any barter equilibrium, we can show that Dg(IT) — Dg(II) > 0 for
any II. From (73) and (74), we get

Mu(qyy) — a +u(q*) — ¢
9

Di(T)~Ds(11) = 6(1-6) §  (Muldh) = ) ~ i + 11

(79)
Berentsen and Rocheteau (2000a) show that in the barter equilibrium in asymmetric
matches, ¢; ;; > gf;. Moreover, for all IT € (0,1), in a (II, 1)-meeting, the buyer surplus is

strictly smaller than the seller surplus:

Mu(qh,) — gy < w(giy) — g,  VILE(0,1) (76)

>From Berentsen and Rocheteau (2000a), we also know that in the barter economy terms
of trade in asymmetric matches are socially inefficient in the sense that the total surplus
of the match is not maximized. This implies

Mu(qfy,) — iy +wlai,) — aty < Hulghy) — gy +u(g) —¢* VIIe (0,1)  (77)
Accordingly, (76) and (77) imply that

Hu(qy) — ap +ulq*) — ¢
9

From this we deduce that Dg(Il) — Dp(II) > 0 for all IT € (0,1).

Mu(gryy) — di < VII € (0,1)

A9. Proof of Lemma 1
The proof is by contradiction. Assume that everyone produces high quality: T = 1. From
(5), we find f(1;0) =1 and fy(1;6) = 0. According to (26) and the fact that fy(e;;60) =0
for all &;, the condition Z(6,0) = 0 can be rewritten as C’(f) = 0. Consequently, if IT = 1,
households choose to be uninformed ( = 0). But if § = 0, the unique equilibrium is
nonactive, which contradicts the initial assumption.

Note further that # cannot be equal to one in equilibrium. Indeed, if # = 1, households

would choose IT = 1, but then it would be rational for households to be uninformed (6 = 0).

A10. Proof of Proposition 5

Part 1. The barter economy. In the barter equilibrium, there is no trade if one the
player is recognized as a low-quality producer. Consequently, (;,¢;) € {II, 1}2. From (26)
and the fact that w = 0, the condition Z(6,0) = 0 can be rewritten as

'Oy = Y [eu(e) —eiq] foles 0)F(e550)

(ei,e5)€{IL,1}?
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>From (5), we obtain

C'(0) = 011 [u(q*) — ¢*] + (1 — OIT [u(q} ) — 15 ]
—OI [T (ghy 1) — gity] — (1 —0) Mu(gf) — Hgfy]

The LHS of (78) is increasing in # and is equal to 0 if # = 0. The RHS of (78) is a linear
function of #. If # = 0 it is equal to

(78)

T [u(qy yp) — N5 ] — [Mu(gy;) — Mgy (79)

Under the iso-elasticity specification for the utility function, i.e., u(q) = a~'¢“, we have
1 @
qlf,n = U=+ | gf p = [TE-*0+a] and ¢f = 175, The expression (79) can be rewritten

asS
1 @ a
T [u(q} ) — Tgi ) — I [ulq) — qf) =11 (a _ H> (ne 1) > 0

Consequently, (79) is strictly positive for all II € ]0,1[ and is equal to 0 for II € {0,1}.
>From the fact that the RHS of (78) is a linear function of 6 that is strictly positive
at 0 = 0 for all II € ]0,1], and from the assumption C""(f) > 0, we deduce that if
C'(1) > I [u(q*) — ¢*] — I [TTu (gf 1) — gf11], there is a unique value of 6 on ]0, 1] that
satisfies (78). If C'(1) < I [u(q*) — ¢*] — IT [Hu (gf1;) — giy4], then @ = 1. The function
that relates 6 to II is labelled ©5(II). From the previous discussion we have ©g(II) > 0
for all IT € 0, 1[. Finally, we deduce from (78) that ©5(0) = ©5(1) = 0.

Part 2. The monetary economy under the Friedman rule. Berentsen and Ro-
cheteau (2000a) have shown that under the Friedman rule, in each meeting agents transfer
money so that the total surplus of each match is split evenly. This implies that:

e (q2) — @, +ejulds,) — ¢,
2

According to (26), the condition Z(6,6) = 0 can be rewritten as

g () — ¢ — zew = (80)

cO) = > {(5iu (¢2) — @2 — zew) + (1 - 5j>£]:]~} folei;0)f(e5:0)

(61',8]')6{0,1_[,1}2

Using (80), we have

o= Y {siu (¢2) — ¢, +eul) — ¢, T (- 5j)q;j} foles;0) f(g;:0)

2
(e1,65)€{0,11,1}?

After some calculation we obtain

c'(o) = 1 [u(q”) — 7] ; (M (gi;) — gril (81)
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Because of the concavity of the utility function, we have u(q*) —u(qsy) > v/ (¢%) (¢* — ¢fy) =
q* — q};, which implies that I [u(g*) — u(g)] > T (¢* — ¢f) > Tlg* — ¢ if IT € (0,1). The
RHS of (81) is strictly positive. Consequently, we can introduce a function ©,, (IT) that

relates 6 and II as follows. If C'(1) > H[u(q*)fqﬂ;[nu(qﬁ)fqﬁ], then O,/ (II) is the value of
0 that satisfies (81); otherwise ©,; (IT) = 1. From (81), one can check that ©,, (IT) > 0
for all IT € 10,1, ©x (0) = 0, and limp_,; O (II) = 0 (if II = 1 there is no monetary
equilibrium).

Part 3. Ranking of Op (II) and ©,, (II)

In the barter economy, the optimal choice of information is given by equation (78), which

can be rewritten as follows:

CO = om [u(q*) — ¢*] + (1 — 0) [u(a? ) — i ]
—0 [H“ (qlbu) - in,l] — (1= 0) [ular) — a1l

In the monetary economy, the optimal choice of information is given by equation (81) which

(82)

can be rewritten as follows:

ooy o) - a = [ulan) — %]
o 2 (83)

For II close to zero, the RHS of (83) is approximately equal to [“(Lﬁ > (0, whereas the
RHS of (82) approaches zero. Consequently, Op (IT) < O, (I) if II is close to 0.

A11. Proof of Proposition 6.
Part 1. The barter equilibrium.
According to (69) and (78), in a barter equilibrium, 6 satisfies the following equation:

a0 =052 1 — (1) 55+ (1-0) (3 1) |1) B - (1) | s

with
1—a)(l+a)
== it < 0p=a

1 otherwise

Il =

According to lemma 1, ITg < 1 in equilibrium. Multiplying each side of (84) by ﬁ, we

obtain
A [HQB - —] e (l ) HB) [(“Bﬁaf ~ (Ip) ™=
(1 - a) (HB) 1—a? (6]
Simplifying the RHS of this last expression, we have
(67 1 _a?_
A = —Ilg |1 — (IIg)1-=2 85
oy = 5 [t )
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The equilibrium fraction of high-quality producers in the barter economy is a Il € ]0, 1]
that satisfies (85). It can immediately be checked that the RHS of (85) is strictly positive
for all Iz € )0, 1] and is equal to 0 for IIp € {0, 1}.

Let IT%** the value of Il € ]0, 1] such that the derivative of RHS of (85) is zero. IT5**
is unique and is given by ,

My = (1—a?)
Consequently, there is a threshold A for the information cost such that the following is
true: If A = A, Ilg = II%>. If A > A, there is no active barter equilibrium. If A < A,
there are two active barter equilibria. The threshold A is the value of A that satisfies (85)
with IIp = II'5**. Therefore it is equal to
. (1-a¥)

A= — /)
1+« (86)

It can be shown that for all « € ]0, 1], % < 0.

Part 2. The monetary equilibrium.

According to (81), if a monetary equilibrium exists, § must satisfy the following equation:

11—« a4
20 = (152 [ - ()™ (57)
with .
0(1—a)] “ _ 2
IT = | —F f
>From (88), we can express 0 as:
20 () =
p— 20T (89)
1—a+2a (HM)E
Substituting this expression into (87) yields
_ (-9 2 =
A= aap [L-at2 (ITy)T ] [(HM) 1} (90)

It can be verified that the RHS of (90) is infinite for IT;; = 0 and is equal to 0 for II,, = 1.
Consequently, for all A > 0, an active monetary equilibrium exists.
We differentiate the RHS of (90) to show that it is strictly decreasing in ITy;:
ORHS(90) 1

B, = 1o 120~ @)~ 2(n) ™% — (1 - ) (M) = |

The factor in the braces is equal to —oo for II; = 0 and to —(1 + «) for II; = 1. For

1—a
IT); € [0, 1], that factor reaches a maximum for ITy; = min | (L2) ,1]. If -2 < 1, this

maximum is equal to

b (5)]
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Wéfn—ﬁ%) < 0 for all IT; € [0,1]. Therefore, the monetary equilibrium under

the Friedman rule is unique.

Consequently,
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