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Abstract

The paper considers the evolution of portfolio rules in markets with
stationary returns and endogenous prices. The ultimate success of a
portfolio rule is measured by the wealth share the rule is eventually
able to conquer in competition with other portfolio rules. We give nec-
essary and sufficient conditions for portfolio rules to be evolutionary
stable. In the case of i.i.d. returns we identify a simple portfolio rule to
be the unique evolutionary stable strategy. Moreover we demonstrate
that mean-variance optimization is not evolutionary stable while the
CAPM-rule always imitates the best portfolio rule and survives.
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Hens wants to thank Sandra Güth for collaboration on this topic in an early stage. Klaus
Reiner Schenk-Hoppé acknowledges helpful comments by Jörgen Weibull.
Contact address: thens@iew.unizh.ch, klaus@iew.unizh.ch

1



1 Introduction

We consider an incomplete asset market with a finite number of assets and a
continuum of states. Asset payoffs are given by a stationary process in dis-
crete time. Assets are short lived but identically “re-born” in every period.
A finite number of portfolio rules manage capital by iteratively re-investing
on the given asset market. There are no transaction costs. Portfolio rules are
non-negative vectors of expenditure shares for assets which may depend on
the past observations. The set of portfolio rules we consider is not restricted
to those generated by expected utility maximization. It may as well include
investment rules favored by behavioral finance models. Savings and with-
drawals are exogenously determined. In every period in time the available
market capital is given by the total payoff of the assets. Portfolio rules com-
pete for this market capital—the endogenous price process is thus a market
selection mechanism along which some strategies gain market capital while
others lose.

This model has been introduced in the seminal paper of Blume and Easley
(1992). It is well suited to analyze the performance of large institutional
investors like pension plans, insurance companies or mutual funds. Those
institutions are investing on asset markets that do not provide complete in-
surance against all possible risks. This seems to be the natural case. Savings
and withdrawals are exogenously determined because they are the pensions
and the indemnities to be payed or they are the liquidity demanded by the
clients of the institutions. Institutional investors do have a considerable im-
pact on asset market prices, face relatively small transaction costs and their
investment horizon is potentially infinite. Finally it is not clear at all that
institutional investors maximize some infinite horizon expected utility func-
tion.

The equilibrium notion this model provides is a distribution of market
capital (wealth shares) that is invariant under the market selection process.
We show that provided there are no redundant assets every invariant distri-
bution of market shares is generated by a monomorphic population, i.e. a
collection of traders using the same portfolio rule. We derive a general evolu-
tionary (in-)stability criterion for such monomorphic populations. Roughly
speaking a portfolio rule is evolutionary stable if it has the highest exponen-
tial growth rate in a population where itself determines market prices. In
a sense an evolutionary stable population plays the “best response against
itself.” From this criterion it follows for example that any population with
misspecified beliefs can successfully be invaded by a portfolio rule being based
on the maximization of expected utility with rational expectations. More-
over we demonstrate that mean-variance optimization can be invaded by any
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completely diversified portfolio rule while the CAPM-rule is able to always
imitate the best portfolio rule and thus survives.

In the i.i.d. case the robustness of the invariant distributions with re-
spect to the innovation of new portfolio rules singles out one portfolio rule
that is the unique evolutionary stable strategy, i.e. that drives out any mu-
tations. According to this rule one should divide wealth proportionally to
the expected relative payoffs of the assets. This is a very simple explicit
formula which is quite easy to apply in actual markets. It even does not
require the knowledge of the actual probabilities driving the payoff process.
It only requires to compute the sample mean of the payoffs because under
the i.i.d. assumption this is clearly an unbiased estimator for the future ex-
pected payoffs. The effect of this rule on asset prices is that it equalizes the
expected relative returns of all assets. In particular then asset pricing is risk
neutral pricing even though the unique evolutionary stable portfolio rule can
be thought of as being generated by quite risk avers investors - those having
unit relative risk aversion.

In the case of diagonal securities1 this strategy boils down to a well-known
trading strategy that in this case is known to be the global attractor of the
market selection mechanism, or as Blume and Easley (1992) have called it
the single survivor. Since with diagonal securities prices do not matter,
this rule coincides with the well known rule “betting your beliefs” (Breiman
1961) according to which income should be divided proportionally to the
probability of the states. This strategy evidently maximizes the growth rate
of wealth. It can be generated by maximizing the expected logarithm of
relative returns which in turn is known as the Kelly rule (Kelly 1956).

Our paper extends Blume and Easley’s (1992) model to any complete or
incomplete payoff structure. In this case market prices matter in the evo-
lution of wealth shares. To overcome this difficulty we exploit the idea of
evolutionary stability which so far has not been used in any portfolio the-
ory. However, as in Blume and Easley (1992), we consider an economy with
short-lived assets. With regards to possible applications of the theory, this
is an unsatisfactory assumption that will have to be generalized in future
research. With complete markets, recently, Blume and Easley (2000) and
Sandroni (2000) have investigated the case of long-lived assets in an econ-
omy with completely rational investors. They show that among all infinite
horizon expected utility maximizers those who happen to have rational ex-
pectations will eventually dominate the market. This interesting result holds
irrespectively of the investors’ risk aversion characteristics. The intuition

1We call a system of securities diagonal when in each state exactly one asset has a
non-zero payoff. An example for these are Arrow-securities.
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goes that with complete markets agents can place any bets on differences in
their expectations so that those with rational expectations will always win
in the long run. As Blume and Easley (2000) made perfectly clear this re-
sult is ultimately linked to Pareto-efficiency. In our setting we get similar
conclusions with respect to rational expectations without relying on Pareto-
efficiency.

On passing it is worthwhile to mention the relation between the evolution-
ary portfolio theory literature and the classical finance approach to maximize
the expected growth rate of wealth for some exogenously given return pro-
cess. In a series of papers, Hakansson (1970), Thorp (1971), Algoet and
Cover (1988), and Karatzas and Shreve (1998), among others, have explored
this maximum growth perspective. Computing the maximum growth port-
folio is a non-trivial problem. Even if one restricts attention to i.i.d. returns,
when markets are incomplete, there is no explicit solution to this problem.
By now numerical algorithms to compute the maximum growth portfolio
have been provided by Algoet and Cover (1988) and Cover (1984, 1991).
But so far practical decisions are rarely based on these ideas. Our result is
interesting in this respect because the simple portfolio rule that we obtain
shows that considering the equilibrium consequences of expected growth rate
maximization does not make matters more complicated but much easier.

In the next section we present the economic model which has the math-
ematical structure of a random dynamical system. Then we define the equi-
librium concepts and the stability notions, Section 3. In Section 4 we discuss
and generalize Blume and Easley’s result in the case of incomplete markets.
Section 5 presents our main result which will be proved using a series of
propositions that are also of independent interest. In Section 6 we analyze
the evolutionary fitness of portfolio rules based on mean-variance optimiza-
tion. We study the issue of under-diversified portfolios, and discuss the
implication of the CAPM investment strategy. All proofs are relegated to
the Appendix.

2 The Model

Time is discrete and indexed by t. The possible states of nature are deter-
mined in each period in time by the realization of a stationary stochastic pro-
cess with values in some measurable space (S,S). Let (Ω,F , P, θ) denote its
canonical realization as a metric dynamical system on the path space, i.e. Ω
is the sample path space with representative element ω = (..., ω−1, ω0, ω1, ...),
F = SZ is the corresponding σ-algebra, P is the associated probability mea-
sure, and θ is the shift map (defined by θω(·) = ω(1 + ·)). The family θt,
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t ∈ Z (where θt denotes the t-times iterate of θ) defines a measurable flow on
Ω, i.e. θt+u = θt ◦ θu for all u, t ∈ Z, θ0 = idΩ, and θ is measurable and mea-
surably invertible. Stationarity implies θP = θ−1P = P. ωt denotes the state
of nature at time t, and the sequence of observations up to the end of period
t is referred to as ωt. Further let F t = σ{ωu | u < t} denote the informa-
tion available at the beginning of period t. A sequence of random variables
(st)t∈Z such that st is measurable with respect to F t is called adapted to the
filtration (F t)t∈Z. By definition, an F t-measurable random variable can only
depend on ωt−1.

There are finitely many investors i = 1, ..., I endowed with wealth wi
0 > 0

at time 0. Assets k = 1, ..., K with K ≥ 2, live for one period only but are
identically re-born in every period. Their payoffs Ak

t (ω) are assumed to be
adapted. We make the following assumption.

Assumption 1 For all t, (1) Ak
t (ω) ≥ 0 for all k and all ω; (2) for each k

there exists a set Ωk ∈ F with P(Ωk) > 0 such that Ak
t (ω) > 0 for all ω ∈ Ωk;

and (3)
∑K

k=1 Ak
t (ω) > 0 for all ω.

This assumption ensures that all assets yield non-negative payoffs in all states
of nature, each asset has a strictly positive payoff for a set of states of non-
zero measure, and total payoff of all assets is strictly positive in every state.

In each period in time t every investor selects a portfolio ai
t = (ai

1,t, ..., a
i
K,t)

with values in RK
+ . ai

t : Ω → RK
+ is assumed to be adapted. Given the

portfolio ai
t at time t, the investor’s wealth in period t + 1 is given by,

wi
t+1 =

K∑

k=1

Ak
t (ω) ai

k,t (1)

Letting ρk,t denote the price of asset k in period t, then—provided that the
agent’s wealth is positive—his budget shares are given by,

λi
k,t :=

ρk,t ai
k,t

wi
t

We define the trading strategy of investor i as a sequence of budget shares
λi

t = (λi
1,t, ..., λ

i
K,t)t≥0. Since ai

t and ρk,t are adapted for all t so is each budget
share λi

t.
Assuming that any investor exhausts his budget in all periods in time, i.e.

the portfolio is chosen such that
∑K

k=1 ρk,t ai
k,t = wi

t for all t ≥ 0, every trading

strategy λi
t takes values in the unit simplex ∆K := {x ∈ RK

+ |
∑K

k=1 xk = 1}.
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The market-clearing prices are given by,

ρk,t =
1

āk
t

I∑

i=1

λi
k,t w

i
t (2)

where āk
t > 0, assumed to be adapted, is the total supply of asset k at time

t. For the market selection process to be well defined, we need to guarantee
that equilibrium prices ρt are always positive. A sufficient condition for this
is that some trading strategy with positive initial wealth is completely mixed,
i.e. it has only strictly positive budget shares in every period in time and in
every state of nature. We make the following assumption.

Assumption 2 In every market there is some trading strategy λi
t with posi-

tive initial wealth w0 > 0 that is completely mixed, i.e. λi
t(ω) ∈ int∆K for all

ω ∈ Ω.

It is clear from Assumption 1 and equation (1) that any completely mixed
trading strategy with positive wealth in a period of time maintains a positive
wealth for all future periods. Thus any trader with strictly positive wealth in
one period in time will have strictly positive wealth in all subsequent periods
in time, if he pursues a completely mixed trading strategy.

Taking into account how equilibrium prices are determined, we obtain a
recursive formula for the total wealth of each consumer. Consumer i’s wealth
in period t + 1 is given by,

wi
t+1 =

K∑

k=1

Ak
t (ω) āk

t

λi
k,t w

i
t∑I

j=1 λj
k,t w

j
t

(3)

and the total market wealth in period t+1, wt+1 :=
∑

i w
i
t+1, can be equated

as,

wt+1 =
I∑

i=1

wi
t+1 =

K∑

k=1

Ak
t (ω) āk

t (4)

Note that in the definition of next period wealth we have assumed that no
investor saves or withdraws any money along the process. Our results carry
over to the case of saving rates which are constant over time and identical
among investors.

The prices of the assets, normalized by the market wealth, are given by,

qk,t :=
ρk,t

wt
=

I∑

i=1

λi
k,t r

i
t (5)

6



i.e. the normalized price is a convex combination of the trading strategies for
asset k over the wealth shares of investors. qk,t is adapted.

¿From (3) and (4) we obtain a recursive formula for the evolution of the
wealth (or market) shares ri

t := wi
t/wt,

ri
t+1 =

K∑

k=1

Ak
t (ω) āk

t∑K
l=1 Al

t(ω) āl
t

λi
k,t r

i
t∑I

j=1 λj
k,t r

j
t

(6)

Finally we define the relative payoff of asset k as,

Rk
t (ω) :=

Ak
t (ω) āk

t∑K
l=1 Al

t(ω) āl
t

Assumption 3 (1) The relative payoff of each asset is a stationary random
variable, i.e. Rk

t (ω) = Rk(θtω).
(2) All strategies are stationary, i.e. λi

t(ω) = λi(θtω).

For any given set of stationary adapted strategies (λi) = (λi)i=1,...,I the
evolution of wealth shares (6) can be written as,

rt+1 = f(θtω, rt) (7)

where

fi(θ
tω, r) =

K∑

k=1

Rk(θtω)
λi

k(θ
tω) ri

∑I
j=1 λj

k(θ
tω) rj

(8)

We refer to equation (7) as the market selection process in the following.
The dynamical description of the market selection process employs the

framework of a random dynamical system (Arnold 1998). (7) generates a
random dynamical system in the following sense. Let f(ω) := f(ω, ·) : ∆I →
∆I , and define

ϕ(t, ω, r) :=






f(θt−1ω) ◦ . . . ◦ f(ω)r for t ≥ 1
r for t = 0
f(θtω)−1 ◦ . . . ◦ f(θ−1ω)−1r for t ≤ −1

(9)

In words, ϕ(t, ω, r) is the vector of wealth shares of all investors at time t when
the initial distribution of wealth shares is r and the sequence of realizations
of states ω prevails.

f−1(ω) is well-defined for all ω ∈ Ω if all strategies are completely mixed
and there are no redundant assets. In this case ϕ is defined for all t ∈ Z;
otherwise t ∈ N. In the following we restrict attention to the case in which
f is invertible.
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The family of maps ϕ(t, ω, r) is a random dynamical system on the unit
simplex ∆I . That is, ϕ : Z × Ω × ∆I → ∆I , (t, ω, r) )→ ϕ(t, ω, r) is a
B(Z) ⊗ F ⊗ B(∆I),B(∆I) measurable2 mapping such that ϕ(0, ω) = id∆I

and ϕ(s + t, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all s, t ∈ Z, and ω ∈ Ω. We refer the
reader to the monograph by Arnold (1998) for any additional information.

It is important to emphasize that the random dynamical system generated
by (7) depends on the trading strategies pursued by the investors. That is,
for any set of strategies (λi) there is a unique random dynamical system
generated by (7).

3 Evolutionary Stability

In this section we introduce the stability concepts needed to analyze the long
term behavior of the wealth shares under the market selection process (7).

Given a random dynamical system for a set of stationary and adapted
trading strategies (λi) one is particularly interested in those wealth shares
that evolve in a stationary fashion over the infinite time-horizon. Here we
restrict ourselves to deterministic distributions of wealth shares that are fixed
under the market selection process (7).3 To specify this notion, we recall
the definition of a deterministic fixed point in the framework of random
dynamical systems. Let a set of strategies (λi) be given, and denote by ϕ
the associated random dynamical system.

Definition 1 r̄ ∈ ∆I is called a (deterministic) fixed point of ϕ if for all
ω ∈ Ω,

r̄ = ϕ(1, ω, r̄) (≡ f(ω, r̄)) . (10)

The distribution of wealth shares r̄ is said to be invariant under the market-
selection process (7).

Condition (10) is equivalent to r̄ = ϕ(t, ω, r̄) for all t and all ω.
The assumption of stationarity discharges us from using the common “al-

most surely,” because any condition or result with this additional restriction
can be transferred into a “for all ω” statement by restricting the space Ω to
an invariant subset of full P-measure. This claim only holds in that generality
because time is discrete here.

If ri = 0, then ϕi(t, ω, r) = 0 by (7). Therefore, in any set of trading
strategies each unit vector in ∆I (i.e. each corner) is a fixed point. In words,

2B denotes the Borel σ-algebra, and B(∆I) := B(RI ∩∆I) is the trace σ-algebra.
3See e.g. Schenk-Hoppé (2001) for applications of the general concept of a random fixed

point in economic growth.
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the state in which one investor possesses the entire market does not change
over time.

We are particularly interested in those invariant distributions of wealth
shares which are stable under the market selection process. Roughly speak-
ing, stability means that small perturbations of the initial distribution of
wealth shares do not have a long-run effect. If an invariant distribution of
wealth shares is stable, all sample paths starting in a neighborhood of this
distribution at time zero and the sample path of the invariant distribution of
the wealth shares are asymptotically identical. We will need different notions
of stability; they are defined as follows.

Definition 2 An invariant distribution of wealth shares r̄ ∈ ∆I is called
(locally) stable, if there exists a random open set U(ω) containing r̄ such
that for all ω, limt→∞ ‖ϕ(t, ω, r)− r̄‖ = 0 for all r ∈ U(ω).

U(ω) is a random open set, if it is an open set for all ω and {ω | (∆I\U(ω))∩
G .= ∅} ∈ F for all open sets G, cf. Arnold (1998, Chap. 1.6).

Given a locally stable invariant distribution of wealth shares r̄, then any
initial distribution of wealth shares in a small neighborhood of r̄ is asymp-
totically identical to r̄ as time tends to infinity.

It is straightforward to see that this notion of stability does not make
sense on the level of individual investors in general. For example, suppose r
is an invariant distribution of wealth shares for the random dynamical system
ϕ associated to the pair of strategies (λ1, λ2). Then r̄α := (r1, (1−α) r2, α r2)
is invariant for the random dynamical system, say ϕα, on ∆3 associated to
(λ1, λ2, λ2) for all α ∈ [0, 1]. However, r̄α can never (even if r is locally stable
for ϕ) be locally stable for the random dynamical system ϕα on ∆3.

We will therefore interpret a distribution of wealth shares r as a distribu-
tion over populations of players where all players within each group play the
same strategy. Thus the wealth share ri denotes that fraction of the total
market wealth belonging to the players of strategy λi. Under this assumption
it is clear that all strategies λi are different from each other, i.e. λi .= λi′ for
all i, i′, i .= i′.

The above definition refers to the stability of a distribution of wealth in
a population with given strategies. However, one would also like to have
a notion of stability in the case that new strategies occur on the market.
We first note that the structure of the market selection process (7) implies
the following extension property. Let (λi)i∈I , I = {1, ..., I}, be any set of
completely mixed strategies. Suppose r̄ is an invariant distribution of wealth
shares for the corresponding random dynamical system on ∆I . Then for
any set (λj)j∈J , J = {1, ..., J} with J ≥ 0 (J = ∅, if J = 0), of strategies,
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(r̄, 0, ..., 0) ∈ ∆I+J (J-times zero) is an invariant distribution of wealth shares
for the random dynamical system on ∆I+J associated to the set of strategies
((λi)i∈I , (λj)j∈J ).

Given a set of strategies (λi)i∈I another set of strategies (λj)j∈J is called
new, if with strictly positive probability (1) λj .= λi for all j ∈ J , i ∈ I and
(2) λj .= λj′ for all j, j′ ∈ J , j .= j′, i.e. adding a set of new strategies yields
a market in which no redundant strategies are present.

Definition 3 An invariant distribution of wealth shares r̄ ∈ ∆I is called
evolutionary stable, if for all J ≥ 0, (r̄, 0, ..., 0) ∈ ∆I+J is stable for all sets
of strategies ((λi)i∈I , (λj)j∈J ) with (λj)j∈J being new.

A strategy is called evolutionary stable, if the invariant distribution of
wealth shares 1 ∈ ∆1 is evolutionary stable.

For each evolutionary stable distribution of wealth shares there exits an
entry barrier (a random variable here) below which an arbitrary number of
new strategies do not drive out the incumbent players. Any perturbation,
if sufficiently small, does not change the long-run behavior of the distribu-
tion of wealth shares. The market selection process asymptotically leaves
the mutants with no wealth share while the market is shared between the in-
cumbents as unchanged. As discussed above, we do not allow for redundant
strategies to be introduced.

Unlike in evolutionary game theory, this notion of stability refers to the
distribution of wealth shares and not to the set of strategies. It may well
be the case that for a given set of strategies there are two different stable
invariant distributions of wealth shares one of which being evolutionary stable
and the other not.

Finally, we define a corresponding local stability criterion.

Definition 4 An invariant distribution of wealth shares r̄ ∈ ∆I is called
locally evolutionary stable, if for all J ≥ 0 there exists a random variable
δ(ω) > 0 such that (r̄, 0, ..., 0) ∈ ∆I+J is locally stable for all sets of strate-
gies ((λi)i∈I , (λj)j∈J ) with (λj)j∈J being new and mini∈I maxj∈J ‖λi(ω) −
λj(ω)‖ < δ(ω) for all ω.

A strategy is called locally evolutionary stable, if the invariant distribution
of wealth shares 1 ∈ ∆1 is locally evolutionary stable.

A locally evolutionary stable distribution of wealth shares is evolutionary
stable with respect to local mutations. That is, the strategies that can be
pursued by all mutants are limited to small deviations from existing strate-
gies.

We can now turn to the study of the long-run outcome of the market
selection process.
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4 Blume and Easley’s result revisited

We briefly outline Blume & Easley’s (1992) findings in the framework of
random dynamical systems theory, extending their result to a model with
stationary portfolio rules, a general set of states of nature, and an ergodic
process determining the state of nature.

Analogous to Blume and Easley (1992) we assume that the payoffs of
the assets are diagonal. In our more general setting that is, there exists a
measurable partition (Ωk)k=1,...,K of Ω into sets with strictly positive measure
such that Rk(ω) = 1 if and only if ω ∈ Ωk. (Recall that Rk(ω) ∈ {0, 1} for
diagonal securities.) Due to this property we can unambiguously denote the
relative payoffs in the market selection process (7) at time t by R(θtω).

A trading strategy of investor i is a stationary (not necessarily adapted
here) random variable λi : Ω → ∆K , λi

k(θ
tω) being her wealth share invested

in asset k at time t. By the diagonal payoff structure we may unambiguously
denote by λi

θtω the wealth share invested in that asset k with θtω ∈ Ωk.
Due to the assumption of diagonal payoffs (7) simplifies to,

ri
t+1 = R(θtω)

λi
θtω ri

t∑I
j=1 λj

θtω rj
t

The evolution of the ratio of the wealth shares of any two investors, say i
and j, using completely mixed trading strategies can then be written as,

ri
t+1

rj
t+1

=
λi

θtω

λj
θtω

ri
t

rj
t

because the normalized asset price,
∑I

j=1 λj
θtω rj

t , cancels out for diagonal
securities.

Fix any initial wealth shares ri
0 > 0 and rj

0 > 0. Then the asymptotic
behavior of the ratio of the two wealth shares is given by,

lim
T→∞

1

T
ln

ri
T

rj
T

= lim
T→∞

1

T

T−1∑

t=0

ln
λi

θtω

λj
θtω

= E ln
λi

ω

λj
ω

for almost all sample paths ω. The equality on the far right-hand side of the
last equation holds by the Birkhoff ergodic theorem. The expected value is
finite if the strategies are completely mixed.

Consequently we obtain that along almost any sample path ω,

lim
T→∞

1

T
ln

ri
T

rj
T

> 0 if and only if E ln λi
ω > E ln λj

ω (11)
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The equation on the left-hand side implies that for almost all ω, ln ri
T (ω) ≥

Tε + ln rj
T (ω) for all sufficiently large T , where ε > 0. Since ln ri

T (ω) ≤ 0 for
all T and all ω, ln rj

T (ω) → −∞ as T → ∞. Thus, we find that ri
T (ω) → 1

almost surely.
This result implies the following asymptotic behavior of the market se-

lection process. Those investors who are closest to maximizing the expected
logarithm of the wealth shares will eventually dominate the market. This
result holds regardless of the initial distribution of wealth shares in the pop-
ulation. However, note that even in the case discussed here the surviving
population depends on the strategies present in the population.

The best choice an investor can make in a period t is to set λi
θtω = 1 if

and only if θtω ∈ Ωk. However, this requires knowledge of the state ωt prior
to the revelation of the random draw at time t. The strategy is therefore not
adapted. If the only information available to investors at time t is given by
F t, their strategies have to be adapted, i.e. λi(θtω) has to be F t-measurable
(and thus can only depend on ωt−1 at time t) for every i.

Among all adapted strategies the optimal portfolio rule is given by the
random variable λω ∈ ∆K that maximizes E(ln λω | ω−1), the expected
logarithm of λω contingent on the observed past ω−1 = (ω−1, ω−2, ...).

For instance if the ergodic process determining the state of nature is a
Markov process, then the optimal portfolio rule is one that depends only
on the last observation ωt−1. All further information from the observed his-
tory is not helpful in that case. The optimal strategy is given by λk(ω) =∫

1Ωk
(ω0) P (dω0, ω−1) = P (Ωk, ω−1) where P (ω0, ω−1) denotes the transition

probability. If the state space S is finite, λk(ω) = P (k, ω−1) (the transition
probability), where ω−1 is the state observed in the preceding period in time.

The case considered in Blume and Easley (1992) is derived by assuming
that the random draw is i.i.d. and a finite set of states s = 1, ..., S with P{ω |
ωt = s} ≡ ps > 0. Then the state ωt is independent of the observed history
up to time t, ωt−1. In this case the past does not contain any information on
the future and thus it is optimal to play a simple trading strategy, i.e. the
budget shares are deterministic and fixed for all times. The right-hand side
of equation (11) then becomes

S∑

s=1

ps ln λi
s >

S∑

s=1

ps ln λj
s

Consequently—as in Blume and Easley (1992)—we obtain that those in-
vestors who are closest to maximizing the expected logarithm of the budget
shares λs (under the distribution of the one-period random draw) will eventu-
ally dominate the market. The strategy maximizing the expected logarithm
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of the budget shares λs is “betting your beliefs”, i.e. λs = ps for all s.
As already pointed out above, if this strategy is present in the population

then it is the unique long-run outcome of the market-selection process. Equa-
tion (11) is an absolute fitness criterion in the sense that it is independent of
the population under consideration. With diagonal securities maximizing the
expected logarithm conditional on the past observation means maximizing
the growth rate of wealth in any population.

5 Main Results

In this section we show that there exists a unique evolutionary stable strategy
in any incomplete market. This portfolio rule has an explicit representation.
Moreover, we can show that any other investment strategy is not even locally
evolutionary stable.

As pointed out above, we restrict our analysis to deterministic invari-
ant wealth shares. It is first proved that these fixed points correspond to
monomorphic populations if there are no redundant assets. We then derive
necessary conditions for the (local) stability and instability of such station-
ary wealth shares in the general case in which portfolio rules are adapted.
The central mathematical tool is the multiplicative ergodic (or Oseledets’s)
theorem.

These conditions are used to single out one particular portfolio rule λ$

as being evolutionary stable if all investors use simple portfolio rules, i.e.
strategies that are independent of past observations. In the i.i.d. case we
prove that λ$ is the only evolutionary stable portfolio rule in the set of all
adapted strategies. We further show that any other portfolio rule can be
driven out even by portfolio rules arbitrary close to it, i.e. it is not even
locally evolutionary stable.

With a general payoff matrix we can no longer benefit from the cancella-
tion of prices in the evolution of relative wealth shares (an essential property
that was used in Section 4) and there are some important conceptual differ-
ences to the case of diagonal securities. In contrast to that case there is no
longer an absolute fitness criterion for the survival of trading strategies. The
growth rate of any trading strategy now depends essentially on the popula-
tion in which it lives. Restricting attention to the question of local stability of
deterministic invariant distributions circumvents these problems and is still
sufficient to single out a unique evolutionary stable trading strategy. Before
presenting the main results of the paper, we derive two auxiliary results that
are also of independent interest.

We make the following assumption throughout the following.

13



Assumption 4 There are no redundant assets.

Assumption 4 requires that for any two portfolios a1, a2 : Ω → ∆K

with a1(ω) .= a2(ω) on a set of strictly positive measure,
∑

k Rk(ω)(a1
k(ω)−

a2
k(ω)) .= 0 on a set of strictly positive measure. That is different portfolios

cannot generate the same payoff stream almost surely.
We have already noted that every distribution of wealth shares in which

the players of only one strategy possess the entire market wealth is invari-
ant under the market selection process (and is a deterministic fixed point).
Moreover, if there are no redundant assets there is also a converse to this
observation as the following result shows.

Proposition 1 Only one strategy can have strictly positive wealth in every
population of strategies with a (deterministic) invariant distribution of wealth
shares.

In Proposition 1 all deterministic invariant distributions of wealth shares
are characterized. We next derive a sufficient condition for the stability of
such fixed points under Assumptions 1–4. The following result is central to
the proof of the main results.

Proposition 2 Let the state be determined by an ergodic process. Given
any set of adapted strategies (λi). The invariant distribution of wealth shares
r̄ = en being concentrated on the players of the completely mixed n-th strategy
is

(i) stable, if

E ln

(
K∑

k=1

Rk(ω)
λi

k(ω)

λn
k(ω)

)
< 0 for all i .= n; (12)

(ii) unstable, if

E ln

(
K∑

k=1

Rk(ω)
λi

k(ω)

λn
k(ω)

)
> 0 for some i .= n. (13)

The conditions in Proposition 2 have the following interpretation. In a
situation in which the prices of all assets are determined by the stationary
portfolio rule λn we can measure the exponential growth rate of other, com-
peting portfolio rules. If the invariant distribution of wealth shares r̄ = en

is stable then the strategy λn, which completely determines the prices, has
a higher growth rate in a neighborhood of this distribution of market shares
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than all other portfolio rules in the population. However, if there is at least
one strategy that has a higher growth rate for these prices, r̄ = en is unsta-
ble and the λn-player does not reobtain total market wealth after a slight
deviation from the possessing-everything situation. From the condition (13)
any monomorphic population playing λn(ω) can be successfully invaded by a
trader maximizing the expected logarithm given the prices λn(ω). In partic-
ular any incumbent who maximizes expected utility according to incorrect
beliefs p̃ will be driven out by the trader maximizing expected logarithmic
utility according to the correct beliefs p.

The quantities on the left-hand side of (12) resp. (13) are the Lyapunov
exponents of the linearization of the random dynamical system generated by
(7) (the market selection mechanism) at the corner of the simplex ∆I , i.e.
the fixed point in which only one investor holds total market wealth. The
eigenspaces correspond to the vertices of the simplex.

Note that stability resp. instability of a status quo strategy λn is deter-
mined by pair-wise comparisons with all other strategies in the population.
This is due to the fact that the linearization at each corner of the simplex ∆I

is a diagonal matrix. Evolutionary stability of a strategy λn thus means that
condition (i) in Proposition 2 is satisfied for all adaptive strategies λi .= λn.
There is no need to check for stability of λn in any possible pool of strategies.

The main result of our paper is based on the observation that, allowing
for all possible mutations, only one particular strategy satisfies the necessary
condition for stability derived in Proposition 2.

Denote by

g(λi, λn) := E ln

(
K∑

k=1

Rk(ω)
λi

k(ω)

λn
k(ω)

)
. (14)

the exponential growth rate appearing on the left-hand side of (12) and (13).
Suppose there is some portfolio rule λ$ such that g(λ, λ$) < 0 for all

λ .= λ$. Then we obtain

g(λ$, λ) = E ln

(
K∑

k=1

Rk(ω)
λ$

k(ω)

λk(ω)

)
≥ E ln

(
K∑

k=1

Rk(ω)
λk(ω)

λ$
k(ω)

)−1

> 0.

by the Jensen inequality because Rk(ω) is a probability measure on {1, ..., K}.
Summarizing this result, we can state the following corollary.

Corollary 1 Suppose all investors employ completely mixed portfolio rules.
Then existence of a portfolio rule that is evolutionary stable (i.e. stable in any
pool of strategies) implies that all other portfolio rules cannot be evolutionary
stable.
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The task is to show that there is an evolutionary stable portfolio rule and
to give an explicit formula for this rule.

Assume momentarily that the state of nature is determined by an i.i.d.
process. Then the relative payoff of asset k at time t is determined by the
state of nature in the respective period, i.e. Rk(θtω) = Rk(ωt). The prob-
ability measure on the sample path space Ω = SZ is given by the product
measure P = µZ, where µ is the distribution of the state in each period in
time. In this case,

g(λi, λn) =

∫

SN

∫

S

ln

(
K∑

k=1

Rk(s)
λi

k(ω
−1)

λn
k(ω−1)

)
µ(ds) µN(dω−1), (15)

where ω−1 = (ω−1, ω−2, ...) is the observed history at time t = 0.
If investors do not base their portfolio decision on any past observations

(for instance because they know that the state is determined by an i.i.d.
process), their portfolio rule is determined by a simple trading strategy, i.e. a
deterministic vector of budget shares (λ(ω) ≡ λ ∈ ∆K). Under this assump-
tion the above equation simplifies to

g(λi, λn) =

∫

S

ln

(
K∑

k=1

Rk(s)
λi

k

λn
k

)
µ(ds) (16)

If we want to check for evolutionary stability of a simple strategy λn in the set
of all simple strategies, we need to show that condition (i) in Proposition 2
holds for all λi ∈ ∆K with λi .= λn, i.e. the term in (16) is strictly less than
zero. Note that for fixed λn ∈ int∆K (or for fixed λi ∈ int∆K) (16) defines
a map from ∆K to R. This observation is also true for both conditions in
Proposition 2 if the state process is ergodic and investors only employ simple
strategies.

The situation is more complicated if, for instance, the status quo strategy
λn depends on the observation ω−1. Then the quantity (15) also depends on
the past—albeit the payoffs of all assets are independent of the past. The
stability condition in Proposition 2 depends on the past only through the
investor’s belief that past observations matter in choosing a portfolio.

If we want to check for evolutionary stability of a strategy λn in this
general case it suffices prove the following. For every possible past ω−1 and
all deterministic vectors λi ∈ ∆K it holds

∫

S

ln

(
K∑

k=1

Rk(s)
λi

k

λn
k(ω−1)

)
µ(ds) ≤ 0
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and the inequality is strict on a set of strictly positive P-measure. Thus we
are back to check stability for simple strategies. And the above equation also
defines a map from ∆K to R.

To check for the absence of evolutionary stability of a strategy λn(ω−1)
it is sufficient to show that for every possible past ω−1 there exists a deter-
ministic vector λi ∈ ∆K such that

∫

S

ln

(
K∑

k=1

Rk(s)
λi

k

λn
k(ω−1)

)
µ(ds) ≥ 0

and the inequality is strict on a set of strictly positive P-measure. This
defines a map ω−1 )→ λi. The above inequality implies that the (instability)
condition (ii) in Proposition 2 is fulfilled for λi(ω−1). However, it is important
to point out that one has to make sure that the resulting map is measurable.
This is true without any further assumptions, for instance, if {s} ∈ S for all
s ∈ S. Then every past ω−1 ∈ F0.

Let us finally discuss the Markovian case in which the state of nature is
determined by a Markov process with transition probability P . We find

g(λi, λn) =

∫

SN

∫

S

ln

(
K∑

k=1

Rk(s, ω−1)
λi

k(ω
−1)

λn
k(ω−1)

)
P (ds, ω−1) P−1(dω−1) (17)

where P−1 is the distribution of the sample path ω−1 ∈ SN.
If investors only employ Markovian strategies, i.e. λ(ω−1) = λ(ω−1) de-

pends only on the state of nature revealed in the preceding period, then (17)
simplifies to

g(λi, λn) =

∫

S

∫

S

ln

(
K∑

k=1

Rk(s, u)
λi

k(u)

λn
k(u)

)
P (ds, u) µ(du) (18)

where µ is the stationary distribution of the state of nature in each period.
The (absence of) evolutionary stability of a strategy can be checked analo-
gously to the procedure explained for the i.i.d. case.

We have the following result.

Theorem 1 Let the state be determined by an ergodic process. Suppose in-
vestors only employ simple strategies, i.e. λ(ω) ≡ λ ∈ ∆K. Then the simple
strategy λ$ defined by,

λ$
k = ERk(ω), (19)

for k = 1, ..., K is evolutionary stable, and no other strategy is locally evolu-
tionary stable.
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The portfolio rule λ$ divides wealth according to the expected relative
payoffs of the assets. For a given asset market of the structure discussed in
this paper, the strategy is very simple to compute; it requires a minimum of
easily accessible information.

Let us consider the case in which the state of nature can only take finitely
many values s = 1, ..., S in detail. Under the assumption of stationarity
P{ω | ωt = s} ≡ ps > 0 for all s. Therefore, the portfolio rule λ$ in
Theorem 1 becomes λ$

s =
∑S

s=1 psRk(s). It is straightforward to see that
we reobtain the result by Blume and Easley (1992, Section 3) in the case of
diagonal securities. In this case, λ$ corresponds to the Kelly rule of “betting
one’s beliefs.”

The assumption in Theorem 1 that all investors employ simple strategies
even though the state is determined by a general ergodic process can be
criticized. However, recall that even if the state is i.i.d. the past observations
can enter into the market selection mechanism (and thus in the condition for
local (in)stability) through investors’ beliefs. That is, if a trader adopts a
proper adapted portfolio rule then the past matters. Note that the stability
criteria in Proposition 2 require an integration over the entire history of the
process because the strategies may depend on the past observations.

We have the following general result in the i.i.d. case.

Theorem 2 Let the state be determined by an i.i.d. process. Then λ$
k =

ERk(ω), k = 1, ..., K, is the only evolutionary stable portfolio rule.
Moreover, if S is the power set of the set of states S, then we find that all

other completely mixed adapted strategies are not even locally evolutionary
stable.

The technical assumption that S is the power set of the set of states S
is fulfilled, for instance, if S is countable (or finite) and S is the Borel σ-
field. We need this condition to ensure measurability of a strategy that is
constructed in the proofs of the next two results to ensure that no portfolio
rule different to λ$ can be locally evolutionary stable.

Theorem 3 generalizes this result to the Markovian case. The proof of
Theorem 3 is a straightforward extension of the proofs of Theorems 1 and 2
and is therefore omitted.

Theorem 3 Let the state be determined by a Markov process. Then the
adaptive strategy λ$ defined by,

λ$
k(ω−1) = E(Rk(ω) | ω−1), (20)

for k = 1, ..., K is the only evolutionary stable portfolio rule.
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Moreover, if S is the power set of the set of states S, then we find that all
other completely mixed adapted strategies are not even locally evolutionary
stable.

The strategy λ$ can be interpreted as a Nash equilibrium in the follow-
ing way. For simplicity we restrict the discussion to the i.i.d. case. Recall
the definition of the function g in (16). g(α, β) measures the asymptotic
exponential growth rate of a strategy α in a population in which all asset
prices are determined by strategy β. Using Proposition 2, the assertion of
Theorem 1 can be stated as:

For all α .= λ$,

g(λ$, λ$) > g(α, λ$) and;

g(α, α) < g(β, α) for some β in every neighborhood of α.

That is to say λ$ is the unique symmetric Nash equilibrium in a game with
payoff function g. Moreover, λ$ is also a strict Nash equilibrium. Therefore
λ$ is the unique evolutionary stable strategy in the sense of Maynard Smith
and Price (1973).

6 Mean-Variance Optimization

In this section we analyze the evolutionary fitness of portfolio rules based
on mean-variance optimization. For clarity of presentation we restrict the
analysis to simple strategies.

The mutual fund theorem states that given all investors build portfo-
lios according to the mean-variance-criterion, then every investor will hold
a combination of the riskless asset and the market portfolio in any capital
market equilibrium. Even though it is very questionable whether indeed all
investors use mean-variance-optimization, investing a big share of wealth in
the market portfolio is a very common behavior.

We extend our previous model by incorporating a strategy that enables
an investor to buy the market portfolio. This extension relates our model to
the classical CAPM4 results.

It is well known that in practice mean-variance portfolios are often under
diversified, i.e. they typically put positive weight on very few assets only. To
cure this defect it is then usually suggested to modify the mean-variance port-
folio by devoting some positive but small share of the budget on every asset in

4See also Sciubba (1998) for an analysis of CAPM-trading rules in the original Blume
and Easley (1992) setup with diagonal securities.
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the portfolio, ensuring that the portfolio is completely mixed. We show in the
next section that this commonly used “quick fix” of the under-diversification
problem is indeed an improvement of the mean-variance portfolio.

6.1 The CAPM strategy

Consider an investor, say γ, who wants to buy a fraction of the market
portfolio which is the vector of total stock of the assets. In our model each
asset is supplied in one unit. Phrased in terms of budget shares, to buy the
market portfolio, an investor has to divide his wealth proportional to the
asset prices, i.e.,

λγ
k,t =

ρk,t∑K
l=1 ρl,t

≡ qk,t

where k = 1, ..., K. This trading strategy depends on the equilibrium prices
in the current period. An investor who buys the market portfolio has there-
fore to give a demand function to the auctioneer. This calls for an extension
of our previous analysis.

Suppose all other investors pursue simple trading strategies λi ∈ ∆K ,
i = 1, ..., I, i .= γ. Then the market-clearing condition becomes,

qk,t =
∑

i'=γ

λi
k ri

t + qk,t r
γ
t

and thus

qk,t =
1

1− rγ
t

∑

i'=γ

λi
k ri

t

The evolution of the market wealth of the CAPM investor can be equated
as

rγ
t+1 =

K∑

k=1

Rk(θtω)
λγ

k,t r
γ
t

qk,t
=

K∑

k=1

Rk(θtω) rγ
t = rγ

t

Summarizing our findings we can state the following result.

Proposition 3 The wealth share of a CAPM investor is constant in any
population in which all other players pursue simple strategies. In particular,
a CAPM investor will never vanish nor dominate the market.

The intuition behind this result is given by the representation of the
normalized market-clearing price in the model with only simple strategies
(5). The normalized equilibrium price equals the relative market wealth
invested in that asset. If one player dominates the market in the long-run and
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asymptotically own the entire market wealth, the asset price will reflect the
trading strategy of this investor. The CAPM investor mimics this strategy
because he distributes his wealth according to the relative value of the assets.

From an evolutionary point of view it can be concluded that investing in
the market portfolio is a strategy with strong resistance against the market
selection mechanism. Hence even though buying the market portfolio may
not be in accordance with mean-variance optimization (because not every-
body uses it) it is a convenient rule which automatically imitates the most
successful trading strategy!

6.2 Diversification

We assume that the number of states of nature is finite, s = 1, ..., S.

Corollary 2 Suppose λ̂ is an under-diversified simple strategy, i.e. λ̂k = 0
for at least one k. Denote by λ̂ε

k := (1 − ε)λ̂k + ε/S, 0 < ε ≤ 1, the
corresponding ε-completed strategy. Then λ̂ε is robust against λ̂-mutants for
all sufficiently small ε > 0, i.e. the distribution of wealth shares that assigns
total wealth to the λ̂ε-player is stable in the population (λ̂ε, λ̂).

Even though using the “quick fix” to prevent under-diversification is bet-
ter than investing according to the under-diversified portfolio rule, it is clear
from the main result Theorem 1, that ε-completed under-diversified simple
strategies are not locally stable (if they do not coincide with λ$). However,
we next show that the situation for ε-completed portfolio rules λ̂ε is even
worse. Any completely mixed simple strategy drives out λ̂ε for all small
enough ε > 0.

Corollary 3 Given any completely mixed simple strategy λc and any under-
diversified simple strategy λ̂. Then λ̂ε, defined in Corollary 2, is not robust
against λc-mutants for all sufficiently small ε > 0, i.e. the distribution of
wealth shares that assigns total wealth to the λ̂ε-player is not stable in the
population (λ̂ε, λc).

Appendix

Proof of Proposition 1. We prove the statement by contraposition. Let
λi, i ∈ I, be a family of adapted trading strategies such that λi(ω) .= λj(ω)
for some i, j ∈ I, i .= j on a set Ω̄ of strictly positive P-measure. Let r ∈ ∆I

with rirj > 0. We will show that r cannot be invariant.
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Since λi, λj ∈ int∆K, and rirj > 0, λi(ω) ri .= λj(ω) rj for all ω ∈ Ω̄. This
further implies that ai := (λi

k ri/
∑I

l=1 λj
k rl)k .= (λj

k rj/
∑I

l=1 λj
k rl)k =: aj

for all ω ∈ Ω̄, i.e. the ‘portfolios’ ai and aj are different. Due to the non-
redundancy Assumption 4, fi(ω, r) .= fj(ω, r) in equation (7) on a set of
strictly positive measure. Hence r is not invariant in the sense of Definition 1.

!

Proof of Proposition 2. The proof is mainly an application of Oseledets’s
multiplicative ergodic theorem for random dynamical systems on manifolds,
see Arnold (1998, Chapter 4).

The random dynamical system describing the evolution of wealth shares is
defined on the simplex ∆I , an I−1-dimensional manifold with boundary. We
therefore transform the system and consider a conjugate random dynamical
system on a subset of the Euclidean space.

Define the projection of the unit simplex,

DI−1 :=
{

y ∈ RI−1 | yi ≥ 0,
I−1∑

i=1

yi ≤ 1
}
⊂ RI−1

+ .

Further, for each n ∈ I define the map

hn : DI−1 → ∆I , hn(y1, ..., yI−1) :=
(
y1, ..., yn−1, 1−

I−1∑

i=1

yi, yn, ..., yI−1

)
.

with inverse
h−1

n (x1, ..., xI) := (x1, ..., xn−1, xn+1, ..., xI).

hn is a C∞-diffeomorphism. We obtain the conjugate random dynamical
system on DI−1,

ψn(t, ω) := h−1
n ◦ φ(t, ω) ◦ hn.

Due to the definition of the space DI−1, we can take directional derivatives
in the direction of all unit vectors at all points in the interior of DI−1 relative
to RI−1

+ . That is we can determine the Jacobian of the conjugate system at
all points in {y ∈ RI−1

+ |
∑I−1

i=1 yi < 1} (which is an invariant set for the
random dynamical system ψn).

Note that the origin of RI−1 corresponds to the nth corner of the unit sim-
plex. The stability properties of these two fixed points are identical because
of the C∞-equivalence of both random dynamical systems.

For notational simplicity we assume without loss of generality that n = I.
Then the partial derivatives of ψI(1, ω, y) = h−1

I ◦ φ(1, ω) ◦ hI(y) are given
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by,

∂ψi
I(1, ω, y)

∂ym
= −

K∑

k=1

Rk(ω) (λm
k (ω)− λI

k(ω)) λi
k(ω) yi

(
∑I−1

j=1 λj
k(ω) yj + λI

k(ω) (1−
∑I−1

j=1 yj))2

for all i .= m, and by

∂ψi
I(1, ω, y)

∂ym
= −

K∑

k=1

Rk(ω) (λm
k (ω)− λI

k(ω)) λm
k (ω) ym

(
∑I−1

j=1 λj
k(ω) yj + λI

k(ω) (1−
∑I−1

j=1 yj))2

+
K∑

k=1

Rk(ω) λm
k (ω)

∑I−1
j=1 λj

k(ω) yj + λI
k(ω) (1−

∑I−1
j=1 yj)

for all i = m.
The stability properties of eI ∈ ∆I can be determined by evaluating the

Jacobian of ψI at the origin and applying the multiplicative ergodic theorem
of Oseledets. It will be shown that condition (12) resp. (13) ensures that the
top Lyapunov exponent of this linear system is strictly negative resp. positive.
Results by Wanner (1995), see Arnold (1998, Theorem 7.5.6), ensure that
the dynamic behavior of the linearized system carries over (locally) to the
nonlinear stochastic system.

From the above expressions, we obtain the Jacobian of ψI at y = (0, ..., 0).
It is a diagonal matrix with entry,

Am,m(ω) :=
K∑

k=1

Rk(ω)
λm

k (ω)

λI
k(ω)

The multiplicative ergodic theorem, Arnold (1998, Theorem 4.2.6), implies
that the Lyapunov exponents of the fixed point y = 0 of ψI are given by
limT→∞

1
T ln |

∏T
t=0 Am,m(θtω)|, m = 1, ..., I − 1. The integrability condition

of the multiplicative ergodic theorem is satisfied because the space ∆I is
compact. By the Birkhoff ergodic theorem, we find that this limit is equal to

lim
T→∞

1

T

T∑

t=0

ln

∣∣∣∣∣

K∑

k=1

Rk(θtω)
λm

k (θtω)

λI
k(θ

tω)

∣∣∣∣∣ = E ln

∣∣∣∣∣

K∑

k=1

Rk(ω)
λm

k (ω)

λI
k(ω)

∣∣∣∣∣ (21)

Zero is a stable fixed point of ψI if the term in (21) is strictly negative for all
m = 1, ..., I − 1. If (21) is strictly positive for some m, then zero is locally
unstable. Due to the diagonal structure of the Jacobian, the eigenspaces
correspond to the linear spaces spanned by the unit vectors (restricted to the
positive orthant RI−1

+ ).
The stability of the original system on ∆I at the fixed point eI ∈ ∆I is

determined by the Lyapunov exponents (21). The corresponding eigenspaces
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are given by the vertices. All summands in (21) are positive and we thus
have obtained conditions (12) and (13) of the proposition. !

Proof of Theorem 1. Obviously, λ$ is a completely mixed strategy, i.e.∑K
k=1 λ$

k = 1 and λ$
k > 0 for all k. Next we define the auxiliary function,

gβ(α) := E ln

(
K∑

k=1

Rk(ω)
αk

βk

)
(22)

in accordance with Proposition 2. For each fixed strategy β ∈ int∆K ⊂ RK,
gβ : int∆K → R. gβ(α) is the Lyapunov exponent of the distribution of
wealth that assigns total wealth to the ‘status quo’ population that plays
strategy β in a market in which α is the only the alternative strategy.

By Proposition 2 the first assertion of the theorem follows if we can show
that gλ!(α) < 0 for all α ∈ int∆K with α .= λ$.

We prove that gβ(α) is strictly concave for all β ∈ int∆K and that gλ!(α)
takes on its maximum value at α = λ$.

To ensure strict concavity it suffices to show that α )→ gβ(α) is strictly
concave on the space RK

++, because restriction of the domain to the linear sub-

space int∆K preserves strict concavity. The function ln
∑K

k=1(R
k(ω) αk/βk)

is concave for all ω and—due to the no-redundancy Assumption 4—strictly
concave on a set of positive measure. Therefore gβ(α) is strictly concave for
each fixed β ∈ int∆K.

We can now employ that λ$ is the unique maximum of gλ!(α) on int∆K

if all directional derivatives at this point are zero.
The partial derivative of gβ(α) with respect to the i-th component αi is

given by
∂gβ(α)

∂αi
= E Ri(ω)/βi∑K

k=1 Rk(ω)αk
βk

Observe that interchanging integration and differentiation is allowed because
ln(

∑K
k=1 Rk(ω) αk/βk) is integrable for each fixed α (follows from ERk(ω) ≤

1 < ∞ for all k) and E(Ri(ω)/
∑K

k=1 Rk(ω)) ≤ 1 < ∞ (this follows from the
fact that Rk(ω) ≥ 0 for all k and all ω by assumption). The last equation
implies

∂gλ!(λ$)

∂αi
= ERi(ω)

λ$
i

= ERi(ω)

ERi
≡ 1

for all i = 1, ..., K, since
∑K

k=1 Rk(ω) ≡ 1 for all ω.
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The directional derivative of gλ! in the direction (dα1, ..., dαK) with the
restriction

∑K
k=1 dαk = 0 (which is a vector in the simplex) is equated as

K∑

i=1

∂gλ!(λ$)

∂αi
dαi = 0.

Corollary 1 ensures that any portfolio rule different to λ$ is not evolutionary
stable.

Let us next prove that any strategy β .= λ$ with β ∈ int∆K is not locally
evolutionary stable. Since—due to the i.i.d. assumption—the dependence of
the strategy β on the past ω−1 does not affect the expected value in Propo-
sition 2, cf. equation (16), we can restrict our analysis to simple strategies β.
A strategy β .= λ$ is not locally evolutionary stable, if for any neighborhood
of β there exists an α such that gβ(α) > 0. It suffices to show that the
directional derivative of gβ at β is strictly positive in one direction.

Since β .= λ$ and both are points in the simplex there exists i .= j with
βi > λ$

i and βj < λ$
j . Note that we have assumed a minimum of two assets.

The directional derivative of gβ at β in the direction dα given by dαi =
−1/2, dαj = 1/2, and zero otherwise, is given by,

K∑

k=1

∂gβ(β)

∂αk
dαk =

K∑

k=1

ERk

βk
dαk =

1

2

(
λ$

j

βj
− λ$

i

βi

)
> 0.

!

Proof of Theorem 2. This result follows mainly from an application of
the proof of Theorem 1. For any adapted strategy λi(ω) = λi(ω−1) with
λi(ω) .= λ$ on a set Ω̄ of strictly positive P-measure we have the following.
Fix any ω−1 ∈ SN. Then gλ!(λi(ω−1)) ≤ 0 for all ω and the inequality is
strict for all ω ∈ Ω̄, cf. proof of Theorem 1. This implies that condition (i)
in Proposition 2 holds. Therefore λ$ is evolutionary stable.

To prove that no other adapted strategy can be evolutionary stable, fix
any adapted strategy λi(ω) = λi(ω−1) with λi(ω) .= λ$ on a set Ω̄ with
P(Ω̄) > 0.

For every fixed ω−1 ∈ SN, we employ the procedure that has been applied
in proof of Theorem 1 to find a strategy such that for a strategy, say λj,
gλi(ω−1)(λ

j) ≥ 0 where the inequality is strict for all ω ∈ Ω̄.
If S is the power set of S, then F is the power set of SZ. Therefore the

strategy λj(ω) := λj(ω−1) is measurable. By construction it is also adapted
and in any prescribed neighborhood of λi. We have defined λj in the way
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that condition (ii) in Proposition 2 holds for the pair of strategies λi, λn = λj.
As a result the adapted strategy λi is not evolutionary stable. !

Proof of Corollary 2. According to Proposition 2(i) it suffices to show
that

E ln

( K∑

k:λ̂k>0

Rk(ω)
λ̂k

(1− ε)λ̂k + ε/S

)
< 0

for all small ε > 0. The left-hand side of this equation is strictly increased by
omitting ε/S in the denominator. We thus obtain the sufficient condition,

E ln

( ∑

k:λ̂k>0

Rk(ω)

)
≤ ln(1− ε) (23)

Since there is at least one k such that λ̂k = 0, we find that
∑

k:λ̂k>0 Rk(ω) < 1
on a set of positive measure (the term is bounded by 1 for all ω), the left-
hand side of (23) E ln

(∑
k:λ̂k>0 Rk(ω)

)
< 0. Therefore (23) is satisfied for all

small enough ε. !

Proof of Corollary 3. Again we employ Proposition 2. The local instability
result says that the assertion of the Corollary is true, if

E ln

(
K∑

k=1

Rk(ω)
λc

k

(1− ε)λ̂k + ε/S

)
> 0 (24)

for all small ε > 0.
Noting that

K∑

k=1

Rk(ω) λc
k

(1− ε)λ̂k + ε/S
=

∑

k:λ̂k>0

Rk(ω) λc
k

(1− ε)λ̂k + ε/S
+

∑

k:λ̂k=0

Rk(ω)
S λc

k

ε

λc
k > 0 for all k, and Rk(ω) > 0 on a set of positive measure for all k with

λ̂k = 0, we find that the left-hand side of (24) tends to infinity as ε → 0. !
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Schenk-Hoppé, K. R. (2001): “Random Dynamical Systems in Eco-
nomics,” Stochastics and Dynamics, 1, 63–83.

Sciubba, E. (1998): “The Evolution of Portfolio Rules and the Capital
Asset Pricing Model,” Working Paper, University of Cambridge, mimeo.

Thorp, E. (1971): “Portfolio choice and the Kelly criterion,” In Stochastic
Models in Finance,W.T. Ziemba and R.G. Vickson, eds., 599–619.

Wanner, T. (1995): “Linearization of random dynamical systems,” in Dy-
namics Reported Vol 4, ed. by C. Jones, U. Kirchgraber, and H. O. Walther,
pp. 203–269. Springer-Verlag.

27


