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Abstract.  For users of the Ethereum network, the gas price is a crucial parameter 

that determines how swiftly the decentralized consensus protocol confirms a 

transaction. This paper studies the statistics of the Ethereum gas price. We start with 

some conceptual discussion of the gas price notion in view of the actual transaction-

selection strategies used by Ethereum miners. Subsequently, we provide the 

descriptive statistics of what we call the threshold gas price. Finally, we identify and 

estimate a seasonal ARIMA (SARIMA) model for predicting the hourly median of 

the threshold gas price. 
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1. Introduction 

Among the various cryptocurrency platforms that offer convenient accounting and 

settlement functionalities, Ethereum stands out as the most popular public blockchain 

platform capable of storing and executing smart contracts.1 Users interact with the platform 

for a variety of reasons, such as transferring ether or tokens, calling a function of a smart 

contract, or deploying a new instance of a smart contract. In any of these interactions, the 

Ethereum protocol requests the user to set a specific gas price, usually denominated in 

Gwei.2 Subsequently, the thereby priced transaction enters a pool of pending transactions. 

Depending on the transaction-selection strategies implemented by individual miners, the 

transaction may or may not be included into the next block. However, given that the block 

reward for the successful miner depends positively on the gas price of included transactions, 

the gas price is crucial for determining how swiftly the network confirms the transaction. It 

is, therefore, desirable for users of the Ethereum network to be able to predict the gas price 

level necessary for obtaining a confirmation within a specified period of time and with a 

certain probability of confidence. 

This paper studies the Ethereum gas price from a statistical perspective. The analysis 

has three main parts. We start by reviewing the institutional background of the market for 

Ethereum transactions. In particular, this review entails an examination of the transaction-

selection strategies used by Ethereum miners, and the conceptualization of what we call the 

threshold gas price for a block of transactions. Next, we provide the descriptive statistics of 

the threshold gas price over the considered time interval (January 2018 to November 2019). 

As the market for Ethereum transactions is far from perfect, we present our findings as a 

collection of stylized facts. Finally, we develop an empirical model of the Ethereum gas 

price. Specifically, based on a variety of tests, we identify a seasonal autoregressive 

integrated moving average (SARIMA) model as a statistical representation for the hourly 

median of the threshold gas price. Returning to the motivation for the analysis, we evaluate 

the predictive capability of the model, and discuss how well it serves the purpose of 

determining a “safe” gas price level for Ethereum transactions.  
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The literature on blockchain transaction fees and mining strategies is still small. 

Regarding the Ethereum network, we found three related papers. Pierro and Rocha3 studied 

the determinants of transaction fees and evaluated their predictive power using Granger 

causality. Werner et al.4 used a recurrent neural network to forecast the minimum gas price. 

Finally, de Azevedo Sousa et al.5 estimated Pearson and Spearman coefficients to measure 

the correlation between gas price and pending time, reporting non-significant values. 

However, prioritization by miners has not been adjusted for and the gas price itself is 

potentially a lagged endogenous variable (as longer expected pending time may lead to 

higher gas prices which a simple correlation cannot account for). Regarding bitcoin, Möser 

and Böhme6 concluded that higher transaction fees tend to lead to faster confirmation. 

However, they were also observant of the heterogeneity and instability of transaction fees. 

Koops7 studied the distribution of confirmation times of bitcoin transactions. A game-

theoretic model involving both miners and network users has been proposed by Easley et 

al.8 As far as we can tell, however, the research pursued in the present paper, viz. the 

identification of a statistical model for the economically relevant threshold gas price, has 

not been attempted before. 

The remainder of this paper has the following structure. Section 2 provides some 

institutional background. Section 3 presents the descriptive statistics of the threshold gas 

price. Section 4 discusses the identification and estimation of our statistical model. Section 

5 concludes. An Appendix provides additional background and analysis.  

 

2. The market for Ethereum transactions 

This section prepares the main analysis. We first provide some background on Ethereum 

transactions. We then study miners’ transaction-selection strategies. Subsequently, we 

introduce our definition of the Ethereum gas price, and finally describe the data set.   

2.1 Transactions and blocks 

Successful transactions correspond to atomic status changes of the Ethereum network.9 All 

miners in the Ethereum network continuously receive authorized transactions into the 
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pending pool. From there, miners consecutively add transactions into their block. By doing 

so, they take part in the decentralized proof-of-work consensus protocol Ethash that allows 

miners to invest computational power to find a valid hash. The successful miner earns a 

reward that is equivalent to a sum of block (and uncle) rewards and transaction fees, where 

the latter corresponds, for any given transaction, to the product of gas price and the amount 

of gas actually used in the execution of that transaction. Gas is a dimensionless quantity, 

meaning that there is no particular name for one unit. A new block is mined on average 

every 𝛥𝑡 = 15 seconds. 

Among the data fields that comprise an Ethereum transaction, the following three are of 

particular relevance for the subsequent analysis: 

 

• The gas price specifies the amount of Ether (or Gwei) that the creator is willing to pay 

for gas.  

 

• The gas limit is the maximum amount of gas that the creator is willing to spend in order 

to have the transaction executed.  

 

• The nonce is a counter for the transactions originating from the same externally owned 

address (EOA). 

2.2 Miners’ transaction selection strategies 

When adding transactions from the pending pool to their block, a miner must comply with 

two main constraints. First, a miner may add a transaction only if all transactions of the 

same EAO with lower nonces have already been taken account of (either in an ancestor 

block or in already included transactions). Second, the sum of the actual gas used by all the 

transactions in the block must not exceed the block gas limit presently set for the Ethereum 

network. We define three classes of transaction-selection strategies.  

 

 Default strategies without prioritization have the property that any transaction A 

added to a block must carry a weakly lower gas price than the previously added 
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transaction, unless there is a transaction B already added to the block initiated by the 

same EOA as transaction A. 

 

 Default strategies with prioritization have the property that transactions initiated by 

one specific EOA are added to the block before any transaction from different EOAs. 

After all transactions initiated by the specific EOA have been included in the block, 

the transactions initiated by other EOAs are added following a transaction-selection 

strategy from the class default strategies without prioritization. The blocks we 

assigned to the class default strategies with prioritization were additionally classified 

into two subclasses:  

 

o blocks in which less than a quarter of the transactions were initiated by the 

prioritized EOA, and  

 

o blocks in which more than a quarter of the transactions were initiated by the 

prioritized EOA. 

 

 Other strategies have the property that they neither classify as default strategies 

without prioritization nor as default strategies with prioritization.  

Default strategies with and without prioritization roughly correspond to the standard 

transaction-selection strategies suggested by Geth and Parity. Standard strategies first 

construct a list of pending transactions for each EOA. Then, having accounted for any 

prioritized EOA(s), the transaction with the highest gas price of the transactions with the 

lowest nonce in each list is committed to the block. This process is iterated until either the 

block gas limit is reached or other conditions are met. 
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Fig. 1 shows the empirical distribution of these transaction-selection strategies in a random 

sample of 1’000 blocks mined during the observed period.10 As can be seen, about 75 

percent of the blocks were mined using default strategies without prioritization, 14 percent 

using default strategies with prioritization, and 11 percent using other transaction-selection 

strategies. It should be noted, however, that at least a fraction of these strategies might be 

gas-price based as well. Miners may prioritize transactions from more than one EOA, and 

if there are not enough valid transactions to fill up the block from the pending pool in an 

initial round, a second set of transactions may be added if new transactions arrive in the 

meantime. In fact, during our analysis we rarely encountered a block in which the 

transactions were not ordered by their gas price at least to some extent. Still, we may 

conclude that, in only three quarters of the blocks, the minimum gas price properly reflects 

the economic price for being included in the block.   

 

2.3 Definition of the threshold gas price 

 

To account for the heterogeneity in miners’ transaction-selection strategies, we introduce 

the following concepts: 

Fig. 1. Empirical distribution of the transaction-selection strategies. 
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 The minimum gas price of the block, 𝑃୫୧୬, is the gas price of the transaction with the 

lowest gas price in the block. 

 

 The first-quartile gas price of the block, 𝑃୥୯ଵ, corresponds to the gas price such that one 

quarter of the transactions in the block have a gas price weakly below 𝑃୥୯ଵ, while three 

quarters of the transactions in the block have a gas price weakly above 𝑃୥୯ଵ.  

 

 The threshold gas price of a block, 𝑃୥ୟୱ, corresponds to the minimum gas price if the 

minimum gas price is strictly larger than 1 Gwei, and to the first-quartile gas price 

otherwise, i.e., 

 

𝑃୥ୟୱ = ቐ

𝑃୫୧୬  if 𝑃୫୧୬ > 1 Gwei

𝑃୥୯ଵ  if 𝑃୫୧୬ ≤ 1 Gwei.
 

  

The case distinction in the definition of the threshold gas price reflects that a non-negligible 

subpopulation of miners uses transaction-selection strategies with prioritization. Thus, if the 

minimum gas price is too low to be economically plausible, we replace it by the first-quartile 

gas price. 

 

2.4 The data set 

 

We used transaction and block data recorded in the Ethereum mainnet blockchain in the 

period between January 30, 2018 and October 24, 2019. The corresponding block numbers 

were 5’000’000 and 8’800’000. The transaction and block data cover 98.5 % of the blocks 

mined during that period. The data was retrieved via the Python script ethereum-etl and the 

web3 library.11 During the considered period, individual blocks consisted of about 50-160 

transactions in the majority of cases, with an average of 111 transactions. For the reader’s 
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convenience, both the data set and the R code employed in the analysis has been made 

available on Github.12 

3. Empirical observations 

This section presents the descriptive statistics of the threshold gas price, thereby 

documenting three main empirical observations on the market for Ethereum transactions. 

Specifically, we observed a very inelastic short-term price elasticity, behavioral pricing 

strategies, and a pronounced (European) day-night activity pattern. 

  

3.1 Short-term inelastic demand 

 

Fig. 2 shows the development of the threshold gas price in the considered period. The solid 

line represents a locally estimated scatterplot smoothing (LOESS). The mean of the 

threshold gas price over the considered period has been 6.6 Gwei. The standard deviation 

has been 19.9 Gwei and, thus, more than three times the mean. This remarkable volatility is 

highly asymmetric in nature, as reflected by the fact that the mean has been more than 50 

percent higher than the median, which has been 3.0 Gwei. In fact, the threshold gas price 

has often dropped to nearly zero. Given that the supply for Ethereum transactions is 

Fig. 2. Time series of the threshold gas price during the considered period. Each dot represents 
an hourly median. The grey line shows a smoothed development of the gas price. 
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effectively bounded by the block size limit, this hints towards a very inelastic short-term 

demand. Ethereum users, therefore, may have been excessively impatient during the 

considered period.  

3.2 Behavioral pricing 

 

Fig. 3 shows the relative frequencies of threshold gas prices in Gwei, rounded to integer 

values. The peaks at 10 Gwei and 20 Gwei, respectively, are close to the median (12.0 Gwei) 

resp. mean (18.3 Gwei) of the gas prices over all transactions in a block over the observed 

period. Moreover, these are prominent numbers and, therefore, might be appealing.13  

It is also notable that more than 75% of the minimum gas prices and 70% of the median 

gas prices are integers in Gwei. However, choosing a gas price slightly above integer 

values—e.g., 4.1 or 4.2 Gwei instead of 4.0 Gwei—may render a transaction considerably 

more likely to be included into a block while hardly increasing the transaction fee. 

Apparently, however, higher-level reasoning with respect to this fact is not very common 

in the Ethereum mainnet, in line with observations made in so-called guessing games.14 

 

  

Fig. 3. Relative frequency distribution of the threshold gas price. 
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3.3 Day-night pattern 

 

Fig. 4 shows the distribution of the threshold gas price in the observed period. Quite notably, 

the threshold price typically has been higher during the continental European day (from 7 

a.m. UTC to 6 p.m. UTC) than at nighttime. For a better understanding, we plotted the 

distribution of the utilization rate (Fig. 5), defined here as the total gas used in a block 

divided by the block gas limit. The Ethereum network is seen to be substantially more active 

during daytime than at night, which is in line with the day-night pattern of the threshold 

price.  

  

Fig. 5. Utilization rate distribution for each hour of the day. 

Fig. 4. Threshold gas price distribution for each hour of the day. 
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4. Statistical analysis  

This section summarizes the main steps and results of our statistical analysis. 

 

4.1 Choosing the time series 

 

Given the short-term inelasticity of demand identified in Section 3, the time series of 

threshold gas prices is too volatile to serve as a basis for statistical modeling. We therefore 

use instead the hourly median, i.e., the median of the threshold gas prices of all blocks mined 

within the same full hour on the clock.  

Fortuitously, the hourly median relates in a natural way to the gas price that guarantees 

execution of a transaction within a given time span and with a given confidence level: 

 

 The operational gas price, 𝑃୭୮ = 𝑃୭୮(𝑇, 𝑝), is the theoretical gas price ensuring that a 

transaction will be confirmed by the network within time 𝑇 with probability 𝑝. 

 

Indeed, under certain assumptions detailed in Appendix A, the hourly median has the 

property that a transaction is accepted in the next block with probability 0.5. Therefore, 

given that in expectation four blocks are mined within 𝑇 = 60 seconds, the probability that 

the transaction with the hourly median threshold gas price will be mined within, say, a 

minute is 𝑝 = 1 − (1 − 0.5)ସ = 93.75 percent.  

Below, we focus on the hourly median as the basis for our statistical analysis. Later in 

the paper, to account for the user impatience documented in Section 3, we will also allow 

for other hourly quantiles as an extension. 

 

4.2 Identification 

 

In a first step, we applied a Box-Cox transformation to the original time series of the hourly 

median threshold gas price using the R-function BoxCox from the forecast package.15 This 

accounts for the asymmetric distribution of the threshold gas price―the threshold gas price 
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and thus also the hourly median has a lower bound at zero, but theoretically no upper bound. 

In the following, {𝑌௧}௧ represents the transformed time series of the hourly median threshold 

gas price. The time series {𝑌௧}௧ was then checked for stationarity – a necessary property for 

an ARMA model to be suitable. In line with the observations made in Section 3, we 

identified daily seasonality. Therefore, we applied a 24th order differencing (𝑌௧ − 𝑌௧ିଶସ). 

An augmented Dickey-Fuller test (ADF) was performed to check whether further 

differencing was necessary. The test result supported our working hypothesis that the 

seasonal differenced time series can be considered stationary.  

In a second step, we identified a suitable order for the model (meaning the number of 

non-seasonal and seasonal autoregressive and moving average parameters). We plotted the 

partial autocorrelation function (PACF) and estimated models for various possible 

combinations using the R-function Arima from the forecast package.15 Aikake’s 

Information Criterion (AIC) has been used as a measure of goodness-of-fit. 

In a third step, we assessed the prediction accuracy of our model within a forecast 

horizon of one day (24 hours), via a backtesting approach (an outline of the method used 

can be found in Subsection 4.4) with the mean absolute percentage error (MAPE) as a 

measure of fit. The results were compared against a naïve and a seasonal naïve method. 

Further details regarding the identification may be found in Appendix B. 

 

4.3 Statistical model 

 

For modelling the underlying process of the time series, we decided to use a SARIMA 

model. SARIMA models are a well-known and widely used class of prediction models for 

time series. Compared to ARIMA models, SARIMA models can take account for 

seasonality in the data (which is reflected in the day-night pattern identified above). While 

ARMA models are only suitable for modeling stationary processes, ARIMA models (and 

thus also SARIMA models) can be applied to processes that may not be stationary but can 

be made stationary by applying differencing. In general, a SARIMA model takes the form 

 



   
 

 

13

𝑌௧
ௗ,஽ =  𝑐 +  ෍ 𝐴𝑅௡௦,௛𝑌௧ି௛

ௗ,஽
𝒑

𝒉ୀ𝟏
+ ෍ 𝐴𝑅௦,௛𝑌௧ି௛∗ௌ

ௗ,஽
𝑷

𝒉ୀ𝟏
+ ෍ 𝑀𝐴௡௦,௛𝜀௧ି௛

𝒒

𝒉ୀ𝟏

+ ෍ 𝑀𝐴௦,௛𝜀௧ି௛∗ௌ

𝑸

𝒉ୀ𝟏
+  𝜀௧  , 

where the interpretation of the parameters is as follows: 

Parameter Interpretation 

p Order of the nonseasonal autoregressive part 

d Order of first order differencing 

q Order of the nonseasonal moving-average process 

P Order of the seasonal autoregressive part 

D Order of seasonal differencing 

Q Order of seasonal moving-average process 

S Length of seasonal cycle 

𝑌௧
ௗ,஽ Differenced time series 

c Constant 

𝐴𝑅௡௦,௛ Non-seasonal autoregressive parameter 

𝐴𝑅௦,௛ Seasonal autoregressive parameter 

𝑀𝐴௡௦,௛ Non-seasonal moving average parameter 

𝑀𝐴௦,௛ Seasonal moving average parameter 

𝜀௧  White noise: sequence of uncorrelated zero mean random variables 

 

The specification of a SARIMA model may be expressed in a more compact form as 

ARIMA(p,d,q)(P,D,Q)[S].  

4.4 Estimation results 

We identified an ARIMA(2,0,1)(0,1,1)[24] model to be the most suitable for modelling the 

underlying process of the (Box-Cox transformed) hourly median threshold gas price time 

series {𝑌௧}௧. Table 1 shows the parameter estimates of this model when fitted to our data set. 
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The differenced process is modelled by a non-seasonal autoregressive part, a non-seasonal 

moving average part and a seasonal moving average part. 

Table 1: Model Parameter Estimates. 

Model Type Parameter Value S.E. AIC 

(2,0,1)(0,1,1)[24] 

non-

seasonal AR1 1.60 0.014 

-

9941 

  AR2 -0.60 0.014  

  MA1 -0.89 0.009  

      
  seasonal MA1 -0.95 0.004   

The residual analysis shows that there is significant autocorrelation in the squared errors. 

This is most likely caused by volatility clusters in periods with high network traffic. Thus, 

expanding the model by integrating a suitable GARCH model might be worthwhile in 

further studies. 

4.5 Backtesting 

To measure the accuracy of prediction, we used cross-validation, and calculated the mean 

absolute percentage error (MAPE) of the back-transformed predictions. The cross-

validation was performed in the following way: We randomly selected 500 data points, a 

data point being the observation of the threshold gas price at this time. At each of these data 

points, the data set was split into a training and a test set. The training set contained all data 

points up to and including the randomly selected data point, and the test set contained the 

data points for the following 24 hours. 

We compared the prediction accuracy to a naïve model (𝑌෠் ା௧|் = 𝑌 ) and a seasonal 

naïve model (𝑌෠் ା௧|் = 𝑌 ା௧ିଶସ×௞), where k is the smallest integer greater than (𝑡 − 1)/24 

for the same 500 training sets. The respective prediction of the hourly median gas price, say, 

two hours in the future would be the current price for the naïve model, and the price 22 

hours in the past for the seasonal naïve model (since we have a seasonal cycle of length 

24h). These approaches may also be represented by ARIMA(0,1,0)(0,0,0)[24] and 
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ARIMA(0,0,0)(0,1,0)[24] models. In the naïve approach, the time series is assumed to 

follow a random walk. The results are shown in Fig. 6.  

 

To check whether an ARIMA(2,0,1)(0,1,1)[24] model is also suitable for other hourly 

quantiles of the threshold gas price time series, we estimated models for the first and third 

quartiles (corresponding to a confirmation time of less than three minutes and less than 

Fig. 6. MAPE of the SARIMA model compared to naïve approaches. 

Fig. 7. MAPE of the SARIMA models for the first quartile, median, and third quartile 
hourly threshold gas price. 
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thirty seconds, respectively), and used the same cross-validation approach as before. As 

shown in Fig. 7, the MAPEs for the quartiles are similar to those obtained for the median. 

 

5. Conclusion 

The analysis has produced a set of potentially interesting observations related to the gas 

price in the Ethereum network. Only three quarters of the miners were seen to follow a 

purely price-based transaction-selection strategy, which necessitated the conceptualization 

of a threshold gas price. The short-term demand for transactions appears to be very inelastic, 

and creators of transactions apparently are in general not very price-sensitive regarding 

transaction fees. In fact, most of the transactions were executed at Gwei integer gas prices. 

The network traffic on average seems to be higher during the day (7 a.m. to 6 p.m., UTC) 

than during the night. For a prediction horizon of 24 hours or less, SARIMA models showed 

superior results in terms of prediction accuracy compared to naïve approaches. 

Since the time at which we conducted our econometric analyses, the gas price has 

undergone a strong increase, leading the Ethereum Foundation to initiate the introduction 

of a proof-of-stake mining protocol on Ethereum 2.0. However, the data set that we used 

covers a variety of regimes, even though it did not include a period with prices as 

exceptionally high as at the time of the completion of this Study. Moreover, the SARIMA 

model is generally considered robust with respect to level changes provided that the 

assumptions underlying the statistical model are not validated in parallel. The extent to 

which the rise in the price levels has been accompanied by structural changes is, again, 

certainly an issue worthwhile to be explored.  
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Appendix A. The relationship between gas price and confirmation time 

This Appendix explains our choice of the hourly median threshold price as a proxy for an 

operational gas price.  

We define the confirmation time of an individual transaction as the length of the time 

interval between submission of the transformation to the pool of pending transactions and 

the later confirmation by the network. We impose three assumptions:  

 

Assumption 1. In each block that is mined during a sufficiently short time interval (𝑡ଵ, 𝑡ଶ], 

a transaction with gas price 𝑃୥ୟୱ is accepted with equal probability 𝜋௉ౝ౗౩,(௧భ ,௧మ].  

 

Assumption 2. The acceptance of a transaction with gas price 𝑃୥ୟୱ in a block mined during 

the time interval (𝑡ଵ, 𝑡ଶ] is independent of the acceptance in all other blocks mined during 

(𝑡ଵ, 𝑡ଶ].  

 

Assumption 3. The length of the time interval between two consecutively mined blocks, 𝛥𝑡, 

is (approximately) constant. 

 

Under these assumptions, the distribution of the confirmation time 𝑡∗ at time point 𝑡ଷ in the 

interval (𝑡ଵ, 𝑡ଶ], with (𝑡ଶ − 𝑡ଷ) sufficiently large, may be calculated using the cumulative 

distribution function of a geometric distribution. 

 

𝐵௜,(௧భ ,௧మ] ~ Bernoulli ቀ𝜋௉ౝ౗౩,(௧భ ,௧మ] ቁ              (𝑖 ∈ {1,2, … , 𝑛}) 

  𝐵௜,(௧భ ,௧మ] ⊥  𝐵௝,(௧భ ,௧మ]                         (𝑖 , 𝑗 ∈ {1,2, … , 𝑛}, 𝑖 ≠ 𝑗) 

⇒  Pr௉ౝ౗౩,௧య
(𝑡∗ ≤ 𝑇) = 1 − ቀ1 − 𝜋௉ౝ౗౩,(௧భ,௧మ] ቁ

ቔ
்

௱௧
ቕ

 (𝑡ଵ < 𝑡ଷ < 𝑡ଶ) 

The probability 𝜋௉ౝ౗౩,(௧భ ,௧మ]  of acceptance in a block may be estimated as the fraction of 

blocks with a threshold gas price equal or below the gas price 𝑃୥ୟୱ. If 𝑃୥ୟୱ is chosen to be 

the median threshold price during this time interval, then 𝜋௉ౝ౗౩,(௧భ ,௧మ] ≈ 0.5. 
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 Proposition 1. Suppose that Assumptions 1-3 hold true for the hour between 𝑡ଶ = 𝑡ଵ + 1 

and 𝑡ଵ. Then, the hourly median of the threshold gas price guarantees execution within a 

given time span (1 minute) and with a given confidence level (≈95%). 

 

To apply the proposition to the Ethereum network, suppose that the time between two 

consecutively mined blocks is 𝛥𝑡 = 15 seconds. Then, the hourly median threshold price 

(𝑇 = 60 seconds) is almost corresponding to the price that should be chosen if a 

confirmation time of one minute should not be exceeded 1 − (1 − 0.5)ସ =  0.9375. 

Assumptions 1-3 may indeed be reasonable for a short enough time interval since, first, 

information on gas price developments is only available with a time lag, second, the mining 

time generally does not vary considerably, and third, changes in gas price levels within this 

interval, such as due to time-dependent demand or changes in the number of miners, might 

be negligible. We consider an interval of an hour to be small enough to keep these 

assumptions plausible. The model may also be used for other quantiles as long as these are 

not too far away from the median. 

The approach underlying Proposition 1 is related to the method implemented in the 

web3.py library, which implicitly models the confirmation time by a geometric distribution 

as well. However, instead of the threshold gas price, the 20th percentile of the gas prices of 

all transactions in a block is employed. Moreover, for a set of sorted gas prices, the number 

of blocks in which the 20th percentile is below the respective value is counted and divided 

by the total number of blocks. This ratio then serves as an estimate for the probability that 

a block accepts a transaction, instead of a quantile (e.g., the median). However, using the 

20th percentile might lead to an overestimation of the confirmation time. 
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Appendix B. Identification of the statistical model 

This Appendix provides some background regarding the reasoning that led us to the choice 

of our econometric model. 

B.1 Seasonality 

We first checked the Box-Cox transformed hourly median threshold gas price time series 

{𝑌௧}௧ for seasonality. Since the time series covers more than 600 days and, therefore, 

seasonal patterns over 24 hours or less are very difficult to detect in a scatterplot, we plotted 

the ACF. The wave pattern repeating itself in a 24-hour rhythm clearly suggests a time series 

with seasonality. Therefore, we applied a 24th order differencing (𝑌௧ − 𝑌௧ିଶସ = : 𝑌௧
଴,ଵ). 

 

B.2 Stationarity 

Secondly, we tested the seasonally differenced time series ൛𝑌௧
଴,ଵൟ

௧
for stationarity. The 

differenced time series obtained seems to be stationary. To validate this, we used the ADF 

implemented in the R-package aTSA by the function adf.test. The test statistics confirm 

that no further differentiation is necessary. Therefore, we decided to use an 

ARIMA(p,0,q)(P,1,Q)[24] model.  

 

Fig. 8. Plotted ACF of the Box-Cox-transformed hourly median threshold price. 
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B.3 Identification of the order of parameters 

To obtain a first indication for the SARIMA parameters, we plotted the PACF for the 

seasonally differenced time series. The first three spikes in the PACF plot are significant. 

Subsequent lags do not seem to provide additional information. Therefore, a choice of p > 

3 does not seem to be reasonable. The strongly significant values of the seasonal lags in the 

PACF plot, which seem to be exponentially decreasing, suggest that Q ≥ 1 should be chosen. 

 

As mentioned in the body of the paper, we estimated models for various possible 

combinations using the R-function Arima from the package forecast. Since the distribution 

of gas prices is clearly skewed to the right due to a lower boundary of zero and a non-

existing upper boundary we used a Box-Cox transformation on the time series. The results 

are summarized in Table 3. As the table shows, the ARIMA(2,0,1)(0,1,1)[24] model clearly 

Table 2. Augmented Dickey-Fuller Test Statistic. 

Lag ADF Statistic 
p-

value 
Conclusion 

12 -25.1 ≤ 0.01 Stationarity 

Type: no drift, no 

trend 
   

Fig. 9. Plotted PACF of the seasonal differenced Box-Cox transformed time series. 
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outperforms the two models ARIMA(1,0,0)(0,1,1)[24] and ARIMA(2,0,0)(0,1,1)[24]. On 

the other hand, compared to the ARIMA(2,0,1)(0,1,1)[24] model, 

ARIMA(2,0,1)(0,1,2)[24], ARIMA(2,0,1)(1,1,1)[24], and ARIMA(3,0,1)(0,1,1)[24] hardly 

lead to an improvement when looking at the AIC and the parameter estimates. Therefore, 

following the KISS principle, we selected ARIMA(2,0,1)(0,1,1)[24].16  
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Table 3: Model Parameter Estimations. 

Model Type 
Paramete

r 
Value S.E. AIC 

(1,0,0)(0,1,1)[24
] 

non-
seasonal AR1 0.89 0.004 -8890 

      
  seasonal MA1 -0.93 0.005   

(2,0,0)(0,1,1)[24
] 

non-
seasonal AR1 0.74 0.008 -9329 

  AR2 0.17 0.008  
      

  seasonal MA1 -0.94 0.005   
(2,0,1)(0,1,1)[24

] 
non-

seasonal AR1 1.60 0.014 -9941 

  AR2 -0.60 0.014  
  MA1 -0.89 0.009  
      

  seasonal MA1 -0.95 0.004   
(2,0,1)(0,1,2)[24

] 
non-

seasonal AR1 1.60 0.015 -9974 

  AR2 -0.60 0.014  
  MA1 -0.89 0.010  
      
 seasonal MA1 -0.91 0.008  

    MA2 -0.05 0.008   
(2,0,1)(1,1,1)[24

] 
non-

seasonal AR1 1.60 0.015 -9976 

  AR2 -0.60 0.014  
  MA1 -0.89 0.010  
      
 seasonal AR1 0.05 0.009  

    MA1 -0.96 0.004   
(3,0,1)(0,1,1)[24

] 
non-

seasonal AR1 1.60 0.011 -9978 

  AR2 -0.55 0.015  
  AR3 -0.06 0.009  
  MA1 -0.92 0.007  
      

  seasonal MA1 -0.95 0.004   
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B.4 Residual analysis 

The plotted autocorrelation function of the squared residuals exhibits significant spikes, 

although the estimated correlations are rather small. Modelling the residuals by a GARCH 

model might further improve model fit. 
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Fig. 10. Plotted ACF of the squared residuals of the SARIMA(2,0,1)(0,1,1)[24] model. 
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