
 

 
 
 

 
Working Paper No. 286 

 
 

Equilibrium in the Symmetric Hirshleifer Contest: 
Uniqueness and Characterization 

 
 
 
 

Christian Ewerhart and Guang-Zhen Sun 
 
 

April 2018 
 

 
 

 

 
 

 
 

University of Zurich 
 

Department of Economics 
 

 
 

Working Paper Series 
  

ISSN 1664-7041 (print) 
 ISSN 1664-705X (online) 

 
 

 
 

 
  
 
 
 
 
 
 



Equilibrium in the Symmetric Hirshleifer

Contest: Uniqueness and Characterization

Christian Ewerhart† Guang-Zhen Sun‡

April 26, 2018
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1. Introduction

Mixed equilibria in contests of the generalized Tullock form, for which win-

ning probabilities depend on the ratio of resources expended, have recently

received much attention from theorists (Baye et al., 1994; Alcade and Dahm,

2010; Ewerhart, 2015, 2017a, 2017b; Feng and Lu, 2017). There is another

appealing class of contests, however, where the winning probabilities depend

instead on the difference of resources expended (Hirshleifer, 1989; Skaper-

das, 1996; Baik, 1998; Che and Gale, 2000). In particular, Hirshleifer’s

framework has its merits for the analysis of military combat (Dupuy, 1987;

Hirshleifer, 2000). Notwithstanding, the nature of mixed equilibria in that

model has remained poorly understood.

In this paper, we prove uniqueness of the equilibrium in the symmetric

two-player Hirshleifer contest, and offer a characterization of the mixed equi-

librium. It is shown that the support of the symmetric equilibrium strategy

is finite and includes the origin. Moreover, the cardinality of the support

grows over any finite bound as the decisiveness parameter goes to infinity.

Further, we show that the undissipated rent converges to zero as the de-

cisiveness parameter goes to infinity, and that ex-post overdissipation may

occur. We conclude by extending the uniqueness result to a larger class of

contests.

The uniqueness result is stated in Section 2, and proven in Section 3.

Section 4 characterizes the equilibrium. Rent dissipation is dealt with in

Section 5. Section 6 discusses ex-post overdissipation. Alternative contest

technologies are considered in Section 7.
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2. Statement of the uniqueness result

The Hirshleifer contest is specified as follows. Each of two players i ∈ {1, 2}

expends resources xi ≥ 0 in an attempt to win a prize of normalized value

one. Player i’s payoff is given as

Πi(xi, xj) =
exp(αxi)

exp(αxi) + exp(αxj)
− xi (1)

=
1

1 + exp(α(xj − xi))
− xi, (2)

where j ∈ {1, 2} with j 6= i, and α > 0 measures the decisiveness of the

difference-form contest. In particular, for α → ∞, payoffs converge against

those of the all-pay auction.

Any bid exceeding one is strictly dominated. We therefore define a mixed

strategy for player i as a probability measure µi on the Borel subsets of [0, 1].

The set of mixed strategies for player i will be denoted by M , where pure

strategies xi ∈ [0, 1] are interpreted as Dirac measures, as usual. Each player

i’s expected payoff is well-defined for any (µi, µj) ∈M ×M , and will, with

some abuse of notation, be denoted by Πi(µi, µj). An equilibrium is a pair

µ∗ = (µ∗1, µ
∗
2) ∈M×M such that Πi(µ

∗
i , µ
∗
j ) ≥ Πi(µi, µ

∗
j ) for any i, j ∈ {1, 2}

with j 6= i, and for any µi ∈M .

Proposition 1. For any α > 0, the Hirshleifer contest with parameter α

has a unique equilibrium.

3. Proof of Proposition 1

Equilibrium existence is known (cf. Hirshleifer, 1989, fn. 12). The proof of

uniqueness starts from the following observation.

Lemma 1. Let µ = (µ1, µ2) ∈ M ×M . Then, for any i, j ∈ {1, 2} with

j 6= i, the set of maximizers Xi(µ) = arg maxx̃i∈[0,1] Πi(x̃i, µj) is finite.
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Proof. The proof is a straightforward adaption of Ewerhart (2015, Th.

3.2), and therefore omitted.1 �

Next, we show the following.

Lemma 2. The set Xα =
⋂

µ∗ equilibrium
X1(µ

∗) is nonempty, and contains

the support of any equilibrium strategy (for both players).

Proof. Take an equilibrium µ∗ = (µ∗1, µ
∗
2). Clearly, the support of µ∗1

is a subset of X1(µ∗). Let µ∗∗ = (µ∗∗1 , µ
∗∗
2 ) be an arbitrary equilibrium.

Then, since equilibria in two-player contests are interchangeable (Ewerhart,

2017b, Appendix), (µ∗1, µ
∗∗
2 ) is an equilibrium. Therefore, the support of µ∗1

is a subset of X1(µ∗1, µ
∗∗
2 ). But X1(µ∗1, µ

∗∗
2 ) = X1(µ

∗∗). Hence, the support

of µ∗1 is contained inX1(µ
∗∗) for any equilibrium µ∗∗. In particular, Xα 6= ∅.

The second claim follows by symmetry. �

Denote byK = |Xα| the number of elements ofXα. Thus,Xα = {z1, ..., zK},

where z1 > z2 > ... > zK . Suppose first that K = 1. Then, the equilib-

rium is obviously unique. Suppose next that K ≥ 2. Fix some equilibrium

µ∗ = (µ∗1, µ
∗
2), and let p

m
j = µ∗i ({zm}) ≥ 0 denote the weight assigned by µ∗j

to zm, for j ∈ {1, 2} and m ∈ {1, ...,K}. We know that z1, ..., zK all deliver

the equilibrium payoff Π∗i against µ
∗
j , i.e.,

Π∗i =

(
K∑
m=1

pmj
exp(αzk)

exp(αzk) + exp(αzm)

)
− zk (k = 1, ...,K; j 6= i). (3)

Thus, there are K equations to identify (K + 1) unknowns p1j , ..., p
K
j and

Π∗i . Notably, adding the relationship
∑K

m=1 p
m
j = 1 does not help in general.

Instead, we focus on the largest element of the support of player i’s equi-

librium strategy.2 Since K ≥ 2, we know that z1 is an interior maximum.
1 If attention is restricted to strategies that are absolutely continuous with respect to

the Lebesgue measure, the use of complex-analytic methods may be circumvented (Sun,
2017).

2The first-named author would like to thank Larry Samuelson for this suggestion.
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Hence, the first-order condition implies

K∑
m=1

pmj
α exp(αz1) exp(αzm)

(exp(αz1) + exp(αzm))2
= 1. (4)

Combining these (K + 1) equations yields
exp(αz1)

exp(αz1)+exp(αz1)
· · · exp(αz1)

exp(αz1)+exp(αzK)
1

...
. . .

...
...

exp(αzK)
exp(αzK)+exp(αz1)

· · · exp(αzK)
exp(αzK)+exp(αzK)

1
α exp(αz1) exp(αz1)
(exp(αz1)+exp(αz1))2

· · · α exp(αz1) exp(αzK)
(exp(αz1)+exp(αzK))2

0




p1j
...
pKj
−Π∗i

 =


z1
...
zK
1

 .
(5)

It turns out that (5) has at most one solution.

Lemma 3. The square matrix on the left-hand side of (5) is invertible.

Proof. Let ek = exp(αzk) for k = 1, ...,K, and

A1 =



e1
e1+e1

· · · e1
e1+eK

1
e2

e2+e1
· · · e2

e2+eK
1

...
. . .

...
...

eK
eK+e1

· · · eK
eK+eK

1
αe1e1
(e1+e1)2

· · · αe1eK
(e1+eK)2

0

 . (6)

Subtracting row k = 1 from row k, for k = 2, ...,K, yields detA1 = detA2,

where

A2 =



e1
e1+e1

· · · e1
e1+eK

1
(e2−e1)e1

(e2+e1)(e1+e1)
· · · (e2−e1)eK

(e2+eK)(e1+eK)
0

...
. . .

...
...

(eK−e1)e1
(eK+e1)(e1+e1)

· · · (eK−e1)eK
(eK+eK)(e1+eK)

0
αe1e1
(e1+e1)2

· · · αe1eK
(e1+eK)2

0


. (7)

Next, we extract the factor em/(e1 + em) > 0 from column m, for m =

1, ...,K, and the factor (ek − e1) > 0 from row k, for k = 2, ...,K. Further,

we extract the factor αe1 > 0 from the last row. This yields

detA2 =

 ∏
1≤m≤K

em
e1 + em

 ·
 ∏
2≤k≤K

(ek − e1)

 · αe1 · detA3, (8)
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where

A3 =



e1
e1

e1
e2

· · · e1
eK

1
1

e2+e1
1

e2+e2
· · · 1

e2+eK
0

...
...

. . .
...

...
1

eK+e1
1

eK+e2
· · · 1

eK+eK
0

1
e1+e1

1
e1+e2

· · · 1
e1+eK

0

 . (9)

Finally, we exchange row 1 and row K + 1. Therefore, detA3 = −detA4,

where A4 = { 1
ek+em

}k=1,...,K;m=1,...,K is a Cauchy matrix (e.g., Kratten-

thaler, 2001) with

detA4 =

∏
1≤k<m≤K

(ek − em)2∏
1≤k≤K,1≤m≤K

(ek + em)
6= 0. (10)

This proves the lemma. �

Recall that the support of any equilibrium is contained in Xα = {z1, ..., zK}.

Hence, with probabilities p1j , ..., p
K
j being unique, there can indeed be at most

one equilibrium.

4. Characterization3

Since the Hirshleifer contest with parameter α > 0 admits only one equilib-

rium, the two players necessarily use the same equilibrium strategy µα ∈M .

The following result characterizes µα.

Proposition 2. Let α > 0. Then, the following properties hold:

(i) µα has finite support {y1, ..., yL}, where y1 > ... > yL, with L ≥ α
4 .

(ii) µα has a mass point at the zero bid, i.e., yL = 0.

(iii) there is two-sided peace (i.e., L = 1) if and only if α ≤ 4.

Proof. (i) By Lemma 1, the support of µα is finite. Denote by qm =

µα({ym}) > 0 the probability assigned to ym, for m ∈ {1, ..., L}. From the

3This section and the next supersede the corresponding parts of earlier work by the
authors (Ewerhart, 2014; Sun, 2017).
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KKT conditions,

ql
4

+
L∑

m=1
m6=l

qm exp(αym) exp(αyl)

(exp(αyl) + exp(αym))2
≤ 1

α
(l = 1, ..., L), (11)

with equality for l = 1, ..., L−1, so that ql ≤ 4
α for any l = 1, ..., L. Therefore,

L ≥ α
4 . (ii) For L = 1, the claim is due to Hirshleifer (1989). Suppose next

that L ≥ 2. Then, player i’s expected payoff against µα at the smallest mass

point yL satisfies

∂2Πi(yL, µα)

∂x2i

=

L−1∑
m=1

qmα
2(exp(αym)− exp(αyL)) exp(αyL) exp(αym)

(exp(αyL) + exp(αym))3
(12)

> 0, (13)

which shows that yL cannot be an interior maximum. Hence, yL = 0.

(iii) Hirshleifer (1989) has shown that two-sided peace is an equilibrium for

α ≤ 4. For α > 4, however, part (i) implies L ≥ 2. �

Example (L = 2). Consider an equilibrium strategy µα that places prob-

ability q1 > 0 on y1 > 0, and probability 1− q1 > 0 on y2 = 0. Then,

y1 =
1

2
− 1

1 + exp(αy1)
, (14)

q1 = 1− α− 4

4αy21
. (15)

This equilibrium exists numerically for α ∈ (4, 6.79).4

4The implicit value for y1 may be characterized alternatively in terms of the r-Lambert
function (Mesö and Baricz, 2017).
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5. Rent dissipation

Rent dissipation is always incomplete in the Hirshleifer contest.5 For α →

∞, however, the equilibrium payoff Π∗ goes to zero, as the following result

shows.

Proposition 3. Π∗ ≤ 2
α .

Proof.

Π∗ = Πi(0, µα) (16)

=
L∑
l=1

ql
1 + exp(αyl)

(17)

≤ 2

L∑
l=1

ql
1 + exp(αyl)

· exp(αyl)

1 + exp(αyl)
(18)

=
2

α

(
∂Πi(0, µα)

∂xi
+ 1

)
. (19)

Since ∂Πi(0, µα)/∂xi ≤ 0, the claim follows. �

Figure 1 outlines the equilibrium payoffΠ∗ and its upper bound as a function

of α. Note that Π∗, contrary to intuition, is not globally declining. For

example, if α = 6.1 (< 6.6), the equilibrium is given by y1 = 0.4337 (0.4517),

q1 = 0.5425 (0.5173), and Π∗ = 0.2646 (< 0.2662). Thus, the increase in y1

is more than compensated by a decline in q1.

5This fact contrasts, of course, with the complete rent dissipation pervasive in suffi -
ciently decisive contests of the ratio form (Baye et al., 1994; Alcade and Dahm, 2010;
Ewerhart, 2015, 2017a).
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Figure 1. Undissipated rent as a function of α.

6. Ex-post overdissipation

Although rent dissipation is less severe than in the Tullock case, the Hirsh-

leifer contest may nevertheless feature ex-post overdissipation, i.e., the sum

of realized bids may exceed the value of the prize with positive probability

(cf. Baye et al., 1999).

Proposition 4. y1 ≥ 3
4 −

10
3α .

Proof. Recall that y1 > ... > yL. Let L∗ be the largest l ∈ {1, ..., L} such

that
exp(αy1)

exp(αy1) + exp(αyl)
<

3

4
, (20)

and let

Q =

L∗∑
l=1

ql. (21)

Then, by Proposition 3,

2

α
≥ Π∗ ≥ 3

4
(1−Q) +

1

2
Q− y1. (22)

7



Therefore,

Q ≥ 3− 4y1 −
8

α
. (23)

But, from the first-order condition at y1,

1 ≥ α
L∗∑
l=1

ql
exp(αy1) exp(αyl)

(exp(αy1) + exp(αyl))
2 ≥ α ·Q ·

3

4
· 1

4
. (24)

Using (23) in (24) yields the claim. �

Proposition 4 implies that ex-post overdissipation occurs for any suffi ciently

large α. Using numerical analysis, we verified that y1 > 0.5 holds for α > 7.2.

7. Alternative contest technologies

Consider a contest technology of the form

Πh
i (xi, xj) =

h(xi)

h(xi) + h(xj)
− xi, (25)

where h > 0 is a positive impact function (as in Neary, 1997). Provided

that h admits, in addition, a real-analytic extension to (−ε,∞), for some

ε > 0, the uniqueness argument goes through. In that case, however, the

equilibrium need no longer possess a mass point at the origin.6
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