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Abstract This paper studies the incentives for interim voluntary disclosure of verifiable informa-

tion in probabilistic all-pay contests with two-sided incomplete information. Private information

may concern marginal cost, valuations, and ability. Our main result says that, if the contest is

uniformly asymmetric, then full revelation is the unique perfect Bayesian equilibrium outcome.

This is so because the weakest type of the underdog reveals her type in an attempt to moderate

the favorite while, similarly, the strongest type of the favorite tries to discourage the underdog– so

that the contest unravels. This strong-form disclosure principle is robust with respect to correla-

tion, partitional evidence, randomized disclosures, sequential moves, and continuous type spaces.

Moreover, the assumption of uniform asymmetry is not needed when incomplete information is

one-sided. However, the principle breaks down when contestants are potentially too similar in

strength, possess commitment power, or when information is unverifiable. In fact, cheap talk will

always be ignored, even if mediated by a trustworthy third party.
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1. Introduction

On February 24, 2014, the concentration of Russian troops along the entire Ukrainian-Russian

border became overwhelming. In a major demonstration of force and simultaneous preparation

for invasion, the Kremlin had decided to concentrate in the Kyiv, Kharkiv, and Donetsk directions

38 thousand men, 761 armed tanks, 2’200 armored vehicles, 720 artillery systems and multiple

rocket launchers, as well as up to 40 attack helicopters, 90 combat support helicopters, and 90

attack aircraft. In the Black Sea, 80 Russian warships were on combat duty. On that same day,

the Russian Black Sea Fleet Commander had a conversation with the Ukraine Naval Forces Com-

mander, advocating complete surrender and handing over of the Crimea. And indeed, Ukrainian

resistance quickly ebbed away in the days to follow.1

In this paper, we extend the standard model of a probabilistic contest (Rosen, 1986; Dixit,

1987) by allowing for pre-play communication of verifiable information (Okuno-Fujiwara et al.,

1990; van Zandt and Vives, 2007; Hagenbach et al., 2014). Contestants are assumed to possess

private information regarding parameters indicative of their absolute strength in the competition.

In general, these parameters may concern marginal cost, valuations, and ability. Then, at a stage

preceding the contest, any player may interim, i.e., after having observed her type, choose to

disclose that information to her opponent. In this type of framework, we evaluate the incentives

of players to voluntarily disclose their private information. Moreover, we characterize the perfect

Bayesian equilibrium of the resulting two-stage game. The focus of the analysis lies on contests

that are uniformly asymmetric in the sense that one of the contestants is, subject to activity,

interim always strictly more likely to win than the other. We identify a condition on the primitives

of the model that guarantees that the contest is uniformly asymmetric. While restrictive, this

condition is consistent with heterogeneity in both valuations (e.g., Amann and Leininger, 1996;

Maskin and Riley, 2000) and ability (e.g., O’Keeffe et al., 1984; Meyer, 1992; Franke et al., 2014).2

Our main result says that, provided that the contest is uniformly asymmetric, the only out-

come of the revelation game consistent with the assumption of perfect Bayesian rationality is the

one in which all the privately held information is unfolded prior to the contest. Thus, we find

1This example has been inspired by the discussion in Lenton (2022) and a recently declassified protocol of the
National Security and Defense Council of Ukraine (2016, pp. 10-11).

2The formal definition is given in Section 3. While the focus lies on uniformly asymmetric contests, we also
delineate the scope of the strong-form disclosure principle in more general contests.
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general conditions under which the disclosure principle in the strong form applies to a standard

contest setting. This may be of interest because effort choices in probabilistic contests are neither

strategic substitutes nor strategic complements, and consequently contests do not satisfy the usual

conditions suffi cient for the strong-form disclosure principle.3

There is a simple intuition for why contestants find it diffi cult to withhold information in a

uniformly asymmetric contest. In view of the high effort expected from a favorite that is left to

speculate about the underdog’s ability, the weakest type of the underdog has a strict incentive

to self-disclose, so as to moderate the opponent. Once the revelation is accounted for, however,

the pool of silent types shrinks. Then, the weakest of the remaining types will choose to disclose

her private information as well. Thus, there is an unraveling on the underdog’s side. But in the

resulting contest with one-sided incomplete information, the unraveling continues on the side of

the favorite. Indeed, the respective strongest type of the favorite has a strict incentive to self-

disclose, so as to discourage the underdog. In the end, full revelation of all private information is

inevitable.4

Our main result extends in several ways. To start with, strong-form disclosure continues to

hold generically when types are correlated. The role of the weakest type of the underdog is then

taken by the lowest-bidding type in the contest. Second, the main result extends to partitional

information releases and randomized signals. Next, we show that the principle applies likewise if

disclosure decisions are taken in a sequential fashion, i.e., with either the favorite or the underdog

moving first. Further, we allow for continuous type spaces. Finally, we show that, in the case

of one-sided private information, the assumption of uniform asymmetry may be dropped without

losing the strong-form disclosure principle. In that case, there is always one extremal type that

strictly prefers to self-disclose. The order of the unraveling may then switch hence and forth, in

a “bang-bang”fashion, between the remaining weak and strong types of the informed side.

The strong-form disclosure principle is, however, not universally valid. First, if a contest with

two-sided incomplete information is not uniformly asymmetric, then it may happen that no type

3 Instead, given that the best-response function of the favorite is strictly increasing, while the best-response func-
tion of the underdog is strictly declining, asymmetric contests classify, at least under suitable domain restrictions,
as games of strategic heterogeneity (Monaco and Sabarwal, 2016; Barthel and Hoffmann, 2019).

4Regrettably, this intuition does not translate into a simple proof. This is so because, as it turns out, self-
disclosure may lead to dominant and defiant reactions, i.e., cause some types of the opponent, be it favorite or
underdog, to raise their bids.
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has an incentive to self-disclose. The reason is that contestants face countervailing incentives.

While a relatively effi cient type benefits from demoralizing an ineffi cient opponent, she simulta-

neously suffers from revealing her information to an opponent of comparable strength. Since the

situation may be similar for a relatively ineffi cient type, full concealment can be an equilibrium.

Second, full revelation is not a necessity if contestants possess commitment power. For example,

Bayesian persuasion need not lead to full revelation even if the contest would otherwise unravel.

Finally, the disclosure principle crucially depends on the assumption that private information is

verifiable. In fact, as we show, unverifiable messages are necessarily ignored in any probabilistic

contest, even in the presence of a trustworthy mediator.

Regarding welfare, we show that unrestricted communication in probabilistic contests has the

potential to lead into a Pareto-inferior outcome for contestants. Still, depending on the objective

of the contest organizer, full revelation may be socially desirable and, in particular, the result of

optimal information design.

Further illustrations. Our introductory example was taken from the area of military conflict

and war. The following examples may serve as additional illustrations.

• Public enforcement in the U.S. is characterized by a large disparity between the power of

the state prosecutor and the typical criminal defendant (Lynch, 1998). Both parties possess

verifiable information (Bibas, 2004). Even when plea bargaining is banned, it is common

for the defendant to plead guilty to a subset of the charges (Weninger, 1987). Conversely,

the prosecutor releases evidence to induce the defendant to confess (Petegorsky, 2012). As

a result, only a small fraction of criminal cases go to trial.

• Implicit or explicit threats are used to intimidate whistleblowers (Chassang and Padró I

Miguel, 2019) and witnesses (Maynard, 1994).

• In R&D and patent races, the frontrunner reveals research results and funding successes

to discourage competitors (Baker and Mezzetti, 2005). But also laggards announce new

products to influence the outcome of competition in their interest (Robertson et al., 1995).

• In social conflict, the use of phenotype “indices” resolves or avoids physical conflicts in

dyadic relationships (Hand, 1986). For conflicts arising within dominance or subordination
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relationships, signals tend to be placating or acquiescent. Within egalitarian or unresolved

relationships, however, there are either no signals or signals indicate relative desire for an

item on a case-by-case basis.

Related literature. The economics literature has a long tradition of studying incentives

for the voluntary disclosure of private information. Seminal contributions by Grossman (1981)

and Milgrom (1981) pointed out that, as a consequence of unraveling, sellers will it find hard

to withhold verifiable information about the quality of their products. The underlying disclo-

sure principle has since shaped the theoretical discussion about the pros and cons of disclosure

regulation, as is reflected by a very large body of literature.5

Probabilistic contests of incomplete information have been studied for some time. Rosen

(1986, fn. 7) still complained that “few analytical results”were available. Early papers include

Linster (1993) and Baik and Shogren (1995). The general framework with one-sided and two-sided

private valuations is due to Hurley and Shogren (1998a, 1998b). Wärneryd (2003) observed that

the uninformed player in a common-value setting is more likely to win than the informed player.

Malueg and Yates (2004) analyzed a symmetric two-player Tullock contest with two equally likely

and possibly correlated types. Schoonbeek and Winkel (2006) noted that individual types may

remain inactive. General results on the existence and uniqueness of Bayesian equilibrium have

been obtained by Ewerhart (2014), Einy et al. (2015), and Ewerhart and Quartieri (2020).

The present paper falls into the recent and quickly expanding literature concerned with the

disclosure of verifiable information in contests.6 That literature has tended to focus on either

ex-ante voluntary disclosure, optimal disclosure policies, or interim voluntary disclosure.7 Ex-

ante voluntary disclosure in probabilistic contests has been studied by Denter et al. (2014), in

particular. Assuming a probabilistic contest technology with one-sided incomplete information,

they showed that a “laissez-faire”policy regarding the informed player’s ex-ante disclosure decision
5 In addition to the contributions already mentioned, see Verrecchia (1983), Dye (1985), Shin (1994), Seidmann

and Winter (1997), Benoît and Dubra (2006), and Giovannoni and Seidmann (2007), for instance. Milgrom (2008)
or Dranove and Jin (2010) offer surveys.

6Another form of pre-play communication, not considered in the present paper, is the costly signaling of unver-
ifiable information. See, e.g., Katsenos (2010), Slantchev (2010), Fu et al. (2013), Heijnen and Schoonbeek (2017),
and M. Yildirim (2017).

7Numerous additional research questions, related to learning, feedback, and motivation, for example, arise in
the analysis of dynamic contests of incomplete information. Such research questions have been dealt with in papers
by Clark (1997), H. Yildirim (2005), Krähmer (2007), Münster (2009), Zhang and Wang (2009), Aoyagi (2010),
Ederer (2010), and Goltsman and Mukherjee (2011), for instance.
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leads to lower expected lobbying expenditures than a policy of mandatory disclosure.8 The second

topic, optimal disclosure policies in contests, has recently seen a strong development. In particular,

effort-maximizing disclosure policies have been characterized by Zhang and Zhou (2016) and

Serena (2022) for probabilistic technologies, and by Fu et al. (2014), Chen et al. (2017), and Lu

et al. (2018) for deterministic technologies.9

The present analysis is mainly concerned, however, with the third topic, i.e., the interim

voluntary disclosure in contests. As far as we know, there is only one paper that has dealt with

this issue on a comparable level of generality.10 Specifically, Kovenock et al. (2015) showed that,

regardless of whether valuations are private or common, the interim information sharing game

followed by an all-pay auction admits a perfect Bayesian equilibrium in which no player ever

shares her private information. Instead of the all-pay auction, however, we consider a probabilistic

contest. Overall, the review of the literature suggests that the specific research question pursued

in the present paper, viz. the analysis of incentives for the interim voluntary disclosure of hard

evidence in contests with probabilistic technologies and two-sided incomplete information, has not

been addressed in prior work.11

The remainder of this paper is structured as follows. Section 2 introduces the set-up. The

main result is stated in Section 3. Section 4 outlines the proof of Theorem 1. Section 5 offers

extensions, while Section 6 outlines limits to the scope of the disclosure principle. Section 7

concerns effi ciency. Section 8 concludes. An Appendix contains all proofs and other material

omitted from the body of the paper.

8Relatedly, Wu and Zheng (2017) considered a symmetric two-player lottery contest with two equally likely,
independently drawn types for each player. In this framework, they showed that ex-ante disclosure decisions lead
to information sharing if and only if the two possible type realizations are suffi ciently close to each other.

9Dubey (2013) studied a set-up with two-sided incomplete information about a binary type distribution and two
effort levels. Assuming that abilities are suffi ciently dispersed, he showed that incomplete (complete) information
engenders more effort if the prize is high (low). Einy et al. (2017) studied the value of public information in
Tullock contests with nonlinear costs. Optimal disclosure policies have been analyzed also in models of population
uncertainty. See Münster (2006), Myerson and Wärneryd (2006), Lim and Matros (2009), Fu et al. (2011), Feng
and Lu (2016), and Fu et al. (2016), among others.
10Epstein and Mealem (2013) considered a lottery contest with one-sided incomplete information and character-

ized the perfect Bayesian equilibrium outcome in the case of two possible type realizations. While they considered
also an extension to more than two types, they did not characterize the perfect Bayesian equilibrium in that case.
11 In general, signals may have multiple audiences. E.g., in Board’s (2009) model, a direct benefit from disclosure

on the consumer side is balanced by the firm against the cost of tighter competition. The present paper, however,
focuses on the informational exchange between contestants in the absence of informational externalities.
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2. Set-up

Considered is an interaction over two stages, referred to as revelation stage and contest stage,

respectively. The modeling follows the literature on pre-play communication (Okuno-Fujiwara et

al., 1990; van Zandt and Vives, 2007; Hagenbach et al., 2014). We will start with the contest

stage and continue backwards with the revelation stage.

2.1 The contest stage

Two players (or teams) i = 1, 2 exert effort at marginal cost ci > 0 so as to increase their respective

odds of winning a contested prize. Player i values winning at Vi, and losing at Li, where Vi > Li.

Contestant i’s effort (or bid) is denoted by xi ≥ 0. Following Rosen (1986), we assume that player

i’s probability of winning against j 6= i is given as

pi(xi, xj) =


γih(xi)

γ1h(x1) + γ2h(x2)
if x1 + x2 > 0

γi/(γ1 + γ2) if x1 + x2 = 0,
(1)

where γi > 0 denotes i’s ability, while h ≡ h(z) is a continuous production function that is twice

continuously differentiable at positive bid levels, with h(0) = 0, h′ > 0, and h′′ ≤ 0.12 Thus,

player i’s payoff may be written as

Πi(xi, xj ; θi) = pi(xi, xj)Vi + (1− pi(xi, xj))Li − cixi, (2)

where θi = (ci, Vi, Li, γi) denotes player i’s type. This set-up includes, as an important special

case, the biased Tullock contest (Tullock, 1975; Leininger, 1993; Clark and Riis, 1998), where the

production function is given by h(z) = hTUL(z; r) ≡ zr for some exogenous r ∈ (0, 1]. The lottery

contest corresponds to the case r = 1.

For convenience, we will assume that each player i’s type is independently and discretely

distributed– and that it concerns the marginal cost parameter ci only. As will be explained, the

restriction to pure cost types is without loss of generality if either ability is publicly observable or

the contest is of the Tullock form. Thus, player i’s type is assumed to be drawn from a probability

12Relaxing the assumption of a concave production function would take us away from the focus of this paper. In
contrast, the extension to player-specific production functions is easily accomplished yet does not yield additional
insights.
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distribution over the finite set Ci = {c1i , . . . , c
Ki
i }, where Ki ≥ 1, and

ci ≡ c1i < . . . < cKii ≡ ci (i ∈ {1, 2}). (3)

The symbol ci denotes the most effi cient, or strongest type, while ci denotes the least effi cient, or

weakest type of player i. Next, the ex-ante probability of type cki is denoted by q
k
i ≡ qi(c

k
i ), for

k ∈ {1, . . . ,Ki}, with qki > 0. Moreover, valuations will be normalized so that Vi = 1 and Li = 0,

for i ∈ {1, 2}. We will also write Πi(xi, xj ; ci) = Πi(xi, xj ; θi).

A bid schedule for player i ∈ {1, 2} is a mapping ξi : Ci → R+. The set of i’s bid schedules will

be denoted as Xi. A pair of bid schedules ξ∗ = (ξ∗1, ξ
∗
2) ∈ X1×X2 is a Bayesian Nash equilibrium

if, for any type ci ∈ Ci of any player i ∈ {1, 2}, the effort level xi = ξ∗i (ci) maximizes type ci’s

expected payoff Ecj [Πi(xi, ξ
∗
j (cj); ci)], where Ecj [.] denotes the expectation over the realizations

of cj ∈ Cj , with j 6= i. Following Schoonbeek and Winkel (2006), a type ci ∈ Ci with ξ∗i (ci) > 0

(ξ∗i (ci) = 0) will be called active (inactive). As usual in this type of model, the discontinuity of

the payoff functions at the origin implies that both players are necessarily active with positive

probability.13 By the same token, at least one player is active with probability one.

Lemma 1. The contest stage admits a unique Bayesian Nash equilibrium.14

Special notation will be used in the cases of complete and one-sided incomplete information. If

(c1, c2) = (c◦1, c
◦
2) is public information, then i’s equilibrium strategy will be written as x◦i =

x◦i (c
◦
1, c
◦
2). Further, if player i’s type ci = c#i is public, while player j’s type, with j 6= i, remains

uncertain, then equilibrium strategies will be written as x#i = x#i (c#i ) for player i and ξ#j =

ξ#j (.; c#i ) for player j, so that ξ#j (cj ; c
#
i ) is type cj’s equilibrium effort.

2.2 The revelation stage

At a stage preceding the contest, players simultaneously and independently decide whether to

disclose their respective type or not. Initially, it will be assumed that private information cannot

13To see this, suppose that one player bids zero with probability one. Then, any suffi ciently small positive bid is
a better response than the zero bid, but any positive bid is suboptimal. Hence, there is no best response.
14Given strict concavity of payoff functions, Lemma 1 extends to randomized strategies, i.e., any mixed strategy

equilibrium at the contest stage is degenerate and consequently in pure strategies.
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be misrepresented. Further, we assume that the decision to self-disclose does not lead to any

direct costs.15

In response to the observation of verifiable information, prior beliefs are updated according to

Bayes’rule whenever possible. One notes that off-equilibrium beliefs may arise, but only in the

distinct case where a player chooses to conceal her private information even though the equilibrium

strategy entails self-disclosure by all types of that player.16

In any case, the contest stage begins with a well-defined posterior belief µi ∈ ∆(Ci) about

each player i ∈ {1, 2}, where ∆(Ci) = {µi : Ci → [0, 1] s.t.
∑Ki

k=1 µi(c
k
i ) = 1}. Ignoring zero-

probability types, a unique Bayesian equilibrium exists by Lemma 1. In particular, the expected

continuation payoff from the contest stage is well-defined for any ci ∈ Ci and i ∈ {1, 2}.17 A

(reduced-form) perfect Bayesian equilibrium consists of (i) a set Si ⊆ Ci of revealing types, for

each player i ∈ {1, 2}, and (ii) an off-equilibrium belief µ0i ∈ ∆(Ci) for any i ∈ {1, 2} with Si = Ci,

such that Ecj [Πi(x
#
i , ξ

#
j (cj); ci)] ≥ Ecj [Πi(xi, ξ

∗
j (cj); ci)], for any xi ≥ 0 and ci ∈ Si, as well as

Ecj [Πi(ξ
∗
i (ci), ξ

∗
j (cj); ci)] ≥ Ecj [Πi(x

#
i , ξ

#
j (cj); ci)], for any ci ∈ Ci\Si. Here we dropped, for

convenience, the reference to prior disclosure decisions in the notation of the equilibrium bids.18

3. The unraveling theorem

This section is central to our analysis. We start by defining what we call uniformly asymmetric

contests. We then provide a suffi cient condition for a contest to be uniformly asymmetric. Finally,

we present the main result of this paper.

3.1 Uniformly asymmetric contests

The focus of our analysis lies on probabilistic contests with two-sided incomplete information that

satisfy the following definition.

15 Introducing costs for disclosing information would not change our conclusions, provided those are not too large
compared to the benefits of self-disclosure identified below.
16A formal account of belief updating is provided in the Appendix.
17This is obvious for any ci ∈ Ci with µi(ci) > 0. Should, however, a type ci deviate by not disclosing so

that µi(ci) = 0, then there may not be a best response if the thereby deluded opponent plays zero with positive
probability. In that case, we replace the continuation payoff by the supremum payoff feasible for ci.
18Type-dependent signal spaces and continuous strategy sets preclude a direct reference to the standard definition

of a perfect Bayesian equilibrium in a multi-stage game with observable actions (Fudenberg and Tirole, 1991, p.
331). Otherwise, however, the definition is standard.
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Definition 1. A probabilistic contest of incomplete information will be called uniformly asym-

metric if, for any pair of posterior beliefs (µ1, µ2) ∈ ∆(C1)×∆(C2),

(i) all types c1 ∈ supp(µ1) are active at the contest stage; and

(ii) if all types c2 ∈ supp(µ2) are active as well, then

p1(ξ
∗
1(c1), ξ

∗
2(c2)) >

1

2
> p2(ξ

∗
2(c2), ξ

∗
1(c1)) ( c1 ∈ supp(µ1); c2 ∈ supp(µ2)). (4)

Here, as usual, supp(µi) = {ci ∈ Ci : µi(ci) > 0} denotes the support of player i’s posterior

belief µi, for i ∈ {1, 2}. Thus, in a uniformly asymmetric contest, two properties hold regardless

of posterior beliefs at the contest stage. First, player 1 is active with probability one. Second,

provided that player 2 is also active with probability one, player 1 is interim always (i.e., for all

type realizations) more likely to win than player 2.19

If the contest is of complete information (i.e., if K1 = K2 = 1), then being uniformly asym-

metric is equivalent to what Dixit (1987) called an asymmetric contest. Correspondingly, we will

henceforth refer to player 1 alternatively as the favorite and to player 2 as the underdog.

3.2 A suffi cient condition

In this section, we derive a condition on the primitives of the model that is suffi cient for a contest

to be uniformly asymmetric. While the assumption is strong, it will allow us to capture a very

clear and robust intuition.

Assumption 1. The production function h has a bounded curvature ρ.20 Moreover, the net bias

γ ≡ γ2/γ1 satisfies

γ < γ∗ ≡ π1 + 2π2 − 2

2− π1
·

 σ if σ ≤ 1

σ1/ρ if σ > 1,
(5)

where σ = c2/c1, and πi =
√
ci/ci for i ∈ {1, 2}.

19To understand why the activity of all types of player 2 is presupposed in property (ii) of the definition, it should
be noted that an inactive type of player 2 may, in general, dilute the marginal incentives of a strong player 1 so
much that the probability ranking (4) could easily break down.
20The curvature ρ = ρ(h) corresponds to the smallest ρ for which h is ρ-convex (cf. Anderson and Renault, 2003).

In the Tullock case, ρ(hTUL ) = 1/r. In the lottery case, r = 1, and hence ρ = 1. For background on generalized
concavity, see Caplin and Nalebuff (1991a, 1991b).
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Assumption 1 is a joint restriction on four parameters, each of which admits an intuitive inter-

pretation.21 First, ρ measures the degree of noise in the contest technology, where a larger value

corresponds to more noise. Second, σ captures player 1’s resolve (Hurley and Shogren, 1998a,

1998b). For example, if σ > 1, then player 1 is always more effi cient than player 2, and σ corre-

sponds to player 1’s worst-case relative cost advantage. Third, πi ∈ (0, 1] reflects the predictability

of player i’s marginal cost, where the maximum value of one corresponds to complete information

about ci. Fourth and finally, the net bias γ has an obvious interpretation, where γ < 1, for

example, means that the contest technology is biased against player 2.

When positive, the threshold value γ∗ is weakly declining in ρ, as well as strictly increasing in

σ, π1, and π2. Thus, for any given net bias, the assumption is more likely to hold when there is

less noise, player 1’s resolve is larger, or marginal costs are more predictable. In particular, we see

that, if Assumption 1 holds for a given contest, changes to the information structure caused by

pre-play disclosure decisions cannot invalidate it. For instance, if either C1 or C2 is substituted

by a nonempty subset, then σ, π1, and π2 all rise weakly, so that the cut-off value for the bias,

γ∗, likewise rises weakly. Thus, if the assumption holds for type sets C1 and C2, then it holds also

for any pair of nonempty subsets. A similar remark applies to any updating of beliefs.22

In the limit case of complete information and symmetric costs (i.e., c1 = c1 = c2 = c2),

Assumption 1 says that the technology is biased against player 2 (i.e., γ2 < γ1). Further, the

case of a biased contest with ex-ante symmetric type distributions (i.e., c1 = c2 ≤ c1 = c2), as

discussed, e.g., by Drugov and Ryvkin (2017), is not generally excluded by Assumption 1.23

Clearly, with Assumption 1 in place, player 1 is in a quite strong position relative to player 2.

And indeed, as the following result shows, the assumption implies that the contest is uniformly

asymmetric.

Lemma 2. (Suffi cient condition) Any incomplete-information contest that satisfies Assump-

tion 1 is uniformly asymmetric.

21The specific form of inequality (5) has been derived from the proof of Lemma 2 below and thus constitutes a
suffi cient but not necessary condition for the contest to be uniformly asymmetric.
22Assumption 1 does not impose any activity conditions. In general, corner solutions are known to be consistent

with the existence of a perfect Bayesian equilibrium with no revelation of private information (Okuno-Fujiwara et
al., 1990, Ex. 4). In our framework, however, this problem does not occur.
23 Indeed, in this case, γ∗ = (3π−2)π2

2−π , with π ≡ π1 = π2 =
√
σ. For example, for π = 0.8, we get γ∗ = 0.21.

However, as noted by a referee, in that case the additional assumption σ > 4/9 is needed to fulfill γ < γ∗.
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3.3 Main result

We will use the term full revelation to characterize the perfect Bayesian equilibrium, or the perfect

Bayesian equilibrium outcome, in which all types disclose their private information. The main

result of the present paper is the following.

Theorem 1. (Strong-form disclosure principle) In any uniformly asymmetric contest with

pre-play communication of verifiable information, full revelation is the unique perfect Bayesian

equilibrium outcome.

Theorem 1 states that the strong-form disclosure principle applies to any uniformly asymmetric

contest.

It is not hard to see that self-disclosure by all types is an equilibrium. Indeed, it suffi ces

to specify off-equilibrium beliefs so that a player that surprises her opponent by concealing her

private information is understood to be the worst-case type, i.e., the type that no other type would

like to masquerade as.24 In our setting, the worst-case types are the most effi cient underdog and

the least effi cient favorite, respectively. Provided that off-equilibrium beliefs are specified in that

skeptical way (Milgrom, 2008), it is optimal for all types to stick to self-disclosure.

Note that uniqueness is claimed for the equilibrium outcome only. To reveal all private infor-

mation, it suffi ces that, for each player, all types except one disclose their private information.

However, that multiplicity of perfect Bayesian equilibria is trivial since it does not affect the

outcome of the contest.

For auctions with interdependent valuations (Benoît and Dubra, 2006; Tan, 2016), incentives

to reveal a private signal are typically strongest at the bottom of the signal support of the common-

value component. For instance, a bidder in an auction that learns that a purportedly original

painting is not authentic has an incentive to share that information with the other bidders. Thus,

as in the present analysis, voluntary disclosure is likely to occur whenever it reduces the opponent’s

incentives for bidding too aggressively.25

24This useful terminology is borrowed from Seidmann and Winter (1997) and Hagenbach et al. (2014).
25We conjecture that allowing for a common-value signal in the present set-up would lead to similar conclusions

as the literature on unraveling in auctions has identified.
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4. Understanding the unraveling result

This section discusses the mechanics underlying Theorem 1, dealing first with the underdog and,

subsequently, with the favorite. The section closes with some discussion.

4.1 Benefits of self-disclosure for the underdog

We focus on the weakest type of the underdog, c2, assuming that there are at least two possible

type realizations for c2. Let ξ∗ = (ξ∗1, ξ
∗
2) denote the equilibrium at the contest stage resulting

if c2 does not disclose her type, where the probability of winning and the expected payoff for c2

are given by p∗2(c2) = Ec1 [p2(ξ
∗
2(c2), ξ

∗
1(c1))] and Π∗2(c2) = Ec1 [Π2(ξ

∗
2(c2), ξ

∗
1(c1); c2)], respectively.

Similarly, let (ξ#1 , x
#
2 ) denote the equilibrium in the contest with one-sided incomplete information

that results if c2 reveals her type, where c2’s probability of winning and expected payoff are given

by p#2 = Ec1 [p2(x
#
2 , ξ

#
1 (c1))] and Π#2 = Ec1 [Π2(x

#
2 , ξ

#
1 (c1); c2)], respectively. The following result

summarizes the comparative statics of the equilibrium at the contest stage with respect to c2’s

disclosure decision.

Proposition 1. (Self-disclosure by the weakest type of the underdog) Suppose that, in

a uniformly asymmetric contest, the underdog has at least two possible type realizations. Then, a

unilateral disclosure by the weakest type of the underdog, c2,

(i) induces c2 to strictly raise her effort, i.e., x
#
2 > ξ∗2(c2);

(ii) strictly raises c2’s interim probability of winning, i.e., p#2 > p∗2(c2) (even against any given

type of player 1); and

(iii) strictly raises c2’s expected payoff, i.e., Π#2 > Π∗2(c2).

Thus, after revealing her relative weakness, the weakest type of the underdog behaves as if gaining

confidence. She bids more aggressively and wins with a strictly higher probability. Moreover, the

self-disclosure is always strictly beneficial for her.26

The proof of Proposition 1 is based on the monotonicity properties of best response map-

pings in uniformly asymmetric contests. Let (Xi,�i) denote the set of player i’s bid schedules
26The conclusions of Proposition 1 are immediate for any type of the underdog that is inactive in ξ∗. Indeed,

disclosure is the only way for such types to ensure an active participation, a positive probability of winning, and a
positive expected payoff. Thus, Proposition 1 shows that self-disclosure is optimal for c2 even if ξ

∗
2(c2) > 0.
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equipped with the product order.27 Denote by X∗j ⊆ Xj the set of bid schedules ξj for player

j ∈ {1, 2} that admit a unique maximizer xi ≡ β̃i(ξj ; ci) ∈ R+ of the expected payoff func-

tion xi 7→ Ecj [Πi(xi, ξj(cj); ci)], for any ci ∈ Ci with i 6= j. Given ξj ∈ X∗j , the bid schedule

βi(ξj) = β̃i(ξj ; ·) : Ci → R+ will be called the best-response bid schedule against ξj . As shown

in the Appendix, the best-response bid schedule βi(ξj) is weakly declining in the type for any

ξj ∈ X∗j , and strictly so at positive bid levels. Moreover, the thereby defined best-response map-

ping βi : X∗j → Xi satisfies monotonicity properties under suitable domain restrictions.28

Figure 1. Proof of Proposition 1.

The fact that c2 raises her effort after self-disclosure is crucial. To understand this point, sup-

pose that, instead of strictly raising her effort, c2 were to weakly lower her effort after disclosure,

i.e., x#2 ≤ ξ∗2(c2), as illustrated on the right-hand side of Figure 1 for the strict case. Consider now

the flat bid schedule ψ2(x
#
2 ) ∈ X2 that prescribes an effort of x#2 for each c2 ∈ C2. Then, since

there are at least two types in C2, and since the equilibrium bid schedule ξ∗2 is strictly declining

at positive bid levels (also recalling that ξ∗2 ≡ 0 is not feasible), we get ξ∗2 � ψ2(x
#
2 ). From the

strict monotonicity of player 1’s best-response mapping, checking domain conditions, we therefore

obtain ξ∗1 = β1(ξ
∗
2) � β1(ψ2(x

#
2 )) = ξ#1 , as shown on the left-hand side of Figure 1. Applying

27Thus, given bid schedules ξi, ξ̂i ∈ Xi, we write ξi �i ξ̂i if ξi(ci) ≥ ξ̂i(ci) holds for any ci ∈ Ci. Further, we
will write ξi �i ξ̂i if ξi �i ξ̂i and there is ci ∈ Ci such that ξi(ci) > ξ̂i(ci). The subscript i in �i and �i will be
dropped whenever there is no risk of ambiguity.
28These properties, which were documented by Dixit (1987) in the case of complete information, are verified in

the Appendix. The comparative statics of complete-information contests has been studied by Jensen (2016) and
Gama and Rietzke (2017), in particular.
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now the strictly declining best-response mapping of c2, checking domain conditions also here, one

arrives at ξ∗2(c2) = β̃2(ξ
∗
1; c2) < β̃2(ξ

#
1 ; c2) = x#2 , which yields the desired contradiction. Thus,

the weakest type of the underdog indeed raises her bid after self-disclosure.

Self-disclosure raises also the probability of winning for the weakest type of the underdog.

This follows from what we call Stackelberg monotonicity in the complete-information model. By

this, we mean that an increase of player i’s bid, subject to an optimal response by the opponent j,

always raises player i’s winning probability (and strictly so in the interior). Intuitively, a higher

effort is rewarded in terms of a higher winning probability.29 Applied to the present situation, this

says that a Stackelberg-leading underdog that raises her bid from ξ∗2(c2) to x
#
2 strictly raises her

probability of winning against any best-responding type c1. Noting that the equilibrium bid ξ∗1(c1)

weakly exceeds c1’s best response to ξ∗2(c2), it follows that indeed, the probability of winning for

the weakest type of the underdog against any c1 rises strictly from her self-disclosure.

In a final step, it is shown that the weakest type of the underdog has a strict incentive to self-

disclose. The proof we managed to come up with exploits type c2’s first-order condition to rewrite

her expected payoff from the contest as a monotone function of ex-post winning probabilities and

bids. For instance, in the Tullock contest with parameter r, type c2’s equilibrium payoff with and

without disclosure may be represented as

Π#2 (c2) = Ec1

[(
p#2 (x#2 , ξ

#
1 (c1))

)2]
+

1− r
r

c2x
#
2 , (6)

Π∗2(c2) = Ec1

[
(p∗2(ξ

∗
2(c2), ξ

∗
1(c1)))

2
]

+
1− r
r

c2ξ
∗
2(c2), (7)

respectively. Given parts (i) and (ii) of Proposition 1, this suffi ces to prove the claim.

4.2 Benefits of self-disclosure for the favorite

Repeated application of Proposition 1 shows that the underdog’s side of the contest equilibrium

unravels. Let c#2 denote the commonly known cost type of the underdog. Given one-sided in-

complete information, we will now study the incentive of the strongest type of the favorite, c1, to

disclose her private information.

29This property, for which we could not find a suitable reference, may be seen as an analogue of Dixit’s (1987,
Eq. 8) precommitment result. However, in contrast to that result, Stackelberg monotonicity holds regardless of
contestants’relative strengths.
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If type c1 decides to conceal her private information, then the ensuing contest is one of one-

sided incomplete information, with equilibrium efforts ξ#1 (c1) ≡ ξ#1 (c1; c
#
2 ) and x#2 ≡ x#2 (c#2 ).

Type c1’s probability of winning and expected payoffare consequently given by p
#
1 = p1(ξ

#
1 (c1), x

#
2 )

and Π#1 = Π1(ξ
#
1 (c1), x

#
2 ; c1), respectively. If, however, type c1 decides to disclose her private

information, then the contest is one of complete information, with equilibrium efforts x◦i ≡

x◦i (c1, c
#
2 ), for i = 1, 2. In that case, type c1’s probability of winning and expected payoff are

given by p◦1 = p1(x
◦
1, x
◦
2) and Π◦1 = Π1(x

◦
1, x
◦
2; c1), respectively. The following result summa-

rizes the comparative statics of the one-sided incomplete-information contest with respect to a

revelation by c1.

Proposition 2. (Self-disclosure by the strongest type of the favorite) Suppose that, in a

uniformly asymmetric contest, the type of the underdog is public information, while the favorite

has at least two possible type realizations. Then, a unilateral disclosure by the strongest type of

the favorite, c1,

(i) induces the underdog to strictly lower her effort, i.e., x◦2 < x#2 ;

(ii) allows c1 to strictly lower her effort, i.e., x
◦
1 < ξ#1 (c1);

(iii) strictly raises c1’s probability of winning, i.e., p
◦
1 > p#1 ; and

(iv) strictly raises c1’s expected payoff, i.e., Π◦1 > Π#1 .

Thus, if the type of the underdog is public, then the self-revelation by the strongest type of the

favorite discourages the underdog. As a result, the strongest type of the favorite exerts a lower

effort, but still wins with higher probability. While the proof of Proposition 2 employs the same

methods that have been used before, the argument is of course much simpler in this case.30

An iterated application of Proposition 2 implies that also the favorite’s side unravels. Thus, in a

uniformly asymmetric contest, full revelation is the only outcome consistent with the assumption

of perfect Bayesian rationality. But, as already discussed, self-disclosure by all types of both

players is indeed a perfect Bayesian equilibrium, which yields the conclusion of Theorem 1.

30Part (ii) of Proposition 2 holds also in the case of two-sided incomplete information. Beyond this observation,
however, the analogy to Proposition 1 is incomplete. In fact, we conjecture that parts (iii) and (iv) of Proposition 2
do not generalize to a setting with two-sided incomplete information. Below, we will derive a variant of Proposition
2 that holds even if the contest is not uniformly asymmetric.
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4.3 Discussion: Dominance and defiance31

As mentioned in the Introduction, the reason why the proof of Theorem 1 is not as straightforward

as one might expect is that, in general, a unilateral disclosure of some type may cause some types

of the opponent to raise their bids. For intuition, note that there are two countervailing effects.

On the one hand, following the self-disclosure by c2, say, the favorite’s belief collapses, inducing

her to lower her bid. On the other hand, c2 raises her bid, which induces the favorite to do the

same. As a result, the overall effect of the underdog’s self-disclosure on the bid of a given type

of the favorite is ambiguous. The situation is similar for the underdog who, under two-sided

incomplete information, may either drop out, lower her bid, or raise her bid in response to the

favorite’s self-disclosure. In the Appendix, we illustrate dominant and defiant reactions to self-

disclosure using numerical examples and relate those anomalies to general instability properties

of probabilistic contests (Wärneryd, 2018).

5. Extensions

In this section, we discuss a variety of extensions of Theorem 1. To keep the exposition as non-

technical as possible, most of the formal results and derivations underlying the discussion have

been moved to the Appendix.

5.1 Correlated types

The conclusion of Theorem 1 is robust with respect to the introduction of correlation between

contestants’ types. To fix ideas, suppose that, as a result of positive correlation that renders

stronger types of the underdog more pessimistic, some type of the underdog other than the

weakest type, say ĉ2, submits the lowest bid in the contest. Then, the argument underlying

Proposition 1 will go through with ĉ2 replacing c2– unless we are in the non-generic scenario in

which correlation induces all types of the underdog to choose the same bid. Thus, even though

the literal conclusions of Proposition 1 may break down with correlated types, straightforward

variants of the proposition hold, either for suffi ciently small correlation, for negative correlation, or

generically. Once the side of the underdog has unraveled, however, the contest is one of one-sided

incomplete information, and the argument proceeds as before.
31Of course, we acknowledge the crucial role played by emotions in contests (e.g., Kräkel, 2008). Illustrations of

dominant and defiant behavior can be found in Caygill (2013).
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5.2 Partitional disclosures

In the main analysis, we assumed that disclosure is “all-or-nothing”. However, in many cases,

contestants may have more control over the information they choose to disclose than what has been

assumed so far. In a model with pre-play partitional disclosure of the state space, Hagenbach et al.

(2014) identified necessary and suffi cient conditions for the existence of a fully revealing sequential

equilibrium with “extremal” off-equilibrium beliefs that implements a given Nash equilibrium

action profile on and off the equilibrium path. Our main result continues to hold if contestants’

message correspondences each contain an evidence base. For example, the disclosure decision

might alternatively establish an upper (lower) bound for the favorite’s (the underdog’s) cost

parameter. It should be immediate to see that the unraveling argument underlying Theorem 1

extends along these lines to the more general framework of partitional disclosures.32

5.3 Randomized revelations

Allowing for randomized revelations does not change the conclusion of Theorem 1. Indeed, a type’s

randomized decision regarding self-disclosure cannot be more profitable than a pure decision.

Therefore, full revelation remains an equilibrium outcome. But we also note that the unraveling is

inevitable when players may use randomized revelations because the self-disclosure of the relevant

extremal type remains strictly optimal regardless of conditional type distributions.

5.4 Sequential moves

Theorem 1 continues to hold when the revelation stage is replaced by a sequential-move game

in which the disclosure decision is made first by the favorite and then, after observation, by

the underdog. Intuitively, in any equilibrium in which two or more types of the favorite pool

with positive probability in the same information set, the underdog’s type will be revealed by

Proposition 1. Anticipating this, the strongest type of the favorite strictly prefers to self-disclose

instead of pooling with any weaker type. But also in the case where the underdog moves first,

we show in the Appendix that full revelation remains the unique perfect Bayesian equilibrium

outcome in the lottery contest.33

32As we further show in the Appendix, hard evidence may also be released if it is only an imperfect signal about
the type, provided that the signal is stochastically monotone.
33The crucial payoff comparison is derived using a second-moment refinement of Jensen’s inequality that is stated

and proved in the Appendix as well.
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5.5 One-sided incomplete information

If just one of the contestants is privately informed, then the assumption of uniform asymmetry is

typically not needed to obtain full revelation as the unique equilibrium outcome.

Theorem 2. (One-sided incomplete information) Consider a probabilistic contest with one-

sided incomplete information and generic types. Then, the conclusion of Theorem 1 continues to

hold true.

While the result holds generally, the intuition for the proof is most transparent in the special

case of the Tullock contest. Two observations are important, both of which are derived from the

first-order conditions. First, in equilibrium, the expenses of the uninformed contestant, c#i x
#
i ,

correspond precisely to the expected expenses of the informed contestant, Ecj [cjξ
#
j (cj)]. Second,

the type-specific expenses of the informed contestant, cjξ
#
j (cj), are strictly hump-shaped as a

function of the type. Combining these observations, there is always at least one extremal type of

the informed contestant, either cj or cj , such that making that type marginally more likely lowers

the expected expenses of the uninformed contestant. Which of the two extremal types has this

property depends only on the three parameters cj , cj , and c
#
i , regardless of the distribution of

probabilities. Specifically, the effi cient type cj has a strict incentive to self-disclose if c
#
i >

√
cjcj ,

while the ineffi cient type cj has a strict incentive to self-disclose if c
#
i <

√
cjcj . Thus, replacing

the assumption of uniform asymmetry by one-sided incomplete information, there is an additional

twist to the logic of the unraveling argument. Rather than following the linear ordering of types

on each side of the contest, the unraveling may now follow a “bang-bang”order, in the sense that

extremal effi cient and extremal ineffi cient types alternatingly find it strictly optimal to self-disclose

conditional on hypothesized prior disclosures.34

5.6 Continuous type distributions

Benoît and Dubra (2006) have derived a general unraveling result for auctions and other Bayesian

games that allows for multiple players and metric type spaces. That result may be used to

extend Theorem 1 to the case of continuous type distributions.35 Suppose that for i ∈ {1, 2},
34Similar to the case of correlated types, a genericity assumption is needed here because different types of the

informed player may choose the same bid.
35Contests with continuous type distributions have been considered, in particular, by Fey (2008), Ryvkin (2010),

Wasser (2013a, 2013b), and Ewerhart (2014).
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player i’s marginal cost is drawn from an interval [ci, ci], with 0 < ci < ci, according to some

continuous distribution function Fi. Both Definition 1 and Lemma 2 extend to this case, provided

that the probability ranking property (4) is required for any pair of cost realizations in the

support of players’ posterior beliefs. Considering now a uniformly asymmetric lottery contest

with independent types, contestants’ types are almost surely revealed in any perfect Bayesian

equilibrium.

5.7 Private information about valuations and ability

We assumed above that private information concerns marginal cost only. To accommodate more

general forms of uncertainty, suppose that player i’s private information is instead summarized in

the vector θi = (ci, Vi, Li, γi), where the components satisfy the same restrictions as before.

Proposition 3. Assuming that private information is exclusively about marginal cost is without

loss of generality if at least one of the two following conditions is satisfied.

(i) γ1 and γ2 are public information;

(ii) h(y) = yr for some r ∈ (0, 1].

Part (i) captures the (well-known) equivalence between uncertainty about marginal cost and

valuations. Part (ii) says that, in the case of the Tullock contest, our analysis covers multi-

dimensional uncertainty without restriction. This is an important point because, as noted by a

referee, in many real-world contests, verifiable evidence may not concern contestants’preferences

but instead the likelihood to win.

6. Limits of the scope of the disclosure principle

The strong-form disclosure principle is not universally valid in probabilistic contests. As will be

shown in this section, the principle may break down if the contest is not uniformly asymmetric

or if contestants have commitment power. Moreover, the principle never holds in probabilistic

contests if information is unverifiable.

6.1 Contests that are not uniformly asymmetric

The conclusion of Theorem 1 may fail if the contest is not uniformly asymmetric. In line with the

intuition provided in the Introduction, we outline below a numerical example of a probabilistic
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contest that is not uniformly asymmetric and in which the perfect Bayesian equilibrium outcome

need not be fully revealing. In view of Theorem 2, any counterexample of this sort necessarily

features two-sided asymmetric information.

Example 1. (Countervailing incentives) In an unbiased lottery contest specified by the

parameters given in Figure 2, all four types are active, and the strongest type of each player outbids

the weakest type of her respective opponent. Thus, the contest is not uniformly asymmetric. None

of the effi cient types, neither c1 nor c2, has an incentive to self-disclose because that would induce

their respective effi cient counterpart to bid higher. This would be undesirable because, in a

probabilistic contest, the payoff impact of an increase in the opponent’s bid is strongest if the

competing bids are in a similar range. The situation is similar for the ineffi cient types, c1 and c2,

who likewise do not wish to trigger a higher bid by their respective ineffi cient counterpart. And

indeed, as the data in Figure 2(b) shows, full concealment turns out to be a perfect Bayesian

equilibrium in this contest.

Figure 2. Data for Example 1.

Thus, the assumption of uniform asymmetry cannot be easily dropped without losing the strong-

form disclosure principle in probabilistic contests with two-sided incomplete information.36

6.2 Commitment power and Bayesian persuasion

Self-disclosure of one type need not be in the interest of other types. If, for example, the strongest

type of the favorite reveals her private information in a uniformly asymmetric contest, then

36While the bid intervals are overlapping in Example 1, it is likewise feasible to construct counterexamples with
either nested or symmetric bid intervals. See the Appendix.
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the competition for the remaining types of the favorite will typically become tougher. Thus,

a contestant may be worse off as a result of voluntary disclosure. Following Kamenica and

Gentzkow (2011), one may assume that each contestant possesses commitment power that allows

her to follow a communication strategy optimized from an ex-ante perspective. As we show in

the Appendix, however, a contestant’s optimal Bayesian persuasion strategy may take different

forms, including not only full disclosure, but also full concealment, or even the use of randomized

signals. For example, given precommitment to a signal, an effi cient type of the underdog may

occasionally pool with an ineffi cient type. Conversely, a contestant might seek ways to avoid

receiving messages by shutting down communication channels.

6.3 Cheap talk37

In Crawford and Sobel’s (1982) model of cheap talk, pre-play messages released at the interim

stage are assumed to be unverifiable.38 More generally, in a communication equilibrium (Myer-

son, 1982), each player reports private information to a mediator in an unverifiable way. Having

received the reports, the mediator follows her precommitted instructions and releases a recom-

mendation to each of the players via a bilateral communication channel. Then, based on the

recommendation and her type, each player chooses a strategy. For example, the mediator may

be precommitted to relay the reports unchanged to the respective other party, which would cor-

respond to cheap talk. In the case of the two-player all-pay auction, Pavlov (2013) identified

assumptions under which every communication equilibrium is interim payoff equivalent to the

Bayesian equilibrium. The following result is an analogous observation for probabilistic contests.

Theorem 3. (Babbling) In any communication equilibrium of a probabilistic contest, all rec-

ommendations will be ignored.

Thus, cheap talk in probabilistic contests is necessarily ineffective, even if intermediated by a trust-

worthy third party. If the contest were a zero-sum game, then this observation would be obvious.

Indeed, as noted by Farrell (1985), a player should be very suspicious to make use of information

provided by another player with completely opposite preferences. However, probabilistic contests

37We are indebted to the Editor for suggesting this interesting extension.
38Fey et al. (2007) studied cheap talk in games with two-sided incomplete information and identified a role for

complementarity vs. substitutability. While interesting, their results do not resolve our research question.
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are not zero-sum, but only strategically zero-sum (Moulin and Vial, 1978). To understand why,

one notes that adding the expenses of a player to the other player’s payoff function does not change

marginal incentives. Therefore, in principle, there might be communication strategies mutually

beneficial for both players to select Pareto superior outcomes. However, the Bayesian equilibrium

is unique by Lemma 1, which turns out to imply that unverifiable communication is ineffective.39

7. Effi ciency

What are the welfare implications of information disclosure in probabilistic contests? In the

Appendix, we show with the help of an example that, in the absence of commitment power on

the part of the contestants, the unraveling may lead into a “disclosure trap.”By this, we mean

an outcome in which the ex-ante expected payoff for both contestants is strictly lower than under

mandatory concealment. Thus, in contrast to the more common situation in which the receiver

in a persuasion game, such as an employer, a consumer, or a health insurer, tends to benefit from

the unraveling, this need not be the case in a contest. However, many real-world contests have

informational and allocational externalities on third parties. It may, therefore, be short-sighted

to limit the welfare discussion solely to the expected payoffs of the contestants. For example,

if contests are organized to maximize total expected expenses, and if information disclosures

lower expected payoffs by tightening the competition, then that may well be desirable from the

organizer’s point of view.40

8. Conclusion

In this paper, we have identified general and robust conditions under which a probabilistic con-

test with verifiable pre-play communication admits full disclosure as the unique perfect Bayesian

equilibrium outcome. Given that the usual assumptions for the uniqueness of the fully revealing

39 In his analysis of sender-receiver games with two-sided incomplete information, Seidmann (1990, Ex. 1) showed
that, even if all types of the sender share the same preferences over pure effort choices by the receiver, the sender
types’preferences regarding lotteries over efforts may differ. Even though our model has precisely this property,
Theorem 3 shows that equilibria in which receivers react to information are not feasible in probabilistic contests.
And indeed, as we checked numerically, the Tullock contest does not satisfy Seidman’s condition for r ∈ (0, 1].
40As argued by Denter et al. (2014), Zhang and Zhou (2016), and Serena (2022), contest organizers may be able

to influence contestants’beliefs about each other by information design. In the Appendix, we advance theory by
characterizing optimal signals under a variety of policy objectives. In particular, we provide conditions under which
the delegation to an informed contestant is optimal.
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equilibrium outcome (Milgrom, 1981; Okuno-Fujiwara et al., 1990; Seidmann and Winter, 1997;

van Zandt and Vives, 2007) fail to hold for contests, our results mean an extension of existing the-

ory. In particular, the strong-form disclosure principle is more general than previously perceived.

In addition, the analysis has formalized several intuitive concepts for which, to our knowledge, a

flexible and all-encompassing framework in the realm of contest theory has been lacking so far. In

sum, the analysis sheds further light on the incentives for communication of both verifiable and

unverifiable information in competitive situations. This is not only desirable from the perspec-

tive of economic theory, but might also facilitate both the mitigation of harmful conflict and the

effi cient design of real-world contests.41
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ONLINE APPENDIX

This appendix contains material that has been omitted from the body of the paper. The appendix is organized
as follows.

A. Material omitted from Section 2
A.1 Bayesian updating
A.2 Proof of Lemma 1

B. Material omitted from Section 3
B.1 Wärneryd’s transformation
B.2 Monotonicity of best-response bid schedules
B.3 Bounds on the bid distributions
B.4 Proof of Lemma 2

C. Material omitted from Section 4
C.1 Best-response monotonicity
C.2 Stackelberg monotonicity
C.3 Proof of Proposition 1
C.4 Proof of Proposition 2
C.5 Proof of Theorem 1
C.6 Discussion: Dominance and defiance
C.7 Games of strategic heterogeneity

D. Material omitted from Section 5
D.1 Correlated types
D.2 Noisy signals
D.3 Sequential moves
D.4 One-sided incomplete information
D.5 Continuous types
D.6 Other types of uncertainty

E. Material omitted from Section 6
E.1 Contests that are not uniformly asymmetric
E.2 Bayesian persuasion
E.3 Shutting down communication
E.4 Unverifiable information

F. Material omitted from Section 7
F.1 The “disclosure trap”
F.2 Effort maximization
F.3 Information design

G. Refinement of Jensen’s inequality

H. Additional references

A. Material omitted from Section 2

Below, we outline the formal details regarding the Bayesian updating as well as the proof of Lemma 1.

A.1 Bayesian updating
Fix a contestant i ∈ {1, 2}, and suppose given a set of revealing types, Si ⊆ Ci. Then, there are three scenarios:
(i) Suppose first that player i discloses ci ∈ Ci. Then, player i is believed to be of type ci with probability one, i.e.,
µi(ci) = 1. (ii) Next, suppose that player i does not disclose her type, and that player i’s decision to not disclose
is a possibility on the equilibrium path, i.e., Si  Ci. Then, ci is expected to be in the set-theoretic complement
of Si. Hence, by Bayes’ rule, µi(ci) = qi(ci)/

∑
c′i∈Ci\Si

qi(c
′
i) if ci ∈ Ci\Si, while µi(ci) = 0 if ci ∈ Si. (iii)

Finally, suppose that player i does not disclose her type, and that i’s decision to not disclose is an off-equilibrium
event, i.e., Si = Ci. Then, the belief about player i may be specified by any µi = µ0i ∈ ∆(Ci).

A.2 Proof of Lemma 1
Lemma 1 concerns the existence and uniqueness of the Bayesian equilibrium at the contest stage.

Proof of Lemma 1. This is a special case of a result in Ewerhart and Quartieri (2020). �
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Lemma 1 extends to randomized bids. Indeed, since each player is active with positive probability, and payoffs
functions are own-bid l.s.c. at the origin, expected payoffs against the opponent’s equilibrium strategy are strictly
concave over R+, so that it is suboptimal to randomize strictly.

B. Material omitted from Section 3

This section presents three auxiliary results and the proof of Lemma 2.

B.1 Wärneryd’s transformation
The function introduced in the following lemma arises naturally in the first-order conditions.1

Lemma B.1 (Wärneryd’s transformation) Let Φ(z) = h(z)/h′(z), for z > 0. Then, the following holds true:
(i) limz↘0 Φ(z) = 0; (ii) 1 ≤ Φ′ ≤ ρ; (iii) (d lnh)/(d ln Φ) = 1/Φ′; (iv) if xi > 0, then player i’s best-response
mapping in the complete-information contest is differentiable with

dxi
dxj

=
Φ(xi)

Φ(xj)

2pi − 1

Φ′(xi)− 1 + 2pi
, (B.1)

where i, j ∈ {1, 2} with j 6= i, and pi = pi(xi, xj).

Proof. (i) By assumption, h is differentiable in the interior of the strategy space, with h′ positive and declining.
Hence, limz→0 h

′(z) ∈ (0,∞]. Moreover, by continuity, limz→0 h(z) = 0. The claim follows. (ii) Note first that
Φ′ = 1 − (hh′′/(h′)2) ≥ 1 by the concavity of h. To see that Φ′ ≤ ρ, take some ρ > ρ such that hρ is convex.

Then, in the interior of the strategy space, ρ(ρ − 1)hρ−2 (h′)
2

+ ρhρ−1h′′ ≥ 0. Recall that ρ ≥ 1. Hence, ρ > 1.
Dividing by ρhρ−2(h′)2 > 0, and rearranging, one obtains Φ′ ≤ ρ. Taking the limit ρ→ ρ, the claim follows. (iii)
A straightforward calculation shows that

d lnh(z)

d ln Φ(z)
=

(
dh(z)

h(z)

)/(
dΦ(z)

Φ(z)

)
=
h′(z)dz

h(z)
· Φ(z)

Φ′(z)dz
=

1

Φ′(z)
(z > 0), (B.2)

as claimed. (iv) The first-order condition characterizing the best response xi reads pi(1 − pi) = ciΦ(xi). Total
differentiation delivers (1− 2pi)dpi = ciΦ

′(xi)dxi, where

dpi =
pi(1− pi)

Φ(xi)
dxi −

pi(1− pi)
Φ(xj)

dxj = cidxi − ci
Φ(xi)

Φ(xj)
dxj . (B.3)

Simplifying, we obtain (B.1). �
B.2 Monotonicity of best-response bid schedules
Best-response bid schedules are monotone declining in marginal cost, and strictly so in the interior.

Lemma B.2 (Monotonicity of best-response bid schedules) Let ξj ∈ X∗j and ci, ĉi ∈ Ci for i 6= j such

that ci > ĉi. Then, β̃i(ξj ; ci) ≤ β̃i(ξj ; ĉi), where the inequality is strict if β̃i(ξj ; ĉi) > 0.

Proof. Take a bid schedule ξj ∈ X∗j . The assertion is obvious for β̃i(ξj ; ci) = 0. Suppose instead that

xi ≡ β̃i(ξj ; ci) > 0. Then, from ci’s first-order condition, ∂Ecj [pi(xi, ξj(cj))]/∂xi = ci. We will first show first

that the left-hand side of this equation is strictly declining in xi. Indeed, because the best-response bid β̃i(ξj ; ci)
exists, there is some cj ∈ Cj such that ξj(cj) > 0. A straightforward calculation shows, therefore, that

∂2Ecj [pi(xi, ξj(cj))]

∂x2i
=

∂

∂xi
Ecj

[
γiγjh

′(xi)h(ξj(cj))

(γih(xi) + γjh(ξj(cj)))
2

]
(B.4)

= Ecj

[
γiγjh(ξj(cj))

{
(γih(xi) + γjh(ξj(cj)))h

′′(xi)− 2γi(h
′(xi))

2
}

(γih(xi) + γjh(ξj(cj)))
3

]
< 0, (B.5)

1Cf. Wärneryd (2003) and Inderst et al. (2007).
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which proves the claim. There are now two cases. Assume first that x̂i > 0. For this case, it is claimed that
x̂i > xi. To provoke a contradiction, suppose that x̂i ≤ xi. Then, since the marginal probability of winning for
player i is strictly declining in i’s bid, ĉi = ∂Ecj [pi(x̂i, ξj(cj))]/∂xi ≥ ∂Ecj [pi(xi, ξj(cj))]/∂xi = ci, in conflict
with ĉi < ci. Hence, x̂i > xi, as claimed. Assume next that x̂i = 0, i.e., type ĉi finds it optimal to respond to
ξj with a zero effort. But then, clearly, strictly higher marginal costs induce type ci to do the same, i.e., xi = 0.
The lemma follows. �
B.3 Bounds on the bid distributions
From the first-order conditions, we derive upper and lower bounds on active contestants’bid distributions.

Lemma B.3 (Bounds on the bid distributions) Let ξ∗ = (ξ∗1, ξ
∗
2) be a Bayesian equilibrium in an incomplete-

information contest such that both players are active with probability one. Then,

γih(ξ∗i (ci)) ≤ 1

πi
· γih(ξ∗i (ci)) +

1− πi
πi

· γjh(ξ∗j (cj)) (i, j ∈ {1, 2}, j 6= i), (B.6)

h(ξ∗2(c2)) ≤ 1

σ̂
· h(ξ∗1(c1)), (B.7)

where σ̂ = σ if σ ≤ 1 and σ̂ = σ1/ρ if σ > 1.

Proof. Take an arbitrary type ci ∈ Ci of player i. Since, by assumption, ξ∗i (ci) > 0, the necessary first-order
condition for type ci holds, i.e.,

Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2

]
− ci = 0, (B.8)

where j 6= i. To prove the first claim, evaluate (B.8) at ci = ci. Then, making use of Lemma B.2 and the
concavity of h, we get

ci = Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2
·
(
γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2]
(B.9)

= Ecj

 γiγjh
′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2
·
(

1 +
γih(ξ∗i (ci))− γjh(ξ∗i (ci))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2
︸ ︷︷ ︸

monotone increasing in cj

 (B.10)

≥ Ecj
[

γiγjh
′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2

]
·
(
γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2
(B.11)

= Ecj

[
γiγjh

′(ξ∗i (ci))h(ξ∗j (cj))

(γih(ξ∗i (ci)) + γjh(ξ∗j (cj)))
2

]
×
(
h′(ξ∗i (ci))

h′(ξ∗i (ci))

)
︸ ︷︷ ︸

≥1

·
(
γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2
(B.12)

≥ ci ·
(
γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

)2
. (B.13)

Dividing by ci > 0, and using πi =
√
ci/ci, we obtain

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))

γih(ξ∗i (ci)) + γjh(ξ∗j (cj))
≤ 1

πi
. (B.14)

Inequality (B.6) follows. To prove the second claim, one multiplies type ci’s first-order condition (B.8) by Φ(ξ∗i (ci)),
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and subsequently takes expectations. This yields

Eci [ciΦ(ξ∗i (ci))] = Ec1,c2

[
γ1γ2h(ξ∗1(c1))h(ξ∗2(c2))

(γ1h(ξ∗1(c1)) + γ2h(ξ∗2(c2)))
2

]
(i = 1, 2), (B.15)

where Ec1,c2 [.] denotes the ex-ante expectation. Exploiting the fact that equilibrium bid schedules are monotone
declining (by Lemma B.2), and that Φ′ > 0, this implies

c2Φ(ξ∗2(c2)) ≤ Ec2 [c2Φ(ξ∗2(c2))] = Ec1 [c1Φ(ξ∗1(c1))] ≤ c1Φ(ξ∗1(c1)), (B.16)

or, using that Φ(ξ∗2(c2)) > 0,
Φ(ξ∗1(c1))

Φ(ξ∗2(c2))
≥ c2
c1

= σ. (B.17)

There are two cases. Assume first that ξ∗1(c1) ≥ ξ∗2(c2). Then, using Φ′ ≤ ρ (see Lemma B.1), we obtain

ln

(
h(ξ∗1(c1))

h(ξ∗2(c2))

)
=

∫ ξ∗1(c1)

ξ∗2(c2)

d lnh(z) (B.18)

=

∫ ξ∗1(c1)

ξ∗2(c2)

d lnh(z)

d ln Φ(z)
d ln Φ(z) (B.19)

=

∫ ξ∗1(c1)

ξ∗2(c2)

1

Φ′(z)
d ln Φ(z) (B.20)

≥ 1

ρ

∫ ξ∗1(c1)

ξ∗2(c2)

d ln Φ(z) (B.21)

=
1

ρ
ln

(
Φ(ξ∗1(c1))

Φ(ξ∗2(c2))

)
. (B.22)

Using (B.17), this implies h(ξ∗2(c2)) ≤ σ−1/ρ · h(ξ∗1(c1)). Assume next that ξ
∗
1(c1) < ξ∗2(c2). Then using Φ′ ≥ 1

(taken likewise from Lemma B.1) delivers

ln

(
h(ξ∗2(c2))

h(ξ∗1(c1))

)
=

∫ ξ∗2(c2)

ξ∗1(c1)

d ln Φ(z)

Φ′(z)
≤
∫ ξ∗2(c2)

ξ∗1(c1)

d ln Φ(z) = ln

(
Φ(ξ∗2(c2))

Φ(ξ∗1(c1))

)
. (B.23)

Hence, in that case, h(ξ∗2(c2)) ≤ 1
σ · h(ξ∗1(c1)). Thus, exploiting that ρ ≥ 1, we see that h(ξ∗2(c2)) ≤ h(ξ∗1(c1)) ·

max{σ−1, σ−1/ρ}. Clearly, this proves (B.7). �
B.4 Proof of Lemma 2
Next, we establish the condition suffi cient for uniform asymmetry stated as Lemma 2.

Proof of Lemma 2. Lemma 2 is derived by combining several inequalities, all of which are derived from the
first-order conditions necessary for players’bid schedules to be mutual best responses. Property (ii) of Definition
1 will be checked first. Suppose that all types of both players are active. There are two cases.

Case A. Suppose first that Supp(µ1) = C1 and Supp(µ2) = C2. We make use of Lemma B.3. Letting i = 2 in
(B.6) yields

γ2h(ξ∗2(c2)) ≤
1

π2
· γ2h(ξ∗2(c2)) +

1− π2
π2

· γ1h(ξ∗1(c1)). (B.24)
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Combining this with (B.7) delivers

γ2h(ξ∗2(c2)) ≤
{

1

π2
· γ
σ̂

+
1− π2
π2

}
︸ ︷︷ ︸

≡α

· γ1h(ξ∗1(c1)), (B.25)

where γ = γ2/γ1, as before. Letting i = 1 in (B.6), and plugging the result into (B.25) yields

γ2h(ξ∗2(c2)) ≤ α ·
{

1

π1
· γ1h(ξ∗1(c1)) +

1− π1
π1

· γ2h(ξ∗2(c2))

}
. (B.26)

To be able to solve for γ2h(ξ∗2(c2)), we assume for the moment that

1− α1− π1
π1

> 0. (B.27)

Then, rewriting (B.26), we obtain

γ2h(ξ∗2(c2)) ≤
{

α · 1π1
1− α · 1−π1π1

}
︸ ︷︷ ︸

≡λ

· γ1h(ξ∗1(c1)). (B.28)

Thus, γ2h(ξ∗2(c2)) ≤ λ · γ1h(ξ∗1(c1)). We claim that inequality (B.27) holds. Indeed, starting with Assumption 1,
we find that

γ <
π1 + 2π2 − 2

2− π1
· σ̂ ⇔ γ

σ̂
+ 1 <

2π2
2− π1

(B.29)

⇔ (γ/σ̂) + 1

π2︸ ︷︷ ︸
=α+1

<
2

2− π1︸ ︷︷ ︸
=

π1
2−π1

+1

(B.30)

⇔ α <
π1

2− π1
(B.31)

⇔ 1− α(1− π1)
π1

>
α

π1
. (B.32)

Clearly, this implies (B.27). Moreover, it can be readily verified that (B.32) implies λ < 1. Therefore, γ2h(ξ∗2(c2)) ≤
γ1h(ξ∗1(c1)). Using the monotonicity of equilibrium bid schedules (Lemma B.2 above), this yields γ2h(ξ∗2(c2)) ≤
γ1h(ξ∗1(c1)) for any c1 ∈ C1 and c2 ∈ C2. This proves property (ii) in Definition 1 for the case that all types of
both players conceal their private information.

Case B. Supp(µi)  Ci for some player i ∈ {1, 2}. The conclusion remains valid even if not all types conceal.
To understand why, note that disclosure by some types means that, in the relevant information set at the contest
stage, the sets C1 and C2 are replaced by nonempty subsets, respectively. Therefore, player 1’s lowest relative
resolve σ = c2/c1 rises weakly. Given that the curvature ρ ≥ 1 stays unchanged, this implies that σ̂(σ, ρ) rises
weakly as well. Further, player 1 and 2’s predictabilities π1 and π2 fall weakly, while the net bias γ stays the same.
Therefore, Assumption 1 continues to hold, and the argument detailed under case A goes through as before.

This concludes the proof of property (ii) of Definition 1. It remains to verify property (i) of the definition of
uniform asymmetry, i.e., that all types of player 1 are active. Suppose not. Then, all types of player 2 are active.
Denote by ∅ 6= C∗1 ( C1 the set of active types of player 1, and by q∗1 =

∑
c1∈C∗1

q1(c1) the ex-ante probability
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that player 1 is active. Then, since any positive bid wins against an inactive type with probability one, the
corresponding terms in player 2’s first-order condition vanish, so that

∑
c1∈C∗1

q1(c1)
γ2h

′(ξ∗2(c2))γ1h(ξ∗1(c1))

(γ1h(ξ∗1(c1)) + γ2h(ξ∗2(c2)))
2

= c2 (c2 ∈ C2). (B.33)

In the modified contest, player 1’s type set C1 is replaced by the subset C∗1 , the probability distribution q1(.) is
replaced by q∗1(c1) = q1(c1)/q

∗
1 , and player 2’s type set C2 is replaced by C2/q

∗
1 = {c2/q∗1 | c2 ∈ C2}. Denote by

ξ∗1|C∗1 the restriction of the mapping ξ
∗
1 : C1 → R+ to C∗1 , and by ξ

∗
2|q∗1 : C2q∗1

→ R+ the bid schedule for player 2 in
the modified contest that satisfies ξ∗2|q∗1 ( c2q∗1

) = ξ∗2(c2) for any c2 ∈ C2. We claim that (ξ∗1|C∗1 , ξ
∗
2|q∗1 ) is a Bayesian

equilibrium in the modified contest. Indeed, quite obviously, the first-order condition of any active type of player
1 holds in the modified contest. Moreover, dividing (B.33) by q∗1 > 0, we get

∑
c1∈C∗1

q1(c1)

q∗1

γ2h
′(ξ∗2(c2))γ1h(ξ∗1(c1))

(γ1h(ξ∗1(c1)) + γ2h(ξ∗2(c2)))
2

=
c2
q∗1

(c2 ∈ C2), (B.34)

i.e., also the first-order condition of any type of player 2 holds in the modified contest. Since all types of both
players are active in (ξ∗1|C∗1 , ξ

∗
2|q∗1 ) and since, in addition, the expected payoff against a player that is always

active is strictly concave in the own bid, this proves the claim, i.e., (ξ∗1|C∗1 , ξ
∗
2|q∗1 ) is indeed a Bayesian equilibrium

in the modified contest. Next, one notes that, since Assumption 1 holds for the original contest, Assumption 1
holds also for the modified contest (because π1 and σ rise weakly, while γ, ρ, and π2 stay the same). From the
first part of the proof, applied to the modified contest, it therefore follows that

γ2h(ξ∗2(c2)) ≤ γ1h(ξ∗1(c1)) (c1 ∈ C∗1 , c2 ∈ C2). (B.35)

Now, by assumption, some types of player 1 remain inactive in the original contest. Since, by Lemma B.2, ξ∗1 is
monotone declining, this clearly implies ξ∗1(c1) = 0. Consequently, the marginal productivity at the zero bid level
h′(0) = limε↘0

h(ε)
ε is finite. Moreover, type c1’s marginal payoff at the zero bid level is weakly negative, i.e.,

Ec2

[
γ1h

′(0)

γ2h(ξ∗2(c2))

]
≤ c1. (B.36)

Plugging (B.35) into (B.36), we see that

h′(0)

h(ξ∗1(c1))
≤ c1 (c1 ∈ C∗1 ). (B.37)

Moreover, Assumption 1 implies

γ2
γ1

= γ <
π1 + 2π2 − 2

2− π1︸ ︷︷ ︸
≤1

· σ̂(σ, ρ)︸ ︷︷ ︸
≤σ

≤ σ =
c2
c1
. (B.38)

Multiplying inequality (B.37) by (γ/q∗1) > 0, exploiting (B.38), and taking expectations over all c1 ∈ C∗1 , we get

∑
c1∈C∗1

q1(c1)

q∗1

γ2h
′(0)

γ1h(ξ∗1(c1))
<
c2
q∗1
. (B.39)
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Thus, in the modified contest, the marginal expected payoff of type (c2/q
∗
1) at the zero bid level is strictly

negative. But this is impossible given that she is active and her expected payoff against ξ∗1|C∗1 is strictly concave.
The contradiction shows that, indeed, all types of player 1 are active in the original contest. �

C. Material omitted from Section 4

This section contains two auxiliary results, proofs of Propositions 1&2 and Theorem 1, as well as some discussion.

C.1 Best-response monotonicity
We will say that player 1’s domain condition holds at (ξ2; c1) ∈ X∗2 × C1 if (i) β̃1(ξ2; c1) > 0, and (ii)
p1(β̃1(ξ2; c1), ξ2(c2)) > 1

2 for any c2 ∈ C2. Thus, player 1’s domain condition at (ξ2; c1) requires that type
c1’s best-response bid against ξ2 is interior, and wins with a probability strictly exceeding one half against any
of player 2’s types. Similarly, we will say that player 2’s domain condition holds at (ξ̂1; c2) ∈ X∗1 × C2 if (i)
β̃2(ξ̂1; c2) > 0, and (ii) p2(β̃2(ξ̂1; c2), ξ̂1(c1)) <

1
2 for any c1 ∈ C1. Thus, player 2’s domain condition at (ξ̂1; c1)

requires that type c2’s best-response bid against ξ̂1 is interior, and wins with a probability strictly below one half
against any of player 1’s types.

Lemma C.1 (Best-response monotonicity)

(i) Let ξ2, ξ̂2 ∈ X∗2 with ξ2 � ξ̂2, and let c1 ∈ C1. If player 1’s domain condition holds at (ξ2; c1), then
β̃1(ξ2; c1) > β̃1(ξ̂2; c1). In particular, if player 1’s domain condition holds at (ξ2; c1) for every c1 ∈ C1, then
β1(ξ2) � β1(ξ̂2).
(ii) Let ξ1, ξ̂1 ∈ X∗1 with ξ1 � ξ̂1, and let c2 ∈ C2. If player 2’s domain condition holds at (ξ̂1; c2), then
β̃2(ξ1; c2) < β̃2(ξ̂1; c2). In particular, if player 2’s domain condition holds at (ξ̂1; c2) for every c2 ∈ C2, then
β2(ξ1) ≺ β2(ξ̂1).

Proof. (i) Let ξ2, ξ̂2 ∈ X∗2 with ξ2 � ξ̂2, and c1 ∈ C1. By assumption, player 1’s domain condition holds at
(ξ2; c1). We wish to show that x1 ≡ β̃1(ξ2; c1) > β̃1(ξ̂2; c1) ≡ x̂1. To provoke a contradiction, suppose that
x̂1 ≥ x1. From the domain condition, we have x1 > 0. Therefore, both x1 and x̂1 are positive, so that the
corresponding first-order conditions imply

Ec2

[
γ1h

′(x1)γ2h(ξ2(c2))

(γ1h(x1) + γ2h(ξ2(c2)))
2

]
= Ec2

[
γ1h

′(x̂1)γ2h(ξ̂2(c2))

(γ1h(x̂1) + γ2h(ξ̂2(c2)))
2

]
= c1. (C.1)

Fix some c2 ∈ C2 for the moment. Letting x = γ1h(β̃1(ξ2; c1)) and y = γ2h(ξ2(c2)), the domain condition implies
x > y. Clearly, the mapping y 7→ y/(x+ y)2 is strictly increasing over the interval [0, x]. Therefore, noting that
ξ2 � ξ̂2 implies y ≥ ŷ ≡ γ2h(ξ̂2(c2)), we see that

γ1h
′(x1)γ2h(ξ2(c2))

(γ1h(x1) + γ2h(ξ2(c2)))
2
≥ γ1h

′(x1)γ2h(ξ̂2(c2))

(γ1h(x1) + γ2h(ξ̂2(c2)))
2

(c2 ∈ C2), (C.2)

with strict inequality for at least one c2 ∈ C2. Moreover, from x̂1 ≥ x1,

γ1h
′(x1)γ2h(ξ̂2(c2))

(γ1h(x1) + γ2h(ξ̂2(c2)))
2
≥ γ1h

′(x̂1)γ2h(ξ̂2(c2))

(γ1h(x̂1) + γ2h(ξ̂2(c2)))
2

(c2 ∈ C2). (C.3)

Combining (C.2) and (C.3), and subsequently taking expectations , we arrive at

Ec2

[
γ1h

′(x1)γ2h(ξ2(c2))

(γ1h(x1) + γ2h(ξ2(c2)))
2

]
> Ec2

[
γ1h

′(x̂1)γ2h(ξ̂2(c2))

(γ1h(x̂1) + γ2h(ξ̂2(c2)))
2

]
, (C.4)
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in conflict with (C.1). The contradiction shows that x1 > x̂1, as claimed. Moreover, if player 1’s domain condition
holds for any c1 ∈ C1, then β̃1(ξ2; c1) > β̃1(ξ̂2; c1) for any c1 ∈ C1, which indeed implies β1(ξ2) � β1(ξ̂2). (ii) The
proof is similar. Let ξ1, ξ̂1 ∈ X∗1 with ξ1 � ξ̂1, and c2 ∈ C2. By assumption, player 2’s domain condition holds at
(ξ̂1; c2). Suppose that x2 ≡ β̃2(ξ1; c2) ≥ β̃2(ξ̂1; c2) ≡ x̂2. Then, from the domain condition, x̂2 > 0. Hence,

Ec1

 γ2h
′(x̂2)γ1h(ξ̂1(c1))(

γ1h(ξ̂1(c1)) + γ2h(x̂2)
)2
 = Ec1

[
γ2h

′(x2)γ1h(ξ1(c1))

(γ1h(ξ1(c1)) + γ2h(x2))2

]
= c2. (C.5)

Fix some c1 ∈ C1, and let x̂ = γ2h(β̃2(ξ̂1; c2)) and ŷ = γ1h(ξ̂1(c1)). By the domain condition, x̂ < ŷ. Moreover,
the mapping ŷ 7→ ŷ/(x̂+ ŷ)2 is strictly declining for ŷ ≥ x̂. Hence, given that ξ̂1 ≺ ξ1 implies ŷ ≤ y ≡ γ1h(ξ1(c1)),
we see that

γ2h
′(x̂2)γ1h(ξ̂1(c1))(

γ1h(ξ̂1(c1)) + γ2h(x̂2)
)2 ≥ γ2h

′(x̂2)γ1h(ξ1(c1))

(γ1h(ξ1(c1)) + γ2h(x̂2))
2 (c1 ∈ C1), (C.6)

with strict inequality for some c1 ∈ C1. Moreover, from x̂2 ≤ x2,

γ2h
′(x̂2)γ1h(ξ1(c1))

(γ1h(ξ1(c2)) + γ2h(x̂2))2
≥ γ2h

′(x2)γ1h(ξ1(c1))

(γ2h(ξ1(c1)) + γ2h(x1))2
(c1 ∈ C1). (C.7)

Combining (C.6) and (C.7), and taking expectations, we arrive at

Ec1

 γ2h
′(x̂2)γ1h(ξ̂1(c1))(

γ1h(ξ̂1(c1)) + γ2h(x̂2)
)2
 > Ec1

[
γ2h

′(x2)γ1h(ξ1(c1))

(γ1h(ξ1(c1)) + γ2h(x2))2

]
, (C.8)

in contradiction to (C.5). It follows that, indeed, x̂2 > x2. In particular, provided that player 2’s domain condition
holds for any c2 ∈ C2, it follows that β2(ξ1) ≺ β2(ξ̂1). This concludes the proof. �
Lemma C.1 shows that the domain conditions are suffi cient to ensure that a type’s best-response bid and a
player’s best-response bid schedule, respectively, move in a strictly monotone way to changes in the opponent’s
bid schedule. For example, in the case of player 1, the best-response bid of type c1 will strictly rise in response
to an increase of player 2’s bid schedule. If player 1’s domain condition holds at all of her types, then we get a
strict order relation even between the best-response bid schedules. Similar comparative statics properties hold
for player 2, whose best-response mapping is, however, strictly declining under the assumptions of Lemma C.1.
In sum, the contest with two-sided incomplete information exhibits, subject to domain conditions, comparative
statics properties analogous to those of the complete-information contest.

C.2 Stackelberg monotonicity
The next auxiliary result establishes monotonicity properties of the complete-information contest.

Lemma C.2 (Stackelberg monotonicity) Let x2 > x̂2 ≥ 0 and c1 ∈ C1 such that x1 = β̃1(ψ2(x2); c1) and
x̂1 = β̃1(ψ2(x̂2); c1). If x̂1 > 0 then, (i) p2(x1, x2) > p2(x̂1, x̂2), and (ii) Π1(x1, x2; c1) < Π1(x̂1, x̂2; c1).

Proof. (i) By assumption, x̂1 = β̃1(ψ2(x̂2); c1) > 0. Therefore, x2 > x̂2 implies p2(x̂1, x2) > p2(x̂1, x̂2). Assume
first that x1 ≤ x̂1. Then, clearly, p2(x1, x2) ≥ p2(x̂1, x2) and, hence, p2(x1, x2) > p2(x̂1, x̂2), as claimed. Assume
next that x1 > x̂1. Then, the necessary first-order conditions associated with the respective optimality of x̂1 and
x1 hold true. As for x̂1, we find that

γ1h
′(x̂1)γ2h(x̂2)

(γ1h(x̂1) + γ2h(x̂2))
2 = c1. (C.9)

Multiplying by γh(x̂2)/h
′(x̂1), with γ = γ2/γ1 as before, yields (p2(x̂1, x̂2))

2
= c1γh(x̂2)/h

′(x̂1). Similarly, one
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shows that the optimality of x1 implies (p2(x1, x2))
2

= c1γh(x2)/h
′(x1). Recalling that h is strictly increasing

and that h′ is weakly declining, we see that (p2(x1, x2))
2
> (p2(x̂1, x̂2))

2. The claim follows. (ii) As a consequence
of the envelope theorem,

dΠ1(β̃1(ψ2(x2); c1), x2; c1)

dx2
=
∂Π1(x1, x2; c1)

∂x2

∣∣∣∣
x1=β̃1(ψ2(x2);c1)

= − γ1h(β̃1(ψ2(x2); c1))γ2h
′(x2)

(γ1h(β̃1(ψ2(x2); c1)) + γ2h(x2))2
< 0. (C.10)

Thus, player 1 indeed strictly benefits from the lowered effort of player 2. This proves the second claim and,
hence, the lemma. �
C.3 Proof of Proposition 1
The following prove establishes the strict incentive of the weakest type of the underdog to self-disclose.

Proof of Proposition 1. The conclusions of Proposition 1 are immediate if ξ∗2(c2) = 0. Suppose that ξ∗2(c2) > 0.
Since, by Lemma B.2, the equilibrium bid schedule ξ∗2 is weakly declining, actually all types of player 2 are active
in ξ∗2. Using Lemma B.2 another time, one sees that ξ

∗
2 is even strictly declining. These observations will be

tacitly used below. We now prove the three assertions made in the statement of the proposition. (i) First, it is
shown that self-disclosure induces the weakest type of the underdog to strictly raise her bid, i.e., ξ∗2(c2) < x#2 .
To provoke a contradiction, suppose that ξ∗2(c2) ≥ x#2 . Then, because ξ

∗
2 is strictly declining and there are at

least two possible type realizations for player 2, we get ξ∗2 � ψ2(x
#
2 ). We claim that player 1’s domain condition

holds at (ξ∗2; c1), for any c1 ∈ C1. To see this, take some c1 ∈ C1. Then, from property (i) of uniform asymmetry,
β̃1(ξ

∗
2; c1) = ξ∗1(c1) > 0. Further, since all types of player 2 are active in ξ∗2, property (ii) of uniform asymmetry

implies that p1(ξ
∗
1(c1), ξ

∗
2(c2)) >

1
2 for any c2 ∈ C2, which proves the claim. We may, therefore, apply Lemma

C.1(i) so as to obtain
ξ∗1 = β1(ξ

∗
2) � β1(ψ2(x

#
2 )) = ξ#1 . (C.11)

Next, it is claimed that player 2’s domain condition holds at (ξ#1 ; c2). Since (ξ#1 (.), x#2 ) is an equilibrium in
the contest with one-sided incomplete information, we have x#2 > 0, i.e., player 2 is active with probability
one. Invoking property (ii) of uniform asymmetry shows, therefore, that p2(ξ

#
1 (c1), x

#
2 ) < 1

2 holds true for any
c1 ∈ C1. Since β̃2(ξ

#
1 ; c2) = x#2 , this means that p2(ξ

#
1 (c1), β̃2(ξ

#
1 ; c2)) <

1
2 , for any c1 ∈ C1. I.e., player 2’s

domain condition at (ξ#1 ; c2) is indeed satisfied. Therefore, using relationship (C.11) and Lemma C.1(ii), we see
that ξ∗2(c2) = β̃2(ξ

∗
1; c2) < β̃2(ξ

#
1 ; c2) = x#2 , in contradiction to ξ

∗
2(c2) ≥ x#2 . Thus, ξ

∗
2(c2) < x#2 , as claimed.

(ii) Next, it is shown that, after disclosure, the probability of winning for the weakest type of the underdog rises
strictly, i.e., p#2 = Ec1 [p2(x

#
2 , ξ

#
1 (c1))] > Ec1 [p2(ξ

∗
2(c2), ξ

∗
1(c1))] = p∗2. In fact, we will prove the somewhat stronger

statement
p2(x

#
2 , ξ

#
1 (c1)) > p2(ξ

∗
2(c2), ξ

∗
1(c1)) (c1 ∈ C1). (C.12)

Take some type c1 ∈ C1. It is claimed first that β̃1(ψ2(ξ∗2(c2)); c1) > 0, as shown in the left diagram of Figure C.1.
Indeed, because player 2 is always active in ξ∗2, the mapping x1 7→ Ec2 [Π1(x1, ξ

∗
2(c2); c1)] is strictly concave on R+,

and vanishes at x1 = 0. Therefore, the optimality of ξ∗1(c1) > 0 implies Ec2 [Π1(ξ
∗
1(c1), ξ

∗
2(c2); c1)] > 0. But the

flat bid schedule ψ2(ξ
∗
2(c2)) is everywhere weakly lower than ξ

∗
2. Therefore, Ec2 [Π1(ξ

∗
1(c1), ψ2(ξ

∗
2(c2)); c1)] > 0,

i.e., type c1 is able to realize a positive payoff against the flat bid schedule ψ2(ξ
∗
2(c2)). Since ξ

∗
2(c2) > 0, it follows

that type c1’s best-response bid against ψ2(ξ
∗
2(c2)) is positive, as claimed. Next, from the previous step, we know

that x#2 > ξ∗2(c2). Invoking Lemma C.2(i), and noting that ξ
#
1 = β1(ψ2(x

#
2 )), it follows that

p2(x
#
2 , ξ

#
1 (c1)) > p2(ξ

∗
2(c2), β̃1(ψ2(ξ

∗
2(c2)); c1)) (c1 ∈ C1). (C.13)

Next, comparing the strictly declining equilibrium bid schedule ξ∗2 = β2(ξ
∗
1) with the flat bid schedule ψ2(ξ

∗
2(c2)),

and recalling that there are at least two types, we obtain ξ∗2 � ψ2(ξ
∗
2(c2)). Moreover, as seen above, all types

of player 2 are active. Hence, by property (ii) of uniform asymmetry, p1(ξ
∗
1(c1), ξ

∗
2(c2)) >

1
2 for any c1 ∈ C1

and any c2 ∈ C2, so that via β̃1(ξ∗2; c1) = ξ∗1(c1), player 1’s domain condition is seen to hold at (ξ∗2; c1), for any

9



c1 ∈ C1. Therefore, by Lemma C.1(i), ξ∗1 = β1(ξ
∗
2) � β1(ψ2(ξ∗2(c2))), as illustrated in Figure C.1.2 In particular,

ξ∗1(c1) ≥ β̃1(ψ2(ξ∗2(c2)); c1), for any c1 ∈ C1.Therefore,

p2(ξ
∗
2(c2), β̃1(ψ2(ξ

∗
2(c2)); c1)) ≥ p2(ξ∗2(c2), ξ∗1(c1)) (c1 ∈ C1). (C.14)

Combining (C.13) and (C.14) yields (C.12). In particular, this proves p#2 > p∗2, as claimed.

Figure C.1 Proof of Proposition 1(ii).

(iii) Finally, we show that the weakest type of the underdog has a strict incentive to disclose her type. Clearly,
the equilibrium effort x#2 is positive. One can check that type c2’s first-order condition is equivalent to

Ec1

[
p2(x

#
2 , ξ

#
1 (c1))−

(
p2(x

#
2 , ξ

#
1 (c1))

)2]
= c2Φ(x#2 ). (C.15)

Exploiting (C.15), we obtain for type c2’s expected payoff from self-disclosure,

Π#
2 = Ec1

[(
p2(x

#
2 , ξ

#
1 (c1))

)2]
+ c2

(
Φ(x#2 )− x#2

)
. (C.16)

In a completely analogous fashion, we can convince ourselves that concealment grants type c2 a payoff of

Π∗2(c2) = Ec1

[
(p2(ξ

∗
2(c2), ξ

∗
1(c1)))

2
]

+ c2 (Φ(ξ∗2(c2))− ξ∗2(c2)) . (C.17)

Now, from (C.12), we see that Ec1 [(p2(x
#
2 , ξ

#
1 (c1)))

2] > Ec1 [(p2(ξ
∗
2(c2), ξ

∗
1(c1)))

2
]. Moreover, from Lemma B.1,

Φ′ ≥ 1, so that the mapping x2 7→ Φ(x2)− x2 is monotone increasing in x2. But, as shown above, ξ∗2(c2) < x#2 .
It follows that the weakest type of the underdog has indeed a strict incentive to reveal her type. This proves the
final claim and concludes the proof of the proposition. �
C.4 Proof of Proposition 2
Next, we present the proof of Proposition 2, regarding the strict incentive of the strongest type of the favorite to
reveal her type, provided the underdog’s type is public information.

Proof of Proposition 2. Since x◦1 and x
◦
2 are equilibrium efforts under complete information, we have x◦1 > 0

and x◦2 > 0. Similarly, one notes that x#2 > 0. Moreover, by property (i) of uniform asymmetry, all types of
player 1 are active in ξ#1 , so that by Lemma B.2, the bid schedule ξ

#
1 is strictly declining. We now prove the four

assertions made in the statement of Proposition 2. (i) It is claimed that x◦2 < x#2 . To provoke a contradiction,
suppose that x◦2 ≥ x

#
2 . Part (ii) of uniform asymmetry implies p1(x◦1, x

◦
2) >

1
2 , so that in view of x

◦
1 = β̃1(x

◦
2; c1),

2The figure shows an example where x#2 < ξ∗2(c2). In general, we may also have that x#2 ≥ ξ∗2(c2).
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player 1’s domain condition holds at (x◦2; c1). Hence, by Lemma C.1(i), if even x
◦
2 > x#2 , then x

◦
1 = β̃1(x

◦
2; c1) >

β̃1(x
#
2 ; c1) = ξ#1 (c1). If, however, x

◦
2 = x#2 , then it is immediate that x

◦
1 = ξ#1 (c1). Thus, either way, we arrive

at x◦1 ≥ ξ#1 (c1), so that ψ1(x
◦
1) � ψ1(ξ

#
1 (c1)). Moreover, given that player 1 has at least two types, and that

ξ#1 is strictly declining, ψ1(ξ
#
1 (c1)) � ξ#1 . Hence, ψ1(x

◦
1) � ξ#1 . Part (ii) of uniform asymmetry implies that

p2(ξ
#
1 (c1), x

#
2 ) < 1

2 for any c1 ∈ C1. Thus, recalling that x
#
2 = β̃2(ξ

#
1 ; c#2 ), player 2’s domain condition holds at

(ξ#1 ; c#2 ). Therefore, using Lemma C.1(ii), we arrive at x#2 = β̃2(ξ
#
1 ; c#2 ) > β̃2(ψ1(x

◦
1); c

#
2 ) = x◦2, a contradiction.

It follows that x◦2 < x#2 , as claimed. (ii) Next, it is shown that x
◦
1 < ξ#1 (c1). From the previous step, we know that

x#2 > x◦2. Via property (ii) of uniform asymmetry, we see that p1(ξ
#
1 (c1), x

#
2 ) > 1

2 . Thus, the domain condition
for player 1 holds at (x#2 ; c1). Lemma C.1(i) implies, therefore, that ξ

#
1 (c1) = β̃1(x

#
2 ; c1) > β̃1(x

◦
2; c1) = x◦1. Thus,

the effort of the strongest type of the favorite will indeed be strictly lower after self-disclosure. (iii) Given part
(i) above, we have x◦2 < x#2 . Recalling that x

◦
1 > 0, Lemma C.2(i) implies p2(x◦1, x

◦
2) < p2(ξ

#
1 (c1), x

#
2 ), so that

p1(x
◦
1, x
◦
2) > p1(ξ

#
1 (c1), x

#
2 ). Thus, type c1 indeed wins with a strictly higher probability after self-disclosure. (iv)

The claim that Π◦1 > Π#
1 follows now directly from Lemma C.2(ii). This completes the proof. �

C.5 Proof of Theorem 1
This subsection combines the auxiliary results to prove our main result.

Proof of Theorem 1. We start by showing that self-disclosure by all types of both players constitutes a perfect
Bayesian equilibrium. To this end, we specify off-equilibrium beliefs µ01 ∈ ∆(C1) and µ02 ∈ ∆(C2) as follows. The
underdog expects a favorite that does not disclose her private information to be of type c1 = c1 with probability
one. Thus, µ01(c1) = 1 if c1 = c1, and µ01(c1) = 0 otherwise. Similarly, the favorite expects an underdog that does
not disclose her private information to be of type c2 = c2 with probability one. Thus, µ

0
2(c2) = 1 if c2 = c2, and

µ02(c2) = 0 otherwise. To check the equilibrium property, consider first an arbitrary type c1 ∈ C1 of the favorite.
If c1 complies with equilibrium self-disclosure, and is matched with some type c2 ∈ C2 of the underdog, then c1
receives a complete-information equilibrium payoffof Π◦1(c1, c2) = Π1(β̃1(x

◦
2(c1, c2); c1), x

◦
2(c1, c2); c1). If, however,

c1 chooses to not disclose then, given the off-equilibrium beliefs specified above, an underdog of type c2 expects
the favorite to be of the worst-case type c1 and, having revealed her own type c2, chooses an effort of x◦2(c1, c2).
Responding optimally to type c2’s bid, the deviating favorite of type c1 chooses an effort of β̃1(x

◦
2(c1, c2); c1)

at the contest stage, and consequently receives a payoff of Πdev
1 (c1, c2) = Π1(β̃1(x

◦
2(c1, c2); c1), x

◦
2(c1, c2); c1). A

straightforward application of Monaco and Sabarwal (2016, Thm. 3) shows that, given Assumption 1, x◦2(c1, c2) ≤
x◦2(c1, c2).

3 We claim that Π◦1(c1, c2) ≥ Πdev
1 (c1, c2). Indeed, if x◦2(c1, c2) < x◦2(c1, c2) then, by Lemma C.2(ii),

Π◦1(c1, c2) > Πdev
1 (c1, c2). Moreover, if x◦2(c1, c2) = x◦2(c1, c2) then Π◦1(c1, c2) = Πdev

1 (c1, c2), which proves the
claim. Taking expectations over all c2 ∈ C2 yields Ec2 [Π◦1(c1, c2)] ≥ Ec2 [Π

dev
1 (c1, c2)], for any c1 ∈ C1. Hence, a

deviation is not profitable for any type c1 ∈ C1. On the other hand, if any type of the underdog deviates, and
the favorite interprets this as a tactic of the strongest type of the underdog, then one shows in complete analogy
that the equilibrium condition holds. It follows that self-disclosure by all types of both players is indeed a perfect
Bayesian equilibrium. Next, suppose there is a perfect Bayesian equilibrium in which not all private information
is revealed. Then, for at least one player i ∈ {1, 2}, the set of types concealing their signal, Ci\Si, has at least two
elements. By suitably redefining C1 and C2, we may assume without loss of generality that all types conceal their
types. Suppose first that K2 ≥ 2. Then, Proposition 1 implies that the weakest type of the underdog has a strict
incentive to unilaterally deviate at the revelation stage, in conflict to the equilibrium assumption. Suppose next
that K2 = 1. Then, since there is incomplete information, K1 ≥ 2. But, again, this cannot be part of a perfect
Bayesian equilibrium by Proposition 2. Thus, either way, we obtain a contradiction, and the claim follows. This
proves the theorem. �
C.6 Discussion: Dominance and defiance
To make transparent why analyzing disclosure in probabilistic contests requires new methods, we discuss the
comparative statics of the Bayesian equilibrium at the contest stage with respect to changes in the information
structure.
First, while self-disclosure by the weakest type of the underdog tends to have an overall moderating effect on

the favorite, some types of the favorite may respond by bidding higher.

3For a self-contained argument, it suffi ces to replicate earlier arguments. Indeed, suppose that x◦2(c1, c2) > x◦2(c1, c2). Clearly,
all equilibrium efforts are positive under complete information. Therefore, using property (ii) of uniform asymmetry, player 1’s
domain condition holds at (x◦2(c1, c2); c1), so that, by Lemma C.1(i), x◦1(c1, c2) > x◦1(c1, c2). Moreover, using property (ii) of uniform
asymmetry another time, player 2’s domain condition is seen to hold at (x◦1(c1, c2); c2), so that by Lemma C.1(ii), x◦2(c1, c2) <
x◦2(c1, c2), which yields the desired contradiction.
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Example C.1 (“Dominant reaction”)4 Table C.1 exhibits data for a uniformly asymmetric contest. As can
be seen, after the self-disclosure by c2 = c22, the weak type of the favorite, c1 = c21, raises her effort.

Table C.1 Equilibrium bids before and after the underdog’s self-disclosure.

Despite the non-monotonicity illustrated by the example, the model does impose some structure of the favorite’s
reaction. First, not all types of the favorite may simultaneously raise their bids in response to the self-disclosure
by the weakest type of the underdog. Indeed, this would be incompatible with our earlier conclusion that the
weakest type of the underdog necessarily raises her bid. Second, even a dominant reaction of the favorite will
never be strong enough to press the probability of winning for the weakest type of the underdog weakly below
her probability of winning under concealment.
In analogy to the case just considered, a relatively strong type of the underdog may raise her effort in response

to the favorite’s attempt to discourage her.

Example C.2 (“Defiant reaction”) Data for another uniformly asymmetric contest is shown in Table C.2.
In response to the favorite’s attempt to discourage the underdog, only the two weaker types of the underdog
lower their respective efforts, whereas the strongest type of the underdog raises her effort. In fact, the example
illustrates another possibility mentioned in the body of the paper, viz. that a type of the underdog may decide
to exert zero effort.

Table C.2 Equilibrium bids before and after the favorite’s self-disclosure.

C.7 Games of strategic heterogeneity
In parameterized games of strategic heterogeneity (Monaco and Sabarwal, 2016; Barthel and Hoffmann, 2019),
strategy spaces are multi-dimensional, and payoff functions allow for strategic complements and substitutes at
the same time. Under suitable constraints on bids, the incomplete-information contests considered in the present
paper would indeed satisfy the definition. Moreover, the monotone comparative statics of the contest stage with
respect to changes in the information structure conducted above clearly draws on intuitions suggested by that
literature. Quite notably, however, existing conditions do not apply to our model. As Examples C.1 and C.2 have
shown, the relevant comparative statics of the Bayesian equilibrium is, in general, monotone for one player only. In
contrast, Monaco and Sabarwal’s (2016) conditions, like any of the conditions in the literature that we are aware
of, imply the monotone comparative statics of the entire equilibrium profile. In fact, the contraction-mapping
approach underlying Monaco and Sabarwal’s (2016, Thm. 5) result need not go through when the contest is
too asymmetric. The problem is that, as noted by Wärneryd (2018) in a different context, the iteration of the
best response in an asymmetric contest with complete information need not be a contraction. Indeed, for low
bids of the opponent, the best-response function in a probabilistic contest is very steep. The situation is similar
under incomplete information. The following numerical example shows that monotone comparative statics results
available for games of strategic heterogeneity do not apply to Example C.1.

4Unless stated otherwise, all numerical examples are based on the unbiased lottery contest.
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Example C.1 (continued) Let β1(ξ2) = β1(ψ2(ξ2(c2))) denote player 1’s best-response bid schedule against
ψ2(ξ2(c2)), where ξ2 ∈ X∗2 . Monaco and Sabarwal (2016, Thm. 5) required that β1(ξ̂2) � ξ∗1, where ξ̂2 = β2(ξ̂1)

and ξ̂1 = β1(ξ
∗
2). A computation shows that ξ̂1(c1) = 0.1016, ξ̂1(c1) = 0.0715, and ξ̂2(c2) = 0.0194. As a result,

β1(ξ̂2)(c1) = 0.4208 > 0.1592 = ξ∗1(c1) and β1(ξ̂2)(c1) = 0.2919 > 0.1042 = ξ∗1(c1). It follows that β1(ξ̂2) � ξ∗1, in
conflict with the required condition.

D. Material omitted from Section 5

We go over the extensions discussed in the body of the paper.

D.1 Correlated types
If types are correlated, then each type cj ∈ Cj expects to face type ci with a conditional probability qi(cki |cj ) > 0
for k ∈ {1, . . . ,Ki}. Expected payoffs are conditional expectations, and the definition of Bayesian equilibrium
needs to be adapted correspondingly. We start with a particularly clean case in which type distributions are
negatively correlated.

Proposition D.1 (Negative correlation) Suppose that Assumption 1 holds and that the conditional belief
µ2( ·| c2) ∈ ∆(C1) held by the underdog’s type c2 is first-order stochastically decreasing in c2 ∈ C2. Then, the
conclusion of Theorem 1 continues to hold true.

Proof. We first show that all information must be revealed in any perfect Bayesian equilibrium. The key point
to note is that, even if the underdog’s conditional belief µ1( ·| c2) ∈ ∆(C1) is weakly decreasing in c2 in the
FOSD sense, the underdog’s bid schedule remains weakly decreasing globally, as well as strictly decreasing in
the interior. Indeed, this follows immediately by combining Lemma B.2 and Lemma C.1, where the underdog’s
domain condition holds by Lemma 2. Therefore, the proof of Proposition 1, which exploits only the monotonicity
properties of the bid schedules and the monotonicity properties of the best-response mappings, extends without
change to this more general setting. Thus, the underdog side unravels. For the favorite, correlation now does not
matter anymore, i.e., Proposition 2 applies as before. This proves the claim. Next, we show that self-disclosure by
all types of both players is indeed a perfect Bayesian equilibrium. Even in the presence of arbitrary correlation,
this is so provided we keep the specification of off-equilibrium beliefs used in the proof of Theorem 1. The reason
is that, under this specification, type-specific payoffs resulting from self-disclosure or unilateral concealment are
expected values of complete-information payoffs. Therefore, the correlation does not affect the interim payoff
ranking for the contest stage, and the argument proceeds as before. �
The intuition is as follows. The assumption on conditional beliefs means that weaker types of the underdog are
more pessimistic, in the sense that they deem stronger types of the favorite more likely. As a result, the best-
response bid schedule of the underdog remains strictly declining in the interior, so that the conclusions of the
crucial Proposition 1 continue to hold true. Moreover, once the side of the underdog has unraveled, any ex-ante
correlation will be resolved, so that full separation obtains as before via Proposition 2.
For similar reasons, the strong-form disclosure principle holds for general forms of correlation provided that

the degree of correlation is small enough. For strongly positively correlated types, however, the situation may
complicate. In fact, Proposition 1 may break down, as the following example illustrates.

Table D.1 Positive correlation.

Example D.1 (Positive correlation) Consider the contest specified in Table D.1. Assumption 1 holds in this
example. Shown are the equilibrium bids with and without disclosure by the weak type of the underdog. As can
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be seen, disclosure induces both types of the favorite to bid higher. Hence, the weak type of the underdog does
not benefit from disclosing her type.

The logic of the example is that, without disclosure, the strong type of the favorite expects meeting the strong type
of the underdog that, as a result of positive correlation, bids lower than the weak type of the underdog. Therefore,
with disclosure, the strong type of the favorite raises her bid. In contrast, disclosure does not substantially change
the belief of the favorite’s weak type, but she expects meeting the weak type with somewhat higher probability,
which makes her bid higher.
Despite the fact that Proposition 1 does not hold literally with positive correlation, Theorem 1 is robust if

the type distribution is generic, as explained in the body of the paper.

D.2 Noisy signals
It is also of interest to see players’ incentives to release noisy signals (not to be confused with randomized
revelations). This question is, in general, harder to address. The following result shows that the weakest type of
the underdog, provided she is active, has always a strict incentive to send a noisy signal that corresponds to a
first-order increase over her type space, provided that her own type will appear more likely.

Proposition D.2 (Noisy signals) Consider an unbiased lottery contest, and assume that the type c#1 of player
1 is public, while the type of player 2 is private information. Suppose that c2 > c#1 , and that type c2 is active.
Then a FOSD shift in the type distribution of player 2 that makes c2 strictly more likely induces player 1 to
strictly lower her effort x#1 .

Proof. Before the shift, x#, before1 = E[
√
c2]

2/(c#1 + E[c2])
2. It suffi ces to prove the claim for a FOSD shift in

the type distribution of player 2 that makes c2 more likely by a probability ε > 0, and another type ĉ2 < c2 less
likely by the same probability. Then, after the shift, we get

x#, after1 =

(
E[
√
c2] + ε(

√
c2 −

√
ĉ2)

c#1 + E[c2] + ε(c2 − ĉ2)

)2
, (D.1)

Let ε̂ = ε(
√
c2 −

√
ĉ2). Then,

x#, after1 =

(
E[
√
c2] + ε̂

c#1 + E[c2] + ε̂(
√
c2 +

√
ĉ2)

)2
. (D.2)

It follows that x#, after1 < x#, before1 holds if and only if

c#1 + E[c2] < E[
√
c2c2]︸ ︷︷ ︸

>E[c2]

+E[
√
c2ĉ2]︸ ︷︷ ︸

≥c#1

, (D.3)

which is a tautology. The claim follows. �
D.3 Sequential moves
The following result shows that the strong-form disclosure principle in probabilistic contests is robust to sequential
disclosures

Proposition D.4 (Sequential moves) Suppose that, instead of moving simultaneously in the revelation stage,
players move sequentially. Then, imposing Assumption 1, the conclusion of Theorem 1 continuous to hold true
under either of the following conditions:

(i) The favorite moves first;

(ii) the underdog moves first, and the contest is a lottery.5

Proof. (i) If the favorite moves first, the Proposition 1 implies that the Bayesian game beginning with the
information set reached by the favorite’s decision will unravel on the side of the underdog. Therefore, the highest
type of the underdog that uses that decision will strictly prefer to reveal her type by Proposition 2. Thus, the

5We conjecture that the assumption that the contest is a lottery is not needed.
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game unravels on both sides, as claimed. (ii) Suppose next that the underdog moves first. Focus on the weakest
type of the underdog, c2. If c2’s type is revealed (either because she discloses or because all other types disclose),
then the favorite will subsequently reveal her type by Proposition 2. Therefore, the contest stage for c2 will be
of complete information. In contrast, if c2 is not revealed, then the contest will feature incomplete information
on the side of the underdog (and possibly on the side of the favorite as well). We, therefore, have to show that
Ec1 [Π

◦

2(c1, c2)] > Ec1 [Π
∗
2(ξ
∗
2(c2), ξ

∗
1(c1))]. By Proposition 1, Ec1 [Π2(x

#
2 , ξ

#
1 (c1); c2)] > Ec1 [Π

∗
2(ξ
∗
2(c2), ξ

∗
1(c1))], so

that it suffi ces to prove Ec1 [Π
◦

2(c1, c2)] ≥ Ec1 [Π2(x
#
2 , ξ

#
1 (c1); c2)], or equivalently, that

Ec1

[(
c1

c1 + c2

)2]
≥ E[

√
c1]

2E[c1]

(E[c1] + c2)2
. (D.4)

Noting that this inequality is homogeneous of degree zero, we may assume without loss of generality that c2 = 1.
But the resulting inequality,

Ec1

[(
c1

c1 + 1

)2]
≥ E[

√
c1]

2E[c1]

(E[c1] + 1)2
, (D.5)

corresponds to the conclusion of Lemma G.1(ii) with g(x, y) = x2y/(y + 1)2. It is straightforward to verify that

(dx dy) (Hg(x, y))

(
dx
dy

)
=

2yd2x
(y + 1)2

(
1 +

x(2− y)

y (y + 1)

dy
dx

)(
1− x

y + 1

dy
dx

)
. (D.6)

It therefore suffi ces to show that{
x, y ∈ (0, 1), y ≥ x2, dx > 0, dy > 0,

dy
dx

<
1− y
1− x

}
⇒
{

x

y + 1

dy
dx

< 1

}
. (D.7)

The conclusion follows if 1−y1−x ≤
y+1
x , which is easily seen to be equivalent to 2x ≤ 1 + y, which in turn holds true

because y ≥ x2. �
D.4 One-sided incomplete information
Suppose that player 1’s type c#1 is public, while player 2’s type c2 ∈ C2 = {c2 ≡ c12, . . . , c

K2
2 ≡ c2} is private

with K2 ≥ 2. By a marginal piece of evidence, we mean a K2-dimensional vector δ2 = (δ12, . . . , δ
K2
2 ) such that∑K2

k=1 δ
k
2 = 0. The intuition is that δ2 turns i’s prior belief q2 ∈ ∆(C2) about player 2’s type into a nearby posterior

q̃2 ∈ ∆(C2) such that q̃2(ck2) = q2(c
k
2) + εδk2 , where ε > 0 is a small positive number. Given our assumption that

all types have a positive ex-ante probability, adding a marginal piece of evidence for small enough ε > 0 will
always be feasible in a comparative statics exercise.

Lemma D.1 (Necessary and suffi cient conditions) Suppose that player 1’s type c#1 is public, while player
2’s type c2 ∈ C2 = {c2 ≡ c12, . . . , c

K2
2 ≡ c2} is private with K2 ≥ 2. Suppose also that all types of player 2 are

active. Then, there exists a positive and strictly hump-shaped (which includes the possibility of strictly monotone
increasing or strictly monotone decreasing) sequence (ϕ1, . . . , ϕK2) such that, for any marginal piece of evidence
δ2, any type c2 ∈ C2 strictly prefers disclosing δ2 over concealing δ2 if and only if


δ12
...

δK2
2

 ·


ϕ1

...

ϕK2

 < 0. (D.8)

Proof. We use the shorthand notation xk2 ≡ ξ#2 (ck2) and pk2 ≡ p2(x
k
2 , x

#
1 ) for k ∈ {1, . . . ,K2}. We have the
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first-order conditions

K2∑
k=1

q̃k2p
k
2(1− pk2) = c#1 Φ(x#1 ), (D.9)

pk2(1− pk2) = ck2Φ(xk2) (k ∈ {1, . . . ,K2}). (D.10)

Totally differentiating (D.9) and evaluating at ε = 0 yields

K2∑
k=1

qk2 (1− 2pk2)dpk2 +

{
K2∑
k=1

δk2p
k
2(1− pk2)

}
dε = c#1 Φ′(x#1 )dx#1 . (D.11)

Moreover, for k ∈ {1, . . . ,K2}, using (D.10),

dpk2 =
∂pk2

∂x#1
dx#1 +

∂pk2
∂xk2

dxk2 (D.12)

= −p
k
2(1− pk2)

Φ(x#1 )
dx#1 +

pk2(1− pk2)

Φ(xk2)
dxk2 (D.13)

= ck2

{
− Φ(xk2)

Φ(x#1 )
dx#1 + dxk2

}
. (D.14)

From Lemma B.1(iv),

dxk2 =
Φ(xk2)

Φ(x#1 )

2pk2 − 1

Φ′(xk2)− 1 + 2pk2
dx#1 , (D.15)

so that

dpk2 = −ck2
Φ(xk2)

Φ(x#1 )

Φ′(xk2)

Φ′(xk2)− 1 + 2pk2
dx#1 (k ∈ {1, . . . ,K2}). (D.16)

Using (D.16) to eliminate dpk2 in (D.11), we obtain

{
K2∑
k=1

δk2c
k
2Φ(xk2)

}
dε =

dx#1

Φ(x#1 )

{
c#1 Φ(x#1 )Φ′(x#1 ) +

K2∑
k=1

qk2c
k
2Φ(xk2)

(1− 2pk2)Φ′(xk2)

Φ′(xk2)− 1 + 2pk2

}
(D.17)

=
dx#1

Φ(x#1 )

K2∑
k=1

qk2c
k
2Φ(xk2)

{
Φ′(x#1 ) +

(1− 2pk2)Φ′(xk2)

Φ′(xk2)− 1 + 2pk2

}
. (D.18)

We claim that

Φ′(x#1 ) +
(1− 2pk2)Φ′(xk2)

Φ′(xk2) + 2pk2 − 1
> 0 (k ∈ {1, . . . ,K2}). (D.19)

Indeed, this is obvious for pk2 ≤ 1
2 since Φ′ ≥ 1 by Lemma B.1(ii).6 On the other hand, if pk2 >

1
2 , then 2pk2−1 > 0,

and hence,

(2pk2 − 1) · Φ′(xk2)

Φ′(xk2) + 2pk2 − 1
< 2pk2 − 1 ≤ 1 ≤ Φ′(x#1 ). (D.20)

6Note also that pk2 > 0 since xk2 > 0 by assumption.
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Hence, claim (D.19) is indeed true. Therefore,

dx#1
dε

= {sth. positive}−1 ·
{
K2∑
k=1

δk2ϕ
k

}
, (D.21)

where ϕk = ck2Φ(xk2), for k ∈ {1, . . . ,K2}. The strict hump-shape of the sequence (ϕ1, . . . , ϕK2) follows immedi-
ately from (D.10) and Lemma B.2. This proves the lemma. �
This lemma offers a necessary and suffi cient condition for letting any type c2 ∈ C2 prefer to release a marginal
piece of evidence δ2. As will be noted, the condition does not depend on c2, which means that all types have the
same preference for disclosure. Obviously, this is due to the assumption of one-sided asymmetric information,
which implies that a decline of x#1 is equally desirable for all types of player 2.7 Note also that Lemma D.1 does
not require that the contest is uniformly asymmetric. However, the interiority assumption is crucial. Indeed,
inactive types may not have a strict incentive to disclose a marginal piece of evidence if it does not change their
state of marginalization. Thus, marginalized types (with positive shadow costs) exhibit some inertia with respect
to the release of a marginal piece of evidence.
Condition (D.8) gets a simple interpretation in the Tullock case, where it turns out that we may choose

ϕk = ck2ξ
#
2 (ck2), for k ∈ {1, . . . ,K2}, to be the type-specific equilibrium costs (or expenses). In an interior

equilibrium, these costs indeed exhibit the hump-shape described in Lemma D.1 as a consequence of the first-
order condition. Thus, in the Tullock case, a marginal piece of evidence is preferred to be disclosed if, roughly
speaking, it makes extremal types (i.e., those with the lowest equilibrium costs) more likely and central types
(i.e., those with highest equilibrium costs) less likely. Here as well, the activity assumption is crucial to obtain
the conclusion of voluntary disclosure. Note, however, that Lemma D.1 does not admit an unraveling conclusion.

Lemma D.2 Suppose given generic cost parameters c#1 > 0 and c2 > c2 > 0. Then, at least one of the following
two statements holds true:

(i) c#1 Φ(x#1 ) > c2Φ(ξ#2 (c2)), for all q2 that assign positive probability to all types in C2;

(ii) c#1 Φ(x#1 ) > c2Φ(ξ#2 (c2)), for all q2 that assign positive probability to all types in C2.

Proof. As before, we denote by β̃2(ψ1(x1); c2) type c2’s best response to the deterministic bid x1. Let
e2(x1; c2) = c2Φ(β̃2(ψ1(x1); c2)).

8 The relevance of this function stems from the fact that, in equilibrium,
c#1 Φ(x#1 ) = E[e2(x

#
1 ; c2)]. We claim that the two functions e2(x1; c2) and e2(x1; c2) have the following single-

crossing property : There exists some threshold value x̂1 such that e2(x1; c2) ≷ e2(x1; c2) if and only if only if
x1 ≷ x̂1 (in the interval where x1 > 0 and β̃2(ψ1(x1); c2) > 0). To see why the single-crossing property holds,
recall first that β̃2(ψ1(x1); c2) is strictly hump-shaped in x1. Therefore, given Lemma B.1(ii), the same is true for
e2(x1; c2). The maximum of the function e2(x1; c2) is 1

4 , and that maximum is reached at x1 = xmax1 (c2) charac-
terized by p2(β̃2(ψ1(x1); c2), x1) = 1

2 . As β̃2(ψ1(x1); c2) is strictly declining in c2 in the interior by Lemma B.2, we
have that xmax1 (c2) is strictly declining in c2. Now, there are three cases. First, in the interval [xmax1 (c2), x

max
1 (c2)],

the function e2(x1; c2) is strictly declining in x1 when positive, while the function e2(x1; c2) is strictly increasing
in x1 when positive. Moreover, both functions are continuous (even differentiable when positive by the implicit
function theorem). Hence, there exists a unique x̂1 ∈ (xmax1 (c2), x

max
1 (c2)) such that the single-crossing property

holds in the interval [xmax1 (c2), x
max
1 (c2)]. Next, in the interval (0, xmax1 (c2)), we claim that e2(x1; c2) < e2(x1; c2).

To see why, note that total differentiation of type c2’s first-order condition yields

de2
dc2

=
(1− 2p2)

∂p2
∂x2

Φ

SOC
> 0, (D.22)

where SOC< 0 stands for the second derivative of type c2’s payoff function and we dropped the arguments for
convenience. Note that p2 > 1

2 because x1 < xmax1 (c2). Thus, lowering c2 gradually from c2 down to c2, we
indeed find that e2(x1; c2) < e2(x1; c2). Finally, for values x1 > xmax1 (c2) such that β̃2(ψ1(x1); c2) > 0, one shows

7This contrasts with the case of two-sided asymmetric information, dealt with below, where preferences regarding information
release generally differ across types.

8 In the case of the lottery contest, e(x1, c2) is type c2’s expense when using a best response to x1.
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that e2(x1; c2) > e2(x1; c2). The argument is essentially the same as before, provided that one notes that p2 < 1
2

because x1 > xmax1 (c2). Now, the intersection point of the two functions e2(x1; c2) and e2(x1; c2) lies either below,
on, or above the function x1 7→ c#1 Φ(x1), regardless of the probability distribution q2. In the first case (“below”),
we know from single-crossing that e2(x1; c2) < e2(x1; c2). Hence, we are in case (i). In the second case (“on”), we
know that e2(x1; c2) = e2(x1; c2), which is a non-generic case, and leads to case (i) if K2 ≥ 3. In the third case
(“above”), we are in case (ii). The lemma follows. �
Proof of Theorem 2. A type that would be inactive at the contest stage always strictly prefers to reveal her
private information. Therefore, one may assume without loss of generality that the equilibrium at the contest
stage is interior. But then, the vector {ck2Φ(xk2)}K2

k=1 is strictly hump-shaped as a consequence of the first-order
condition pk2(1−pk2) = ck2Φ(xk2), for any k ∈ {1, . . . ,K2}, and the strict declining monotonicity of the bid schedule
{xk2}K2

k=1. Now, the “all-or-nothing”disclosure by a type c
k
2 ∈ C2 may be seen as a continuous accumulation of

identical pieces of evidence δ2 with δ2(ck2) = 1 − qk2 and δ2(cl2) = −ql2 for any l ∈ {1, . . . ,K2} such that l 6= k.
Suppose first that K2 ≥ 3. Then, by Lemma D.2, there exists an extremal type ck2 ∈ {c2, c2} such that, for the
just defined marginal piece of evidence, the condition in Lemma D.1 is fulfilled. Moreover, this condition remains
valid on the entire path. Hence, there is one extremal type that strictly prefers to disclose. Suppose next that
K2 = 2. Then the same argument goes through for generic values of c#1 , c2, and c2. This proves the claim. �
D.5 Continuous types
As a solution concept for the contest stage, we use pure-strategy Nash equilibrium rather than Bayesian equi-
librium. The reduced-form definition of perfect Bayesian equilibrium remains unchanged. However, to ensure
continuity properties of type-specific payoffs, we restrict attention to the special case of the lottery contest. A
formal statement reflecting our discussion in the body of the paper is the following.

Proposition D.4 (Continuous type distributions) Consider a uniformly asymmetric lottery contest with
continuous and independent type distributions. Then, in any perfect Bayesian equilibrium of the contest with
pre-play communication of verifiable information, both contestants’types are almost surely revealed at the contest
stage.

Proof . We repeatedly apply Benoît and Dubra (2006, Thm. 1), for which we refer the reader to the original
paper. In a first step, we note that type c2’s expected payoff from disclosure,

u2(c2, c2, S1, S2) ≡
∫
S1

Π2(x
◦
1, x
◦
2; c2)dF1(c1) +

∫
C1\S1

Π2(ξ
#
1 (c1), x

#
2 ; c2)dF1(c1) (D.23)

=

∫
S1

(
c1

c1 + c2

)2
dF1(c1) + pr{C1\S1}

E[
√
c1
∣∣ c1 ∈ C1\S1]2E[c1| c1 ∈ C1\S1]

((E[c1| c1 ∈ C1\S1] + c2)
2 , (D.24)

is continuous in c2 by Lebesgue’s theorem of dominated convergence. Similarly, type c2’s expected payoff from
concealment,

u2(c2, ∅, S1, S2) ≡
∫
S1

Π2(x
#
1 , ξ

#
2 (c2); c2)dF1(c1) +

∫
C1\S1

Π2(ξ
∗
1(c1), ξ

∗
2(c2); c2)dF1(c1) (D.25)

= pr{S1}
(

1−
√
c2E[

√
c̃2
∣∣ c̃2 ∈ C2\S2]

c1 + E[ c̃2| c̃2 ∈ C2\S2]

)2
+

∫
C1\S1

(
ξ∗1(c1)

ξ∗1(c1) + ξ∗2(c2)
− c2ξ∗2(c2)

)
dF1(c1), (D.26)

is well-defined by the existence and uniqueness results in Ewerhart (2014, Thm. 3.4 & 4.2). Moreover, the mapping
c2 7→ u2(c2, ∅, S1, S2) is continuous because ξ∗1 in the second term does not depend on c2. By a straightforward
generalization of Proposition 1, for any non-degenerate conditional distribution F2( ·| ∅, S2), the lowest type ĉ2 in
the support of F2( ·| ∅, S2) has the property that u2(ĉ2, ĉ2, S1, S2) > u2(ĉ2, ∅, S1, S2). By Benoît and Dubra (2006,
Thm. 1), the underdog’s signal is almost surely known in any perfect Bayesian equilibrium. Next, we consider the
decision of the favorite under the assumption that the underdog’s type is revealed with probability one. Continuity
of the expected payoff functions u1(c1, c1, S1, C2) and u1(c1, ∅, S1, C2), defined in analogy to (D.23) and (D.25),
may be checked as above. Then, by a straightforward generalization of Proposition 2, almost surely across c2,
for any non-degenerate conditional distribution F1( ·| ∅, S1), the highest type ĉ1 in the support of F1( ·| ∅, S1) has,
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typewise across c2 ∈ C2, but hence also globally the property that u1(ĉ1, ĉ1, S1, C2) > u1(ĉ1, ∅, S1, C2). Applying
Benoît and Dubra (2006, Thm. 1) again, we see that also the favorite’s type is necessarily almost surely known
in any perfect Bayesian equilibrium. This concludes the proof and proves the proposition. �
D.6 Other type of uncertainty
Proposition 3 says that our focus on marginal cost types is essentially without loss of generality. The proof relies
on suitable variable substitutions.

Proof of Proposition 3. (i) Suppose first that the ability parameters γ1 and γ2 are public information. Then,
using the substitution c̃i = ci/(Vi − Li), the positive affi ne transform of type θi’s payoff function,

Πi(xi, xj ; θi)− Li
Vi − Li

=
γih(xi)

γ1h(x1) + γ2h(x2)
− ci
Vi − Li

xi = Πi(xi, xj ; c̃i), (D.27)

is seen to be of the normalized type assumed above. (ii) Suppose, alternatively, that h(y) = yr for some r ∈ (0, 1].
Then, using the substitution x̃i = γ

−1/r
i xi, one finds similarly that

Πi(xi, xj ; θi)− Li
Vi − Li

=
(γ
1/r
i xi)

r

(γ
1/r
1 x1)r + (γ

1/r
2 x2)r

− ci
Vi − Li

(γ
−1/r
i xi) = Πi(x̃i, x̃j ; c̃i). (D.28)

This completes the proof. �

E. Material omitted from Section 6

Section 6 is concerned with limits of the scope of the strong-form disclosure principle. We will discuss contests that
are not uniformly asymmetric, Bayesian persuasion, the option to shut down communication, and unverifiable
information.

E.1 Contests that are not uniformly asymmetric
In Example 1, bid distributions under mandatory concealment are overlapping. A similar example in which bid
distributions are nested is shown below.

Example E.1 (Nested type distributions) The contest specified by the parameters shown in Figure E.1 is not
uniformly asymmetric. Assumption 1 does not hold. And indeed, as the data shows, there is a perfect Bayesian
equilibrium in which no type reveals her private information.

Data for Example E.1

One might conjecture that the strong-form disclosure principle generally fails in symmetric contests of incomplete
information. The following example shows that this is not the case.

Example E.2 (Symmetric contest) Consider a symmetric lottery contest with two equally likely types, c >
c > 0, for each player (Malueg and Yates, 2004). This contest is not uniformly asymmetric.9 Theorem 2 implies

9 It suffi ces to note that, by Lemma 1, the Nash equilibrium after full disclosure is unique, hence symmetric and interior if two
equal types are matched.
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that one-sided disclosure cannot be an equilibrium. To derive the conditions under which mutual concealment is
an equilibrium, suppose that player 2 does not disclose her private information. Then, the effi cient type of player
1, c, has expected payoffs from not disclosing of

Ec2 [Π1(ξ
∗
1(c), ξ

#
2 (c2)); c] =

1

8
+

c2

2(c+ c)2
. (E.1)

If c, instead, reveals her private information, then there are two cases. If c/c ≥ 9, disclosure marginalizes the
ineffi cient type of player 2, i.e, ξ#2 (c, c) = 0. As a result, two equally effi cient opponents meet with probability
one half, so that player 1’s expected payoff is Ec2 [Π1(x

#
1 (c), ξ#2 (c2; c)); c] = 5

9 . Therefore, revealing her type is

optimal for the effi cient type if c/c < 6
√
31+31
5 ≈ 12.88. For the ineffi cient type of player 1, c, one compares the

expected payoff from not disclosing,

Ec2 [Π1(ξ
∗
1(c), ξ

∗
2(c2)); c] =

1

8
+

c2

2(c+ c)2
, (E.2)

with the expected payoff in the contest with one-sided private information,

Ec2 [Π1(x
#
1 (c), ξ#2 (c2; c)); c] =

(
√
c+
√
c)2(c+ c)

2(c+ 3c)2
, (E.3)

which can be easily checked to be always strictly lower. Thus, the strong-form disclosure principle holds in this
example if and only if c/c < 12.88.10

E.2 Bayesian persuasion
Kamenica and Gentzkow (2011) considered a general setting with one sender and one receiver, and an unknown
state of the world, where the sender precommits to a signal about the state of the world. Upon receiving the
signal, the receiver rationally updates her belief about the state of the world and takes an action. Depending on
whether the commitment power lies with a player or with the social planner, the approach is known as Bayesian
persuasion or information design. In this section, we consider the first problem, i.e., the sender is other player.11

Consider a lottery contest with one-sided incomplete information, where the type c#1 of player 1 is public.
Then the expected payoff to an active type c2 is given by

Π#
2 (c2|µ2) =

(
1−
√
c2E[1c̃2 active

√
c̃2|µ2]

c#1 + E[1c̃2 active c̃2|µ2]

)2
, (E.4)

where 1c̃2 active is an indicator variable that equals one (zero) if ξ
#
2 (c̃2; c

#
1 ) > 0 (= 0) in the contest with one-sided

incomplete information and type distribution µ2 for player 2, and where E[.|µ2] denotes the expectation given
player 1’s belief µ2 ∈ ∆(C2) about 2’s types at the contest stage.12 The logic of marginalization is as follows.
As the belief µ2 gives too much weight to strong types, player 1 bids higher which induces weak types of player
2 to bid zero. The condition spelt out in the following lemma ensures that marginalization does not occur for a
persuasion model with two types.

10Superficially, our main conclusion is just the opposite of the corresponding finding for the all-pay auction. Kovenock et al. (2015,
Prop. 5) find that, with either private or common values, the interim information sharing game admits a perfect Bayesian equilibrium
in which no firm ever shares its information. As noted by a referee, there is an important caveat here because the literature on all-pay
auctions (Kovenock et al., 2015; Tan, 2016) has tended to focus on symmetric contests, while our analysis has focused on asymmetric
contests. However, Example E.2 suggests that it is the contest technology that matters. Indeed, the difference in conclusions might
mirror a more general fact. While the auction induces a hide-and-seek type of randomized behavior for which keeping secrets seems
advisable, the probabilistic contest induces players to think in trade-offs, which may then entail voluntary disclosures of private
information to the opponent. More work on the relationship of these two “battle modes” in contests is certainly desirable.
11The problem of information design will be considered further below.
12The expected payoff of an inactive type is zero.
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Lemma E.1 (Interiority condition) Suppose that K2 = 2 and c#1 + c2 >
√
c2c2. Then, all types c2 ∈ C2 of

player 2 are active, regardless of player 1’s posterior belief µ2.

Proof. Take a posterior belief µ2 ∈ ∆(C2). The weakest type c2 ∈ C2 is active if and only if
√
c2 < (c#1 +

E[c2|µ2])/E[
√
c2
∣∣µ2], or equivalently, if m√c2(√c2 − √c2) < c#1 , where m = µ2(c2). Letting m = 1 yields the

condition in the statement of the lemma. �
Now, in the absence of communication, µ2 simply corresponds to the ex-ante distribution {q2(ck2)}K2

k=1. Bayesian
persuasion allows player 2 to precommit to a signal, which induces a probability distribution τ2 ∈ ∆(∆(C2)) over
posterior beliefs µ2 ∈ ∆(C2) that is subject to Bayes plausibility

∫
µ2(c2)dτ2(µ2) = q2(c2) (c2 ∈ C2). (E.5)

Therefore, player 2’s problem reads

max
τ2 s.t. (E.5)

∫
Ec2

[
Π#
2 (c2|µ2)

]
dτ2(µ2), (E.6)

where Ec2 [.] denotes, as before, the expectation with respect to the prior distribution on C2 given by q2.
As a general solution of problem (E.6) is beyond the scope of the present analysis, we discuss a simple

example with K2 = 2. Then, with precommitment, the signal may lead to a probability distribution τ2 over two
distributions µA2 , µ

B
2 ∈ ∆(C2), with respective probabilities τA2 and τ

B
2 satisfying

τA2 µ
A
2 (c2) + τB2 µ

B
2 (c2) = q2(c2) (c2 ∈ C2). (E.7)

For instance, in the special case where c2 > c#1 > c2, we might expect that player 2 benefits if, compared to the
prior, µA2 is biased towards c2, while µ

B
2 is biased towards c2. Intuitively, the positive effect of overstatement on

the weak type’s payoff would be combined with the likewise positive effect of understatement on the strong type’s
payoff.

Proposition E.1 (Bayesian persuasion) Consider an unbiased lottery contest where player 1’s type c#1 is
public, while player 2’s type c2 ∈ {c2, c2} is private with c2 > c2. Suppose also that the interiority assumption of
Lemma E.1 holds. Then there exists a threshold value χ∗ ∈ [0, 1] such that:

(i) If c#1 >
√
c2c2, then full disclosure is optimal;

(ii) if c#1 =
√
c2c2, then any signal is optimal;

(iii) if c#1 <
√
c2c2 and q2(c2) ≤ χ∗, then full concealment is optimal;

(iv) if c#1 <
√
c2c2 and q2(c2) > χ∗, then player uses a randomized signal with posterior beliefs satisfying

µA2 (c2) = χ∗ and µB2 (c2) = 1.13

Proof. The sender (player 2) solves the problem

max
τ2 s.t. (E.7)

τA2 Ec2

[
Π#
2 (c2|µA2 )

]
+ τB2Ec2

[
Π#
2 (c2|µB2 )

]
. (E.8)

More explicitly, this becomes

max
τA2 ≡1−τ

B
2 ∈[0,1],

µA2 (c2)≡1−µ
A
2 (c2)∈[0,1],

µB2 (c2)≡1−µ
B
2 (c2)∈[0,1],

s.t. (E.7)

τA2 Ec2

[
Π#
2 (c2|µA2 )

]
+ τB2Ec2

[
Π#
2 (c2|µB2 )

]
. (E.9)

13An example illustrating this case is discussed below.
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We shart with the case where c#1 ≥
√
c2c2. By Lemma E.1, both types of player 2 are active. Therefore, the

question if player 2 benefits from persuasion (or not) is linked to the strict convexity (or weak concavity) of the
function

Π̂2(µ2) = q2(c2)

(
1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)2
+ q2(c2)

(
1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)2
, (E.10)

where the posterior µ2 is given as

µ2 ≡ (µ2(c2), µ2(c2)) ∈ ∆(C2) = {(m, 1−m) : 0 ≤ m ≤ 1}. (E.11)

Let c2 ∈ C2. Based on the computation of the first derivative,

∂

∂m

(
1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)2
=

∂

∂m

(
1−
√
c2(m

√
c2 + (1−m)

√
c2)

c#1 +mc2 + (1−m)c2

)2
(E.12)

= 2 ·
(

1−
√
c2(m

√
c2 + (1−m)

√
c2)

c#1 +mc2 + (1−m)c2

)
·
√
c2(
√
c2 −

√
c2)(c

#
1 −
√
c2c2)

(c#1 +mc2 + (1−m)c2)2
, (E.13)

we see that the second derivative is given by

∂2

∂m2

(
1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)2
= 2 ·

(√
c2(
√
c2 −

√
c2)(c

#
1 −
√
c2c2)

(c#1 +mc2 + (1−m)c2)2

)2
(E.14)

+ 4 ·
(

1−
√
c2E[
√
c̃2|µ2]

c#1 + E[c̃2|µ2]

)
︸ ︷︷ ︸

>0 by activity

·
√
c2(
√
c2 −

√
c2)(c

#
1 −
√
c2c2)(c2 − c2)

(c#1 +mc2 + (1−m)c2)3
.

Clearly, the right-hand side of (E.14) is positive (zero) if c#1 >
√
c2c2 (if c

#
1 >

√
c2c2) regardless of c2 ∈ C2 and

m ∈ [0, 1], which proves parts (i) and (ii). Suppose next that
√
c2c2 > c#1 . Then, combining (E.10) and (E.14),

we get

∂2Π̂2(µ2)

∂m2
=

2(
√
c2 −

√
c2)

2(c#1 −
√
c2c2)

(c#1 + E[c̃2|µ2])4
·


E[c2](c

#
1 −
√
c2c2)

+2(c#1 + E[c̃2|µ2])E[
√
c2](
√
c2 +

√
c2)

−2E[c2]E[
√
c̃2|µ2](

√
c2 +

√
c2)

 . (E.15)

Exploiting that E[
√
c2](
√
c2 +

√
c2) = E[c2] +

√
c2c2 and E[

√
c̃2|µ2](

√
c2 +

√
c2) = E[c̃2|µ2] +

√
c2c2, we see that

∂2Π̂2(µ2)

∂m2
=

2(
√
c2 −

√
c2)

2(c#1 −
√
c2c2)

(c#1 +mc2 + (1−m)c2)4
·

 (3E[c2] + 2
√
c2c2) c

#
1

− (3E[c2]− 2(mc2 + (1−m)c2))
√
c2c2

 . (E.16)

As the expression in the curly brackets is linear in m, we certainly find a unique cut-off level m∗ ∈ R such that,
if replaced for m in (E.16), renders this term equal to zero. Moreover, Π̂2(µ2) is strictly concave for m ≤ m∗,
and strictly convex for m ≥ m∗. There are now three cases. Suppose first that m∗ ≥ 1. Then, Π̂2(µ2) is
globally strictly concave regardless of q2(c2), so that full concealment is optimal. In this case, we may set χ

∗ = 1.
Next, suppose that m∗ ∈ (0, 1). Then, taking the convex closure of Π̂2(µ2) over the interval [0, 1], we find a
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“tangential”point at some χ∗ ∈ [0,m∗), as illustrated conceptually in Figure E.2 in the case where m∗ ∈ (0, 1)

and χ∗ > 0. (For χ∗ = 0, the slope of Π̂2(µ2) at m = 0 and the slope of the upper boundary of the convex closure
may differ). If q2(c2) ≤ χ∗, then full concealment remains optimal. If q2(c2) > χ∗, however, player 2’s signal
randomizes, in response to her type and the randomizing commitment device, between the two signals causing
Bayesian posteriors µA2 with µ

A
2 (c2) = χ∗ and µB2 with µ

B
2 (c2) = 1. Suppose, finally, that m∗ ≤ 0. Then, Π̂2(µ2)

is globally strictly convex regardless of q2(c2), so that full disclosure is optimal. In this case, we may set χ
∗ = 0.

This proves the claim. �

Figure E.2 Bayesian persuasion.

The rough intuition for the underlying effects here is that a stronger uninformed contestant raises her efforts in
response to uncertainty, whereas a weaker uninformed contestant lowers her efforts in response to uncertainty (cf.
Hurley and Shogren, 1998a). With c#1 >

√
c2c2, player 1 is comparably weak, so it makes sense for player 2 to

inform player 1. In the knife-edge case where c#1 =
√
c2c2, player 1 does not care about player 2’s type as each

type chooses the same bid level. Hence, any signal is optimal in that case. The situation gets more structured
for c#1 <

√
c2c2, where player 1 is comparably strong. In that case, the signal will never be fully informative.

Instead, either full concealment is optimal (if q2(c2) ≤ χ∗), or player 2 optimally uses a randomized signal (if
q2(c2) > χ∗). When a randomized signal is used, player 2 reveals her type when strong with a probability τB2
strictly smaller than one, but never reveals her type when weak. As we have show in the proof of Proposition
E.4, player 2’s expected payoff Π̂2(µ2) in a contest with posterior µ2, considered as a function of m, is concave
left of some cut-off value m∗ and convex right of m∗.
We conclude this subsection by giving an example that illustrates the possibility of a randomizing commitment

device.

Example E.3 (Randomization in Bayesian persuasion) Suppose that c#1 = 1, c2 = 5, c2 = 6, q2(c2) = 0.75,
and q2(c2) = 0.25. Then, m∗ = 0.56 and χ∗ = 0.32.

E.3 Shutting down communication
So far, we assumed that, if one player discloses, the other player automatically gets informed, and this is commonly
known. But in some situations, it may be possible to publicly commit to ignore any information provided by
one’s opponent.

Proposition E.2 (The underdog never shuts down communication) Consider a uniformly asymmetric,
unbiased lottery contest. Suppose that the type of the underdog is public information, whereas the favorite has
at least two possible type realizations. Then, the underdog’s ex-ante expected payoff is strictly higher under full
revelation than under mandatory concealment, i.e., ΠFR

2 > ΠMC
2 .

Proof. The underdog’s expected profits under mandatory concealment (i.e., the underdog “closes her eyes”)
and under full revelation (i.e., the underdog “opens her eyes”), respectively, are easily derived as ΠMC

2 =

E[
√
c1]

2E[c1]/(E[c1] + c#2 )2 and ΠFR
1 = E[c21/(c1 + c#2 )2]. To compare these expressions, we apply Lemma

G.1(ii), in which the support of the random variable Y is assumed to be (0, 1), with Y =

√
c1/c

#
2 and g(x, y) =

g3(x, y) ≡ x2y
(1+y)2

. It suffi ces to show that, for any x, y ∈ (0, 1), y ≥ x2, dx > 0, dy > 0 such that dy
dx
< 1−y

1−x , the
quadratic form

(dx dy) (Hg3(x, y))

(
dx
dy

)
=

2dx
2

(1 + y)
2

(
1− x

1 + y

dy
dx

)(
y +

x(2− y)

1 + y

dy
dx

)
(E.17)
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attains a positive value. To see this, one checks that

x

y + 1
· dy
dx

<
x

y + 1
· 1− y

1− x︸ ︷︷ ︸
decreasing in y

≤ 3x

x2 + 1
· 1− x2

1− x =
x2 + x

x2 + 1
< 1. (E.18)

This proves the claim. �
Thus, the underdog would never prefer to publicly announce to ignore any information received. The intuitive
force behind this result is that the underdog can better target her effort, so that the ex-ante winning probability
increases. An analogous result for the favorite is not true, however. Indeed, Example E.3 above shows that the
favorite may benefit from committing to ignore any information released by the underdog.

E.4 Unverifiable information
This section presents the proof of Theorem 2. Our derivation draws heavily from Pavlov (2013) who established
that communication equilibria and Bayesian equilibria are payoff-equivalent in two-player all-pay auctions.

Proof of Theorem 2. By the existence part of Lemma 1, there is a Bayesian Nash equilibrium of the contest
stage, ξ∗ = (ξ

∗
1, ξ
∗
2) ∈ X1 ×X2. Thus, for any i ∈ {1, 2}, ci ∈ Ci, and xi ∈ [0, 1], we have

Ecj [Πi(ξ
∗
i (ci), ξ

∗
j (cj); ci)] ≥ Ecj [Πi(xi, ξ

∗
j (cj); ci)], (E.19)

where j 6= i. Suppose given a communication equilibrium, consisting of a nonempty, finite set of reports Ri as
well as a nonempty, finite set of messages Mi for each player i ∈ {1, 2}, a coordination mechanism π : R1×R2 →
∆(M1 ×M2), and functions ρi : Ci → Ri, ζi : Mi × Ci → [0, 1], for each player i ∈ {1, 2}, such that, for all
i ∈ {1, 2}, ci ∈ Ci, ρ̂i, and ζ̂i,

Ecj

[ ∑
m1,m2

Πi(ζi(mi, ci), ζj(mj , cj)π(mi,mj | ρi(ci), ρj(cj))
]

≥ Ecj

[ ∑
m1,m2

Πi(ζ̂i(mi, ci), ζj(mj , cj)π(mi,mj | ρ̂i(ci), ρj(cj))
]
. (E.20)

In particular, inequality (E.20) holds if the deviation (ρ̂i, ζ̂i) is given by an uninformative ρ̂i(ci) ≡ ri (always send
the same report ri ∈ Ri, regardless of type), and ζ̂i(mi, ci) ≡ ξ∗i (ci).14 Thus, for all i ∈ {1, 2} and ci ∈ Ci,

Ecj

[ ∑
m1,m2

Πi(ζi(mi, ci), ζj(mj , cj)π(mi,mj | ρi(ci), ρj(cj))
]

≥ Ecj

[ ∑
m1,m2

Πi(ξ
∗
i (ci), ζj(mj , cj)π(mi,mj | ri, ρj(cj))

]
. (E.21)

Next, replacing xi by ζi(mi, ci) in (E.19), we have for any i ∈ {1, 2} and ci ∈ Ci,

Ecj [Πi(ξ
∗
i (ci), ξ

∗
j (cj); ci)] ≥ Ecj [Πi(ζi(mi, ci), ξ

∗
j (cj); ci)]. (E.22)

Multiplying by π(mi,mj | ρi(ci), rj), and summing over all pairs (m1,m2) ∈ M1 ×M2 yields, for any i ∈ {1, 2}
14Farrell (1985) and Pavlov (2013) assumed that the babbling deviation has all types randomize over reports. Our strategy of

proof, where all types send the same report, simplifies the notation but otherwise exploits the same intuition.
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and ci ∈ Ci,

Ecj [Πi(ξ
∗
i (ci), ξ

∗
j (cj); ci)] ≥ Ecj

[ ∑
m1,m2

Πi(ζi(mi, ci), ξ
∗
j (cj); ci)π(mi,mj | ρi(ci), rj)

]
. (E.23)

Adding the two equations (E.21) and (E.23), noting that the cost terms cancel out, and taking expectations with
respect to ci delivers, for any i ∈ {1, 2},

E

[
pi(ξ

∗
i (ci), ξ

∗
j (cj)) +

∑
m1,m2

pi(ζi(mi, ci), ζj(mj , cj))π(mi,mj | ρi(ci), ρj(cj))
]

≥ E

 ∑
m1,m2

pi(ξ
∗
i (ci), ζj(mj , cj))π(mi,mj | ri, ρj(cj))

+
∑
m1,m2

pi(ζi(mi, ci), ξ
∗
j (cj))π(mi,mj | ρi(ci), rj)

 . (E.24)

Adding over players, one arrives at

E
[
pi(ξ

∗
i (ci), ξ

∗
j (cj)) + pj(ξ

∗
j (ci), ξ

∗
i (cj))

]︸ ︷︷ ︸
=1

+E

[ ∑
m1,m2

(pi(ζi(mi, ci), ζj(mj , cj)) + pj(ζj(mj , cj), ζi(mi, ci)))π(mi,mj | ρi(ci), ρj(cj))
]

︸ ︷︷ ︸
=1

≥ E
[ ∑
m1,m2

(
pi(ξ

∗
i (ci), ζj(mj , cj)) + pj(ζj(mj , cj), ξ

∗
i (ci))

)
π(mi,mj | ri, ρj(cj))

]
︸ ︷︷ ︸

=1

(E.25)

+ E

[ ∑
m1,m2

(pi(ζi(mi, ci), ξ
∗
j (cj)) + pj(ξ

∗
j (cj), ζj(mj , cj)))π(mi,mj | ρi(ci), rj)

]
︸ ︷︷ ︸

=1

.

Inequality (E.25) is, however, an equality. Hence, given our assumption that all types have a positive probability,
inequality (E.23) is an equality for any i ∈ {1, 2} and ci ∈ Ci. This means that the randomized strategy for player
i, in which each type ci chooses the bid ζi(mi, ci) with probability

∑
mj
π(mi,mj | ρi(ci), rj), is a best response

to ξ∗j . As noted before, however, the best response in a probabilistic contest is a pure strategy and unique.
Hence, ζi(mi, ci) = ξ∗i (ci) for all i ∈ {1, 2}, ci ∈ Ci, and mi ∈ Mi. Thus, in any communication equilibrium, all
recommendations are ignored. �
Notwithstanding Theorem 3, costless unverifiable messages may indeed carry information about types. This,
however, is an artefact of the hump-shape of the best-response mapping, as the following example illustrates.

Example E.5 (Irrelevant information) Suppose that c#1 = 1, c2 = 1
4 , and c2 = 4. Then, in an unbiased

lottery contest,

x#1 = (
E[
√
c2]

c1 + E[c2)
)2 = (

2q + (1− q) 12
1 + 4q + (1− q) 14

)2 =
4

25
, (E.26)

regardless of posterior beliefs. Still, in equilibrium, the receiver would not make use of that information.

F. Material omitted from Section 7

This section elaborates on the welfare implications of communication in contests. We start by presenting the
example of the “disclosure trap.”Then, we discuss expense maximization. Finally, we deal with the problem of
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information design.

F.1 The “disclosure trap”
To discuss effi ciency, we will compare the equilibrium scenario of full revelation (FR) with the hypothetical
benchmark of mandatory concealment (MC). Let CFR = E[c1x

◦
1(c1, c2) + c2x

◦
2(c1, c2)] and C

MC = E[c1ξ
∗
1(c1) +

c2ξ
∗
2(c2)], respectively, denote total expected costs under full revelation and under mandatory concealment.

15

Further, for i ∈ {1, 2}, let pFRi = E [pi(x
◦
1(c1, c2), x

◦
2(c1, c2))] and p

MC
i = E [pi(ξ

∗
1(c1), ξ

∗
2(c2))] denote player i’s

ex-ante probability of winning under full revelation and under mandatory concealment. Finally, likewise for
i ∈ {1, 2}, let ΠFR

i = pFRi − E[cix
◦
i (c1, c2)] and ΠMC

i = pMCi − Eci [ciξ∗i (ci)] denote player i’s ex-ante expected
payoff under full revelation and mandatory concealment.
The following example illustrates the possibility that full revelation may actually be ex-ante undesirable for

both contestants.

Example F.1 (“Disclosure trap”) The setting specified in Table F.1 satisfies Assumption 1. It can be seen
that the unraveling leads the contestants into a strictly Pareto inferior outcome.

Table F.1 Equilibrium bids under full revelation and mandatory concealment.

The example illustrates that the option to disclose verifiable information may be undesirable for a contestant.
The reason is an externality that the self-disclosing marginal type imposes on the silent submarginal types. The
externality is a virtual one only, because two type realizations of the same contestant never coexist. Notwith-
standing, the inability to commit leads to a situation in which the privately informed player loses in expected
terms by the unraveling.

F.2 Expense maximization
The following result shows that, even though full revelation need not be in the interest of an informed contestant,
a contest organizer maximizing total expected expenses may well find that outcome preferable to full concealment.

Proposition F.1 (Expense maximization) Consider a uniformly asymmetric, unbiased lottery contest. Sup-
pose that the type of the favorite is public information, whereas the underdog has at least two possible type
realizations. Assume also that, under mandatory concealment, all types are active. Then,

(i) CFR > CMC (in both cases, expected costs split evenly between the players);16

(ii) the underdog’s (the favorite’s) ex-ante probability of winning is strictly lower (strictly higher) under full
revelation than under mandatory concealment, i.e., pFR2 < pMC2 ( pFR1 > pMC1 ); and

(iii) the ex-ante payoff for the underdog is strictly lower under full revelation than under mandatory concealment,
i.e., ΠFR

2 < ΠMC
2 .17

Proof. (i) Let c#1 ∈ C1 denote the public type of the favorite. For the unbiased lottery contest, an interior
equilibrium may be easily derived from the corresponding first-order conditions (Hurley and Shogren, 1998a;

15E[.] = Ec1,c2 [.] denotes the ex-ante expectation.
16Thus, the effort of the favorite is strictly higher under full revelation than under mandatory concealment. The expected effort of

the underdog, however, may either rise or fall, depending on parameters.
17The payoff comparison for the favorite is ambiguous, i.e., depending on parameters, it may be that ΠFR

1 ≥ ΠMC
1 , or as in Example

E.3, that ΠFR
1 < ΠMC

1 .
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Epstein and Mealem, 2013; Zhang and Zhou, 2016). In our set-up, this yields equilibrium bids x#1 = E[
√
c2]

2/(c#1 +

E [c2])
2 for player 1, and ξ#2 (c2) =

√
x#1 /c2 − x

#
1 for any c2 ∈ C2, where we dropped the subscript c2 from the

expectation operator. Using these expressions, total expected costs under mandatory concealment are easily
derived as CMC = c#1 x

#
1 +E[c2ξ

#
2 (c2)] = 2c#1 E[

√
c2]

2/(c#1 +E[c2])
2. Note that this formula entails, in particular,

the complete-information case where c2 is public as well. Therefore, being an expectation over such complete-
information scenarios, total expected costs under full revelation amount to CFR = 2E[c#1 c2/(c

#
1 + c2)

2]. To

compare the two expressions, we apply Lemma G.1 with Y =

√
c2/c

#
1 and g(x, y) = g1(x, y) ≡ 2x2/ (1 + y)

2. It

suffi ces to show that, for any x > 1, y ≥ x2, dx > 0, dy > 0 such that dydx >
y−1
x−1 , the quadratic form

(dx dy) (Hg1(x, y))

(
dx
dy

)
=

4dx
2

(1 + y)
2

(
1− x

1 + y

dy
dx

)(
1− 3x

1 + y

dy
dx

)
(F.1)

attains a positive value. To see this, one checks that

x

y + 1
· dy
dx

>
x

y + 1
· y − 1

x− 1︸ ︷︷ ︸
increasing in y

≥ x

x2 + 1
· x

2 − 1

x− 1
=
x2 + x

x2 + 1
> 1. (F.2)

Clearly then, the right-hand side of (F.1) is positive. This proves the claim. It follows that

CFR = E

[
2(c2/c

#
1 )

(1 + (c2/c
#
1 ))2

]
>

2E[

√
c2/c

#
1 ]2

(1 + E[c2/c
#
1 ])2

= CMC , (F.3)

i.e., total expected costs are indeed strictly higher under full revelation than under mandatory concealment. In
particular, given that, by (B.15), expected costs in the lottery contest are the same across contestants, and given
that the favorite’s type is public, the favorite exerts a higher effort under full revelation than under mandatory
concealment. (ii) From the explicit expressions for the equilibrium bids given above, player 1’s probability of
winning is easily determined as pMC1 = E[

√
c2]

2/(c#1 + E [c2]) under mandatory concealment, and by pFR1 =

[Ec2/(c
#
1 + c2)] under full revelation. Again, we apply Lemma G.1 for Y =

√
c2/c

#
1 , using this time the mapping

g(x, y) = g2(x, y) ≡ x2/(1 + y). Suppose that x > 1, y ≥ x2, dx > 0, and dy > 0. Then, clearly,

(dx dy) (Hg2(x, y))

(
dx
dy

)
=

2dx
2

1 + y

(
1− x

1 + y

dy
dx

)2
≥ 0. (F.4)

Moreover, from relationship (F.2), inequality (F.4) is even strict, which implies strict convexity of g2 along the
relevant linear path segment. Thus, we have

pFR1 = E

[
(c2/c

#
1 )

1 + (c2/c
#
1 )

]
>

E[

√
c2/c

#
1 ]2

1 + E[c2/c
#
1 ]

= pMC1 , (F.5)

and, consequently, also pFR2 < pMC2 . (iii) Since expected costs are equal across players in the lottery contest, ex-ante
expected payoffs for the underdog are given by ΠFR

2 = pFR2 − CF R

2 under full revelation, and by ΠMC
2 = pMC2 − CM C

2

under mandatory concealment. As seen above, pFR2 < pMC2 and CFR > CMC . Hence, ΠFR
2 < ΠMC

2 , as claimed. �
F.3 Information design
Next, we assume that an informed contest designer chooses a signal to maximize some policy objective (Wasser,
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2013a; Denter et al., 2014; Zheng and Zhou, 2016). Upon receiving the realization of the signal, the uninformed
player updates her belief and the contest takes place. The following result characterizes the optimal signal for
three specific policy objectives, viz. maximizing total expected efforts, maximizing total expected payoffs, and
minimizing the expected quadratic distance of players’winning probabilities.18

Proposition F.2 (Information design) Consider an unbiased lottery contest where player 1’s type c#1 is public,
while player 2’s type c2 ∈ {c2, c2} is private. Suppose also that the interiority assumption of Lemma E.1 holds.
Then, for a contest designer:

(i) maximizing total expected efforts, full disclosure (full concealment, any signal) is optimal if c#1 <
√
c2c2 (if

c#1 >
√
c2c2, if c

#
1 =

√
c2c2);

(ii) maximizing total expected payoffs, it is optimal to delegate the problem to player 2, i.e., to use the signal
characterized in Proposition E.4;

(iii) minimizing Ec2 [(p1 − p2)2], it is optimal to use the signal characterized in part (i).
Proof. (i) This result follows immediately from Zhang and Zhou (2016, Prop. 3) by replacing valuations by
reciprocals of marginal costs. (ii) In an unbiased lottery contest with incomplete information about marginal
costs, the ex-ante expected expenses are identical across players. Moreover, the prize is always assigned to one
player. Therefore, maximizing total expected payoffs is equivalent to minimizing player 1’s expenses, c#1 x

#
1 .

However, as shown in the proof of Lemma D.1, all types c2 ∈ C2 prefer a strictly lower bid x#1 over any higher
bid. The claim follows. (iii) In an unbiased lottery contest, we have

1

4

{
1− Ec2

[(
p1(x

#
1 , ξ

#
2 (c2))− p2(x#1 , ξ

#
2 (c2))

)2]}
= Ec2

[
p1(x

#
1 , ξ

#
2 (c2))(1− p1(x#1 , ξ

#
2 (c2)))

]
= x#1 c

#
1 . (F.6)

Hence, minimizing the expected quadratic distance between players’winning probabilities is equivalent to max-
imizing player 1’s expenses. But, by the arguments just explained, this is equivalent to the problem considered
under part (i). The proposition follows. �
Part (i) says that, to maximize expected efforts, full disclosure is optimal if player 1 is comparably strong (i.e.,
if c#1 <

√
c2c2), while full concealment is optimal if player 1 is comparably weak (i.e., if c

#
1 >

√
c2c2), with any

signal being optimal in the knife-edge case where c#1 =
√
c2c2. Part (i) is a straightforward reformulation of a

well-known result due to Zhang and Zhou (2016).19 For parts (ii) and (iii), however, we have not found a suitable
reference. Part (ii) is a statement about decentralization. Part (iii) may not be too surprising. Indeed, under the
assumptions made, minimizing the expected quadratic distance turns out to be equivalent to maximizing total
expected efforts.20

An interesting policy objective is also the maximization of the expected highest bid. In general, that problem
may be diffi cult. Imposing Assumption 1, however, the problem simplifies. Indeed, since player 1 is known to
submit the highest bid, and ex-ante expected costs are identical for both bidders, the problem becomes equivalent
to the one considered in part (i) above.

G. Refinement of Jensen’s inequality
18Still another policy objective, the maximization of the expected highest bid, will be considered below.
19 In their case, however, private information is about valuations. Zhang and Zhou (2016) also offer an algorithm for solving the case

with K2 ≥ 3 types. With more than two types, if the uninformed player is strong enough, full disclosure is optimal, otherwise pooling
the highest two valuations together and fully separating the others maximizes total efforts. The paper points out the diffi culties that
arise in a setting with two-sided incomplete information, namely the multi-dimensional state of nature of both contestants’valuations
which complicates the persuasion stage, the private information on two sides, where the simplifying step of the analysis of Kamenica
and Gentzkow (2011) cannot be applied and lastly, the equilibrium characterization which is in general not available. More recently,
some progress on this problem has been made by Serena (2022).
20There is an intuitive tension between part (iii) and the discussion of expense maximization. Specifically, in a setting with a

comparably strong player 1 in which both Assumption 1 holds and c#1 <
√
c2c2, we find here that the optimal signal entails full

disclosure, whereas Proposition F.1(ii) implies mandatory concealment. To understand what is going on, note that Proposition F.2(iii)
works with a quadratic distance of probabilities, whereas Proposition F.1(ii) works with ex-ante winning probabilities. Therefore,
the policy objective considered here, intuitively speaking, places overproportional weight on the most lopsided encounters, whereas
the earlier discussion weights all encounters according to their ex-ante probability of occurrence, which explains the difference in
conclusions.
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Some of our examples fall into the tractable class of lottery contests with one-sided incomplete information
(Hurley and Shogren, 1998a; Zhang and Zhou, 2016). Below, we derive a variant of Jensen’s inequality that
allows to prove certain payoff inequalities that cannot be easily obtained otherwise. Specifically, these are the
observations related to sequentially taken disclosure decisions, the option to shut down communication, and
the maximization of expenses. We will state conditions that are suffi cient to derive inequalities of the type
E
[
g
(
Y, Y 2

)]
> g

(
E[Y ], E[Y 2]

)
for a function g in two arguments and a nondegenerate random variable Y > 0

with finite support. As can be seen, the inequality makes use of the second moment of Y , which explains why
it can be sharper than Jensen’s inequality. The inequality is strict as a result of our assumption that Y is not
degenerate.21

Assuming that g is twice continuously differentiable, and given x > 0, y > 0, dx > 0, dy > 0, we will say that
g is directionally strictly convex at (x, y) along (dx, dy) if (dx dy) (Hg(x, y)) (dx dy)T > 0, where Hg(x, y) denotes
the Hessian of g, and T denotes transposition.

Lemma G.1 (Jensen’s inequality refined) Suppose that one of the following two conditions holds:
(i) Y > 1 with probability one, and g is directionally strictly convex at (x, y) along (dx, dy) whenever y ≥ x2 > 1
and dy/dx> (y − 1)/(x− 1).

(ii) Y ∈ (0, 1) with probability one, and g is directionally strictly convex at (x, y) along (dx, dy) whenever 1 >
y ≥ x2 and dy/dx< (1− y)/(1− x).

Then, E
[
g
(
Y, Y 2

)]
> g

(
E[Y ], E[Y 2]

)
.

Proof. (i) By induction. Assume first that Y has precisely two possible realizations y1, y2 ∈ (1,∞). Without
loss of generality, y1 < y2. Consider the auxiliary mapping f : [0, 1]→ R2 defined through

f(t) = (1− t)
(
y1
y21

)
+ t

(
y2
y22

)
(t ∈ [0, 1]), (G.1)

as illustrated in Figure G.1(a). By assumption, g is strictly convex along the straight line described by f .22

In particular, the composed mapping g ◦ f is strictly convex. Therefore, if t is considered a random variable
that assumes the value t = 0 with probability q1 = pr(Y = y1) > 0 and the value t = 1 with probability
q2 = 1− q1 = pr(Y = y2) > 0, then

E[g(Y, Y 2)] = E[g(f(t))] (G.2)

> g(f(E[t])) (G.3)

= g
(
q1y1 + (1− q1)y2, q1y21 + (1− q1)y22

)
(G.4)

= g([E[Y ], E[Y 2]). (G.5)

This proves the claim if Y has two realizations. Suppose that the claim has been shown for K ≥ 2 realizations,
and assume that Y has K + 1 realizations y1 < . . . < yK+1, with respective probabilities qk = pr(Y = yk) > 0,
where k = 1, . . . ,K + 1. Consider the random variable Y ′ that attains value yk, for k = 2, . . . ,K + 1, with
probability

q′k =
qk

1− q1
=

qk∑K+1
κ=2 qκ

. (G.6)

Thus, Y ′ follows a conditional distribution after learning Y 6= y1. In particular, E[Y ] = q1y1 + (1− q1)E[Y ′] and
E[Y 2] = q1y

2
1 + (1− q1)E[(Y ′)2]. Moreover, by the induction hypothesis, E

[
g
(
Y ′, (Y ′)2

)]
> g

(
E[Y ′], E[(Y ′)2]

)
.

As above, we define an auxiliary mapping

f̃(t) = (1− t)
(
y1
y21

)
+ t

(
E[Y ′]

E[(Y ′)2]

)
(t ∈ [0, 1]). (G.7)

21For alternative extensions of Jensen’s inequality, see Pittenger (1990), Guljaš et al. (1998), and Liao and Berg (2017). However,
those results do not render the payoff comparisons mentioned above.
22To see this, let x = (1 − t)y1 + ty2 > 1, y = (1 − t)y21 + ty22 ≥ x2, dx = y2 − y1 > 0, and dy = y22 − y21 > 0. Then,

dy/dx = y2 + y1 > y2 + 1 ≥ (y − 1)/(x− 1), so that the precondition in (i) indeed holds true.
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Clearly, E[(Y ′)2] > E[Y ′]2. Therefore, as illustrated in Figure G.1(b), the vector that directs from (y1, (y1)
2) to

(E[Y ′], E[(Y ′)2]) is steeper than the vector that directs from (y1, (y1)
2) to (E[Y ′], E[Y ′]2). Hence, g is strictly

convex also along the linear path described by f̃ .23 Thus, g ◦ f̃ is strictly convex.

Figure G.1 A refinement of Jensen’s inequality.

Therefore, considering t as a random variable that assumes the value t = 0 with probability q1 = pr(Y = y1) > 0
and the value t = 1 with probability 1− q1 > 0, the relationships derived above imply

E[g(Y, Y 2)] = q1g(y1, y
2
1) + (1− q1)E[g(Y ′, (Y ′)2] (G.8)

> q1g(y1, y
2
1) + (1− q1)g

(
E[Y ′], E[(Y ′)2]

)
(G.9)

= E[g(f̃(t))] (G.10)

> g(f̃(E[t])) (G.11)

= g
(
q1y1 + (1− q1)E[Y ′], q1y

2
1 + (1− q1)E[(Y ′)2]

)
(G.12)

= g(E[Y ], E[Y 2]). (G.13)

Thus, the claim holds for K + 1 realizations. This completes the induction, and thereby, the proof of the claim.
(ii) The proof is entirely analogous to the one just given and therefore omitted. �
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