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Abstract. It is shown that the n-player lottery contest admits a best-response potential

(Voorneveld, 2000, Economics Letters). This is true also when the contest technology

reflects the possibility of a draw. The result implies, in particular, the existence of a non-

trivial two-player zero-sum game that is best-response equivalent to a game with identical

payoff functions.
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1. Introduction

Potential games are interesting because they allow conclusions not only regarding existence

and uniqueness of Nash equilibrium, but also regarding the outcome of dynamic and bound-

edly rational adjustment processes. Since Monderer and Shapley’s (1996) seminal contribu-

tion, the literature has produced increasingly flexible variants of the initial concepts. One

such generalization has led to the notion of a best-response potential (Voorneveld, 2000;

Kukushkin, 2004; Dubey et al., 2006; Uno, 2007, 2011; Park, 2015). According to the de-

finition, a game with continuous strategy spaces admits a best-response potential if there

is a game with identical payoff functions that is best-response equivalent (henceforth BR-

equivalent, etc.) to the original game, i.e., that has the same BR-correspondence, mapping

any profile of pure strategies to a set of pure strategy profiles, as the original game.

This paper has two parts. In the first, we show that the n-player lottery contest admits

a BR-potential. This holds true regardless of whether the contest allocates the prize with

probability one (Haavelmo, 1954; Tullock, 1975; Bell et al., 1975; Baron, 1994) or there is a

probability of a draw (Loury, 1979; Dasgupta and Nti, 1998; Blavatskyy, 2010; Jia, 2012).1

In the second part of the paper, we exploit the strategic equivalence between contests

and zero-sum games,2 so as to derive potentially interesting implications of our result. In

particular, it is shown that a non-trivial two-player zero-sum game may be BR-equivalent

to a game with identical payoff functions.

The lottery contest and its natural generalizations have found widespread application in

economics and political theory (Konrad, 2009). It corresponds to a Cournot game with isoe-

lastic inverse demand and constant marginal costs. Deschamps (1975) proved convergence

of fictitious play in a two-player Cournot oligopoly with strictly declining BR-functions.

Thorlund-Peterson (1990) extended this result to an arbitrary number of firms. An exact

potential exists for the Cournot game with linear demand (Slade, 1994). More generally,

suffi cient conditions for the existence of a BR-potential have been found for aggregative

games that allow monotone BR-selections (Huang, 2002; Dubey et al., 2006; Jensen, 2010).

However, all these methods do not apply to the lottery contest whose BR-function is not
1Like this paper, Dasgupta and Nti (1998) allow for both cases.
2By strategic equivalence, we mean vNM-equivalence (Morris and Ui, 2004), i.e., for each player, the

payoff function in one game is equal to a positive constant times the payoff function in the other game,
plus a term that depends only on the opponents’strategies. The strategic equivalence between contests and
zero-sum games is implicit in Moulin and Vial (1978). Applications include Pavlov (2013), Ewerhart and
Valkanova (2016), and Hwang and Rey-Bellet (2017).
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monotone (Dixit, 1987). Also more recent examples of BR-potential games (Dragone et al.,

2012; Bourlès et al., 2015) do not cover the case of the lottery contest.

2. The lottery contest admits a BR-potential

In the lottery contest Ga, with noise parameter a ≥ 0, common valuation V > 0, and n ≥ 2

players, each player i ∈ {1, ..., n} simultaneously and independently chooses an effort xi ≥ 0,

and subsequently receives a payoff of

uai (x1, ..., xn) =


xi

a+ x
V − xi if a+ x > 0

V/n if a+ x = 0,

(1)

where x = x1+ ...+xn denotes aggregate effort. The game Ga is known to possess a unique

pure-strategy Nash equilibrium that is necessarily symmetric (Dasgupta and Nti, 1998).3

An n-person game G = (X1, ..., Xn, u1, ..., un) with strategy spaces Xi and payoff func-

tions ui : X ≡ X1 × ... × Xn → R for players i = 1, ..., n is called a BR-potential game

(Voorneveld, 2000) if there exists a function P : X → R such that

argmax
xi∈Xi

P (xi, x−i) = argmax
xi∈Xi

ui(xi, x−i) (2)

for any i = 1, ..., n and any x−i = (x1, ..., xi−1, xi+1, ..., xn) ∈ X−i ≡ X1× ...×Xi−1×Xi+1×

...×Xn.

The following observation has, to the author’s knowledge, not been documented in the

literature.4

Proposition 1. For any a ≥ 0, the n-player lottery contest is a BR-potential game.

Proof. Consider first the case a > 0. We claim that, in this case,

P a(x1, ..., xn) =

ax+∑
j<k

xjxk

V − 1
3
(a+ x)3 (3)

is a BR-potential for Ga. Indeed, differentiating (3), we find

∂P a(xi, x−i)

∂xi
= (a+ x−i)V − (a+ x)2, (4)

3For a = 0, Dasgupta and Nti (1998) assume a different tie-breaking rule, viz. u0i (0, ..., 0) = 0 for
i = 1, ..., n. The BR-correspondence is the same, however.

4Cf., e.g., Chowdhury and Sheremata (2015) and González-Sánchez and Hernández-Lerma (2016).
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where x−i = x1 + ...+ xi−1 + xi+1 + ...+ xn. Moreover,

∂2P a(xi, x−i)

∂x2i
= (−2) · (a+ x) < 0, (5)

i.e., the problem of maximizing P a(., x−i) subject to xi ≥ 0 is strictly concave. The unique

solution x∗i ≡ x∗i (x−i, a) is given by

x∗i =


√
(a+ x−i)V − a− x−i if x−i ≤ V − a

0 if x−i > V − a.
(6)

But this is just player i’s best-response function in Ga. Hence,

argmax
xi≥0

P a(xi, x−i) = argmax
xi≥0

uai (xi, x−i), (7)

as claimed.

Consider next the case a = 0. Denote by π(x) the number of nonzero entries of the

vector x = (x1, ..., xn). We claim that

P 0(x1, ..., xn) =



(
∑
j<k

xjxk)V − 1
3x
3 if π(x1, ..., xn) ≥ 2

−13xjV
2 if π(x1, ..., xn) = 1 and xj > 0

−13
n−1
n V 3 if π(x1, ..., xn) = 0

(8)

is a BR-potential for G0. To see this, suppose first that x−i has at least two nonzero entries.

Then, certainly π(x1, ..., xn) ≥ 2, so that from (8),

P 0(x1, ..., xn) = (
∑
j<k

xjxk)V −
1

3
x3. (9)

Moreover, u0i (., x−i) is differentiable, so that in straightforward extension of the case a > 0

considered above,

argmax
xi≥0

P 0(xi, x−i) = argmax
xi≥0

u0i (xi, x−i). (10)

Suppose next that x−i has precisely one nonzero entry xj > 0. Then, π(x1, ..., xn) = 2 if

xi > 0, and π(x1, ..., xn) = 1 if xi = 0. Hence, using (8) another time,

P 0(x1, ..., xn) =


xixjV − 1

3(xi + xj)
3 if xi > 0

−13xjV
2 if xi = 0.

(11)

We have to show that the problem of maximizing P 0(., x−i) subject to xi ≥ 0 has the unique

solution that is given by player i’s best-response function in G0, i.e., by x∗i =
√
xjV − xj
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if xj ≤ V and by x∗i = 0 if xj > V . From the above, it clearly suffi ces to verify that the

problem max
xi≥0

P 0(xi, x−i) has an interior solution if and only if xj < V . But indeed, using

(11), one can easily check that for xj > 0,

lim
xi→0
xi>0

P 0(xi, x−i) = −
1

3
x3j > −

1

3
xjV

2 = P 0(0, x−i) (12)

if and only if xj < V , as illustrated in Figure 1.

Figure 1. Constructing a BR-potential in the case a = 0.

Finally, suppose that all entries of x−i are zero. Then, again from (8), P 0(xi, x−i) = −13xiV
2

if xi > 0, but P 0(0, x−i) < 0, so that argmax
xi∈Xi

P 0(xi, x−i) = ∅. Similarly, u0i (xi, x−i) =

V −xi if xi > 0, but u0i (0, x−i) = V/n, so that argmax
xi∈Xi

u0i (xi, x−i) = ∅. Thus, P 0 is indeed

a BR-potential for G0. �

3. Discussion

Note that Ga does not allow an exact potential for any a ≥ 0. Indeed, for i 6= j,

∂2uai (x)

∂xi∂xj
=
(xi − xj)− (

∑
k 6=i,j xk)− a

(a+ x)3
V (13)

is not symmetric with respect to i and j, as required by Monderer and Shapley’s (1996)

necessary condition. Along similar lines, it can be seen that the lottery contest is not a

weighted potential game either.

For a ≥ V , the function uai (·, x−i) is strictly declining for any x−i and i, and therefore,

P a is actually an ordinal potential for Ga. However, P a is not even a generalized ordinal
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potential when a < V . Indeed, for xi = ε > 0 small enough, x′i = V − a, and x−i = 0,

uai (xi, x−i)− uai (x′i, x−i) =
(

ε

a+ ε
V − ε

)
−
(

V − a
a+ (V − a)V − (V − a)

)
> 0, (14)

whereas, from (3) and (8),

P a(xi, x−i)− P a(x′i, x−i) = ε

{
a(V − a− ε)− ε2

3

}
− (V − a)

3

3
< 0, (15)

in conflict with the definition.5

Park (2015) argued that, if preferences are complete but the BR-set is empty, the BR-

potential should generate the same preferences over strategies as the payoff function. To

check this condition, note that for x−i = 0,

P 0(xi, x−i) =


−13xiV

2 if xi > 0

−13
n−1
n V 3 if xi = 0.

(16)

Thus, P 0 induces a preference for lower strategies among positive strategies xi > 0, and an

indifference between xi = 0 and xi = n−1
n V . This is likewise true for preferences reflecting

player i’s payoffs when x−i = 0,

u0i (xi, x−i) =


V − xi if xi > 0

V/n if xi = 0.
(17)

Thus, P 0 satisfies Park’s condition.

Proposition 1 extends to any convex combination between a purely random allocation

and the lottery contest (Haavelmo, 1954; Baron, 1994). The same is true for Amegashie’s

(2006) contest with minimum efforts.

4. Implications

This section presents two implications of Proposition 1.

An n-player game G will be called n − 1 multilateral if for any i = 1, ..., n, there exist

functions hij : X−j → R for j ∈ {1, ..., n}, such that ui(x) =
∑n
j=1 hij(x−j). Any zero-sum

equivalent potential n-player game is necessarily equivalent to an n − 1 multilateral game

(Brânzei et al., 2003; Hwang and Rey-Bellet, 2017). As the following result shows, this need

not be so for a zero-sum equivalent BR-potential game.
5This leaves, of course, the theoretical possibility that another function might be a (generalized) ordinal

potential for Ga when a < V .
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Proposition 2. For any n ≥ 2, there exists a zero-sum equivalent BR-potential n-player

game that is not equivalent to an n− 1 multilateral game.

Proof. Recall that G0 is strategically a zero-sum game.6 To see that G0 is not n − 1

multilateral, note that

∂n−1uai (xi, x−i)

∂x1...∂xi−1∂xi+1...∂xn
= (−1)n−1(n− 1)! xi

(xi + x−i)n
, (18)

depends nontrivially on xi, which is impossible for an n− 1 multilateral game. �

Call a two-player game trivial if each player’s BR-correspondence is constant. For n = 2,

the statement of Proposition 2 may be strengthened as follows.

Corollary 1. There exists a non-trivial two-person zero-sum equivalent BR-potential game.

Hwang and Rey-Bellet (2017) have shown that, for n ≥ 3, the n-player Cournot game with

linear demand, which admits an exact potential, is zero-sum equivalent. This is not true

for n = 2, however, so that Corollary 1 may indeed be of interest.
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