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Abstract

In this paper we introduce a stochastic network formation model where agents choose both actions

and links. Neighbors in the network benefit from each other’s action levels through local com-

plementarities and there exists a global interaction effect reflecting a strategic substitutability in

actions. The tractability of the model allows us to provide a complete equilibrium characterization

in the form of a Gibbs measure, and we show that the structural features of equilibrium networks

are consistent with empirically observed networks. We then use our equilibrium characterization

to show that the model can be conveniently estimated even for large networks. The policy rele-

vance is demonstrated with examples of firm exit, mergers and acquisitions and subsidies in the

context of R&D collaboration networks.
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1. Introduction

Networks are important in shaping individual behavior and aggregate outcomes in many social

and economic applications.1 A crucial aspect of such environments is the coevolution of networks

and behaviors: agents in a network adjust their behaviors based on those of their connections and

they choose their connections based on their behaviors. In this paper we introduce a tractable

framework to study the joint evolution of networks and behaviors which can be applied to real

world networks and used for policy analysis.

We consider a linear-quadratic interdependent utility function [cf. Ballester et al., 2006], where

agents choose a non-negative, continuous action level and create links at a cost. Neighbors in the

network benefit from each other’s action levels through local complementarities, such as those that

arise between R&D collaborating firms sharing knowledge about a cost-reducing technology. The

global interaction effect reflects a strategic substitutability in actions, for example, through busi-

ness stealing effects that arise when a firm expands its production in the market. The tractability

of the model allows us to provide a complete equilibrium characterization, and an efficiency anal-

ysis. Moreover, it is shown that the equilibrium networks generated by the model consistently

reproduce features of real world networks. Further, using the equilibrium characterization in the

form of a Gibbs measure, we show that the model can be conveniently estimated even for large

networks. Finally, the model is amenable to policy analysis, and we illustrate this with examples

of firm exits, mergers and acquisitions (M&A) and subsidies in the context of R&D collaboration

networks.

Overview of the results and contributions Our paper attempts to make three interrelated

contributions: a theoretical, an econometric and a policy contribution. Our model has a broad

range of applications in various fields [cf. Jackson et al., 2015b]. To give a concrete example,

in the following we will illustrate our contributions with the example of firms forming R&D

collaborations to benefit from technology spillovers while, at the same time, being competitors in

the product market [cf. D’Aspremont and Jacquemin, 1988].

First, this paper provides the first fully tractable and estimable model of strategic R&D

network formation with endogenous production and R&D collaboration choices, which takes into

account the two-way flow of influence from the market structure to the incentives to form R&D

collaborations and, in turn, from the formation of collaborations to the market structure.

We study the incentives of firms to form R&D collaborations with other firms and the im-

plications of these alliance decisions for the overall market structure. We introduce a dynamic

process in which firms can adjust both, quantities produced (as well as R&D efforts), and the

R&D collaborations between them, based on a noisy profit maximization rationale [cf. Brock and

Durlauf, 2001; Blume, 2003], taking into account that the establishment of an R&D collaboration

is fraught with ambiguity and uncertainty [cf. e.g. Czarnitzki et al., 2015; Kelly et al., 2002].

Using a potential function we show that the stationary states of this process are completely char-

acterized by a “Gibbs measure” [cf. Bisin et al., 2006; Grimmett, 2010]. Moreover, we show that

when firms have heterogeneous marginal costs stemming from differences in their productivity,

then the stochastically stable networks (in the limit of vanishing noise) are “nested split graphs”

1See e.g. Jackson [2008] and Jackson et al. [2015a].
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[cf. König et al., 2014a; König et al., 2011],2 providing an explanation for why nestedness has been

observed in empirical R&D networks [Tomasello et al., 2016]. Nested split graphs further have a

core-periphery structure, which has also been documented in empirical studies on R&D networks

[cf. Kitsak et al., 2010; Rosenkopf and Schilling, 2007]. In particular, Kitsak et al. [2010] find that

firms in the core have a higher market value, consistent with the predictions of our model. Next,

we show that when firms’ productivities are Pareto distributed, then the firms’ output levels and

degrees also follow a Pareto distribution, which is consistent with the empirical data [cf. e.g.

Powell et al., 2005]. Further, we find that there exists a sharp transition between sparse and

dense networks with decreasing linking costs. We also compute the stationary output levels and

show that there exists an intermediate range of the linking cost for which multiple equilibria arise.

The equilibrium selection is a path dependent process characterized by “hysteresis” [cf. David,

2005, 1992]. Moreover, as in the case of the network density, there exists a sharp transition from

a low output to a high output equilibrium.

It is also possible to generalize our model by introducing heterogeneous spillovers from collabo-

rations between firms with differences in their technological characteristics, and/or heterogeneous

costs of collaboration. In particular, assuming that firms can only benefit from collaborations if

they have at least one technology in common, we show that our model is a generalization of a

“random intersection graph” [cf. Deijfen and Kets, 2009],3 for which positive degree correlations

(assortativity) can be obtained. We then investigate the efficient network and output structure

that maximize social welfare, and find that equilibrium networks tend to be under-connected [cf.

Buechel and Hellmann, 2012], compared to the social optimum.4

Second, we bring the model to the data by analyzing a unique dataset of firm R&D collabora-

tions matched to firms’ balance sheets. The theoretical characterization of the stationary states

via a Gibbs measure allows us to estimate the model’s parameters using a Markov Chain Monte

Carlo (MCMC) method called double Metropolis-Hastings (DMH) algorithm [Hsieh and Lee,

2013; Liang, 2010; Mele, 2010], which can handle the problem of the “intractable normalization

constant” in the probability likelihood function by introducing auxiliary network and outcome

data.5 We further use a novel adaptive exchange (AEX) algorithm to overcome the slow mixing

faced by the DMH algorithm [Jin et al., 2013; Liang et al., 2015]. It applies importance sampling

to prevent the “local trap problem” when the likelihood represented by the Gibbs measure is

multi-modal. We also propose a likelihood partition approach in which we “integrate out” the

intractable normalizing constant by direct analytic computations. The resulting likelihood allows

us to use a standard MH algorithm for estimation, and this approach can be efficiently applied

to large networks.

From our estimation results we observe that the estimated technology spillover effect is sig-

nificantly positive and the estimated competition effect is significantly negative, which confirms

2A network is a nested split graph if the neighborhood of every node is contained in the neighborhoods of the
nodes with higher degrees [cf. Mahadev and Peled, 1995]. See supplementary Appendix B for further network
definitions and characterizations.

3A random intersection graph is constructed by assigning to each node a subset of a given set and two nodes
are connected when their respective subsets intersect.

4In Section 4.3 we analyze the effectiveness of a subsidy on firms’ R&D collaboration costs, that gives firms
incentives to form collaborations and thus increases the network connectivity.

5The intractable normalization constant refers to the denominator of the Gibbs likelihood function. The de-
nominator involves a summation over all possible network configurations. If there are n nodes, then there are 2(

n
s)

possible networks to consider.
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our theoretical predictions that firms face a positive complementary effect from R&D collabo-

rations and a negative substitution effect from competing firms in the same market. We also

investigate heterogeneous technology spillovers by weighting the R&D collaboration links with

Jaffe and Mahalanobis technology proximity measures [cf. Bloom et al., 2013]. The results show

variations on the estimated spillover effects in correspondence with the average magnitudes of

different proximity measures.

Third, we use our estimated model to investigate the impact of exogenous shocks on the

network. In particular, we perform a “key player” analysis [cf. Ballester et al., 2006; Zenou,

2015], to gauge the impact of firm exit on the economy, when firms are connected through R&D

collaborations in a network.6 The exit of a firm could be due to either financial reasons, such as

the recession experienced by the American automobile manufacturing industry during the global

financial downturn, or legal reasons, such as the recent emission-fraud scandal of Volkswagen.

In the latter case, policy makers want to know the overall cost they impose on the economy by

inflicting high pollution penalties and criminal fines that might threaten the continued existence

of a firm. Focusing on the chemicals and pharmaceutical sector, our results indicate that the exit

of Amgen, an American global pharmaceutical corporation, would lead to a reduction in welfare

of 3.7%. We then provide a ranking of the firms in our sample according to their impact on

welfare upon exit. The ranking shows that the most important firms are not necessarily the ones

with the highest market share, but that we need to take into account the positions of these firms

in a network of R&D collaborations, and how this network dynamically responds to shocks of

firm exits.

Our framework also allows us to study mergers and acquisitions, and their impact on welfare

[cf. Farrell and Shapiro, 1990; Kim and Singal, 1993]. Traditional market concentration indices

are not adequate to correctly account for the network effect of a merger on welfare [Encaoua and

Hollander, 2002]. This is because the effect of a merger on industry profits, consumer surplus

and overall welfare depends not only on the market structure, but also on the architecture of the

R&D collaboration network between firms through which R&D spillovers are channelled. In such

networked markets benefits from concentration of R&D activities can arise through economies of

scale and faster diffusion of technologies in more centralized networks.

By taking into account the network effect our results show that a merger between Daiichi

Sankyo Co. Ltd., the second largest pharmaceutical company in Japan and Schering-Plough

Corp., a U.S.-based multinational pharmaceutical company, would result in a welfare loss of

0.6%. In contrast, a welfare gain of 0.86% from a merger is obtained between Isis Pharm. Inc.

and Takeda Pharm. Inc. Comparing the firms involved in mergers that lead to welfare gains

as opposed to the ones that lead to welfare losses, we see that mergers between firms with a

larger number of patents and a larger number of R&D collaborations typically lead to welfare

gains, while mergers between firms with few collaborations, fewer patents and a larger market

share typically lead to a welfare loss. This indicates that the R&D spillover effect is larger

when two well connected, R&D intensive firms merge, while welfare losses from increased market

concentration dominate when less connected and more market dominant firms are involved in the

merger. Our counterfactual policy analysis is therefore potentially important for antitrust policy

6We note that our model is formulated in a fairly flexible way, and because we consider the general payoff
structure introduced in Ballester et al. [2006], one could use our framework also to investigate key players in
criminal networks, or other related contexts [see also Zenou, 2015].
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makers.

Finally, we investigate the impact of subsidizing R&D collaboration costs of selected pairs of

firms. Our study indicates that subsidizing an R&D collaboration between Dynavax Technologies,

a U.S.-based biopharmaceutical company, and Shionogi & CO. Ltd., a Japanese pharmaceutical

company, would increase welfare by 0.76%. Not taking into account the endogeneity of the

network would yield much lower welfare gains. As subsidies are increasingly being used by

governmental organizations to stimulate collaborative R&D activities, our framework could assist

governmental funding agencies that typically do not take into account the aggregate spillovers

generated within a dynamic R&D network structure.

Related literature There is a growing literature on the stochastic evolution of networks going

back to Jackson and Watts [2002],7 using tools from evolutionary game theory8 to analyze the

formation of social and economic networks. In this literature agents form links over time based

on myopic improvements that the resulting network offers them relative to the current network.

While there is a small probability of mistakes, the stochastically stable states are identified when

this probability vanishes. Our paper uses similar techniques to analyze the stationary states in a

stochastic network formation model, but differently to the above mentioned works, we investigate

the coevolution of links and actions, and develop an estimable framework from our theory that

can be applied to real world networks.

There also exist related studies on the formation of R&D networks in the economics litera-

ture. Similar to our framework, Dawid and Hellmann [2014]; Goyal and Moraga-Gonzalez [2001];

Westbrock [2010] study the formation of R&D networks in which firms can form collaborations to

reduce their production costs. In particular, Dawid and Hellmann [2014] study a perturbed best

response dynamic process as we do here, and analyze the stochastically stable states. However,

differently to the current model, they ignore the R&D investment decision, and the technology

spillovers from a collaboration in these models is independent of the identity and the character-

istics of the firms involved.9

Similarly, Marsili and Vega-Redondo [2010] analyze the formation of a network in which agents

play a coordination game with their neighbors. As in the present paper, the authors show that

the interplay between action choice and link creation may feed on each other to generate sharp

transitions from sparse to dense networks. The underlying payoff structure, however, is different

from ours. Further, while these authors assume that links decay at random, here link removal

depends on whether the agents find this profitable.

Our analysis also bears similarities with a number of other recent contributions in the literature

which analyze a similar payoff structure. In the paper by Ballester et al. [2006] the authors derive

equilibrium outcomes in a linear quadratic game where agents’ efforts are local complements

in an exogenously given network. Differently to Ballester et al. [2006], we make the network

as well as effort choices endogenous.10 Cabrales et al. [2010] allow the network to be formed

7For more recent contributions to this literature see, for example, Hojman and Szeidl [2006], Feri [2007] and
Dawid and Hellmann [2014].

8See e.g. Kandori et al. [1993], Blume [1993] and Sandholm [2010].
9Goyal and Moraga-Gonzalez [2001] present a more general setup which relaxes this assumption but their

analysis is restricted to regular graphs and networks comprising of four firms. In this paper we take into account
general equilibrium structures with an arbitrary number of firms and make no ex ante restriction on the potential
collaboration pattern between them.

10It is straightforward to see that the results obtained in this paper can be generalized to the payoff structure
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endogenously, but assume that link strengths are proportional to effort levels, while we make the

linking decision depending on marginal payoffs. Hiller [2015] studies the joint formation of links

and actions using a similar payoff structure as we do here, however, abstracting from any global

substitutability effects, and shows that equilibrium networks are nested split graphs [see also

König et al., 2014a]. Similarly, Belhaj et al. [2014] analyze the design of optimal networks with

the same payoff function but without global substitutabilities, and show that when the planner

chooses links, but not the level of output (second best), the optimal network is a nested split

graph. We find that both equilibrium and efficient structures, when the planner chooses both

actions and links (first best), are nested spit graphs, even when allowing for global substitutes and

incorporating heterogeneous firms, and we provide a more precise equilibrium characterization

beyond the general class of nested split graphs. In particular, we identify conditions under which,

both, the output and the degree distributions follow a power law, consistent with the empirical

data [cf. Gabaix, 2009, 2016; Powell et al., 2005].

Our approach is a further generalization of the endogenous network formation mechanisms

proposed in Snijders [2001], Mele [2010] and Chandrasekhar and Jackson [2012]. As in these

papers, we use a potential function to characterize the stationary states [cf. Monderer and Shapley,

1996], but here both, the action choices as well as the linking decisions are fully endogenized.

Moreover, differently to these papers we provide a microfoundation (from a Cournot competition

model with externalities) for the potential function. Further, in a recent paper by Badev [2013]

a potential function is used to analyze the formation of networks in which agents not only form

links but also make a binary choice of adopting a certain behavior depending on the choices of

their neighbors. Differently to Badev [2013], we consider a continuum of choices, 11 and provide a

microfoundation derived from the payoff function introduced in Ballester et al. [2006]. Moreover,

differently to the previous authors we provide an explicit equilibrium characterization, use an

alternative estimation method (which can also be applied to large networks and addresses the local

trap problem),12 apply our model to a different context, and study a range of novel counterfactual

policy scenarios. Relatedly, in a recent paper, Hsieh and Lee [2013] apply a potential function to an

empirical model of joint network formation and action choices. However, their potential function

is based on a transferable utility function so that linking decisions are based on maximizing

aggregate payoffs, while here we consider decentralized link formation between payoff maximizing

agents.

Furthermore, Bimpikis et al. [2014] analyze the effect of mergers and acquisitions within

and across different industries using a similar model as we do here. However, neither does

their analysis incorporate the spillover effects from R&D collaborations, nor do they allow for

these collaborations to respond to a merger. In contrast, our empirical analysis reveals that the

network structure of R&D collaborations matters, and that when ignoring the network structure

the impact of mergers is significantly underestimated. Moreover, we find that mergers between

highly connected firms can be welfare improving, a feature that would not arise in the absence

introduced in Ballester et al. [2006]. See in particular the general payoff structure considered in Equation (1). We
provide a complete equilibrium characterization for the model introduced in Ballester et al. [2006], but allow both
agents’ actions and links to be endogenously determined.

11An analysis of the stationary states in a binary choice model can be found in König [2016].
12Note also that classical Maximum Likelihood Estimation (MLE) methods such as the one considered in Badev

[2013] are greatly influenced by the choice of initial parameter values, and if these are not close enough to the true
values, the method may converge to a sub-optimal solution [cf. Airoldi et al., 2009].
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of the R&D network. We thus contribute to the ongoing debate about the validity of antitrust

policies in innovative industries [cf. Encaoua and Hollander, 2002], by adding another dimension

that explicitly takes into account efficiency gains that can be realized from R&D spillovers across

firms.

Finally, in König et al. [2014b] a similar market structure is considered. In particular, the

authors investigate the impact of a subsidy per unit of R&D spent, while here we analyze subsidies

to R&D collaborations directly. Moreover, the authors characterize key firms whose exit would

have the largest impact on the output of the economy in the short run, taking the network as

given. Here we develop a long run analysis, where the network is allowed to dynamically adjust

upon the exit of a firm. To the best of your knowledge, this is the first paper to perform such a

dynamic key player analysis in a fully strategic environment.

Organization of the paper The paper is organized as follows. The theoretical model is

outlined in Section 2. In particular, Section 2.1 introduces the linear-quadratic payoff function

considered in this paper. Section 2.2 defines the stochastic network formation and output adjust-

ment process and provides a complete characterization of the stationary state. In Section 2.3 the

welfare maximizing networks are derived. Section 2.4 discusses several extensions of the model

that allow for firm heterogeneity. Next, Section 3 provides information about the data that we

use and explains the estimation methods and results. Section 4 then uses the estimated model

to analyze several counterfactual policy experiments. Finally, Section 5 concludes. All proofs are

relegated to Appendix A.

Additional relevant material can be found in the supplementary appendices. In particular,

supplementary Appendix B provides basic definitions and characterizations of networks. Supple-

mentary Appendix C provides a motivation for the linear quadratic payoff function from a model

of R&D collaborating firms that are competing on the product market à la Cournot. Supple-

mentary Appendix D explains the distinction between continuous and discrete quantity choices.

Supplementary Appendix E explains in detail the extensions mentioned in the main text. Supple-

mentary Appendix F provides a detailed description of the data used for our empirical analysis

in Section 3, while supplementary Appendix G provides additional details of the estimation al-

gorithms. Supplementary Appendix H provides a simulation study to examine the performance

and consistency of our various estimation algorithms, as well as the impact of missing observa-

tions on estimation. Finally, supplementary Appendix I shows the robustness of our results when

analyzing alternative data.
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2. Theoretical Framework

2.1. Payoffs

Each firm (agent) i ∈ N = {1, . . . , n} in the network G ∈ Gn selects an output (action) level

qi ∈ Q and obtains a linear-quadratic profit (payoff) πi : Q
n × Gn → R given by13

πi(q, G) = ηiqi − νq2i − bqi

n∑

j 6=i

qj + ρ

n∑

j=1

aijqiqj − ζdi, (1)

where Q is the (bounded) output choice set of a firm, Gn denotes the set of all graphs with n ≥ 2

nodes, aij = 1 if firms i and j set up a collaboration (0 otherwise) and aii = 0.14 Equation (1)

is concave in own output, qi, with parameters ηi ≥ 0 and ν ≥ 0. Moreover, b > 0 is a global

substitutability parameter, ρ ≥ 0 a local complementarity parameter, ζ ≥ 0 denotes a fixed

linking cost and di is the number of collaborations of firm i. A derivation of the profit function

in Equation (1) in the context of R&D collaborating firms competing à la Cournot can be found

in supplementary Appendix C.15

The profit function introduced in Equation (1) admits a (cardinal) potential function [cf.

Monderer and Shapley, 1996].

Proposition 1. The profit function of Equation (1) admits a potential game where firms choose
both output and links with a potential function Φ: Qn × Gn → R given by

Φ(q, G) =

n∑

i=1

(ηiqi − νq2i )−
b

2

n∑

i=1

n∑

j 6=i

qiqj +
ρ

2

n∑

i=1

n∑

j=1

aijqiqj − ζm, (2)

for any q ∈ Qn and G ∈ Gn where m denotes the number of links in G.

The potential function has the property that the marginal profit of a firm from adding or removing

a link is exactly equivalent to the difference in the potential function from adding or removing a

link. Similarly, the marginal profit of a firm from changing its output level is exactly equivalent

to the change of the potential function.16 The potential function thus allows to aggregate the

incentives of the firms to either change their links or adjust their production levels in a single global

function. The existence of a potential function will be crucial for the equilibrium characterization

of the network formation process that will be introduced in the following section.

2.2. Network Dynamics and Equilibrium Characterization

In this section we introduce a dynamic model where firms choose both output and links, based

on the profit function of Equation (1). In this model the network is formed endogenously, based

on the decisions of firms with whom to collaborate, and share knowledge about a cost reducing

13See also Ballester et al. [2006] and Jackson et al. [2015b] for a more general discussion of the payoff function
introduced in Equation (1).

14See supplementary Appendix B for further network definitions and characterizations.
15In König et al. [2014b] it is shown that a similar profit function can be obtained when firms compete à la

Bertrand.
16More formally, the potential Φ has the property that for any q ∈ Qn and G,G′ ∈ Gn with G′ = G ⊕ (i, j) or

G′ = G ⊖ (i, j) we have that Φ(q, G′) − Φ(q, G) = πi(q, G
′) − πi(q, G), where G ⊕ (i, j) (G ⊖ (i, j)) denotes the

network obtained from G by adding (removing) the link (i, j). Moreover, for qi, q
′
i ∈ Q, q−i ∈ Qn−1 and G ∈ Gn

we have that Φ(q′i,q−i, G)− Φ(qi,q−i, G) = πi(q
′
i,q−i, G)− πi(qi,q−i, G).
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technology. The opportunities for change arrive as a Poisson process [cf. Blume, 1993; Sandholm,

2010], similar to Calvo models of pricing [Calvo, 1983]. When a firm receives such an opportunity

to change, it adjusts its output or collaborations so as to maximize its profit while taking the

output levels and collaborations of the other firms as given, assuming that firms are myopic (as

e.g. in Jackson and Watts [2002]; Watts [2001]).17 To capture the fact that R&D projects and the

establishment of an R&D collaboration are fraught with ambiguity and uncertainty [cf. Czarnitzki

and Toole, 2013; Czarnitzki et al., 2015; Kelly et al., 2002], we will introduce noise in this decision

process. The precise definition of the dynamics of output adjustment and network evolution is

given in the following.

Definition 1. The evolution of the population of firms and the collaborations between them is
characterized by a sequence of states (ωt)t∈R+ , ωt ∈ Ω = Qn×Gn, where each state ωt = (qt, Gt)
consists of a vector of firms’ output levels, qt ∈ Qn, and a network of collaborations, Gt ∈ Gn.
We assume that firms choose quantities from a bounded set Q. In a short time interval [t, t+∆t),
t ∈ R+, one of the following events happens:

Output adjustment At rate χ ≥ 0 a firm i ∈ N is selected at random and given an adjustment
opportunity of its current output level. When firm i receives such an adjustment opportunity,
the probability to choose a certain output level is governed by a multinomial logistic function
with choice set Q and parameter ϑ, so that the probability that we observe a switch by firm i
to an output level q conditional on the output levels of all other firms, q−it, and the network,
Gt, at time t is given by18

P (ωt+∆t = (q,q−it, Gt)|ωt = (qt, Gt)) = χ
eϑπi(q,q−it,Gt)

∫
Q e

ϑπi(q′,q−it,Gt)dq′
∆t+ o(∆t). (3)

Link formation With rate τ ≥ 0 a pair of firms i, j which is not already connected receives
an opportunity to form a link. The formation of a link depends on the marginal profits the
firms receive from the link plus an additive pairwise i.i.d. error term εij,t. The probabil-
ity that link (i, j) is created is then given by19 P (ωt+∆t = (qt, Gt ⊕ (i, j))|ωt = (qt, Gt)) =
τ P ({πi(qt, Gt ⊕ (i, j)) − πi(qt, Gt) + εij,t > 0} ∩ {πj(qt, Gt ⊕ (i, j)) − πj(qt, Gt) + εij,t > 0}) ∆t+
o(∆t). Using the fact that πi(qt, Gt ⊕ (i, j)) − πi(qt, Gt) = πj(qt, Gt ⊕ (i, j)) − πj(qt, Gt) =
Φ(qt, Gt⊕(i, j))−Φ(qt, Gt), and assuming that the error term εij,t is independently logistically
distributed,20 we obtain

P (ωt+∆t = (qt, Gt ⊕ (i, j))|ωt = (qt, Gt)) = τ
eϑΦ(qt,Gt⊕(i,j))

eϑΦ(qt,Gt⊕(i,j)) + eϑΦ(qt,Gt)
∆t+ o(∆t). (4)

Link removal With rate ξ ≥ 0 a pair of connected firms i, j receives an opportunity to terminate
their collaboration. The link is removed if at least one firm finds this profitable. The marginal
profits from removing the link (i, j) are perturbed by an additive pairwise i.i.d. error term εij,t.

17The assumption of myopic firms is also common in boundedly rational dynamic decision-making, as considered
in the seminal work by Gabaix [2014].

18The multinomial choice probability can be derived from a random utility model where firms maximize profits
subject to a random error term [cf. Anderson et al., 2004; McFadden, 1976]. See supplementary Appendix D for
more details.

19Alternatively, one could think of the links being formed in a cooperative way, however with no commitment
regarding the output produced by firms (which is chosen in a non-cooperative way) as it is the case in typical
models in contract theory [cf. Grossman and Hart, 1986]. Similar results can be obtained using this alternative
specification.

20Let z be i.i. logistically distributed with mean 0 and scale parameter ϑ, i.e. Fz(x) = eϑx

1+eϑx . Consider the

random variable ε = g(z) = −z. Since g is monotonic decreasing, and z is a continuous random variable, the

distribution of ε is given by Fε(y) = 1− Fz(g
−1(y)) = eϑy

1+eϑy .
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The probability that the link (i, j) is removed is then given by P (ωt+∆t = (qt, Gt ⊖ (i, j))|ωt = (qt, Gt))
= ξ P ({πi(qt, Gt ⊖ (i, j)) − πi(qt, Gt) + εij,t > 0} ∪ {πj(qt, Gt ⊖ (i, j)) − πj(qt, Gt) + εij,t > 0}) ∆t+
o(∆t). Using the fact that πi(qt, Gt ⊖ (i, j)) − πi(qt, Gt) = πj(qt, Gt ⊖ (i, j)) − πj(qt, Gt) =
Φ(qt, Gt ⊖ (i, j)) − Φ(qt, Gt), and assuming that the error term is independently logistically
distributed we obtain

P (ωt+∆t = (qt, Gt ⊖ (i, j))|ωt = (qt, Gt)) = ξ
eϑΦ(qt,Gt⊖(i,j))

eϑΦ(qt,Gt⊖(i,j)) + eϑΦ(qt,Gt)
∆t+ o(∆t). (5)

We assume that the set Q is a discretization of the bounded interval [0, q], with q <∞. The fact

that Q is a countable set allows us to use standard results for discrete state space, continuous

time Markov chains [cf. e.g. Norris, 1998; Stroock, 2005].21 For an increasingly fine discretiza-

tion we then can use Equation (3) as a continuous analogue of the standard multinomial logit

probabilistic choice framework [see also Anderson et al., 2004, 2001; Ben-Akiva and Watanatada,

1981; McFadden, 1976], where the probability of choosing an output level is proportional to an

exponential function of the firm’s profit. The standard derivation of the logit model is based

on the assumption that profits are subject to noise from a type-I extreme value distribution [cf.

Anderson et al., 1992].22 The parameter ϑ is inversely related to the level of noise, so that in the

limit of ϑ→ ∞ the noise vanishes and firms choose the output level that maximizes their profit,

while in the limit of ϑ→ 0 the noise dominates and output adjustments in Equation (3) become

random. The same holds for the link formation and removal decisions in Equations (4) and (5),

respectively.23

Note that we can numerically implement the stochastic process introduced in Definition 1

using the “next reaction method” for simulating a continuous time Markov chain [cf. Anderson,

2012; Gibson and Bruck, 2000]. We will use this method throughout the paper to illustrate our

theoretical predictions for various network statistics (see e.g. Figures 1 and 3). However, this

method becomes computationally infeasible for larger networks, where we have to rely on our

theoretical equilibrium characterization and alternative simulation methods.

We next introduce some definitions and notations that allow us to characterize the stochastic

process in Definition 1. Let F denote the smallest σ-algebra generated by σ (ωt : t ∈ R+). The

filtration is the non-decreasing family of sub-σ-algebras {Ft}t∈R+ on the measure space (Ω,F),

Ω = Qn × Gn, with the property that F0 ⊆ F1 ⊆ · · · ⊆ Ft ⊆ · · · ⊆ F . The probability

space is given by the triple (Ω,F ,P), where P : F → [0, 1] is the probability measure satisfying∫
Ω P(dω) = 1.24

The one step transition probability matrix Pϑ(t) : Ω2 → [0, 1]|Ω|2 has elements which de-

termine the probability of a transition from a state ω ∈ Ω to a state ω′ ∈ Ω in a small time

21In contrast, if Q is assumed to be a Borel set in R then we need to consider more general Feller processes [see
e.g. Liggett, 2010, Chap. 3]. In this case any measurable function f : Ω → R of the state variables ω ∈ Ω is a
Carathéodory function since f(q, ·) is continuous for each q ∈ Qn and f(·, G) is (Gn, σ(Gn)) measurable [Aliprantis
and Border, 2006].

22See supplementary Appendix D for a derivation of the multinomial logit model with a continuous choice set
from a mulitnomial model with a discrete choice set [see also McFadden, 1976]. This illustrates that our framework
can also be applied to cases where agents choose from an arbitrary discrete set of alternatives.

23While in Definition 1 pairs of firms are selected in a global way to form collaborations, it is possible to consider
a local approach where new links are more likely to be formed among firms which already have a common neighbor
[cf. Jackson and Rogers, 2007; König, 2016]. This can be captured by a linking cost that is decreasing in the number
of common neighbors of the firms. We explicitly consider such a formulation in the empirical model in Section 3.2.

24As we will see below in Theorem 1 the sequence of states (ωt)t∈R+ , ωt ∈ Ω, induces an irreducible and positive
recurrent (i.e. ergodic) time homogeneous Markov chain.

9



interval [t, t+∆t) of length ∆t given by P(ωt+∆t = ω′|Ft = σ(ω0,ω1, . . . ,ωt = ω)) = P(ωt+∆t =

ω′|ωt = ω) = qϑ(ω,ω′)∆t + o(∆t) if ω′ 6= ω and P(ωt+∆t = ω|Ft = σ(ω0,ω1, . . . ,ωt = ω)) =

P(ωt+∆t = ω|ωt = ω) = 1+ qϑ(ω,ω)∆t+ o(∆t), where qϑ(ω,ω′) is the transition rate from state

ω to state ω′ and lim∆t→0
o(∆t)
∆t

= 0 (cf. e.g. Stewart [1994] or Theorem 2.8.2 in Norris [1998]).

From the stochastic process of Definition 1 we see that the transition rate matrix (or infinitesimal

generator) Qϑ = (qϑ(ω,ω′))ω,ω′∈Ω of the Markov chain has the elements

qϑ(ω,ω′) =





χ eϑπi(q
′,q−i,G)

∫

Q eϑπi(q
′′,q−i,G)dq′′

if ω′ = (q′,q−i, G) and ω = (q, G),

τ eϑΦ(q,G⊕(i,j))

eϑΦ(q,G⊕(i,j))+eϑΦ(q,G) if ω′ = (q, G⊕ (i, j)) and ω = (q, G),

ξ eϑΦ(q,G⊖(i,j))

eϑΦ(q,G⊖(i,j))+eϑΦ(q,G) if ω′ = (q, G⊖ (i, j)) and ω = (q, G),

−
∑

ω′ 6=ω q
ϑ(ω,ω′) if ω′ = ω,

0 otherwise,

(6)

with
∑

ω′∈Ω q
ϑ(ω,ω′) = 0.25 As the Markov chain is time homogeneous, the transition rates

are independent of time. The stationary distribution µϑ : Ω → [0, 1] is then the solution to

µϑPϑ = µϑ, or equivalently µϑQϑ = 0 [cf. e.g. Norris, 1998].

With the potential function Φ of Proposition 1 we can compute the stationary distribution in

the form of a Gibbs measure [cf. Grimmett, 2010].

Theorem 1. The stochastic process (ωt)t∈R+ with states ωt ∈ Ω = Qn×Gn is an ergodic Markov
chain with a unique stationary distribution µϑ : Ω → [0, 1] such that limt→∞ P(ωt = (q, G)|ω0 =
(q0, G0)) = µϑ(q, G). The distribution µϑ is given by

µϑ(q, G) =
eϑ(Φ(q,G)−m ln( ξ

τ ))

∑
G′∈Gn

∫
Qn e

ϑ(Φ(q′,G′)−m′ ln( ξ
τ ))dq′

, (7)

for any q ∈ Qn and G ∈ Gn.

From Theorem 1 we know that the Markov chain is ergodic, so that the Ergodic Theorem applies

[cf. e.g. Norris, 1998], which states that

lim
t→∞

1

t

∫ t

0
1{ωs∈A}ds = µϑ(A), P-a.s., (8)

for any measurable set A ∈ Ω, so that long-run averages of sample paths converge to the invariant

distribution. Moreover, for any measurable function f : (Ω,F) → (R,B) in L1(P) we have that

lim
t→∞

1

t

∫ t

0
f (ωs) ds = Eµϑ(f), P-a.s.,

where Eµϑ(f) is the expected value of f under the invariant probability measure µϑ. Note that

the stationary distribution µϑ in Equation (7) does not depend on the output adjustment rate

χ.26 It also does not depend on the link adjustment rates τ and ξ, when the rates for link creation

25The transition rate matrix satisfies the Chapman-Kolmogorov forward equation d
dt
Pϑ(t) = Pϑ(t)Qϑ so that

Pϑ(t) = I|Ω| +Qϑ∆t+ o(∆t). Conversely, we have that Qϑ = lim∆t→0
Pϑ(t+∆t)−I|Ω|

∆t
.

26A similar independence of the stationary distribution on the adjustment rates can be found in the models
analyzed in Mele [2010] and Chandrasekhar and Jackson [2012]. Moreover, one could assume that the opportunity
to change output is much larger than the rate at which links can be changed without changing our results.
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Figure 1: The average degree d̄ (left panel) and the average output q̄ (right panel) as a function of the linking
cost ζ for varying values of ϑ ∈ {0.05, 0.1, 0.2} with n = 20 firms and τ = ξ = χ = 1, η = 300, ρ = 1, b = 1 and
ν = 20. Dashed lines indicate the theoretical predictions of Equations (10) and Equation (12) in Proposition 2,
respectively.

and removal are the same, and in the following we will make the simplifying assumption that

τ = ξ.

In the limit of vanishing noise, when ϑ → ∞, we call the states in the support of µϑ the

stochastically stable states [cf. Jackson and Watts, 2002; Kandori et al., 1993]. A state (q, G) ∈ Ω

is stochastically stable if limϑ→∞ µϑ(q, G) > 0. In the following we will denote by µ∗(q, G) ≡

limϑ→∞ µϑ(q, G). The set of stochastically stable states is denoted by Ω∗ ⊆ Ω. From the Gibbs

distribution in Equation (7) it follows that (q, G) ∈ Ω∗ if and only if Φ(q, G) ≥ Φ(q′, G′) ∀q′ ∈ Qn

and ∀G′ ∈ Gn [cf. e.g. Catoni, 1999]. As the potential function Φ in Equation (2) is continuous

on the compact set Ω it has a global maximum, stochastically stable states always exist and

Ω∗ 6= ∅. An explicit characterization of the stationary distribution µϑ in Equation (7) requires

the computation of the partition function

Zϑ =
∑

G∈Gn

∫

Qn

eϑΦ(q,G)dq, (9)

so that we can write µϑ(q, G) = 1
Zϑ
eϑΦ(q,G) for any q ∈ Qn and G ∈ Gn. We also introduce the

Hamiltonian, defined by Hϑ(q) ≡
1
ϑ
ln
(∑

G∈Gn eϑΦ(q,G)
)
,27 which allows us to write the partition

function more compactly as Zϑ =
∫
Qn e

ϑHϑ(q)dq.

In the following we provide an explicit characterization of the Gibbs distribution in Theo-

rem 1 and derive the stochastically stable states. We first consider the special case of ex ante

homogeneous firms with identical marginal costs.

Proposition 2. Consider homogeneous firms such that ηi = η in the profit function of Equation
(1) for all i = 1, . . . , n, and let the evolution of the firms output levels and collaborations be
governed by the stochastic process in Definition 1. Denote by η∗ ≡ η/(n− 1) and ν∗ ≡ ν/(n− 1).
Moreover, let the empirical average output be denoted by q̄ ≡ 1

n

∑n
i=1 qi and the average degree be

d̄ ≡ 1
n

∑n
i=1 di. Further, let the empirical degree distribution be given by P̄ ϑ(k) ≡ 1

n

∑n
i=1 1{di=k},

and denote by P ϑ(k) ≡ Eµϑ

(
P̄ ϑ(k)

)
.

27See Park and Newman [2004] for an excellent discussion in the context of exponential random graphs.
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(i) Let q∗ ∈ Q be the root of

(b+ 2ν∗)q − η∗ =
ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
q, (10)

which has at least one solution if b+2ν∗ > ρ. Then, q̄
a.s.
−−→ q∗. Moreover, for large n, the firms’

output levels become independent Gaussian distributed random variables, qi
d
−→ N (q∗, σ2), with

mean q∗ and variance

σ2 =
n

2ϑν∗ + ϑ2(bq∗ − η∗ + 2ν∗q∗)(q∗(b+ 2ν∗ − ρ)− η∗)
.

The degree di of firm i follows a mixed Poisson distribution with mixing parameter
∫
Q p

ϑ(q, q′)µϑ(dq′),

where pϑ(q, q′) = eϑ(ρqq
′−ζ)/(1 + eϑ(ρqq

′−ζ)), and for any 1 < m ≤ n the degrees d1, . . . , dm are
asymptotically independent. In particular

P ϑ(k) = Eµϑ

(
e−d̄(q1)d̄(q1)

k

k!

)
(1 + o(1)) , (11)

where the expected degree for large ϑ is given by

Eµϑ

(
d̄
)
=
n− 1

2

(
1 + tanh

(
ϑ

2

(
ρ(q∗)2 − ζ

)))
+

1

2ϑ
Rϑ, (12)

q∗ is given by Equation (10) and a remainder term Rϑ whose expression can be found in the
proof of the proposition.

(ii) For ϑ→ ∞, in the stochastically stable state, the probability measure µ∗ is concentrated on

q∗ =





η∗

b+2ν∗−ρ
, if ζ < ρ(η∗)2

(b+2ν∗)2
,{

η∗

b+2ν∗−ρ
, η∗

b+2ν∗

}
, if ρ(η∗)2

(b+2ν∗)2
< ζ < ρ(η∗)2

(b+2ν∗−ρ)2
,

η∗

b+2ν∗ , if ρ(η∗)2

(b+2ν∗−ρ)2 < ζ,

(13)

and we refer to the two possible output levels in Equation (13) as the high equilibrium and
the low equilibrium, respectively. The expected average degree in the high equilibrium is
Eµ∗

(
d̄
)
= limϑ→∞ Eµϑ

(
d̄
)
= n−1, which corresponds to a complete graph, Kn, and Eµ∗

(
d̄
)
=

limϑ→∞ Eµϑ

(
d̄
)
= 0 in the low equilibrium, which corresponds to an empty graph, Kn.

Figure 1 shows the average output q̄ of Equation (10) and the average degree d̄ of Equation (12)

in part (i) Proposition 2 as a function of the linking cost ζ. With increasing cost, both, the

network connectivity and the output produced are decreasing. The transition from an economy

with a high output and collaboration intensity to an economy with a low output and collaboration

intensity is becoming sharper as ϑ increases, consistent with the limit of part (ii) in Proposition 2.

An illustration of µϑ of the output distribution N (q∗, σ2) in part (i) of Proposition 2 together with

the results of numerical simulations can be seen in the left panel in Figure 3. The figure shows

that the analytic prediction reproduces the simulation results fairly well even for small values of

ϑ. A phase diagram illustrating the regions with a unique and with multiple equilibria according

to Equation (10) can be seen in Figure 2. Note that the stationary output levels in Equation (10)

are increasing in ρ and η, and decreasing in ζ and b (see also Figure A.1 in Appendix A). The

latter implies that both, higher collaboration costs (weaker spillovers) as well as more intense

competition (larger market size/lower production costs) decrease (increase) overall production.
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Figure 2: A phase diagram illustrating the regions with a unique and with multiple equilibria according to Equation
(10) in Proposition 2 for varying values of b ∈ {0, . . . , 0.01} and ρ ∈ {0, . . . , 0.01} with n = 100, ν = 0.5, η = 100
ϑ = 1 and ζ = 50.
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Figure 3: (Left panel) The stationary output distribution P (q) for n = 50, η = 150, b = 0.5, ν = 10, ρ = 1 ,
ϑ ∈ {0.1, 0.25, 0.75} and ζ = 60. Dashed lines indicate the normal distribution N (q∗, σ2) of part(i) of Proposition
2). (Right panel) The stationary degree distribution P (k) for the same parameter values. The dashed lines indicate
the solution in Equation (11) of Proposition 2.
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We next consider the more general case of firms with heterogeneous marginal production costs.

Proposition 3. Let the firms profits be given by Equation (1), and let the evolution of the firms
output levels and collaborations be governed by the stochastic process in Definition 1.

(i) For any q ∈ Qn and G ∈ Gn the stationary distribution of Equation (7) can be written as
µϑ(q, G) = µϑ(G|q)µϑ(q), where, for large ϑ, the marginal distribution µϑ(q) of the firms’
output levels is Gaussian and given by

µϑ(q) =

(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−
1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
+o
(
‖q− q∗‖2

)
,

(14)
with mean q∗ ∈ Qn solving the following system of equations

qi = ηi +

n∑

j 6=i

(
ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))
− b

)
qj,

and variance given by the inverse of −∆Hϑ(q
∗), where

(∆Hϑ(q))ii = −1 +
ϑρ2

4

n∑

j 6=i

q2j

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)2
)
,

and

(∆Hϑ(q))ij = −b+
ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))(
1 +

ϑρ

2
qiqj

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)))
,

for j 6= i, while the conditional distribution µϑ(G|q) is given by

µϑ(G|q) =
n∏

i=1

n∏

j=i+1

eϑaij (ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)
, (15)

for any q ∈ Qn and G ∈ Gn, which corresponds to an inhomogeneous random graph with
linking probability

pϑ(qi, qj) =
eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)
. (16)

(ii) In the limit of ϑ→ ∞, the stochastically stable network G ∈ Gn in the support of µ∗ is a nested
split graph in which a link between the pair of firms i and j is present if and only if ρqiqj > ζ,
and the output profile, q ∈ Qn, is the fixed point to the following system of equations

qi =
ηi
2ν

+
1

2ν

n∑

j 6=i

qj

(
ρ1{ρqiqj>ζ} − b

)
, µ∗-a.s.. (17)

Moreover, if firms i and j are such that ηi > ηj then i has a higher output than j, qi > qj and
a larger number of collaborations, di > dj , µ

∗-a.s..

(iii) Assume that (ηi)
n
i=1 are identically and independently Pareto distributed with density function

f(η) = (γ− 1)η−γ for η ≥ 1. Denote by M ≡ In+ bB− ρA, where B is an n×n-dim. matrix
of ones with zero diagonal and A has elements aij = 1{ρqiqj>ζ}. Then the stochastically stable

output distribution is given by µ∗(q) = (γ − 1)n|det(M)|
∏n

i=1 (Mq)−γ
i . In particular, for

q = cu, with c > 0, and u being an n-dim. vector of ones, we have that µ∗(cu) ∼
∏n

i=1O (c−γ)
as c→ ∞, i.e. the output levels are asymptotically independently Pareto distributed.
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Figure 4: The (stepwise) adjacency matrix A = (aij)1≤i,j,n, characteristic of a nested split graph, with elements
are given by aij = 1{

qiqj>
ζ
ρ

}, where the vector q is the solution to Equation (17) in Proposition 3. The panels

from the left to the right correspond to increasing linking costs ζ ∈ {0.0075, 0.01, 0.02}. The parameters used are
n = 10, ν = 0.5, b = 0.06, ρ = 0.02 and η = (1.00, 0.71, 0.58, 0.50, 0.45, 0.41, 0.38, 0.35, 0.33, 0.32)⊤.

Note that the marginal probability derived in Equation (14) will be important for our estimation

algorithm introduced in Section 3.3.1. Moreover, Figure 4 shows the adjacency matrix A =

(aij)1≤i,j,n whose elements are given by aij = 1{

qiqj>
ζ
ρ

} and the vector q is the solution to

Equation (17) in part (ii) of Proposition 3. We observe that firms with higher ηi also have

higher output levels, qi, in the stationary state. Moreover, the corresponding adjacency matrix is

stepwise, characterizing a nested split graph,28 and becomes increasingly sparse with increasing

linking costs ζ. The fact that empirical R&D networks are characterized by nestedness has been

documented in Tomasello et al. [2016]. Further, note that nested split graphs are paramount

examples of core-periphery networks. The core-periphery structure of R&D alliance networks has

also been documented empirically in Kitsak et al. [2010] and Rosenkopf and Schilling [2007]. Our

model thus provides a theoretical explanation for why real-world R&D networks exhibit such a

core-periphery structure. Moreover, Kitsak et al. [2010] find that firms in the core have a higher

market value, consistent with the predictions of our model. More productive firms have lower

marginal costs of production, and thus higher output, R&D expenditures, and can form more

links, which makes them more central in the network.

When the firms’ marginal costs are not exogenously given, but when the (ηi)
n
i=1 follow a power

law distribution (which would correspond to Pareto distributed productivity levels that have been

documented for example in König et al. [2016]),29 then part (iii) of Proposition 3 shows that the

stationary output distribution is also a power law. The resulting degree distribution will then

also be a power law.30 An example based on a numerical simulation of the stochastic process of

28A nested split graph is characterized by the fact that the neighborhood of every node is contained in the neigh-
borhoods of the nodes with higher degrees [cf. König et al., 2014a; Mahadev and Peled, 1995]. See supplementary
Appendix B for the definition of nested split graphs.

29See also Gabaix [2009, 2016].
30Note that in the limit of ϑ → ∞ the linking probability between two firms with output levels q and q′,

respectively, is given by (cf. Equation (16)):

lim
ϑ→∞

pϑ(q, q′) = lim
ϑ→∞

eϑ(ρqq
′−ζ)

1 + eϑ(ρqq′−ζ)
= 1{ρqq′>ζ} = 1{

log q+log q′>log
(

ζ
ρ

)}. (18)

When the output levels are power law distributed, with density f(x) = γ

c

(
c
x

)γ+1
for x > c, where c > 0 is a

lower-cut-off and γ > 0 is a positive parameter, then the log-ouptut levels, ln q, follow an exponential distribution
with density f(y) = γcγe−γy .The linking probability in Equation (18) then induces an inhomogenous random
graph identical to the one analyzed in Boguná and Pastor-Satorras [2003] (see also Appendix B). In particular,
the authors show that this random graph is characterized by a power law degree distribution, a negative clustering
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Figure 5: The distribution P (η) of η following a Pareto distribution with exponent 2 (left panel), the resulting
stationary output distribution P (q) (middle panel) and the degree distribution P (d) (right panel) from a numerical
simulation of the stochastic process of Definition 1. Dashed lines indicate a power-law fit. Observe that P (η) and
P (q) exhibit a power law tail with the same exponent, consistent with part (iii) of Proposition 3. The parameters
used are n = 350, ν = 0.95, b = 0.75, ρ = 2 and ζ = 75.

Definition 1 can be seen in Figure 5. Our model can thus provide an explanation for the joint

occurrence of heavy tailed distributions not only in the firms’ sizes [cf. e.g. Axtell, 2001; Gabaix,

2009, 2016], but also in their degrees [cf. e.g. Powell et al., 2005; Gay and Dousset, 2005].

2.3. Efficiency

Social welfare, W , is given by the sum of consumer surplus, U , and firms’ profits, Π. Consumer

surplus is given by U(q) = 1
2

∑n
i=1 q

2
i +

b
2

∑n
i=1

∑n
j 6=i qiqj (see supplementary Appendix C). In the

special case of non-substitutable goods, when b → 0, we obtain U(q) = 1
2

∑n
i=1 q

2
i , while in the

case of perfectly substitutable goods, when b→ 1, we get U(q) = 1
2 (
∑n

i=1 qi)
2. Producer surplus

is given by aggregate profits Π(q, G) =
∑n

i=1 πi(q, G). As a result, assuming homogeneous firms,

total welfare is equal to

W (q, G) = U(q) + Π(q, G) =
1

2

n∑

i=1

q2i +
b

2

n∑

i=1

n∑

j 6=i

qiqj +

n∑

i=1

πi(q, G)

=
1

2

n∑

i=1

q2i +
b

2

n∑

i=1

n∑

j 6=i

qiqj +
n∑

i=1


ηqi − νq2i − b

n∑

j 6=i

qiqj + ρ
n∑

j=1

aijqiqj


− 2ζm, (19)

where m denotes the number of links in G. The efficient state is then defined by the network

G∗ ∈ Gn and output profile q∗ ∈ Qn that maximize welfare W (q, G) in Equation (19), that is,

W (q∗, G∗) ≥ W (q, G) for all G ∈ Gn and q ∈ Qn.31 The following proposition shows that the

decentralized equilibrium is efficient only when the linking costs are sufficiently high.32 Otherwise,

equilibrium networks are under-connected, and production is too low compared to what would

be socially optimal.

Proposition 4. Let the firms profits be given by Equation (1), define welfare as in Equation (19),

degree correlation and a decaying average nearest neighbor degree distribution indicating a dissortative network.
In Section 2.4.1 and Appendix E.1 we discuss how such network characteristics can also be obtained when firms
are heterogeneous in terms of their marginal collaboration costs.

31Observe that this is different from the efficiency analysis in Ballester et al. [2006], where the planner chooses
links, but not the effort levels, and there are not linking costs. It is also different from the efficiency analysis in
Hiller [2015] and Belhaj et al. [2014], where global substitutability effects are not taken into account.

32Proposition 4 characterizes the efficient outcome in the first best solution where the social planner can set
both, the production levels as well as the network of collaborations between them. A characterization of the second
best solution, in which the planner chooses the network, but output levels are chosen in a decentralized manner by
profit maximizing firms is studied in König et al. [2014b].
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Figure 6: (Left panel) Welfare W (q,G) as a function of the linking cost ζ for varying values of ϑ ∈ {0.05, 0.1, 0.2}
with n = 20 firms and τ = ξ = χ = 1, η = 300, ρ = 1, b = 1 and ν = 20. The solid line indicates welfare in the
efficient graph of Proposition 4 (which is either complete or empty). (Right panel) The ratio of welfare relative to
welfare in the efficient graph.

and let the evolution of the firms output levels and collaborations be governed by the stochastic
process in Definition 1. Further, denote by η∗ ≡ η/(n − 1) and ν∗ ≡ ν/(n− 1).

(i) In the case of homogeneous firms such that ηi = η for all i = 1, . . . , n, the efficient network
G∗ ∈ Gn and output profile q∗ ∈ Qn are given by q∗u, with u denoting an n-dim. vector of
ones, and

(q∗, G∗) =





(
η∗

b+2(ν∗−ρ)− 1
n−1

,Kn

)
, if ζ ≤ ζ∗,

(
η∗

b+2ν∗− 1
n−1

,Kn

)
, if ζ∗ < ζ,

(20)

where Kn denotes the complete graph, Kn denotes the empty graph and

ζ∗ =
ρ (η∗)2(

b+ 2ν∗ − 1
n−1

)(
b+ 2(ν∗ − ρ)− 1

n−1

) . (21)

Moreover, in the limit of ϑ→ ∞ the stochastically stable equilibrium network is efficient if
ζ > ζ∗, µ∗-a.s..

(ii) In the case of heterogeneous firms the efficient network G∗ ∈ Gn is a nested split graph,
where the output profile q∗ ∈ Qn is the solution to the following system of equations

qi =
ηi

2ν − 1
+

1

2ν − 1

n∑

j 6=i

qj

(
ρ1{ρqiqj>ζ} − b

)
. (22)

Further, when Equation (22) admits an interior solution then the stochastically stable equi-
librium output (and R&D expenditures) as well as the collaboration intensity are too low
compared to the social optimum (µ∗-a.s.).

The left panel in Figure 6 shows welfare as a function of the linking cost ζ for varying values

of ϑ, while the right panel shows the ratio of welfare relative to welfare in the efficient graph in

the case of homogeneous firms considered in part (i) of Proposition 4. It illustrates the region

of inefficiency of the equilibrium network for linking costs ζ < ζ∗, where equilibrium networks

typically tend to be under-connected [cf. Buechel and Hellmann, 2012].33 As similar observation

33In contrast, when the linking costs are very high, then the R&D externalities are not high enough to compensate
for the costs of maintaining the network, and so the social planner prefers not to form any links. In this high cost
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can also be made for heterogeneous firms considered in part (ii) of Proposition 4. In Section 4.3

we analyze the welfare improving impact of a subsidy on firms’ R&D collaboration costs, that

incentivises firms to form collaborations and thus increases the network connectivity.

2.4. Extensions

The model presented so far can be extended in a number of different directions that account for

firm heterogeneity, which are summarized below and described in greater detail in supplementary

Appendix E.

2.4.1. Heterogeneous Collaboration Costs

We can extend the model by assuming that firms with higher productivity incur lower collabo-

ration costs (see also supplementary Appendix E.1). One can show that a similar equilibrium

characterization using a Gibbs measure as in Theorem 1 is possible. Moreover, in the special

case that the productivity is power law distributed, one can show that the degree distribution

also follows a power law distribution (see Proposition 5),34 consistent with previous empirical

studies of R&D networks [e.g. Powell et al., 2005; Gay and Dousset, 2005], together with other

empirically relevant correlations (see Propositions 6 and 7).35

2.4.2. Heterogeneous Technology Spillovers

We can further extend the model by assuming that there are heterogeneous spillovers between

collaborating firms depending on their technology portfolios [cf. Cohen and Levinthal, 1990;

Griffith et al., 2003] (see also supplementary Appendix E.2). For example, assume that firms

can only benefit from collaborations if they have at least one technology in common. Then one

can show that our model is a generalization of a “random intersection graph” [cf. Deijfen and

Kets, 2009; Newman, 2003; Singer-Cohen, 1995],36 for which positive degree correlations can be

obtained (i.e. “assortativity”, see Proposition 8).

The above extensions show that our model is capable of generating networks with properties

that can be observed in real world networks, such as power law degree distributions and various

degree correlations, once we introduce firm heterogeneity. This counteracts general criticism of

(simple variants of) exponential random graphs, which often have difficulties in generating net-

works with empirically relevant characteristics [cf. Chandrasekhar and Jackson, 2012; Chatterjee

et al., 2013].37

region also the individual firms do not want to form links, so that the social planners solution and the decentralized
equilibrium coincide.

34In particular, assume that the productivity s are distributed as a power law s−γ with exponent γ. Then on can

show that the asymptotic degree distribution is also power law distributed, P (k) ∼ k−
γ

γ−1 , with exponent γ

γ−1
.

35We note that also other statistics such as the clustering degree distribution can be computed. See supplementary
Appendix E.2 for further details. In particular, under the assumptions of a power law productivity distribution,
we can generate two-vertex and three-vertex degree correlations, such as a decreasing average nearest neighbor
connectivity, knn(d), indicating a dissortative network, as well as a decreasing clustering degree distribution, C(d),
with the degree d.

36See supplementary Appendix B for the definition.
37See König [2016] for an alternative growing network formation model that is also capable of reproducing

a variety of statistics including a power law degree distribution, a decreasing clustering degree distribution, an
increasing or decreasing average nearest neighbor degree distribution and a component size distribution decaying
as a power law, reproducing the distributions that can be observed in many real world networks.

18



Figure 7: The largest connected component in the observed network of R&D collaborations for firms in the sector
SIC-28 in the year 2006. The shade and size of a node indicates its R&D expenditures. The five largest firms in
terms of their R&D expenditures are mentioned in the graph.

3. Empirical Study

3.1. Data

To get a comprehensive picture of R&D alliances we use data of interfirm R&D collaborations

stemming from two sources which have been widely used in the literature [cf. Schilling, 2009].38

The first is the Cooperative Agreements and Technology Indicators (CATI) database [cf. Hage-

doorn, 2002]. The database only records agreements for which a combined innovative activity

or an exchange of technology is at least part of the agreement. Moreover, only agreements that

have at least two industrial partners are included in the database, thus agreements involving

only universities or government labs, or one company with a university or lab, are disregarded.

The second is the Thomson Securities Data Company (SDC) alliance database. SDC collects

data from the U. S. Securities and Exchange Commission (SEC) filings (and their international

counterparts), trade publications, wires, and news sources. We include only alliances from SDC

which are classified explicitly as R&D collaborations.39 Supplementary Appendix F provides

more information about the databases used for this study.

We then merged the CATI database with the Thomson SDC alliance database. For the match-

ing of firms across datasets we adopted and extended the name matching algorithm developed

as part of the NBER patent data project [Atalay et al., 2011; Trajtenberg et al., 2009].40 The

38Note however, that these databases have not been merged and jointly used in any previous empirical study
except König et al. [2014b].

39For a comparison and summary of different alliance databases, including CATI and SDC, see Schilling [2009].
40See https://sites.google.com/site/patentdataproject. We would like to thank Enghin Atalay and Ali
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systematic collection of inter-firm alliances in CATI started in 1987 and ended in 2006. As the

CATI database only includes collaborations up to the year 2006, we take this year as the base

year for our empirical analysis. We then construct the R&D alliance network by assuming that

an alliance lasts for 5 years [similar to e.g., Rosenkopf and Padula, 2008]. The corresponding

entry in the adjacency matrix between two firms is coded as one if an alliance between them

exists during this period, and zero otherwise. An illustration of the observed R&D network can

be seen in Figure 7.

The combined CATI-SDC database only provides the names for each firm in an alliance.

We therefore matched the firms’ names in the CATI-SDC database with the firms’ names in

Standard & Poor’s Compustat U.S. and Global Fundamentals databases, as well as Bureau van

Dijk’s Orbis database, to obtain information about their balance sheets and income statements

[cf. e.g. Bloom et al., 2013]. For the purpose of matching firms across databases, we employ the

above mentioned name matching algorithm. We could match roughly 25% of the firms in the

alliance data for which balance sheet information was available.41 From our match between the

firms’ names in the alliance database and the firms’ names in the Compustat and Orbis databases,

we obtained a firm’s R&D expenditures, sales, employment, primary industry code, and location.

We computed firm’s labor productivity as sales relative to the number of employees.42 ,43

To be consistent with our theoretical model (see Section 2 and supplementary Appendix C)

where a firm’s output is proportional to its R&D effort, we use the logarithm of firm’s R&D expen-

diture to measure its R&D effort and thus the output. We further identify the patent portfolios

of the firms in our dataset using the EPO Worldwide Patent Statistical Database (PATSTAT)

[Hall et al., 2001; Jaffe and Trajtenberg, 2002] (see also supplementary Appendix F.4). We

only consider granted patents (or successful patents), as opposed to patents applied for, as they

are the main drivers of revenue derived from R&D [Copeland and Fixler, 2012]. We obtained

matches for roughly 30% of the firms in the data. The technology classes were identified using

the main international patent classification (IPC) numbers at the 4-digit level. After removing

firm observations with missing values on sales, employment, and R&D expenditures, we regard

the remaining 1,201 firms (with 428 R&D collaborations) as the full sample for our analysis.44

Some descriptive statistics of this full sample are shown in the first row of Table 1.

As the size of the sample including all sectors would become computationally infeasible for

some of the estimation methods that we will introduce below (in particular in Sections 3.3.2 and

3.3.3),45 we further consider a subsample of the data where we can apply all of our estimation

Hortacsu for sharing their name matching algorithm with us.
41Note that for many small private firms no balance sheet information is available, and hence these firms could

not be matched by our algorithm. We therefore typically exclude smaller private firms from our analysis, but this
is inevitable if one is going to use market value data. Nevertheless, R&D is mostly concentrated in publicly listed
firms, which cover most of the R&D activities in the economy [cf. e.g. Bloom et al., 2013], and these firms are
typically included in our sample.

42Labor productivity can vary across firms in different industries, in particular when industries differ greatly in
their labor intensity of production. However, these difference should have a limited effect as we include industry
fixed effects.

43We find that our results remain robust when using output-labor productivity instead of revenue-labor produc-
tivity [cf. Foster et al., 2008]. The results can be obtained upon request from the authors.

44To understand the impact of missing observations due to incomplete matching between databases, we conduct
a Monte Carlo simulation study in supplementary Appendix H.

45See Section 3.3 and supplementary Appendix H for a more detailed discussion of the various estimation pro-
cedures that we introduce in this paper. Further, note that the restriction to small sample sizes does not apply to
the likelihood partition approach introduced in Section 3.3.1, for which we can use the full sample to estimate the
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Table 1: Descriptive statistics.

Log R&D Expenditure Productivity Log # of Patents

Sample # of firms mean min max mean min max mean min max

Full 1201 9.6496 2.5210 15.2470 1.6171 0.0002 20.2452 4.9320 0.0000 11.8726

SIC-28 351 9.6416 3.2109 15.2470 1.3385 0.0002 10.1108 4.7711 0.0000 11.8014

SIC-281 27 9.5288 7.5464 11.2266 2.0951 0.8124 4.5133 6.9610 2.3026 9.9499
SIC-282 22 10.1250 7.5123 12.1022 2.4637 0.1667 5.7551 6.7015 2.9957 10.3031
SIC-283 259 9.4797 3.2109 15.2470 1.0326 0.0002 6.5232 4.1962 0.0000 10.8752
SIC-284 12 11.0216 8.7933 13.2439 1.4869 0.6021 2.6405 7.7903 3.9890 10.9748
SIC-285 5 11.0548 9.8144 13.2205 1.5160 1.2591 1.7099 8.4910 7.1325 10.3017
SIC-286 8 9.3278 6.0924 11.3144 3.9443 1.1249 10.1108 3.6924 0.6931 6.6174
SIC-287 8 8.8004 6.1510 12.8862 1.8069 0.0672 2.7076 3.9510 0.6931 10.6792
SIC-289 10 9.0683 6.2913 10.5094 1.5494 0.0760 2.9324 5.3012 0.6931 9.8807

Note: The logarithm of a firm’s R&D expenditures (by thousand dollars) measures its R&D effort. A Firm’s
productivity is measured by the ratio of sales to employment. The logarithm of the number of patents is used as
a control variable in the linking cost function [cf. e.g. Hanaki et al., 2010].

strategies. The subsample we consider in the following is restricted to firms in the SIC-28 sector,

“chemicals and allied products”. It has the largest number of within sectoral R&D collaborations,

as well as the smallest percentage of R&D collaborations to other 2-digit SIC sectors.46 The SIC-

28 sector contains eight sub-sectors, ranging from “industrial inorganic chemicals” (SIC-281)

to “miscellaneous chemical products” (SIC-289). The summary statistics of these sectors are

provided in Table 1 and the number of R&D collaborations across major 2-digit SIC sectors

(with more than twenty firms) and within the SIC-28 sectors are shown in Figure 8. Among the

eight sub-sectors within SIC-28, the drugs development sector (SIC-283) is the largest one. It

consists of 259 firms and 121 within sector R&D collaborations.

3.2. Firm Heterogeneity

To account for the firm level heterogeneity that we observe in the data, we extend the profit

function of Equation (1) in Section 2 to accommodate heterogeneous marginal costs of production,

substitution effects, and heterogeneous technology spillovers (see also Section 2.4), so that the

profit of firm i can be written as follows:

πi(q, G) = ηiqi −
1

2
q2i − b

n∑

j 6=i

bijqjqi + ρ

n∑

j=1

fijaijqjqi − ζi(G). (23)

As compared to Equation (1), in Equation (23) we have normalized ν to 1/2. The term ηi

represents an individual fixed effect for each firm and we capture it by Xiδ, where Xi includes

firm i’s productivity and a sector dummy (at the 2-digit SIC level). To allow for additional

heterogeneity among firms, the substitution effect is considered at the sectoral level. Each firm

faces a substitution effect from all other firms within the same 3-digit SIC sector, i.e., we set

bij = 1, if both firms i and j are in the same 3-digit SIC sector, and zero otherwise. For the

parameters of the model. We find, however, that the estimation results are similar, irrespective of whether we use
only a subsample of the data or the whole sample. Compared to several existing studies, [e.g. Badev, 2013; Hsieh
and Lee, 2013; Mele, 2010] which analyze networks with a few hundred nodes, the size of one single network that
we handle in this paper is significantly larger.

46In Appendix I we check the robustness of our results for the second largest 2-digit sector, the SIC-36 sector,
“electronic and other electric equipment”. This sector contains 198 firms and 29 R&D collaborations.
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Figure 8: (Top left panel) The empirical competition matrix B across all 2-digit SIC sectors. The largest sector
is the SIC-28 sector with 351 firms, which comprises 29.22% of all firms in the sample. (Top right panel) The
empirical competition matrix B across all 3-digit SIC sectors within the SIC-28 sector. The largest sector is the
SIC-283 “drugs” sector with 259 firms, which comprises 73.78% of all firms in the SIC-28 sector. (Bottom left
panel) The number of R&D collaborations across all 2-digit SIC sectors. The sector SIC-28 has 141 within sector
R&D collaborations. (Bottom right panel) The number of R&D collaborations within the sector SIC-28. The
sector SIC-283 has 121 within sector R&D collaborations.

purpose of illustration, in Figure 8 we show the empirically observed sectoral competition matrix,

B, where B = (bij)1≤i,j≤n with bii = 0, among all 2-digit SIC sectors and among all 3-digit sectors

within the SIC-28 sector. In Equation (23) we have further introduced the symmetric weights

(fij)1≤i,j≤n, with fij = fji, to capture heterogeneous technology spillovers across firms, based on

the technological proximities of firms i and j measured either by Jaffe’s or the Mahalanobis patent

similarity indices [Bloom et al., 2013; Jaffe, 1989] criteria (see the supplementary Appendices E.2

and F.4 for further details).

The total cost of R&D collaborations for firm i is captured by the term ζi(G) =
∑n

j=1 aij(ψij−

ϕij), with the pairwise symmetric functions ψij = γ⊤cij and ϕij = κtij. The r-dimensional vector

of dyadic-specific variables, cij , represents measures of similarity between firms i and j regarding

sector, location, technology, research quality, etc., that might have an effect on the collaboration

costs [cf. e.g. Lychagin et al., 2010; Marshall, 1890].47 The term tij =
∑n

k 6=i,j aikajk counts the

number of common collaborators shared by firms i and j (“cyclic triangles” effect). It allows for

R&D collaborations to be less costly between firms that have mutual third-party collaborators

[cf. Hanaki et al., 2010].48

47See also Appendix E.1 for a simple example.
48Hanaki et al. [2010] argue that the existence of mutual collaborators may enhance the effectiveness of penalties

and improve the appropriability of the outcomes of joint R&D projects, and that firms can use pre-existing collab-
orations as conduits of information about the reliability of potential collaboration partners. The authors further
find empirical evidence that R&D collaborations are more likely to be undertaken between firms that have mutual
third-party collaborators.
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The potential function Φ: Rn
+ × Gn → R corresponding to Equation (23) is given by49

Φ(q, G) =

n∑

i=1

(
ηiqi −

1

2
q2i

)
−
b

2

n∑

i=1

n∑

j 6=i

bijqiqj+
ρ

2

n∑

i=1

n∑

j 6=i

fijaijqiqj−
1

2

n∑

i=1

n∑

j 6=i

aijψij+
1

3

n∑

i=1

n∑

j 6=i

aijϕij .

(24)

In the vector-matrix form this is

Φ(q, G) = η⊤q−
1

2
q⊤M(G)q −

1

2
tr(AΨ⊤) +

1

3
tr(Aϕ⊤), (25)

where η = (η1, η2, . . . , ηn)
⊤, Ψ = (ψij)1≤i,j≤n and ϕ = (ϕij)1≤i,j≤n. In the following, we denote

by M(G) ≡ In + bB− ρ(A ◦ F), where F is the matrix with elements fij for 1 ≤ i, j ≤ n, and ◦

denotes the Hadamard element wise matrix product.50 The stationary distribution of the Markov

process of Definition 1 is then given by the Gibbs measure µϑ(q, G) of Equation (7) in Theorem

1 with the potential function Φ(q, G) of Equation (25).51

3.3. Exponential Random Graph Models

When both the quantities produced, q, and the network, G, are endogenous, the stationary distri-

bution µϑ(q, G) is determined by Equation (7). The parameters of the model can be summarized

by θ = (ρ, b, δ⊤,γ⊤,κ) ∈ Θ with parameter space Θ.52 This empirical model belongs to the

family of exponential random graph models (ERGMs) or p∗ models [see Frank and Strauss, 1986;

Pattison and Wasserman, 1999]. The closed form expression of the likelihood function given in

Equation (7) establishes a straightforward channel to check identification of the parameter vec-

tor θ. Following the theory of exponential family distributions, identification of the parameters

θ is guaranteed as long as the regressors in Φ(q, G) of Equation (2) are not linearly depen-

dent [Lehmann and Casella, 2006].53 ERGMs are notorious for the difficulty of estimation due

to existence of an “intractable normalizing constant” in the probability likelihood function.54,55

Using classical estimation methods such as a Maximum likelihood (MLE) approach, one needs

to simulate a set of auxiliary networks in order to approximate the intractable normalizing con-

stant (MCMC-MLE) [Badev, 2013; Geyer and Thompson, 1992]. However, the performance of

the MCMC-MLE method is greatly influenced by the choice of initial parameter values, θ(0) [cf.

Airoldi et al., 2009]. If θ(0) is not close enough to the true value, without resorting to a global

49Note that the potential function has the property that Φ(q, G ⊕ (i, j)) − Φ(q, G) = ρfijqiqj − ψij + 2ϕij =
πi(q, G ⊕ (i, j)) − πi(q, G) = πj(q, G ⊕ (i, j)) − πj(q, G). A similar relationship holds for the removal of a link,
G⊖ (i, j), or quantity adjustment.

50Let A and B be m× n matrices. The Hadamard product of A and B is defined by [A ◦B]ij = [A]ij [B]ij for
all 1 ≤ i ≤ m, 1 ≤ j ≤ n, i.e. the Hadamard product is simply an element-wise multiplication.

51Note that the conditional link independence only holds in the absence of cyclic triangles effect, i.e., when κ is
set to zero.

52Similar to standard logistic regression frameworks the parameter ϑ cannot be separately identified, and we
therefore omit it for simplicity.

53Note that the same identification argument is used in Mele [2010] and Badev [2013].
54This corresponds to the denominator of Equation (7) which involves a summation over all networks G ∈ Gn,

that is, a sum with 2(
n
2) terms.

55Other than the difficulty of estimation, the most basic exponential random graphs are statistically equivalent
to an Erdös-Rény random graph in the limit of large n unless the model contains at least one non-trivial negative
network externality effect [cf. Bhamidi et al., 2011; Chatterjee et al., 2013; Mele, 2016]. We show in Appendix 2.4
how the introduction of various forms or firm heterogeneity leads to correlated networks with structural properties
that differ significantly from an Erdös-Rény random graph.
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searching algorithm such as simulated annealing, the method may converge to a sub-optimal

solution.

Alternatively, the Bayesian MCMC approach has recently gained more attention on ERGM

estimation [Caimo and Friel, 2010; Hsieh and Lee, 2013; Liang, 2010; Mele, 2010; Snijders, 2002].

The intractable normalizing constant in the likelihood function also makes the standard MCMC

algorithm infeasible. The standard MH algorithm to update the parameters from θ to θ′ depends

on the acceptance probability,

α(θ′|θ) = min

{
1,
π(θ′)µϑ(q, G|θ′)T1(θ|θ

′)

π(θ)µϑ(q, G|θ)T1(θ′|θ)

}
, (26)

where π denotes the prior density and T1(θ
′|θ) denotes the symmetric proposal density for the

independent MH draw, i.e., T1(θ
′ − θ) = T1(θ − θ′). In the above acceptance probability, two

normalizing terms in µϑ(q, G|θ′) and µϑ(q, G|θ) do not cancel each other and therefore, α(θ′|θ)

cannot be calculated.

In the following subsections, we will focus on the MCMC approach and discuss three strategies

to bypass the evaluation of the intractable normalizing term. Among these three strategies, when

the cyclic triangles effect is absent from the model, i.e., setting κ = 0, link independence holds

(conditional on output), and we can use a likelihood partition approach (Section 3.3.1), which is

generally applicable to large network samples. In a link dependent case, where κ 6= 0, we will use

an exchange algorithm (Section 3.3.2) and an adaptive exchange algorithm (Section 3.3.3). The

adaptive exchange algorithm is an extension of the exchange algorithm in order to avoid the local

trap problem. In supplementary Appendix H, we conduct a simulation study to demonstrate the

consistency of each method and compare their computational costs.

3.3.1. Likelihood Partition Approach

In the absence of cyclic triangles effects, i.e., when we set κ = 0, conditional link independence

holds (given the output levels of any pair of firms). The probability of observing a network

G ∈ Gn, given an output distribution q ∈ Qn, is then determined by the conditional distribution

(cf. Equation (15) and supplementary Appendix E):56

µϑ(G|q) =
µϑ(q, G)

µϑ(q)
=

n∏

i<j

eϑaij(ρfijqiqj−γ⊤
cij)

1 + eϑ(ρfijqiqj−γ⊤cij)
. (27)

The marginal distribution of the firms’ output levels q ∈ Qn for large ϑ is given by (cf. Equation

(14) and supplementary Appendix E):

µϑ(q) ≈

(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−
1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
, (28)

where

(∆Hϑ(q))ii = −1 +
ϑρ2

4

n∑

j 6=i

f2ijq
2
j

(
1− tanh

(
ϑ

2

(
ρfijqiqj − γ⊤cij

))2
)
,

56We note that such a factorization would not be possible if the linking cost would allow for higher order network
effects captured by κ 6= 0.
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and

(∆Hϑ(q))ij = −bbij +
ρfij
2

(
1 + tanh

(
ϑ

2

(
ρfijqiqj − γ⊤cij

)))

×

(
1 +

ϑρfij
2

qiqj

(
1− tanh

(
ϑ

2

(
ρfijqiqj − γ⊤cij

))))
,

for j 6= i. Further, q∗ in Equation (28) solves the following system of equations (cf. Equation

(10) and supplementary Appendix E):

qi = ηi +

n∑

j 6=i

(
ρfij
2

(
1 + tanh

(
ϑ

2

(
ρfijqiqj − γ⊤cij

)))
− bbij

)
qj. (29)

Equation (28) shows that in the limit of large ϑ, q is asymptotically normally distributed with

mean q∗ and variance-covariance matrix − 1
ϑ
∆Hϑ(q

∗)−1. It then follows that the likelihood of

the network G and the quantity profile q in the large ϑ limit can be partitioned as follows [cf.

Smyth, 1996]

µϑ(q, G) = µϑ(G|q) · µϑ(q) ≈
n∏

i<j

eϑaij(ρfijqiqj−γ⊤
cij)

1 + eϑ(ρfijqiqj−γ⊤cij)

×

(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−
1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
, (30)

where we have inserted Equation (27) for µϑ(G|q) and Equation (28) for µϑ(q). Based on the

partition of µϑ(q, G) in Equation (30), we do not need to evaluate the intractable normaliz-

ing constant in the likelihood function of Equation (7), and can estimate the parameters by a

standard Bayesian MCMC algorithm. The key step of solving q∗ from Equation (29) can be

implemented efficiently by recognizing it as a fixed point system, and using a fast fixed point

algorithm. As supplementary Appendix H shows, this likelihood partition (LP) approach is the

least computationally costly compared to the other two methods outlined below. Therefore, we

apply the LP approach to estimate the model for both, the full sample including all sectors and

the SIC-28 sector subsample.

3.3.2. Exchange Algorithm

When we allow for cyclic triangles effects, i.e., when κ 6= 0, then we can no longer use the LP es-

timation algorithm from the previous section. An alternative is the exchange algorithm,57 which

provides a way to bypass evaluation of the intractable normalizing constant in the Metropolis-

Hastings (MH) acceptance probability [see e.g. Liang et al., 2011]. The name “exchange” is given

due to its similarity with the swapping operation of exchange Monte Carlo [Geyer, 1991]. It is

different from the conventional MH algorithm by having a proposal density T1(θ
′|θ)µ(q′, G′|θ′),

which involves simulation of auxiliary data (q′, G′) from the distribution µ(q′, G′|θ′). The accep-

57See Murray et al. [2006] and a similar algorithm by Møller et al. [2006].
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tance probability of the exchange algorithm can be written as

α(θ′|θ,q′, G′) = min

{
1,
π(θ′)µ(q, G|θ′)

π(θ)µ(q, G|θ)
·
T1(θ|θ

′)µ(q′, G′|θ)

T1(θ′|θ)µ(q′, G′|θ′)

}

= min

{
1,
π(θ′)eΦ(q,G,θ′)

π(θ)eΦ(q′,G′,θ′)
·
T1(θ|θ

′)eΦ(q′,G′,θ)

T1(θ′|θ)eΦ(q,G,θ)

}
. (31)

Intractable normalizing terms in Equation (31) are cancelled out and thus the acceptance prob-

ability α(θ′|θ,q′, G′) can be computed.

A problem of the exchange algorithm is that it requires a perfect sampler of G′ and q′ from

µ(·|θ′) [cf. Propp and Wilson, 1996], which is computationally intense for most of ERGM ap-

plications. To overcome this issue, Liang [2010] proposed the double MH (DMH) algorithm to

replace the perfect sampler with a finite MH chain initialized at the observed network. In this

paper, we use the DMH algorithm for parameter estimation, and more specific details about its

implementation can be found in supplementary Appendix G.1.

To improve the computational efficiency of the DMH algorithm, we assume that during the

dynamic network formation process, whenever a firm changes its R&D collaborations, all firms

adjust output levels immediately and thus the new output levels will be close to the profit-

maximizing output given by the best response function q∗ = M(G)−1η plus a stochastic error

term.58 The size of error, according to the approximation derived in supplementary Appendix G.4,

should be determined by M(G)−1. This assumption means that we impose two different time

scales: a fast time scale of output adjustments, and a slow time scale of link adjustments [cf.

Gardiner, 2004; Khalil, 2002].59 When simulating auxiliary data for the output levels and the

network, this assumption saves firm’s infinitesimal adjustments on output and turns it into an

implicit function of the network. However, we will have to evaluate M(G)−1 whenever a link has

been added or removed from the auxiliary network and this may still be computationally costly.

To do this in an efficient way, we use a matrix perturbation result that is derived in supplementary

Appendix G.5.

3.3.3. Adaptive Exchange Algorithm

Even though the DMH algorithm alleviates the computational burden by replacing perfect sam-

pling, convergence of the finite MH chain in the DMH algorithm is not theoretically guaranteed.60

Therefore, the DMH estimates are only approximately correct no matter how long the algorithm

has been run. Especially, if the network distribution represented by an ERGM is multi-modal,

the finite MH run may be trapped at one of the local maxima of the likelihood function (“local

trap problem”). Consequentially, the Markov chain of the DMH algorithm may mix very slowly

and require unaffordable computation time for achieving convergence [Bhamidi et al., 2011].61

58See Equation (25), and note that q∗ maximizes the potential for an exogenously given network G.
59Observe that the stationary distribution µ(q, G) in Equation (7) does not depend on the parameter χ that

governs the speed of the output adjustment. This means that the stationary distribution µ(q, G) is independent
of how quickly the output levels adjust. As a consequence, we can use it as a degree of freedom in our estimation
algorithms, that is, the stationary distribution is not affected whether we make the time scale separation assumption
or not.

60An analytic proof for the convergence of the finite MH chain in the DMH algorithm is an open problem.
61To overcome the local trap problem and thus speed up convergence during network simulation, Snijders [2002]

and Mele [2016] proposed MH samplers which consist of both local and non-local steps. In the local step, only one
random edge is updated in an iteration. With a certain probability, the sampler will implement the non-local step
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In this paper, we therefore use an adaptive exchange (AEX) algorithm, which has recently

been developed by Jin et al. [2013] and Liang et al. [2015], to overcome the uncertainty of slow

mixing faced by the DMH algorithm. The foundation of the AEX algorithm is an MCMC sampling

scheme called stochastic approximation Monte Carlo (SAMC) algorithm [cf. Liang et al., 2007].

The main feature of SAMC is that it applies importance sampling to prevent the local trap

problem.62 In SAMC, the sample space is partitioned into non-overlapping subregions. Different

importance weights are assigned to each subregion so that SAMC draws samples from a kind

of “mixture distribution” that avoids being trapped by a local extremum. Additionally, SAMC

contains a self-adjusting mechanism to the weights of each subregion so that it can escape from

local extrema of the likelihood function very quickly.

In the AEX algorithm, two Markov chains are running in parallel. In the first chain, we draw

auxiliary data (q̃, G̃) from a family of distributions µ(q̃, G̃|θ1), . . . , µ(q̃, G̃|θm) with frequencies

determined by the SAMC algorithm, where (θ1, . . . ,θm) are pre-specified parameter points. In

practice, we set m = 50 and (θ1, . . . ,θ50) are chosen by the Max-Min procedure from the DMH

draws [Liang et al., 2015].63 In the second chain, we implement the exchange algorithm for

updating the target parameters, where auxiliary data, q′ and G′, are re-sampled from the first

chain by an importance sampling procedure. Convergence of the AEX algorithm, i.e. q′ and G′

from the importance sampling procedure of the AEX converge to µ(·|θ′) and the draws of θ from

the target chain will converge weakly to the posterior µ(θ|q, G), can be shown when the number

of iterations of both the auxiliary and target chains go to infinity. Details of implementing the

AEX algorithm and the proof of convergence are provided in supplementary Appendices G.2 and

G.3.

3.4. Empirical Results

Table 2 presents our estimation results for the full sample of all sectors and the subsample

restricted to the SIC-28 sector.64 Due to the aforementioned computational constraints, we only

apply the LP algorithm to estimate the full sample, while applying all three estimation algorithms

to the subsample of the SIC-28 sector. In the full sample, the result shows that both estimates

of the technology spillover parameter ρ (0.0355) and the competition parameter b (0.0002) are

significant and have the expected signs. The two effects match our theoretical predictions from

Section 2, showing that firms face a positive complementary effect from R&D collaborations and

a negative substitution effect from competing firms in the same market. Furthermore, we find

that the technology spillover effect ρ is much larger than the product market rivalry effect b

[cf. e.g. Bloom et al., 2013]. This suggests that the marginal returns from R&D collaborations

where multiple (or even all) edges are updated in an iteration. Although Mele [2016] used a simulation study to
demonstrate convergence of the MH sampler with a non-local step, the simulation result is based on a simple model
specification with one indirect link effect and may not be extended to a more general case. Therefore, it is still
questionable whether the finite MH runs with non-local steps can always achieve convergence for general ERGMs.

62Other than SAMC, the parallel tempering algorithm [Geyer, 1991] is a global updating scheme to prevent the
local trap problem. The parallel tempering algorithm runs N copies of the Markov chain with random initial values
and temperatures. In the low temperature chain, draws may be trapped in the local maximum configuration with
restricted moves. The parallel tempering allows the low temperature chains to swap configurations with the high
temperature chains where global moves are more probable. A well-designed parallel tempering can be N times
more efficient than a standard single-temperature MCMC algorithm.

63We have also tried m = 30 and m = 100 in the simulation and empirical studies and the results are largely
similar.

64The estimation result of the SIC-36 sector is available in Appendix I.
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Table 2: Estimation results of the full sample and the SIC-28 sector

Full sample SIC-28 subsample

LP LP DMH AEX

R&D Spillover (ρ) 0.0355∗∗∗ 0.0386∗∗∗ 0.0408∗∗∗ 0.0458∗∗∗

(0.0008) (0.0015) (0.0021) (0.0010)
Substitutability (b) 0.0002∗∗∗ 0.0001∗∗ 0.0002∗∗∗ 0.0002∗∗∗

(0.0000) (0.0001) (0.0001) (0.0000)
Prod. (δ1) 0.2099∗∗∗ 0.4475∗∗∗ 0.3769∗∗∗ 0.3787∗∗∗

(0.0127) (0.0457) (0.0509) (0.0424)
Sector FE (δ2) Yes Yes Yes Yes

Linking Cost

Constant (γ0) 13.1415∗∗∗ 13.2627∗∗∗ 14.4023∗∗∗ 14.3366∗∗∗

(0.1336) (0.3507) (1.1547) (0.1180)
Same Sector (γ1) -2.1458∗∗∗ -1.9317∗∗∗ -1.9648∗∗∗ -1.8579∗∗∗

(0.1053) (0.2551) (0.5749) (0.3972)
Same Country (γ2) -0.8841∗∗∗ -0.4186∗∗∗ -0.6359∗ -0.6555∗∗∗

(0.1030) (0.1591) (0.3903) (0.1907)
Diff-in-Prod. (γ3) 0.0231 -1.2698∗∗∗ -1.4300∗∗ -1.3255∗∗∗

(0.0554) (0.2937) (0.6450) (0.1436)
Diff-in-Prod. Sq. (γ4) -0.0014 0.3276∗∗∗ 0.4023∗∗ 0.4505∗∗∗

(0.0044) (0.0876) (0.1910) (0.0563)
Patents (γ5) -0.0943∗∗∗ -0.0783∗∗∗ -0.1176∗∗ -0.0410∗∗

(0.0053) (0.0150) (0.0562) (0.0210)

Sample size 1,201 351

Note: The dependent variable is log R&D expenditures. The parameters θ =
(ρ, b, δ⊤,γ⊤,κ) correspond to Equation (24), where ψij = γ⊤cij and ηi = Xiδ (cf.
Section 3.2). We make 50,000 MCMC draws where we drop the first 2,000 draws
during a burn-in phase and keep every 20th of the remaining draws to calculate
the posterior mean (as point estimates) and posterior standard deviation (shown
in parenthesis). All cases pass the convergence diagnostics provided by Geweke
[1992] and Raftery and Lewis [1992]. The MCMC draws for ρ and b are shown in
Figure G.1 in supplementary Appendix G. The asterisks ∗∗∗(∗∗,∗) indicate that its
99% (95%, 90%) highest posterior density range does not cover zero.

are positive even between competing firms. We also find that a higher labor productivity is

associated with higher R&D expenditures [cf. e.g., Cohen et al., 1987]. The estimation results

further show significant effects from the control variables in the linking cost function, including

the same sector (at 3-digit SIC level) and the same country dummies, and the sum of log patent

counts from each of the two firms involved in a collaboration. Results on the two dummies reveal

that the R&D collaboration cost would be lower among two firms in the same sector or in the

same country. The sum of the log patent numbers acts as a proxy for the research capacities of

collaborating firms [Hanaki et al., 2010] and a higher value indicates lower R&D collaboration

cost between them.

In the SIC-28 subsample, the estimates are similar across different estimation methods, which

shows the robustness of the estimates. Compared to the result of the full sample, there are

additional significant effects from the differences in productivities between collaborating firms

and its square in the linking cost. This non-monotonic effect from the differences in productiv-

ities indicates that R&D collaborations between similar but not too similar firms involve lower

collaboration and coordination costs [cf. e.g. Hanaki et al., 2010; Nooteboom et al., 2007].

In Table 3 we provide additional estimation results by taking into account heterogeneous

technology spillover effects among collaborating firms. We also allow for a cyclic triangles effects

in the linking cost function, where firms with common collaborators may experience lower col-

laboration costs [cf. Hanaki et al., 2010]. In specifying heterogeneous technology spillovers, R&D

28



Table 3: Homogeneous versus heterogeneous spillovers

Homogeneous Jaffe Mahalanobis

DMH Logit DMH Logit DMH Logit

R&D Spillover (ρ) 0.0396∗∗∗ 0.0356∗∗∗ 0.0524∗∗∗ 0.0070 0.0275∗∗∗ 0.0038∗∗

(0.0019) (0.0030) (0.0090) (0.0042) (0.0042) (0.0019)
Substitutability (b) 0.0002∗∗∗ - 0.0001∗∗∗ - 0.0001∗∗∗ -

(0.0001) - (0.0001) - (0.0001) -
Prod. (δ1) 0.3696∗∗∗ - 0.4367∗∗∗ - 0.4372∗∗∗ -

(0.0526) (0.0556) (0.0612)
Sector FE (δ2) Yes - Yes - Yes -

Linking Cost

Constant (γ0) 13.5645∗∗∗ 12.8064∗∗∗ 13.5182∗∗∗ 11.4667∗∗∗ 14.3226∗∗∗ 11.4501∗∗∗

(0.6067) (0.5075) (0.2966) (0.4764) (0.5195) (0.4859)
Same Sector (γ1) -2.0559∗∗∗ -1.7129∗∗∗ -1.8892∗∗∗ -2.0271∗∗∗ -2.8818∗∗∗ -2.0253∗∗∗

(0.4247) (0.2681) (0.3261) (0.2547) (0.7106) (0.2609)
Same Country (γ2) -0.3782 -0.3677∗∗ -0.6871∗∗∗ -0.4679∗∗∗ -0.9134∗∗∗ -0.4674∗∗∗

(0.3267) (0.1781) (0.3082) (0.1740) (0.3905) (0.1669)
Diff-in-Prod. (γ3) -0.8575∗ -1.2679∗∗∗ -3.3302∗∗∗ -1.3288∗∗∗ -3.1080∗∗∗ -1.3145∗∗∗

(0.3881) (0.3116) (0.4379) (0.2981) (0.6717) (0.3106)
Diff-in-Prod. Sq. (γ4) 0.2655∗∗ 0.3046∗∗ 0.9665∗∗∗ 0.3187∗∗∗ 0.9984∗∗∗ 0.3167∗∗∗

(0.1270) (0.0936) (0.1916) (0.0889) (0.2880) (0.0929)
Patents (γ5) -0.0909∗∗ -0.0384 -0.2128∗∗∗ -0.2340∗∗∗ -0.1957∗∗∗ -0.2310∗∗∗

(0.0449) (0.0295) (0.0336) (0.0269) (0.0534) (0.0270)
Cyclic Triangles (κ) -1.6277∗∗∗ -1.5486∗∗∗ -3.5815∗∗∗ -2.2637∗∗∗ -3.0555∗∗∗ -2.2509∗∗∗

(0.4095) (0.1753) (0.3898) (0.1587) (0.4338) (0.1537)

Note: The dependent variable is log R&D expenditures. The parameters θ = (ρ, b, δ⊤,γ⊤,κ) correspond
to Equation (24), where ψij = γ⊤cij , ϕij = κtij and ηi = Xiδ (cf. Section 3.2). The estimation results are
based on 351 firms from the SIC-28 sector. We make 50,000 MCMC draws where we drop the first 2,000
draws during a burn-in phase and keep every 20th of the remaining draws to calculate the posterior mean
(as point estimates) and posterior standard deviation (shown in parenthesis). All cases pass the convergence
diagnostics provided by Geweke [1992] and Raftery and Lewis [1992]. The asterisks ∗∗∗(∗∗,∗) indicate that its
99% (95%, 90%) highest posterior density range does not cover zero. Heterogeneous spillovers are captured
by the technological proximity matrix with elements fij using either the Jaffe or the Mahalanobis patent
proximity metrics [cf. Bloom et al., 2013; Jaffe, 1989].
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collaborations are weighted by different technology proximity measures. More precisely, in Ta-

ble 3 from left to right we consider as a benchmark a homogenous R&D collaboration matrix (i.e.,

assuming all weights are set to one), a matrix weighted by the technological proximity measure

introduced by Jaffe [1989], and a matrix weighted by the Mahalanobis technological proximity

(cf. Bloom et al. [2013] and supplementary Appendix F.4 for more details), respectively.65 Each

model specification is estimated using the DMH algorithm outlined in Section 3.3.2 based on the

subsample of firms in the SIC-28 sector. We are then able to determine potential variations of

the estimated spillover effects due to alternative weights for the different technology proximity

measures. Although the Jaffe and Mahalanobis measures are highly correlated (see the supple-

mentary Appendix F.4), the estimated spillover coefficient based on the Jaffe measure (0.0524) is

larger than the one based on the Mahalanobis measure (0.0275), and the homogeneous spillover

coefficient (0.0396) lies between them.

Further note that the cyclic triangles effect in the linking cost function for each model spec-

ification breaks the link independence condition (even conditional on output). Thus, in Table 3

we also compare the legitimate estimate from the DMH algorithm with the naive estimate of a

logit model conditional on output. The DMH results show that the cyclic triangles effect is large

and significant, indicating that having mutual third-party collaborations effectively reduces the

R&D collaboration cost. The results from the logit model show clear biases on the estimate of

technology spillover effect, particularly in the heterogeneous spillovers cases, and other estimates

in the linking cost function.

3.5. Model Fit

In order to investigate whether the network formation model that we propose fits the observed

network data, we adopt a model goodness-of-fit examination following Hunter et al. [2008]. We

take the observed network data from the full sample of all sectors. Then we simulate one hundred

artificial networks from our network formation model with parameters reported under the LP

algorithm in Table 2. Model fitness is examined by the similarity between simulated networks and

observed networks in the distribution of four network statistics – degree, edge-wise shared partner,

minimum geodesic distance, and average nearest neighbor connectivity.66 The examination results

are shown in Figure 9. We present the distribution of statistics for the observed network by solid

curves, distributions for simulated networks by box plots and the 5th and 95th percentiles by

dotted lines. From the figure we find that the simulated networks and the observed network

display similar distributions over these four statistics. This suggests that our estimated model is

able to simulate the unobserved network generating process.

65We do not impose any row-normalization on these weighted R&D collaboration matrices.
66See supplementary Appendix B for the definition of various network statistics. Moreover, the edge-wise shared

partner statistic contains important information of a network, for example, the count of triangles in a network G is
a function of G. Its distribution consists of values EPG(0)/EG, · · · , EPG(m− 2)/EG, where EPG(k) denotes the
number of edges whose endpoints both share edges with exactly k other individuals and EG is the total number of
edges in network G. The minimum geodesic distance is a higher-order network statistics. Its distribution consists
of the proportions of the possible values of geodesic distances between two nodes [cf. Hunter et al., 2008].
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Figure 9: Goodness-of-fit statistics.

4. Counterfactual Analyses

With our estimates from the previous section (Table 2) we are now able to perform various

counterfactual studies. The first, discussed in Section 4.1, studies the impact on welfare of a firm

exiting from the network. The second, discussed in Section 4.2, analyzes the welfare impact of

a merger between firms in the same sector. The third policy intervention, discussed in Section

4.3, studies the welfare impact of a subsidy on the collaboration costs between pairs of firms,

and aims at identifying the pair for which the subsidy yields the highest welfare gains. In all

these counterfactual scenarios the output levels of the firms and the links between them are fully

endogenous and respond to changes in the network or the parameters. Further, to evaluate the

impact of any intervention under consideration we take a long run perspective and analyze welfare

in the new stationary state, after the policy has been implemented.

4.1. Firm Exit and Key Players

In this section we evaluate the expected welfare loss from the exit of a firm from the network.

The exit of a firm could either be due to financial reasons, such as the recession experienced by

the American automobile manufacturing industry during the global financial downturn, or legal

reasons, such as the recent emission-fraud scandal of Volkswagen. In the former case, policy

makers want to know the overall welfare gains of “bailing out” a bankrupting firm, while, in the

latter case, policy makers want to know the overall cost they impose on the economy by inflicting

high penalties that might threaten the continued existence of a firm.

The firm whose exit results in the highest expected welfare loss is termed the “key player”
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[cf. Zenou, 2015]. This counterfactual analysis is related to Ballester et al. [2006], who perform

a key player analysis where agents are ranked according to the reduction in aggregate output

when they are removed from the network, and König et al. [2014b] who do this for the reduction

in welfare similar to our setup. However, while these authors have assumed that the network is

exogenously given and does not adapt to the exit of a firm, here we can relax this assumption

and allow the network to reconfigure endogenously after the removal of a firm. Formally, the key

firm is defined as

i∗ = argmin
i∈N





∑

G∈Gn−1

∫

Qn−1

W−i(q, G)µ
ϑ(q, G)dq



 , (32)

where the probability measure µϑ(q, G) is given by Equation (7), the potential function from

Equation (25), the welfare function W (q, G) is defined in Equation (19) and W−i(G,q) denotes

the welfare function with firm i removed from the network.

We proceed by removing each firm from the network one at a time. Using the estimated

model from Table 2, we then simulate the network evolution for the remaining n− 1 firms.67 We

run the simulation for 104 iterations,68 use the observation of the last iteration as the simulation

outcome, and calculate the corresponding welfare value. We then repeat this procedure 100 times

and report the average welfare value.

The results for the key player analysis focusing on the SIC-28 sector can be seen in Table

4. In column six (∆WF) we consider the case of an exogenously fixed network, while in column

five (∆W ) we allow the network to dynamically adjust to the exit of a firm. For the key firm,

Pfizer Inc, a U.S. based global pharmaceutical corporation which is among the world’s largest

pharmaceutical companies, the reduction in welfare due to its exit amounts to 1.79% when we

assume that the network is fixed, and 1.88% when we allow for an adaptive network. Thus, net-

work adaptivity and endogeneity amplify the impact of firm exit (at least for the most important

firms), so that studies that assume an exogenous network typically underestimate the effect of

the exit of a firm. Moreover, in column seven (∆WN) in Table 4 we observe that the welfare loss

ignoring the network structure altogether (0.38%) is much lower than the welfare loss incurred in

the presence of the R&D collaboration network.

Table 4 also illustrates that the most important firms are not necessarily the ones with the

highest market share, number of patents or degree, nor can they be identified with standard cen-

trality measures in the literature (such as the betweenness or eigenvector centrality; see Wasser-

man and Faust [1994]). Rather, our results illustrate that in order to identify the key firms

that are systemically relevant, we need to consider not only the market structure but also the

spillovers generated though a network of R&D collaborations, and this network must be allowed

to dynamically adjust upon the exit of a firm.

4.2. Mergers and Acquisitions

Our framework can also be used to study the counterfactual scenario for mergers and acquisitions

in innovative industries, and their impact on welfare [cf. Farrell and Shapiro, 1990; Cho, 2013; Kim

67For this purpose we use the same graph simulation algorithm that is part of the DMH estimation algorithm,
which is explained in greater detail in supplementary Appendix G.1.

68We also tried 1.5× 104 and 2× 104 iterations and get similar results.
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Table 4: Key player ranking for firms in the chemicals and allied products sector (SIC-28).

Firm Mkt. Sh. [%]a Patents Degree ∆W [%]b ∆WF [%]c ∆WN [%]d SIC Rank

Pfizer Inc. 2.7679 78061 15 -1.8764 -1.7943 -0.3843 283 1
Novartis 2.0691 18924 15 -1.7369 -1.8271 -0.3273 283 2
Amgen 0.8193 6960 13 -1.6272 -1.4240 -0.4753 283 3
Bayer 3.8340 133433 10 -1.3781 -1.2910 -0.3445 280 4
Merck & Co. Inc. 1.2999 52847 10 -1.0182 -1.1747 -0.2892 283 5
Dyax Corp. 0.0007 227 6 -0.7709 -0.6660 -0.3289 283 6
Medarex Inc. 0.0028 168 9 -0.7452 -0.8749 -0.3847 283 7
Exelixis 0.0057 58 7 -0.7293 -0.8603 -0.3686 283 8
Xoma 0.0017 648 7 -0.6039 -0.6863 -0.2254 283 9
Genzyme Corp. 0.1830 1116 3 -0.5904 -0.2510 -0.2987 283 10
Johnson & Johnson Inc. 3.0547 1212 7 -0.5368 -0.8556 -0.3520 283 11
Abbott Lab. Inc. 1.2907 11160 3 -0.5162 -0.1867 -0.3543 283 12
Infinity Pharm. Inc. 0.0011 44 4 -0.4623 -0.5155 -0.2724 283 13
Curagen 0.0023 174 3 -0.4335 -0.4388 -0.3742 283 14
Cell Genesys Inc. 0.0001 236 5 -0.4133 -0.4629 -0.2450 283 15
Solvay SA 1.2445 22689 3 -0.4048 -0.3283 -0.2480 280 16
Takeda Pharm. Co. Ltd. 0.6445 19460 7 -0.3934 -0.7817 -0.3818 283 17
Daiichi Sankyo Co. Ltd. 0.4590 14 5 -0.3691 -0.5581 -0.3377 283 18
Maxygen 0.0014 252 3 -0.3455 -0.3013 -0.2268 283 19
Compugen Ltd. 0.0000 246 5 -0.3130 -0.5251 -0.3202 283 20

a Market share in the primary 3-digit SIC sector in which the firm is operating.
b The relative welfare loss due to exit of a firm i is computed as ∆W =(

Eµϑ [W−i(q, G)]−W (qobs, Gobs)
)
/W (qobs, Gobs), where qobs and Gobs denote the observed R&D expen-

ditures and network, respectively.
c ∆WF denotes the relative welfare loss due to exit of a firm assuming a fixed network of R&D collaborations.
d ∆WN denotes the relative welfare loss due to exit of a firm in the absence of a network of R&D collaborations.

and Singal, 1993; Salant et al., 1983]. Market concentration indices are not adequate to correctly

account for the network effects of a merger on welfare [cf. e.g. Encaoua and Hollander, 2002].

This is because the effect of a merger of two firms on industry profits, consumer surplus, and

overall welfare depends not only on the market structure (as for example in Bimpikis et al. [2014]),

but also on the R&D spillovers in the network which might lead to R&D-efficiency gains from

concentration. Due to these spillovers, mergers and the increased concentration they generate

(both, in terms of the product market and the collaboration network) can be good or bad for

welfare, depending on the identities of the involved firms and their positions in the market as

well as the network structure. This counterfactual analysis is therefore potentially important for

antitrust policy makers.69

Based on our model we can assess the impact of a merger between two firms i and j which are

competing in the same market. The merger that results (in expectation) in the greatest reduction

in welfare is defined as

(i, j)∗ = argmin
(i,j)∈N×N





∑

G∈Gn−1

∫

Qn−1

Wi∪j(q, G)µ
ϑ(q, G)dq



 , (33)

where the probability measure µϑ(q, G) is given by Equation (7), the potential function from

Equation (25), the welfare function W (q, G) is defined in Equation (19) and Wi∪j(q, G) denotes

the welfare function with firms i and j being merged to a single firm k in the network G. That is,

two incident nodes, i and j in G, are merged into a new node k, where each of the edges incident

69For example, in 2014, more than half of the merger proposals that were investigated by the U.S. Department
of Justice involved R&D-efficiency claims [Marshall and Parra, 2015].
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to k correspond to an edge incident to either i or j. In a similar way, the merger that results (in

expectation) in the greatest increase in welfare can be defined.70

Using the same simulation procedure as in Section 4.1, the merger rankings (for both, welfare

gains and losses) can be found in Table 5. To prevent ambiguity on the sector identity of the

merged firms, we restrict mergers to firms within the same 3-digit SIC sectors. The ranking for

a fixed network in column ten (∆WF) in Table 5 is based on the assumption that the network

does not adjust to the merger and can be interpreted as a short run analysis. In contrast, the

ranking in column nine (∆W ) is based on an endogenous network which adapts to a merger and

can be interpreted as a long run analysis. The mergers resulting in the highest reduction or gain

in welfare involve only firms in the drugs development sector (SIC 283), which is also the largest

sector in our sample.

The highest loss in the endogenous network case is triggered by a merger between Daiichi

Sankyo Co. Ltd., a global pharmaceutical company and the second largest pharmaceutical com-

pany in Japan, and Schering-Plough Corp., a U.S.-based pharmaceutical company, yielding a

reduction in welfare of 0.6%. The relatively large market shares of these companies amplify the

negative effect of the merger. Strikingly, assuming a fixed network (∆WF) would predict a weak

welfare gain from the merger, while ignoring the network structure altogether (∆WN) would pre-

dict a smaller welfare loss. This highlights the importance of taking into account the endogeneity

of the network. Further, the welfare loss due to a merger is typically lower than the welfare loss

due to firm exit. In contrast, the highest welfare gain form a merger is obtained between Isis

Pharm. Inc. and Takeda Pharm. Co. Ltd., two large multinational pharmaceutical companies.

In the endogenous case (∆W ) the welfare gain is 0.86%, while in the exogenous case (∆WF) it is

only 0.34%. This indicates the importance of dynamic network effects in the industry.

Further, comparing the firms involved in mergers that lead to welfare gains in Table 5, as

opposed to the ones that lead to a welfare loss, we see that mergers between firms with a larger

number of patents and a larger number of collaborations (high degree) lead to welfare gains,

while mergers between firms with few collaborations, fewer patents and a large market share

lead to a welfare loss. This indicates that welfare gains are largest when two well connected and

R&D intensive firms merge, while welfare losses dominate when less connected and more market

dominant firms are involved in the merger. Moreover, we find that the highest welfare gains

from a merger are larger than the highest welfare losses from a merger, indicating that the R&D

spillover effects are larger than the market distortion effects. Finally, as expected, in the absence

of the R&D collaboration network in column eleven in Table 5 (∆WN), the merger between two

firms always leads to a reduction in welfare [cf. Salant et al., 1983].

4.3. R&D Collaboration Subsidy

Many governments provide R&D subsidies to foster the R&D activities of private firms [cf. e.g.

Cohen, 1994; Czarnitzki et al., 2007]. One example is the Advanced Technology Program (ATP)

which was administered by the National Institute of Standards and Technology (NIST) in the U.S.

[Feldman and Kelly, 2003]. In Europe, EUREKA is a Europe-wide network for industrial R&D.

70We note that we only consider mergers between firms in the same market. We also do not consider firms
operating in multiple markets simultaneously, such as for example in Bimpikis et al. [2014]. However, we believe
that our analysis of a very specific type of a merger can generate useful insights because it takes into account
multiple sources of externalities that are typically ignored in other studies.
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Table 5: Merger ranking for firms in the chemicals and allied products sector (SIC-28).

Firm i Firm j Mkt. Sh. i [%]a Mkt. Sh. j [%] Pat. i Pat. j di dj ∆W [%]b ∆WF [%]c ∆WN [%]d SIC Rank

WELFARE LOSS

Daiichi Sankyo Co. Ltd. Schering-Plough Corp. 0.4590 0.6057 14 52847 5 1 -0.6036 0.0476 -0.2386 283 1
MorphoSys AG Daiichi Sankyo Co. Ltd. 0.0038 0.4590 20 14 4 5 -0.5976 0.0132 -0.3948 283 2
Vical Inc. Cephalon 0.0008 0.1005 170 810 1 1 -0.5639 0.3903 -0.3111 283 3
Galapagos NV Medarex Inc. 0.0025 0.0028 30 168 2 9 -0.5581 0.1017 -0.3253 283 4
Galapagos NV Coley Pharm. Group Inc. 0.0025 0.0012 30 125 2 1 -0.5409 0.2329 -0.3935 283 5
Infinity Pharm. Inc. Alnylam Pharm. Inc. 0.0011 0.0015 44 114 4 3 -0.5339 0.0484 -0.3309 283 6
Icagen Biosite Inc. 0.0005 0.0177 423 182 1 3 -0.5261 0.3587 -0.3244 283 7
Clinical Data Inc. Renovis 0.0037 0.0006 9 58 4 1 -0.5179 0.3005 -0.3890 283 8
Clinical Data Inc. Curagen 0.0037 0.0023 9 174 4 3 -0.5134 0.0108 -0.3450 283 9
EntreMed Inc. AVI BioPharma Inc. 0.0004 0.0000 62 67 3 1 -0.5120 0.2734 -0.3213 283 10

WELFARE GAIN

Isis Pharm. Inc. Takeda Pharm. Co. Ltd. 0.0014 0.6445 4472 19460 4 7 0.8643 0.3406 -0.3517 283 1
Cell Genesys Inc. Pfizer Inc. 0.0001 2.7679 236 78061 5 15 0.8636 0.6395 -0.3692 283 2
Exelixis Pfizer Inc. 0.0057 2.7679 58 78061 7 15 0.8235 0.5397 -0.4127 283 3
Dyax Corp Pfizer Inc. 0.0007 2.7679 227 78061 6 15 0.7717 0.5548 -0.4120 283 4
Bristol-Myers Squibb Co. Novartis 1.0287 2.0691 22312 18924 6 15 0.7696 0.4889 -0.2978 283 5
Exelixis Takeda Pharm. Co. Ltd. 0.0057 0.6445 58 19460 7 7 0.7661 0.5511 -0.3254 283 6
Exelixis Novartis 0.0057 2.0691 58 18924 7 15 0.7637 0.5130 -0.3872 283 7
Genzyme Corp. Pfizer Inc. 0.1830 2.7679 1116 78061 3 15 0.7441 0.4206 -0.3572 283 8
Medarex Inc. Allergan Inc. 0.0028 0.1759 168 6154 9 3 0.7441 0.3586 -0.2983 283 9
Medarex Inc. Amgen 0.0028 0.8193 168 6960 9 13 0.7411 0.7776 -0.2699 283 10

a Market share in the primary 3-digit sector in which the firm is operating.
b The relative welfare change due to a merger of firms i and j is computed as ∆W =

(
Eµϑ [Wi∪j(G,q)]−W (qobs, Gobs)

)
/W (qobs, Gobs), where qobs and Gobs denote the

observed R&D expenditures and network, respectively.
c ∆WF denotes the relative welfare change due to a merger of firms assuming a fixed network of R&D collaborations.
d ∆WN denotes the relative welfare change due to a merger of firms in the absence of a network of R&D collaborations.
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The main aim of this EU programme is to strengthen European competitiveness in the field of

R&D by means of promoting market-driven collaborative research and technology development.

Another example is Germany, where the federal government provides R&D subsidies to stimulate

collaboration activities between private organizations [Broekel and Graf, 2012]. In this section

we analyze the impact of changes in the collaboration cost due to R&D subsidies on aggregate

welfare.71

We analyze a counterfactual policy that selects a specific firm-pair, (i, j), and compensates

their collaboration costs through a subsidy, i.e., setting ψij = 0 (see Equation (23) and there-

after).72 We then can evaluate the changes in welfare due to such a subsidy using our estimated

model. The pair of firms for which the subsidy results in the largest gain in welfare is defined as

(i, j)∗ = argmax
(i,j)∈E

{
∑

G∈Gn

∫

Qn

W (q, G|ψij = 0)µϑ(q, G)dq

}
, (34)

where the probability measure µϑ(q, G) is given by Equation (7), the welfare function W (q, G)

is defined in Equation (19) and W (q, G|ψij = 0) denotes the welfare function with firms i and

j receiving a subsidy such that they do not incur a pair-specific collaboration cost (by setting

ψij = 0 permanently). The results can be seen in Table 6. In column nine (∆W ) we find that a

subsidy between Dynavax Technologies, a U.S.-based clinical-stage biopharmaceutical company,

and Shionogi & Co. Ltd., a Japanese pharmaceutical company, would yield a welfare gain of 0.76

%. The welfare gain in column ten (∆WF) is much weaker when we impose a fixed network,

highlighting the importance of dynamic network effects. The ranking illustrates that welfare

gains from subsidizing R&D collaborations can be obtained for firms which otherwise would only

be involved in few if any collaborations. Our framework could be used to guide governmental

funding agencies that typically do not take into account the spillovers generated within a dynamic

R&D network structure.

5. Conclusion

In this paper we have introduced a tractable model to analyze the coevolution of networks and

behavior, and we have given an application to the formation of R&D collaboration networks

in which firms are competitors on the product market. We provide a complete equilibrium

characterization and show that our model can reproduce the observed patterns in real world

networks. Moreover, the model can be conveniently estimated using state of the art Bayesian

algorithms, and can be estimated even for large networks. Further, the model is amenable to

policy analysis, and we illustrate this with examples for firm exit, M&As and subsidies in the

context of R&D collaboration networks.

Due to the generality of the payoff function we consider (cf. Section 2.1), we believe that

our model – both from a theoretical and empirical perspectives – can be applied to a variety

of related contexts, where externalities can be modelled in the form of an adaptive network.

71For a theoretical and empirical analysis of R&D subsidies provided by the Finnish Funding Agency for Tech-
nology and Innovation see Takalo et al. [2013a,b].

72Observe that in terms of the objective function of the planner the net effect of this policy intervention is zero.
This is because the cost of the subsidy is exactly compensated for by the gain in firms’ profits, which in turn, are
part of the welfare function.
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Table 6: Subsidy ranking for firms in the chemicals and allied products sector (SIC-28).

Firm i Firm j Mkt. Sh. i [%]a Mkt. Sh. j [%] Pat. i Pat. j di dj ∆W [%]b ∆WF [%]c SIC i SIC j Rank

Dynavax Technologies Shionogi & Co. Ltd. 0.0003 0.0986 162 10156 0 0 0.7646 0.0509 283 283 1
Ar-Qule Kemira Oy. 0.0004 0.3340 43 510 1 0 0.7622 0.0252 283 280 2
Indevus Pharm. Inc. Solvay SA 0.0029 1.2445 37 22689 0 3 0.7603 0.0713 283 280 3
Nippon Kayaku Co. Ltd. Koninklijke DSM NV 0.1342 1.1059 4398 4674 0 1 0.7543 0.0369 280 280 4
Encysive Pharm. Inc. Johnson & Johnson Inc. 0.0011 3.0547 280 1212 0 7 0.7466 0.1111 283 283 5
Kaken Pharm. Co. Ltd. Elancorp 0.0377 0.0322 821 462 0 3 0.7315 0.0986 283 283 6
Tsumura & Co. Syngenta AG 0.0451 4.1430 23 5397 0 0 0.7215 -0.0188 283 287 7
NOF Corp. Alkermes Inc. 0.1361 0.0138 431 31 0 0 0.7166 0.0132 280 283 8
Toagosei Co. Ltd. Mitsubishi Tanabe Pharma Corp. 0.1412 0.0877 771 5296 0 1 0.7160 -0.0004 280 283 9
DOV Pharm. Inc. Mochida Pharm. Co. 0.0015 0.0366 80 575 1 0 0.7158 0.0188 283 283 10
Geron Elancorp 0.0002 0.0322 240 462 1 3 0.7146 0.0039 283 283 11
Tanox Inc. PPG Industries Inc. 0.0032 7.5437 139 29784 0 0 0.7145 0.0283 283 285 12
Gedeon Richter Dade Behring Inc. 0.0572 0.0999 11115 152 0 0 0.7103 0.0173 283 283 13
Nippon Kayaku Co. Ltd. Valeant Pharm. 0.1342 0.0521 4398 312 0 0 0.7087 0.0695 280 283 14
Geron Akzo Nobel NV 0.0002 11.7496 240 11366 1 2 0.7080 0.0114 283 285 15
Rigel Pharm. Inc. Kyorin Holdings Inc. 0.0019 0.0381 259 2986 1 0 0.7074 0.0319 283 283 16
Indevus Pharm. Inc. MannKind Corporation 0.0029 0.0000 37 32 0 0 0.7064 0.0144 283 283 17
Biosite Inc. Toyama Chemical Co. Ltd. 0.0177 0.0083 182 2320 1 0 0.7062 -0.0179 283 283 18
Tsumura & Co Alnylam Pharm. Inc. 0.0451 0.0015 23 114 0 3 0.7053 0.0222 283 283 19
Gen-Probe Inc. Mitsubishi Tanabe Pharma Corp. 0.0201 0.0877 1179 5296 1 1 0.7046 0.0101 283 283 20

a Market share in the primary 3-digit sector in which the firm is operating.
b The relative welfare gain due to subsidizing the R&D collaboration costs between firms i and j is computed as ∆W =

(
Eµϑ [W (q, G|ψij = 0)]−W (qobs, Gobs)

)
/W (qobs, Gobs),

where qobs and Gobs denote the observed R&D expenditures and network, respectively.
c ∆WF denotes the relative welfare loss due to a merger of firms assuming a fixed network of R&D collaborations.
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Examples include peer effects in education, crime, risk sharing, scientific co-authorship, etc. [cf.

Jackson et al., 2015b]. Our methodology can also be applied to study discrete choice models [cf.

Badev, 2013; König, 2016], and network games with local substitutes [cf. Bramoullé and Kranton,

2007], when we assume a negative sign for the local externality parameter in our payoff function.
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Appendix

A. Proofs

We first prove that the potential function has the property that the marginal profit of a firm from
adding or removing a link is exactly equivalent to the difference in the potential function from
adding or removing a link. Similarly, the marginal profit of a firm from changing its output level
is exactly equivalent to the change of the potential function.

Proof of Proposition 1. The potential Φ(q, G) has the property that Φ(q, G ⊕ (i, j)) − Φ(q, G) =
ρqiqj − ζ = πi(q, G ⊕ (i, j)) − πi(q, G), and similarly, Φ(q, G ⊖ (i, j)) − Φ(q, G) = ζ − ρqiqj = πi(q, G ⊖
(i, j)) − πi(q, G) for any q ∈ Qn and G ∈ Gn. From the properties of πi(q, G) it also follows that
Φ(q′i,q−i, G)− Φ(qi,q−i, G) = πi(q

′
i,q−i, G)− πi(qi,q−i, G). ✷

We next show that the stationary distribution can be characterized by a Gibbs measure.

Proof of Theorem 1. First, note from Equation (6) that qϑ(ω,ω′) > 0 for any ω 6= ω′ and finite ϑ, so
that there is a positive probability of a transition from any state ω to any other state ω′, and there can be
no absorbing state. The generator matrix Qϑ = (qϑ(ω,ω′))ω,ω′∈Ω is therefore irreducible. Moreover, for
an irreducible Markov chain on a finite state space Ω all states are positive recurrent. The Markov chain
then is ergodic and has a unique stationary distribution [cf. Norris, 1998].

The stationary distribution solves µϑQϑ = 0 with the transition rates matrix Qϑ of Equation (6). This
equation is satisfied when the probability distribution µϑ satisfies the following detailed balance condition
[cf. e.g. Norris, 1998]

∀ω,ω′ ∈ Ω : µϑ(ω)qϑ(ω,ω′) = µϑ(ω′)qϑ(ω′,ω). (35)

Observe that the detailed balance condition is trivially satisfied if ω′ and ω differ in more than one link
or more than one quantity level. Hence, we consider only the case of link creation G′ = G ⊕ (i, j) (and
removal G′ = G⊖ (i, j)) or an adjustment in quantity q′i 6= qi for some i ∈ N . For the case of link creation
with a transition from ω = (q, G) to ω′ = (q, G ⊕ (i, j)) we can write the detailed balance condition as
follows

1

Zθ

eϑ(Φ(q,G)−m ln( ξ
τ )) eϑΦ(q,G⊕(i,j))

eϑΦ(q,G⊕(i,j)) + eϑΦ(q,G)
τ =

1

Zθ

eϑ(Φ(q,G⊕(i,j))−(m+1) ln( ξ
τ )) eϑΦ(q,G)

eϑΦ(q,G) + eϑΦ(q,G⊕(i,j))
ξ.

This equality is trivially satisfied. A similar argument holds for the removal of a link with a transition
from ω = (q, G) to ω′ = (q, G ⊖ (i, j)) where the detailed balance condition reads

1

Zθ

eϑ(Φ(q,G)−m ln( ξ
τ )) eϑΦ(q,G⊖(i,j))

eϑΦ(q,G⊖(i,j)) + eϑΦ(q,G)
ξ =

1

Zθ

eϑ(Φ(q,G⊖(i,j))−(m−1) ln( ξ
τ )) eϑΦ(q,G)

eϑΦ(q,G) + eϑΦ(q,G⊖(i,j))
τ.

For a change in the output level with a transition from ω = (qi,q−i, G) to ω′ = (q′i,q−i, G) we get for the
following detailed balance condition

1

Zθ

eϑ(Φ(qi,q−i,G)−m ln( ξ
τ )) eϑπi(q

′
i,q−i,G)

∫
Q e

ϑπi(q′,q−i,G)dq′
χ =

1

Zθ

eϑ(Φ(q′i,q−i,G)−m ln( ξ
τ )) eϑπi(qi,q−i,G)

∫
Q e

ϑπi(q′,q−i,G)dq′
χ.

This can be written as eϑ(Φ(qi,q−i,G)−Φ(q′i,q−i,G)) = eϑ(πi(qi,q−i,G)−πi(q
′
i,q−i,G)), which is satisfied since we

have for the potential Φ(qi,q−i, G) − Φ(q′i,q−i, G) = πi(qi,q−i, G) − πi(q
′
i,q−i, G). Hence, the proba-

bility measure µϑ satisfies a detailed balance condition of Equation (35) and therefore is the stationary
distribution of the Markov chain with transition rate matrix Qϑ. ✷

We next state a useful lemma that will be needed in the proofs that follow.

Lemma 1. Consider a binary sequence h1, h2, . . . , hn with elements hi ∈ {0, 1} and a real sequence
c1, c2, . . . , cn with elements ci ∈ R for i = 1, . . . , n and n ≥ 1. Let Hn be the set of all binary sequences
h = (h1, . . . , hn) with n elements. Then we have that

∑

h∈Hn

e
∑n

i=1 hici =
n∏

i=1

∑

hi∈{0,1}

ehici . (36)
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Proof of Lemma 1. We give a proof by induction. For the induction basis consider n = 2 (the case of
n = 1 is trivially true). Then H2 = {(0, 0), (1, 0), (0, 1), (1, 1)}, and we have that

∑

h∈H2

e
∑2

i=1 hici = 1 + ec1 + ec2 + ec1+c2 .

On the other hand, we have that

2∏

i=1

∑

hi∈{0,1}

ehici =

2∏

i=1

(1 + eci) = 1 + ec1 + ec2 + ec1+c2 .

Next, for the induction step, assume that Equation (36) holds for some n ≥ 2. Note that all binary
sequences h ∈ Hn+1 can be constructed from a binary sequence h ∈ Hn with one additional element,
hn+1, added to the sequence h1, . . . , hn where hn+1 takes on the two possible values 0 or 1. Hence, we can
write

∑

h∈Hn+1

e
∑n+1

i=1 hici =
∑

h∈Hn+1

n+1∏

i=1

ehici

=
∑

h∈Hn

n∏

i=1

ehici +
∑

h∈Hn

n∏

i=1

ehiciecn+1

=
∑

h∈Hn

n∏

i=1

ehici (1 + ecn+1)

=

n∏

i=1

∑

hi∈{0,1}

ehici (1 + ecn+1)

=

n+1∏

i=1

∑

hi∈{0,1}

ehici ,

where we have used the induction hypothesis that Equation (36) holds for n. This concludes the proof. ✷

Proof of Proposition 2. We start with the proof of the first part of the proposition. Observe that the
potential of Equation (2) can be written as

Φ(q, G) =

n∑

i=1


η − νqi −

b

2

n∑

j 6=i

qj


 qi

︸ ︷︷ ︸
ψ(q)

+

n∑

i=1

n∑

j=i+1

aij (ρqiqj − ζ)︸ ︷︷ ︸
σij

= ψ(q) +

n∑

i=1

n∑

j=i+1

aijσij . (37)

We then have that eϑΦ(q,G) = eϑψ(q)eϑ
∑n

i<j aijσij , where only the second factor is network dependent.
Observing that the sequence (aij)1≤i<j≤n = (a12, a13, . . . , an−1,n) is a binary sequence as in Lemma 1, we
then can use the fact that for any constant, symmetric σij = σji, 1 ≤ i, j ≤ n, we can write73

∑

G∈Gn

eϑ
∑n

i<j aijσij =

n∏

i=1

n∏

j=i+1

(
1 + eϑσij

)
. (38)

From Equation (38) we then obtain

∑

G∈Gn

eϑΦ(q,G) = eϑψ(q)
n∏

i<j

(
1 + eϑσij

)
=

n∏

i=1

eϑ(ηi−νqi−
b
2

∑n
j 6=i qj)qi

n∏

i<j

(
1 + eϑ(ρqiqj−ζ)

)
. (39)

73Note that Equation (38) requires the σij to be constant, and in particular, to be independent. In this case the
summation over all networks only needs to count the number of possible networks in which the link ij is present.
In contrast, when σij depends on the other links in the network, then this simple summation formula would no
longer hold.

41



We can use Equation (39) to compute the marginal distribution

µϑ(q) =
1

Zϑ

∑

G∈Gn

eϑΦ(q,G)

=
1

Zϑ

n∏

i=1

eϑ(ηi−νqi−
b
2

∑
j 6=i qj)qi

n∏

i<j

(
1 + eϑ(ρqiqj−ζ)

)

=
1

Zϑ

eϑ
∑n

i=1(ηi−νqi− b
2

∑
j 6=i qj)qie

∑n
i<j ln(1+eϑ(ρqiqj−ζ))

=
1

Zϑ

eϑHϑ(q), (40)

where we have introduced the Hamiltonian

Hϑ(q) ≡
n∑

i=1


ηqi − νq2i +

n∑

j>i

(
1

ϑ
ln
(
1 + eϑ(ρqiqj−ζ)

)
− bqiqj

)
 . (41)

Using the fact that
∫
Qn µ

ϑ(q)dq = 1, it follows from Equation (40) that we can write the partition function
as

Zϑ =

∫

Qn

eϑHϑ(q)dq.

We next make the Laplace approximation [cf. Wong, 2001, Theorem 3, p. 495]

Zϑ ∼

(
2π

ϑ

)n
2

∣∣∣∣∣

(
∂2Hϑ

∂qi∂qj

)

qi=q∗

∣∣∣∣∣

− 1
2

eϑHϑ(q
∗), (42)

for large ϑ, where q∗ = argmaxq∈[0,q̄]n Hϑ(q), and the Hessian is given by ∂2
Hϑ

∂qi∂qj
for 1 ≤ i, j ≤ n. From

Equation (41) we find that

∂Hϑ

∂qi
= η − 2νqi +

n∑

j 6=i

(
ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))
− b

)
qj . (43)

The first order conditions ∂Hϑ

∂qi
= 0 in Equation (43) imply that

η − 2νqi =
n∑

j 6=i

(
b−

ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

)))
qj .

This system of equations has a symmetric solution, qi = q for all i = 1, . . . , n, where

(b(n− 1) + 2ν)q − η =
(n− 1)ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
q.

Introducing the variables η∗ ≡ η/(n− 1) and ν∗ ≡ ν/(n− 1), this can be written as

(b + 2ν∗)q − η∗ =
ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
q. (44)

Let the RHS of Equation (44) be denoted by F (q) so that we can write it as (b+2ν∗)q− η∗ = F (q). Then
we have that F (0) = 0, F ′(q) ≥ 0 and F (q) ∼ ρq for q → ∞. It follows that (b + 2ν∗)q − η∗ = F (q) has
at least one solution when b + 2ν∗ > ρ.74 Moreover, any iteration (b + 2ν∗)qt+1 − η∗ = F (qt) starting at
q0 = 0 converges to the smallest fixed point q∗ such that (b + 2ν∗)q∗ − η∗ = F (q∗).

74Since the RHS, F (q), of Equation (44) is increasing (one can see this from taking the derivative), is zero at
q = 0, i.e. F (0) = 0, and asymptotically grows linearly as ρq, it follows that when b+ 2ν∗ > ρ there must exist at
least one fixed point. This is because the LHS, (b+2ν∗)q− η∗, of Equation (44) starts below zero at q = 0 (where
it is −η∗), both LHS and RHS are increasing, and the RHS approaches asymptotically a line with a slope smaller
than the slope b+ 2ν∗ of the LHS. Hence they must intersect at some q ≥ 0.
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We next compute the average output level q̄ = 1
n

∑n
i=1 qi. We have that

Eµϑ

(
n∑

i=1

qi

)
=
∑

G∈Gn

∫

Qn

dq

(
n∑

i=1

qi

)
µϑ(q, G) =

1

Zϑ

∑

G∈Gn

∫

Qn

dq

(
n∑

i=1

qi

)
eϑΦ(q,G)

=
1

Zϑ

∑

G∈Gn

∫

Qn

dq
1

ϑ

∂

∂η
eϑΦ(q,G) =

1

ϑ

1

Zϑ

∂Zϑ

∂η
=

1

ϑ

∂ lnZϑ

∂η
= −

1

ϑ

∂Fϑ

∂η
,

where we have denoted by Fϑ ≡ − lnZϑ. The average output is then given by75

Eµϑ

(
1

n

n∑

i=1

qi

)
= −

1

nϑ

∂Fϑ

∂η
.

With Equation (42) we get

Fϑ ∼ −
n

2
ln

(
2π

ϑ

)
+

1

2
ln

∣∣∣∣∣

(
∂2Hϑ

∂qi∂qj

)

qi=q∗

∣∣∣∣∣− ϑHϑ(q
∗).

We then find that

∂Fϑ

∂η
= −ϑ

∂Hϑ(q
∗)

∂η
+

1

2

∂

∂η
ln

∣∣∣∣∣

(
∂2Hϑ

∂qi∂qj

)

qi=q∗

∣∣∣∣∣

= −ϑ
∂Hϑ(q

∗)

∂η
+

1

2
tr

((
∂2Hϑ

∂qi∂qj

)−1
∂

∂η

(
∂2Hϑ

∂qi∂qj

))

qi=q∗

,

where we have used Jacobi’s formula [cf. Bellman, 1970].76 From Equation (43) we further have that

∂2Hϑ

∂q2i
= −2ν +

ϑρ2

4

n∑

j 6=i

q2j

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)2
)
, (45)

and for j 6= i we have that

∂2Hϑ

∂qi∂qj
= −b+

ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))(
1 +

ϑρ

2
qiqj

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)))
. (46)

This shows that ∂
∂η

(
∂2

Hϑ

∂qi∂qj

)
= 0, so that ∂Fϑ

∂η
= −ϑ∂Hϑ(q

∗)
∂η

, and the expected average output level is

then given by

Eµϑ

(
1

n

n∑

i=1

qi

)
=

1

n

∂Hϑ(q
∗)

∂η
.

Using the fact that ∂Hϑ(q
∗)

∂η
=
∑n
i=1 qi = nq∗, we then get in leading order terms for large ϑ that

Eµ∗

(
1

n

n∑

i=1

qi

)
= lim

ϑ→∞
Eµϑ

(
1

n

n∑

i=1

qi

)
= q∗.

Next, we compute the output distribution. It can be written as follows

µϑ(q) =
1

Zϑ

∑

G∈Gn

eϑΦ(q,G) =
1

Z ϑ
n

eϑHϑ(q),

where the Hamiltonian is implicitly defined by eϑHϑ(q) =
∑
G∈Gn eϑΦ(q,G). From a Taylor expansion

75See also Remark 1 below.
76For any invertible matrix M(x) for all x, Jacobi’s formula states that d

dx
|M(x)| = |M(x)| tr

(
M(x)−1 d

dx
M(x)

)
,

which can be written more compactly as d
dx

ln |M(x)| = tr
(
M(x)−1 d

dx
M(x)

)
.
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around q∗ we have that

Hϑ(q) = Hϑ(q
∗) + (q− q∗)∇Hϑ(q

∗) +
1

2
(q− q∗)⊤∆Hϑ(q

∗)(q− q∗) + o
(
‖q− q∗‖2

)
,

as ϑ → ∞, where q∗ = argmaxq∈[0,q̄]n Hϑ(q), the gradient is ∇Hϑ(q) =
(
∂Hϑ

∂qi

)
i=1,...,n

, and the Hessian

is ∆Hϑ(q) =
(
∂2

Hϑ

∂qi∂qj

)
i,j=1,...,n

. As the gradient ∇Hϑ(q) vanishes at q
∗, we have that

Hϑ(q) = Hϑ(q
∗) +

1

2
(q− q∗)⊤∆Hϑ(q

∗)(q− q∗) + o
(
‖q− q∗‖2

)
.

We then can write

µϑ(q) =
1

Z ϑ
n

eϑHϑ(q
∗) exp

{
−
1

2
ϑ(q − q∗)⊤(−∇Hϑ(q

∗))(q − q∗)

}
+ o

(
‖q− q∗‖2

)
.

Normalization implies that

Z
ϑ
n =

∫

Qn

dqeHϑ(q) = eϑHϑ(q
∗)

∫

Qn

dq exp

{
−
1

2
ϑ(q − q∗)⊤(−∆Hϑ(q

∗))(q − q∗)

}
+ o

(
‖q− q∗‖2

)

= eϑHϑ(q
∗)(2π)

n
2 |−∆Hϑ(q

∗)|−
1
2 + o

(
‖q− q∗‖2

)
.

The Laplace approximation of µϑ(q) is then given by

µϑ(q) =

(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−
1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q − q∗)

}
+ o

(
‖q− q∗‖2

)
. (47)

That is, in the limit of large ϑ, q is asymptotically normally distributed with mean q∗ and variance
− 1
ϑ
∇Hϑ(q

∗)−1.
Imposing symmetry, qi = q for all i = 1, . . . , n, in Equation (45) we can write

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

= −2ν + (n− 1)
ϑρ2

4
q2
(
1− tanh

(
ϑ

2

(
ρq2 − ζ

)))(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
,

and for j 6= i we have from Equation (45) that

∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= −b+
ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))(
1 +

ϑρ

2
q2
(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))))
.

Using Equation (44), from which we get

ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
=

((n− 1)b+ 2ν)q − η

(n− 1)q
,

and
ρ

2

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

))
=

((n− 1)(ρ− b)− 2ν)q + η

(n− 1)q
,

we then can write

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

= −2ν +
ϑ(((n− 1)(ρ− b)− 2ν)q + η)(((n − 1)b+ 2ν)q − η)

n− 1
,

and
∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= −b+
((n− 1)b+ 2ν)q − η

(n− 1)q

(
1 +

ϑq(((n − 1)(ρ− b)− 2ν)q + η)

n− 1

)
.

Denoting by ν∗ ≡ ν/(n− 1) and η∗ ≡ η/(n− 1) we can further write

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

= (n− 1)

(
−2ν∗ + ϑq2

(
ρ− b− 2ν∗ +

η∗

q

)(
b + 2ν∗ −

η∗

q

))
, (48)
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and
∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= −b+

(
b+ 2ν∗ −

η∗

q

)(
1 + ϑq2

(
ρ− b− 2ν∗ +

η∗

q

))
. (49)

Note that due to symmetry, the Hessian ∆Hϑ(q
∗) with components in Equations (48) and (49) is

a special case of a circulant matrix. Denoting by a the diagonal elements of ∆Hϑ(q
∗) and by b the

off-diagonal elements, the determinant in Equation (58) follows from the general formula [cf. Horn and
Johnson, 1990]:

|−∆Hϑ(q
∗)| =

∣∣∣∣∣∣∣∣

a b b . . .
b a b . . .
b b a
...

...
. . .

∣∣∣∣∣∣∣∣
= (a− b)n−1(a+ (n− 1)b).

Similarly, for a circulant matrix (by applying the Sherman-Morrison formula; cf. Horn and Johnson [1990])
we get for the inverse in Equation (58) that

−∆Hϑ(q
∗)−1 =




a b b . . .
b a b . . .
b b a
...

...
. . .




−1

=
1

a2 + (n− 2)ab− (n− 1)b2




a+ (n− 2)b −b −b . . .
−b a+ (n− 2)b −b . . .
−b −b a+ (n− 2)b
...

...
. . .


 ,

For large n we see from Equations (48) and (49) that the off-diagonal elements vanish relative to the
diagonal elements. As q is asymptotically normally distributed with mean q∗ and variance− 1

ϑ
∆Hϑ(q

∗)−1,
this implies that, in the limit of n → ∞, the individual firms’ output levels become independent. The
diagonal entries are given by

−
1

ϑ
(∆Hϑ(q

∗))−1
ii ∼

1

ϑ

n

2ν∗ + ϑ(bq − η∗ + 2ν∗q)(q(b + 2ν∗ − ρ)− η∗)
≡ σ2.

Next, we compute the expected average degree d̄. The expected number of links can be obtained as
follows77

Eµϑ(m) =
∑

G∈Gn

∫

Qn

mµϑ(q, G)dq =
1

Zϑ

∑

G∈Gn

∫

Qn

meϑΦ(q,G)
︸ ︷︷ ︸

− 1
ϑ

∂
∂ζ e

ϑΦ(q,G)

dq = −
1

ϑ

1

Zϑ

∂Zϑ

∂ζ
=

1

ϑ

∂Fϑ

∂ζ
,

where we have denoted by Fϑ ≡ − lnZϑ. From the Laplace approximation in Equation (42) we find that

∂Fϑ

∂ζ
= −ϑ

∂Hϑ(q
∗)

∂ζ
+

1

2

∂

∂ζ
ln

∣∣∣∣∣

(
∂2Hϑ

∂qi∂qj

)

qi=q∗

∣∣∣∣∣

= −ϑ
∂Hϑ(q

∗)

∂ζ
+

1

2
tr

((
∂2Hϑ

∂qi∂qj

)−1
∂

∂ζ

(
∂2Hϑ

∂qi∂qj

))

qi=q∗

,

where we have used Jacobi’s formula [cf. e.g. Bellman, 1970]. Consequently, the expected number of links
is

Eµϑ(m) = −
∂Hϑ(q

∗)

∂ζ
+

1

2ϑ
tr

((
∂2Hϑ

∂qi∂qj

)−1
∂

∂ζ

(
∂2Hϑ

∂qi∂qj

))

qi=q∗

.

Further, we have that

∂Hϑ

∂ζ
= −

1

2

n∑

i=1

n∑

j>i

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))
,

77See also Remark 1 below.
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and in the symmetric equilibrium this is

∂Hϑ

∂ζ

∣∣∣∣
qi=q

= −
n(n− 1)

4

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
.

The expected number of links can then be written as

Eµϑ(m) =
n(n− 1)

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
+

1

2ϑ
tr

((
∂2Hϑ

∂qi∂qj

)−1
∂

∂ζ

(
∂2Hϑ

∂qi∂qj

))

qi=q∗

.

Using the fact that

ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

))2
)

= b + 2ν∗ −
η∗

q
,

where ν∗ = ν
n−1 and η∗ = η

n−1 , we can write

∂Hϑ

∂ζ

∣∣∣∣
qi=q

= −
n(n− 1)

2ρ

(
b+ 2ν∗ −

η∗

q

)
.

In the limit of ϑ→ ∞ in the low equilibrium, where q = η∗

b+2ν∗ and therefore η∗

q
= b+ 2ν∗, we then get

∂Hϑ

∂ζ

∣∣∣∣
qi=q

= 0.

In contrast, in the limit of ϑ → ∞ in the high equilibrium, where q = η∗

b+2ν∗−ρ , and
η∗

q
= b + 2ν∗ − ρ we

find that
∂Hϑ

∂ζ

∣∣∣∣
qi=q

= −
n(n− 1)

2
.

Further, the derivatives with respect to ζ in Equation (45) are given by

∂

∂ζ

∂2Hϑ

∂q2i
=
ϑ2ρ2

4

n∑

j 6=i

tanh

(
ϑ

2
(ρqiqj − ζ)

)(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)2
)
,

and for j 6= i from Equation (46) we get that

∂

∂ζ

∂2Hϑ

∂qi∂qj
= −

ϑρ

4

(
1− tanh

(
ϑ

2
(ρqiqj − ζ)

)2
)(

1− ϑρqiqj tanh

(
ϑ

2
(ρqiqj − ζ)

))
.

Imposing symmetry, qi = q for all i = 1, . . . , n, we then can write

∂

∂ζ

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

=
(n− 1)ϑ2ρ2

4
tanh

(
ϑ

2

(
ρq2 − ζ

))
(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)
, (50)

and

∂

∂ζ

∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= −
ϑρ

4

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)(

1− ϑρq2 tanh

(
ϑ

2

(
ρq2 − ζ

)))
. (51)

For a circulant matrix (by applying the Sherman-Morrison formula; cf. Horn and Johnson [1990]) we have
that




a b b . . .
b a b . . .
b b a
...

...
. . .




−1

=
1

a2 + (n− 2)ab− (n− 1)b2




a+ (n− 2)b −b −b . . .
−b a+ (n− 2)b −b . . .
−b −b a+ (n− 2)b
...

...
. . .


 ,
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and

tr




c d d . . .
d c d . . .
d d c
...

...
. . .







e f f . . .
f e f . . .
f f e
...

...
. . .


 = n(ce + (n− 1)df),

so that

tr




a b b . . .
b a b . . .
b b a
...

...
. . .




−1


e f f . . .
f e f . . .
f f e
...

...
. . .


 =

n((a+ (n− 2)b)e− (n− 1)bf)

a2 + (n− 2)ab− (n− 1)b2
.

The expected number of links can then be written as follows

Eµϑ(m) =
n(n− 1)

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))
+

1

2ϑ
Rϑ,

where

Rϑ ≡
n((c1 + (n− 2)c2)c3 − (n− 1)c2c4)

c21 + (n− 2)c1c2 − (n− 1)c22
,

with

c1 ≡ −2ν + (n− 1)
ϑρ2q2

4

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)
,

c2 ≡ −b+
ρ

2

(
1 + tanh

(
ϑ

2

(
ρq2 − ζ

)))(
1 +

ϑρq2

2

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))))
,

c3 ≡
(n− 1)ϑ2ρ2

4
tanh

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)
,

c4 ≡ −
ρϑ

4

(
1− tanh

(
ϑ

2

(
ρq2 − ζ

))2
)(

1− ϑρq2 tanh

(
ϑ

2

(
ρq2 − ζ

)))
.

In the following we compute the degree distribution. From our previous discussion we know that each firm
i has an output level q distributed identically and independently with density µϑ(q) given by N (q∗, σ2)
and converging to δ(q − q∗) in the limit ϑ → ∞. With the marginal distribution from Equation (40) and
the potential in Equation (37) we then can write the conditional distribution as

µϑ(G|q) =
µϑ(q, G)

µϑ(q)
=

eϑΦ(q,G)

∑
G′∈Gn eϑΦ(q,G′)

=
eψ(q)eϑ

∑n
i<j aij(ρqiqj−ζ)

eψ(q)
∏
i<j

(
1 + eϑ(ρqiqj−ζ)

)

=
eϑ

∑n
i<j aij(ρqiqj−ζ)

∏
i<j

(
1 + eϑ(ρqiqj−ζ)

)

=
∏

i<j

eϑaij(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)

=
∏

i<j

(
eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)

)aij (
1−

eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)

)1−aij

=
∏

i<j

pϑ(qi, qj)
aij
(
1− pϑ(qi, qj)

)1−aij
. (52)

Hence, we obtain the likelihood of an inhomogeneous random graph with link probability78

pϑ(qi, qj) =
eϑ(ρqiqj−ζ)

1 + eϑ(ρqiqj−ζ)
=

gϑ(qi, qj)

1 + gϑ(qi, qj)
, (53)

where we have denoted by gϑ(q, q′) ≡ eϑ(ρqq
′−ζ). The probability of observing the network G, given the

78See also supplementary Appendix B and Boguná and Pastor-Satorras [2003]; Britton et al. [2006]; Söderberg
[2002].
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output levels q can then be written as follows

µϑ(G|q) =
n∏

i=1

n∏

j=i+1

(
gϑ(qi, qj)

1 + gϑ(qi, qj)

)aij (
1

1 + gϑ(qi, qj)

)1−aij

=

n∏

i=1

n∏

j=i+1

1

1 + gϑ(qi, qj)

n∏

i=1

n∏

j=i+1

gϑ(qi, qj)
aij ,

which can be written as

µϑ(G|q) = Cϑ(q)

n∏

i=1

n∏

j=i+1

gϑ(qi, qj)
aij ,

with the normalizing constant

Cϑ(q) ≡
n∏

i=1

n∏

j=i+1

(
1 + gϑ(qi, qj)

)
.

Since
∑
G∈Gn P (G|q) = 1, Cϑ(q) can also be written as

Cϑ(q) =
∑

G∈Gn

n∏

i=1

n∏

j=i+1

gϑ(qi, qj)
aij .

Next, we consider the probability generating function of the vector of degrees, (di(G))
n
i=1, given by

Eµϑ

(
n∏

i=1

x
di(G)
i

∣∣∣∣∣q
)

= E




n∏

i=1

n∏

j=i+1

(xixj)
aij

∣∣∣∣∣∣
q


 (54)

=
∑

G∈Gn

P (G|q)
n∏

i=1

n∏

j=i+1

(xixj)
aij

=
1

Cϑ(q)

∑

G∈Gn

n∏

i=1

n∏

j=i+1

gϑ(qi, qj)
aij

n∏

i=1

n∏

j=i+1

(xixj)
aij

=
1

Cϑ(q)

∑

G∈Gn

n∏

i=1

n∏

j=i+1

(
gϑ(qi, qj)xixj

)aij

=

∑
G∈Gn

∏n
i=1

∏n
j=i+1

(
gϑ(qi, qj)xixj

)aij
∏n
i=1

∏n
j=i+1(1 + gϑ(qi, qj))

=
n∏

i=1

n∏

j=i+1

1 + gϑ(qi, qj)xixj
1 + gϑ(qi, qj)

, (55)

where we have used the fact that
∑

G∈Gn

∏n
i=1

∏n
j=i+1

(
gϑ(qi, qj)xixj

)aij
=
∏n
i=1

∏n
j=i+1

(
1 + gϑ(qi, qj)xixj

)
.

To compute the generating function of d1(G), we simply set xi = 1 for all i > 1. Then

Eµϑ

(
x
d1(G)
1

)
= Eµϑ

(
Eµϑ

(
x
d1(G)
1

∣∣∣ q1
))

= Eµϑ


Eµϑ




n∏

j=2

1 + gϑ(q1, qj)x1
1 + gϑ(q1, qj)

∣∣∣∣∣∣
q1






= Eµϑ

((
Eµϑ

(
1 + gϑ(q1, q2)x1
1 + gϑ(q1, q2)

∣∣∣∣ q1
))n−1

)
,

where we have used symmetry and the independence of q1, . . . , qn. Further, note that

1 + xy

1 + x
= 1+ (y − 1)x+O

(
x2
)
.
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Hence, for gϑ(q1, q2) small in the sparse graph limit, we can write

Eµϑ

(
1 + gϑ(q1, q2)x1
1 + gϑ(q1, q2)

∣∣∣∣ q1
)

=

∫

Q

1 + gϑ(q1, q2)x1
1 + gϑ(q1, qj)

µϑ(dq2)

= 1 + (x1 − 1)

∫

Q

gϑ(q1, q2)µ
ϑ(dq2) + o(1)

= 1 + (x1 − 1)νϑ(q1) + o(1),

where we have denoted by νϑ(q) ≡
∫
Q
gϑ(q, q′)µϑ(dq′). It then follows that

Eµϑ

(
x
d1(G)
1

)
= Eµϑ

((
1 + (x1 − 1)νϑ(q1)

)n−1
)
(1 + o(1)) = Eµϑ

(
e(x1−1)(n−1)νϑ(q1)

)
(1 + o(1)) ,

where we have used the fact that e(x1−1)νϑ(q) = 1+(x1−1)νϑ(q)+o(1). This is the probability generating
function of a mixed Poisson random variable with mixing parameter νϑ(q) [cf. e.g. Van Der Hofstad,
2009]. In particular, since pϑ(q, q′) = gϑ(q, q′) + o(1), we can write nνϑ(q) = n

∫
Q
p(q, q′)µϑ(dq′) =∑n

j=1

∫
Q
pϑ(q, qj)µ

ϑ(dqj) =
∑n
j=1 P (a1j = 1| q1 = q) = Eµϑ (d1(G)| q1 = q), which is the expected degree

of a firm with output q, and we denote it by d̄(q). Further, it then follows that

Eµϑ

(
x
d1(G)
1

)
=

n∑

k=0

xk1P (d1(G) = k)

= Eµϑ

(
e(x1−1)d̄(q1)

)
(1 + o(1))

= Eµϑ

(
e−d̄(q1)

n∑

k=0

(x1d̄(q1))
k

k!

)
(1 + o(1))

n∑

k=0

xk1Eµϑ

(
e−d̄(q1)d̄(q1)

k

k!

)
(1 + o(1)) .

Let the empirical degree distribution be given by P̄ϑ(k) = 1
n

∑n
i=1 1{di(G)=k}, and denote by Pϑ(k) ≡

Eµϑ

(
P̄ϑ(k)

)
. Then we have that

Pϑ(k) = P (d1(G) = k) = Eµϑ

(
e−d̄(q1)d̄(q1)

k

k!

)
(1 + o(1)) .

We now give a proof of part (ii) of the proposition. In the limit of ϑ→ ∞ we obtain from the FOC in
Equation (44) that

(b + 2ν∗)q − η∗ =

{
ρq, if ζ < ρq2,
0, if ρq2 < ζ.

This shows that the right hand side of Equation (10) has a point of discontinuity at
√

ζ
ρ
(cf. Figure A.1).

It then follows that, in the limit of ϑ→ ∞ (for the stochastically stable equilibrium), we have

q∗ =





η
b+2ν∗−ρ , if ζ < ρ(η∗)2

(b+2ν∗)2 ,{
η∗

b+2ν∗−ρ ,
η∗

b+2ν∗

}
, if ρ(η∗)2

(b+2ν∗)2 < ζ < ρη2

(b+2ν∗−ρ)2 ,

η∗

b+2ν∗ , if ρ(η∗)2

(b+2ν∗−ρ)2 < ζ,

(56)

which is increasing in ρ and η∗, and decreasing in ζ and b (cf. Figure A.1). Next, note that

Eµϑ

(
n∑

i=1

q2i

)
=
∑

G∈Gn

∫

Qn

dq

(
n∑

i=1

q2i

)
µϑ(q, G) =

1

Zϑ

∑

G∈Gn

∫

Qn

dq

(
n∑

i=1

q2i

)
eϑΦ(q,G)

=
1

Zϑ

∑

G∈Gn

∫

Qn

dq
1

ϑ2
∂2

∂η2
eϑΦ(q,G) =

1

Zϑ

1

ϑ2
∂2Zϑ

∂η2
,
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Figure A.1: (Top left panel) The right hand side of Equation (10) for different values of ζ1 = 25, ζ2 = 10, ζ3 = 3
and b = 4, ρ = 2, η = 6.5, ν = 0 and ϑ = 10. (Top right panel) The values of q solving Equation (10) for different
values of ζ with b = 1.48, ρ = 0.45 and ϑ1 = 49.5, ϑ2 = 0.495, ϑ3 = 0.2475. (Bottom left panel) The right hand
side of Equation (10) for different values of η1 = 2.5, η2 = 6.5, η3 = 10 and b = 4, ρ = 2, ζ = 10 and ϑ = 10.
(Bottom right panel) The values of q solving Equation (10) for different values of η with b = 4, ρ = 2 and ϑ1 = 10,
ϑ2 = 0.26, ϑ3 = 0.2.

where we have denoted by Fϑ ≡ − lnZϑ. We further have that

∂2 lnZϑ

∂η2
=

1

Zϑ

∂2Zϑ

∂η2
−

1

Z 2
ϑ

(
∂Zϑ

∂η

)2

=
1

Zϑ

∂2Zϑ

∂η2
−

(
∂ lnZϑ

∂η

)2

= ϑ2Eµϑ

(
n∑

i=1

q2i

)
− ϑ2Eµϑ

(
n∑

i=1

qi

)2

.

We then get

Varµϑ

(
n∑

i=1

qi

)
= Eµϑ

(
n∑

i=1

q2i

)
− Eµϑ

(
n∑

i=1

qi

)2

=
1

ϑ2
∂2 lnZϑ

∂η2
= −

1

ϑ2
∂2Fϑ

∂η2
.

The variance of the mean is then given by

Varµϑ

(
1

n

n∑

i=1

qi

)
= −

1

n2ϑ2
∂2Fϑ

∂η2
.

We have that
∂2Fϑ

∂η2
= −ϑ

∂2Hϑ(q
∗)

∂η2
= 0,

and we get

Varµ∗

(
1

n

n∑

i=1

qi

)
= lim
ϑ→∞

Varµϑ

(
1

n

n∑

i=1

qi

)
= 0.

Note that the variance of the average output can be equal to zero only if it is equal to its expectation in
all of its support. This can only happen if the average output is equal to q∗ with probability one in the
large ϑ limit.

Further, in the limit of ϑ → ∞, for both, the low equilibrium, where q = η∗

b+2ν∗ and therefore η∗

q
=

b+ 2ν∗, as well as the high equilibrium, where q = η∗

b+2ν∗−ρ , and
η∗

q
= b+ 2ν∗ − ρ we find from Equation
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(50) that
∂

∂ζ

∂2Hϑ

∂q2i

∣∣∣∣
qi=q

= 0,

and from Equation (51) we get
∂

∂ζ

∂2Hϑ

∂qi∂qj

∣∣∣∣
qi=qj=q

= 0.

Hence, we find that in the high equilibrium Eµ∗(m) = limϑ→∞ Eµϑ(m) = n(n−1)
2 , while in the low equilib-

rium Eµ∗(m) = limϑ→∞ Eµϑ(m) = 0. Consequently, the expected average degree in the high equilibrium

is Eµ∗

(
1
n

∑n
i=1 di

)
= limϑ→∞ Eµϑ

(
1
n

∑n
i=1 di

)
= n− 1, where we have a complete graph, Kn, and zero in

the low equilibrium where we obtain an empty graph, Kn. ✷

We would like add the following general remark related to the proof of Proposition 2.

Remark 1. Consider the state space Ω = Qn × Gn with state ω ∈ Ω and a Gibbs measure µϑ : ω 7→
1

Zϑ
eϑΦ(ω) indexed by a parameter ϑ ≥ 0 on a measure space (Ω,F), and let Zϑ be the partition function

such that
∫
ω∈Ω µ

ϑ(ω) = 1.

(i) The potential function can be written as Φ(ω) = θ⊤X(ω), with the vector of parameters θ = ϑ(η, ν, b, ρ, ζ)⊤

and the data vector

X1(ω) =

n∑

i=1

qi, X2(ω) = −
n∑

i=1

q2i , X3(ω) = −
1

2

n∑

i=1

∑

j 6=i

qiqj ,

X4(ω) =
1

2

n∑

i=1

n∑

j=1

aijqiqj , X5(ω) = −m. (57)

It is then possible to compute various statistics of the degrees or output levels using the log-partition
function lnZϑ (see e.g. Proposition 3.1 in Wainwright and Jordan [2008]):

∂ lnZϑ

∂θi
= Eµϑ(Xi),

∂2 lnZϑ

∂θi∂θj
= Eµϑ(XiXj)− Eµϑ(Xi)Eµϑ(Xj).

Denoting the negative log partition function (also called the “free energy”, cf. Park and Newman [2004])

by Fϑ ≡ − lnZϑ, it follows that the expected number of links is Eµϑ(m) = ∂ lnZϑ

∂θ5
= 1

ϑ
∂Fϑ

∂ζ
, the degree

variance is Varµϑ = ∂2 lnZϑ

∂θ25
= 1

ϑ2
∂2

Fϑ

∂ζ2
, the average output is Eµϑ

(
1
n

∑n
i=1 qi

)
= 1

n
∂ lnZϑ

∂θ1
= − 1

nϑ
∂Fϑ

∂η

and the output variance is Varµϑ

(
1
n

∑n
i=1 qi

)
= 1

n2
∂2 lnZϑ

∂θ21
= − 1

n2ϑ2
∂2

Fϑ

∂η2
.

(ii) From Equation (52) we know that the conditional probability of a network G given a quantity profile q

can be written as lnµϑ(G|q) =
∑n

i=1

∑n
j=i+1 aij ln p

ϑ
ij + (1− aij) ln(1− pϑij) with the linking probability

pϑij in Equation (16), and thus has separable increments and satisfies dyadic independence. This in turn
implies “projectibility” as defined in Shalizi and Rinaldo [2013]. The authors show that projectibility
implies strong consistency of the maximum likelihood estimator, and that the same parameters can be
used for both the full network and any of its sub-networks, making the maximum likelihood estimates
robust to missing data.

We next give the proof of Proposition 3, which generalizes Proposition 2 by allowing for firm
heterogeneity.

Proof of Proposition 3. We first give a proof of part (i) of the proposition. We have that µϑ(q, G) =
µϑ(G|q)µϑ(q). Analogous to the proof of Proposition 2 one can show that µϑ(G|q) =

∏
i<j p

ϑ(qi, qj)
aij

(
1− pϑ(qi, qj)

)1−aij
where pϑ(qi, qj) is given by Equation (53), which corresponds to an inhomogeneous

random graph with linking probability pϑ : Q×Q → [0, 1]. The output distribution is given by

µϑ(q) =
1

Zϑ

∑

G∈Gn

eϑΦ(q,G) =
1

Z ϑ
n

eϑHϑ(q),
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Figure A.2: The output iteration of Equation (61) over the firm fixed effects ηi. Filled circles indicate the fixed
points. The insets show the adjacency matrix A = (aij)1≤i,j,n with elements are given by aij = 1{

qiqj>
ζ
ρ

} (see also

Figure 4), where the vector q is the fixed point of Equation (61). The panels from the left to the right correspond
to increasing linking costs ζ ∈ {0.0075, 0.01, 0.02}. The parameters used are n = 10, ν = 0.5, b = 0.06, ρ = 0.02
and η = (1.00, 0.71, 0.58, 0.50, 0.45, 0.41, 0.38, 0.35, 0.33, 0.32)⊤.

where the Hamiltonian is implicitly defined by eϑHϑ(q) =
∑
G∈Gn eϑΦ(q,G). From a Taylor expansion

around q∗ (for large ϑ) we have that

Hϑ(q) = Hϑ(q
∗) + (q− q∗)∇Hϑ(q

∗) +
1

2
(q− q∗)⊤∆Hϑ(q

∗)(q− q∗) + o
(
‖q− q∗‖2

)
,

as ϑ → ∞, where q∗ = argmaxq∈[0,q̄]n Hϑ(q), the gradient is ∇Hϑ(q) =
(
∂Hϑ

∂qi

)
i=1,...,n

, and the Hessian

is ∆Hϑ(q) =
(
∂2

Hϑ

∂qi∂qj

)
i,j=1,...,n

. As the gradient ∇Hϑ(q) vanishes at q
∗, we have that

Hϑ(q) = Hϑ(q
∗) +

1

2
(q− q∗)⊤∆Hϑ(q

∗)(q− q∗) + o
(
‖q− q∗‖2

)
.

We then can write

µϑ(q) =
1

Z ϑ
n

eϑHϑ(q
∗) exp

{
−
1

2
ϑ(q − q∗)⊤(−∇Hϑ(q

∗))(q − q∗)

}
+ o

(
‖q− q∗‖2

)
.

Normalization,
∫
Qn µ

ϑ(q)dq = 1, implies that

Z
ϑ
n =

∫

Qn

eHϑ(q)dq = eϑHϑ(q
∗)

∫

Qn

exp

{
−
1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q− q∗)

}
dq+ o

(
‖q− q∗‖2

)

= eϑHϑ(q
∗)(2π)

n
2 |−∆Hϑ(q

∗)|−
1
2 + o

(
‖q− q∗‖2

)
.

The Laplace approximation of µϑ(q) is then given by[cf. Wong, 2001, Theorem 3, p. 495]

µϑ(q) =

(
2π

ϑ

)−n
2

|−∆Hϑ(q
∗)|

1
2 exp

{
−
1

2
ϑ(q− q∗)⊤(−∆Hϑ(q

∗))(q − q∗)

}
+ o

(
‖q− q∗‖2

)
. (58)

That is, in the limit of large ϑ, q is asymptotically normally distributed with mean q∗ and variance

− 1
ϑ
δHϑ(q

∗)−1, where ∆Hϑ(q) =
(
∂2

Hϑ

∂qi∂qj

)
i,j=1,...,n

with ∂2
Hϑ

∂q2i
given by Equation (45) while, for any

i 6= j, ∂2
Hϑ

∂qi∂qj
given by Equation (46).

We next turn to part (ii) of the proposition. We show that the networks G in the support of the
stationary distribution µϑ(q, G) in the limit of vanishing noise ϑ→ ∞ is a nested split graph. A graph G
is a nested split graph if for every node i ∈ N there exist a weight xi and a threshold T such that vertices
i and j are linked if and only if xi + xj ≥ T [Mahadev and Peled, 1995].

In the limit ϑ → ∞ the conditional probability of the network G can be written as µ∗(G|q) =

limϑ→∞ µϑ(G|q) =
∏n
i<j 1

aij
{ρqiqj>ζ}

1
1−aij
{ρqiqj<ζ}

. Assume that G is a stochastically stable network, that is
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for G ∈ Ω∗, we must have that µ∗(q, G) = limϑ→∞ µϑ(q, G) > 0. Since, µ∗(q, G) = µ∗(G|q)µ∗(q) this
implies that µ∗(G|q) > 0. It follows that ρqiqj > ζ for all aij = 1 and ρqiqj < ζ for all aij = 0. We then
define the weights xi ≡ log qi, xj ≡ log qj and a threshold T ≡ log ζ − log ρ, and conclude that G is a
nested split graph (or threshold graph, see also supplementary Appendix B).

Moreover, the output distribution is given by µϑ(q) = 1
Zϑ

∑
G∈Gn eϑΦ(q,G) = 1

Z ϑ
n
eϑHϑ(q), where the

Hamiltonian is given by Equation (41). The output profile that maximizes the Hamiltonian can be found

from the FOC , ∂Hϑ

∂qi
= 0, from which we get

qi =
ηi
2ν

+
1

2ν

n∑

j 6=i

(
ρ

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))
− b

)
qj .

Taking the limit ϑ→ ∞ and noting that

lim
ϑ→∞

1

2

(
1 + tanh

(
ϑ

2
(ρqiqj − ζ)

))
=

{
1, if ρqiqj > ζ,
0, if ρqiqj < ζ,

we thus obtain79

qi =
ηi
2ν

+
1

2ν

n∑

j 6=i

qj

(
ρ1{qiqj> ζ

ρ}
− b
)
. (59)

Note that for any profile of output levels q there exists a unique nested split graph with adjacency matrix
A = (aij)1≤i,j,n whose elements are given by aij = 1{qiqj> ζ

ρ}
. Then we can write Equation (59) as follows

qi =
ηi
2ν

+
ρ

2ν

n∑

j 6=i

aijqj −
b

2ν

n∑

j 6=i

qj . (60)

Moreover, assume that ηi > ηj , then we want to show that qj > qi for the output profile q solving
Equation (59). For this purpose we consider the iteration

qi,t+1 = fi(qt) ≡ max



0,

ηi
2ν

+
ρ

2ν

n∑

j 6=i

qj,t1{qi,tqj,t> ζ
ρ}

−
b

2ν

n∑

j 6=i

qj



 , (61)

starting from the initial vector q0 = (0, . . . , 0)⊤. We then observe that the map fi : R+ → R+ is η-order
preserving. That is, if ηi > ηj and qi,t > qj,t, then also qi,t+1 > qj,t+1. To show this we proceed by
induction. For the induction basis consider t = 0. Then qi,1 = ηi for all i = 1, . . . , n, and the claim follows.
Next, consider the induction step, assuming that the claim holds for some t > 0. Then

qi,t+1 − qj,t+1 = fi(qt)− fj(qt) =
b

2ν
(ηi − ηj) +

ρ

2ν

∑

k∈Ni,t\Nj,t

qk,t +
b

2ν
(qi,t − qj,t) > 0,

where we have used the fact that the condition qi,tqj,t >
ζ
ρ
for i and j being linked represents a nested

split graph, and for such a graph if qi,t > qj,t (so that di,t > dj,t) then Nj,t ⊂ Ni,t. Hence, for all t, the
claim holds, and in particular, taking the limit as t → ∞ it holds for the fixed point q solving Equation
(59).

We now give a proof of part (iii) of the proposition. From Equation (17) we know that in the stochas-
tically stable state the output levels satisfy the following equation

g(q) ≡ (In + bB− ρA)q = η, (62)

where B is a matrix of ones with zero diagonal and A has elements aij = 1{ρqiqj>ζ}. When the (ηi)
n
i=1 are

real valued random variables with probability density function f , then the probability density function µ
of q is given by

µ(q) =

∣∣∣∣det
(
dg(q))

dq

)∣∣∣∣ f(η),

where
(
dg(q)
dq

)
ij
= ∂gi(q)

∂qi
. From Equation (62) we get dg(q)

dq
= In+ bB− ρA, and we denote this by M. It

79Note that Hϑ(q) is a real valued function that converges pointwise and whose derivatives converge uniformly
on a closed interval [0, q̄] so that we can exchange the derivative with the limit [Rudin, 1987].
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Figure A.3: (Left panel) The stationary output distribution. The vertical dashed lines indicate the theoretical
predictions from Equation (56). (Right panel) The average output level from numerical simulations with ϑ = 1
starting with different initial conditions (indicated with different colors). The horizontal dashed lines indicate the
equilibrium quantities and the vertical dashed lines the threshold cost levels from Equation (13). In the region of
the cost ζ between the lower and upper thresholds two equilibria exist.

then follows that µ(q) = | det(M)|f(Mq). In particular, if the (ηi)
n
i=1 are identically and independently

Pareto distributed with density function f(η) = (γ − 1)η−γ for η ≥ 1 then

µ(q) = (γ − 1)n| det(M)|
n∏

i=1

(Mq)−γi .

Next, consider q = cu, c > 0, with u being a vector of all ones. Then M = In + (b − ρ)B for c large
enough (because ρqiqj = c2ρ > ζ for c large enough), and det(M) = (1 + (n− 1)(b− ρ)) (1 + b + ρ)n−1.
Further, (Mq)i = 1 + (n− 1)(b− ρ), so that we can write

µ(cu) = (1 + (n− 1)(b− ρ)) (1 + b+ ρ)n−1(γ − 1)n (1 + (n− 1)(b− ρ))
−nγ

c−nγ ,

and we conclude that µ(cu) ∼
∏n
i=1O (c−γ) as c→ ∞. ✷

Figure A.2 shows the output iteration of Eq. (61) over the firm fixed effects ηi together with the
adjacency matrix A = (aij)1≤i,j,n (see also Figure 4) whose elements are given by aij = 1{qiqj> ζ

ρ}
and the vector q is the fixed point of Equation (61). We observe that firms with higher ηi also have
higher output levels. Moreover, the corresponding adjacency matrix is stepwise, characterizing a
nested split graph (see also supplementary Appendix B), and becomes increasingly sparse with
increasing linking costs ζ.

An illustration with the average output level from numerical simulations starting with different
initial conditions and a comparison with the predictions of Equation (56) can be seen in Figure
A.3.

Proof of Proposition 4. We first give a proof of part (i) of the proposition. Welfare can be written
as follows

W (q) = U(q) + Π(q, G)

=
1

2

n∑

i=1

q2i +
b

2

n∑

i=1

n∑

j 6=i

qiqj +

n∑

i=1


ηqi − νq2i − b

n∑

j 6=i

qiqj + ρ

n∑

j=1

aij(qiqj − ζ)




= η

n∑

i=1

qi −
2ν − 1

2

n∑

i=1

q2i −
b

2

n∑

i=1

n∑

j 6=i

qiqj +

n∑

i=1

n∑

j 6=i

aij(ρqiqj − ζ).

The only network dependent part inW (q, G) is the last term
∑n

i=1

∑n
j 6=i aij(ρqiqj−ζ). For a given output

vector q the network that maximizes this term is a nested split graph G (see also supplementary Appendix
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Figure A.4: (Left panel) An illustration of the neighborhoods of i, j such that Ni ⊂ Nj . (Right panel) A schematic
representation of a nested split graph G (see supplementary Appendix B).

B) where each link ij ∈ G if and only if ρqiqj > ζ.80 Hence, we can write welfare reduced to this class of
networks as follows

W (q) = η

n∑

i=1

qi −
2ν − 1

2

n∑

i=1

q2i −
b

2

n∑

i=1

n∑

j 6=i

qiqj +

n∑

i=1

∑

j 6=i

(ρqiqj − ζ)1{ρqiqj>ζ}.

The necessary first order condition (FOC) can be written as follows

∂W

∂qi
= η − (2ν − 1)qi − b

n∑

j 6=i

qj + ρ

n∑

j 6=i

qj1{ρqiqj>ζ} = 0. (63)

We next consider a symmetric solution qi = q for all i = 1, . . . , n with the property that ρq2 > ζ. Then
Equation (63) implies that

η − (2ν − 1)q + (2ρ− b)(n− 1)q = 0,

from which we deduce that

q =
η∗

b+ 2ν∗ − 2ρ− 1
n−1

,

where we have denoted by η∗ = η/(n− 1) and ν∗ = ν/(n− 1). The corresponding network is a complete
graph, Kn. Further, for a symmetric solution with ρq2 < ζ from Equation (63) we must have that

η + (1− 2ν)q − b(n− 1)q = 0,

from which we deduce that

q =
η∗

b+ 2ν∗ − 1
n−1

.

The corresponding network is an empty graph, Kn. Note that welfare in the complete network Kn and
the empty network Kn is the same if ζ = ζ∗ where ζ∗ is given in Equation (21).

Consider a degree partition D1,D2, . . . ,Dm (see also supplementary Appendix B) in a nested split
graph G such that di < dj if i ∈ Dk, j ∈ Dk′ with k′ > k. From the symmetry of the FOC in Equation
(63) it follows that for any i, j ∈ Dk it must hold that qi = qj . Moreover, from the FOC we also observe
that when di < dj then qi < qj .

Further, we show that either the complete network Kn or the empty network Kn are efficient. To
do so, assume that G is efficient, and it is neither empty nor complete. Let the output profile in G
be q. We know that the efficient network is a nested split graph. Consider i, j such that qj > qi and
Ni ⊂ Nj . Let G′ be the graph obtained from G with the links of j in Nj\Ni removed. Further, let
q′ = (qi, . . . , qj−1, qi, qj+1, . . . , qn), that is, q′ is obtained from q be replacing qj with qi. An illustration

80A graph G is a nested split graph if for every node i ∈ N there exist a weight xi and a threshold T such that
vertices i and j are linked if and only if xi + xj ≥ T [Mahadev and Peled, 1995]. Then by letting ln qi = xi and
ln(ζ/ρ) = T yields ρqiqj > ζ iff xi + xj ≥ T the conclusion follows.
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can be seen in the left panel in Figure A.4. We then have that

W (q′, G′)−W (q, G) = (qi − qj)


η + 1− 2ν

2
(qi + qj)− b

∑

k 6=j

qk + 2ρ
∑

k∈Ni

qk


− 2

∑

k∈Nj\Ni

(ρqjqk − ζ).

Similarly, consider the graph G′′ obtained from G with the links in Nj\Ni added to i. Further, let
q′′ = (qi, . . . , qi−1, qj , qi+1, . . . , qn), that is, q

′′ is obtained from q be replacing qi with qj . Then we have
that

W (q′′, G′′)−W (q, G) = (qj − qi)


η + 1− 2ν

2
(qi + qj)− b

∑

k 6=j

qk + 2ρ
∑

k∈Ni

qk


+ 2

∑

k∈Nj\Ni

(ρqjqk − ζ).

It follows that W (q′′, G′′) − W (q, G) + W (q′, G′) − W (q, G) = 0. There are three possible cases to
consider such that this equality holds. First, if W (q′′, G′′) − W (q, G) < 0 then we must have that
W (q′, G′) −W (q, G) > 0. This means that W (q′, G′) > W (q, G) and (q, G) is not efficient. Second, if
W (q′, G′)−W (q, G) < 0 then we must have thatW (q′′, G′′)−W (q, G) > 0. This means thatW (q′′, G′′) >
W (q, G) and (q, G) is not efficient. The third case to consider is W (q′′, G′′) −W (q, G) = 0. Then we
must have that W (q′′, G′′) =W (q′, G′) =W (q, G).

From the definition of q′′ and G′′ we see that the transition from G to G′′ corresponds to moving a node
from a degree partition Dk to a partition Dl with l > k, while leaving welfare unchanged. An illustration
can be seen in the right panel in Figure A.4. In particular, (q′′, G′′) must be efficient. We then can repeat
this procedure to move up the node to the next higher partition while leaving welfare unchanged. Doing
this across all partitions and for all nodes shows that we end up with the complete graph, Kn, with the
same welfare as the original graph G. However, this is a contradiction to our initial assumption that the
complete graph is not efficient. This shows that either the empty, Kn, or the complete graph, Kn, must
be efficient.

We next consider part (ii) of the proposition. In the heterogeneous firms case, welfare can be written
as

W (q) =

n∑

i=1

ηiqi −
2ν − 1

2

n∑

i=1

q2i −
b

2

n∑

i=1

n∑

j 6=i

qiqj +

n∑

i=1

n∑

j 6=i

aij(ρqiqj − ζ).

The only network dependent part in W (q, G) is the last term
∑n

i=1

∑n
j 6=i aij(ρqiqj − ζ), and, as in part

(i), for a given output vector q the network that maximizes this term is a nested split graph G where each
link ij ∈ G if and only if ρqiqj > ζ. Moreover, from the necessary FOC we obtain

qi = fi(q) ≡ max



0,

ηi
2ν − 1

−
b

2ν − 1

n∑

j 6=i

qj +
ρ

2ν − 1

n∑

j 6=i

qj1{ρqiqj>ζ}



 . (64)

We can compare this to the equilibrium output levels of Equation (59), which were given by

qi = gi(q) ≡ max



0,

ηi
2ν

−
b

2ν

n∑

j 6=i

qj +
ρ

2ν

n∑

j 6=i

qj1{ρqiqj>ζ}



 . (65)

We have for any q ∈ Qn that fi(q) > gi(q). This is because

fi(q)− gi(q) =

(
1

2ν − 1
−

1

2ν

)
ηi − b

n∑

j 6=i

qj + ρ

n∑

j 6=i

qj1{ρqiqj>ζ}


 ≥ 0.

Next, consider the differential equations dx
dt

= f(x) − x and dy
dt

= g(y) − y, both with initial condition

x0 = y0 = (0, . . . , 0)⊤. Because f(x) > g(x), the comparison lemma implies that x(t) > y(t) for all t ≥ 0
(see Khalil [2002], Lemma 3.4). In particular, we can conclude that the fixed point f(q) = q must be
higher than the fixed point g(q) = q. That is, in the stochastically stable equilibrium output levels are
too low compared to the social optimum. Moreover, because a link is only present if ρqiqj > ζ there are
fewer links in the stochastically stable network than in the efficient network. ✷
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B. Definitions and Characterizations

A network (graph) G is the pair (N , E) consisting of a set of nodes (vertices) N = {1, . . . , n} and a
set of edges (links) E ⊂ N × N between them. A link (i, j) is incident with nodes i and j. The
neighborhood of a node i ∈ N is the set Ni = {j ∈ N : (i, j) ∈ E}. The degree di of a node i ∈ N

gives the number of links incident to node i. Clearly, di = |Ni|. Let N
(2)
i =

⋃
j∈Ni

Nj\ (Ni ∪ {i})

denote the second-order neighbors of node i. Similarly, the k-th order neighborhood of node i is

defined recursively from N
(0)
i = {i}, N (1)

i = Ni and N
(k)
i =

⋃
j∈N

(k−1)
i

Nj\
(⋃k−1

l=0 N
(l)
i

)
. A walk in G

of length k from i to j is a sequence 〈i0, i1, . . . , ik〉 of nodes such that i0 = i, ik = j, ip 6= ip+1, and
ip and ip+1 are (directly) linked, that is ipip+1 ∈ E, for all 0 ≤ p ≤ k − 1. Nodes i and j are said to
be indirectly linked in G if there exists a walk from i to j in G containing nodes other than i and j.
A pair of nodes i and j is connected if they are either directly or indirectly linked. A node i ∈ N

is isolated in G if Ni = ∅. The network G is said to be empty (denoted by K̄n) when all its nodes
are isolated.

A subgraph, G′, of G is the graph of subsets of the nodes, N (G′) ⊆ N (G), and links, E(G′) ⊆

E(G). A graph G is connected, if there is a path connecting every pair of nodes. Otherwise G is
disconnected. The components of a graph G are the maximally connected subgraphs. A component
is said to be minimally connected if the removal of any link makes the component disconnected.

Given a graph G and a set S ⊆ N , we say that GS is the subgraph G induced S whenever the
adjacency matrix of GS is AS. We write G−S to denote the network GN\S, that is G−S is the
network that results after eliminating all the nodes in S.

A dominating set for a graph G = (N , E) is a subset S ⊆ N such that every node not in S

is connected to at least one member of S by a link. An independent set is a set of nodes in a
graph in which no two nodes are adjacent. For example the central node in a star K1,n−1 forms
a dominating set while the peripheral nodes form an independent set.

Let G = (N , E) be a graph whose distinct positive degrees are d(1) < d(2) < . . . < d(k), and
let d0 = 0 (even if no agent with degree 0 exists in G). Further, define Di = {v ∈ N : dv = d(i)}

for i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is called the degree partition of
G. A nested split graph is a graph with a nested neighborhood structure such that the set of
neighbors of each node is contained in the set of neighbors of each higher degree node [Cvetkovic
and Rowlinson, 1990; Mahadev and Peled, 1995]. Let D = (D0,D1, . . . ,Dk) be the degree partition
of a nested split graph G = (N , E). Then the nodes N can be partitioned in independent sets
Di, i = 1, . . . ,

⌊
k
2

⌋
and a dominating set

⋃k
i=⌊ k

2 ⌋+1 Di in the graph G′ = (N\D0, E). Moreover, the

neighborhoods of the nodes are nested. In particular, for each node v ∈ Di, Nv =
⋃i
j=1 Dk+1−j if

i = 1, . . . ,
⌊
k
2

⌋
if i = 1, . . . , k, while Nv =

⋃i
j=1 Dk+1−j \ {v} if i =

⌊
k
2

⌋
+ 1, . . . , k. See also the left

panel in Figure B.1.
In a complete graph Kn, every node is adjacent to every other node. The graph in which no

pair of nodes is adjacent is the empty graph Kn. A clique Kn′ , n′ ≤ n, is a complete subgraph
of the network G. A graph is k-regular if every node i has the same number of links di = k for
all i ∈ N . The complete graph Kn is (n − 1)-regular. The cycle Cn is 2-regular. In a bipartite

graph there exists a partition of the nodes in two disjoint sets V1 and V2 such that each link
connects a node in V1 to a node in V2. V1 and V2 are independent sets with cardinalities n1 and
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D1

D2

D3D4

D5

D6

A =




0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 0 0
1 1 1 0 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0




Figure B.1: (Left panel) Representation of nested split graphs and their degree partitions D with corresponding
adjacency matrices A. A line between Di and Dj indicates that every node in Di is adjacent to every node in
Dj . The partitions included in the solid frame (Di with

⌊
k
2

⌋
+ 1 ≤ i ≤ k) are the dominating subsets while the

partitions in the dashed frame (Di with 1 ≤ i ≤
⌊
k
2

⌋
) are the independent sets with k = 6. The illustration follows

Mahadev and Peled [1995, p. 11]. (Right panel) The corresponding stepwise adjacency matrix A with elements
aij satisfying the following condition: if i < j and aij = 1 then ahk = 1 whenever h < k ≤ j and h ≤ i.

n2, respectively. In a complete bipartite graph Kn1,n2 each node in V1 is connected to each other
node in V2. The star K1,n−1 is a complete bipartite graph in which n1 = 1 and n2 = n− 1.

The complement of a graph G is a graph G with the same nodes as G such that any two nodes
of G are adjacent if and only if they are not adjacent in G. For example the complement of the
complete graph Kn is the empty graph Kn.

Let A be the symmetric n × n adjacency matrix of the network G. The element aij ∈ {0, 1}

indicates if there exists a link between nodes i and j such that aij = 1 if (i, j) ∈ E and aij = 0 if
(i, j) /∈ E. The k-th power of the adjacency matrix is related to walks of length k in the graph. In
particular,

(
Ak
)
ij
gives the number of walks of length k from node i to node j. The eigenvalues of

the adjacency matrix A are the numbers λ1, λ2, . . . , λn such that Avi = λivi has a nonzero solution
vector vi, which is an eigenvector associated with λi for i = 1, . . . , n. Since the adjacency matrix
A of an undirected graph G is real and symmetric, the eigenvalues of A are real, λi ∈ R for all
i = 1, . . . , n. Moreover, if vi and vj are eigenvectors for different eigenvalues, λi 6= λj , then vi and
vj are orthogonal, i.e. v⊤

i vj = 0 if i 6= j. In particular, Rn has an orthonormal basis consisting
of eigenvectors of A. Since A is a real symmetric matrix, there exists an orthogonal matrix S

such that S⊤S = SS⊤ = I (that is S⊤ = S−1) and S⊤AS = D, where D is the diagonal matrix of
eigenvalues of A and the columns of S are the corresponding eigenvectors. The Perron-Frobenius

eigenvalue λPF(G) is the largest real eigenvalue of A associated with G, i.e. all eigenvalues λi of
A satisfy |λi| ≤ λPF(G) for i = 1, . . . , n and there exists an associated nonnegative eigenvector
vPF ≥ 0 such that AvPF = λPF(G)vPF. For a connected graph G the adjacency matrix A has a
unique largest real eigenvalue λPF(G) and a positive associated eigenvector vPF > 0. There exists
a relation between the number of walks in a graph and its eigenvalues. The number of closed
walks of length k from a node i in G to herself is given by

(
Ak
)
ii
and the total number of closed

walks of length k in G is tr
(
Ak
)
=
∑n

i=1

(
Ak
)
ii
=
∑n
i=1 λ

k
i . We further have that tr (A) = 0, tr

(
A2
)

gives twice the number of links in G and tr
(
A3
)
gives six times the number of triangles in G.

A nested split graph is characterized by a stepwise adjacency matrix A, which is a symmetric,
binary (n × n)-matrix with elements aij satisfying the following condition: if i < j and aij = 1

then ahk = 1 whenever h < k ≤ j and h ≤ i. See also the right panel in Figure B.1. Both, the
complete graph, Kn, as well as the star K1,n−1, are particular examples of nested split graphs.
Nested split graphs are also the graphs which maximize the largest eigenvalue, λPF(G), [Brualdi
and Solheid, 1986], and they are the ones that maximize the degree variance [Peled et al., 1999].
See e.g. König et al. [2014a] for further properties.

Given n and p ∈ [0, 1], the random graph G(n, p) is generated by letting each pair of nodes
be connected by an edge with probability p, independently. A natural generalization of G(n, p)
is obtained by replacing the single parameter p by a symmetric n × n matrix (pij)1≤i,j,n with
0 ≤ pij ≤ 1. We write G(n, (pij)) for the inhomogeneous random graph with nodes set N where i and

2



j are connected by a link with probability pij , and these events are independent for all pairs (i, j)

with 1 ≤ i < j ≤ n [cf. Bollobás et al., 2007; Söderberg, 2002].
Given a set of attributes A = {a1, a2, . . . , am}, a vertex v is associated with the set S(v) of

attributes selected by v from A. Let the vertics v1, . . . , vn choose their attribute sets Si = S(vi),
1 ≤ i ≤ n, independently at random, and make vi and vj adjacent whenever they have at least
s ≥ 1 attributes in common, that is, |Si ∩ Sj | ≥ s. The graph on the vertex set N = {v1, . . . , vn}

defined by this adjacency relationship is then called the random intersection graph G(n,m, s) [cf.
Bloznelis, 2013; Deijfen and Kets, 2009; Newman, 2003; Singer-Cohen, 1995].

C. Cournot Competition and Profits from R&D Collaborations

We consider a Cournot oligopoly game in which a set N = {1, . . . , n} of firms is competing in a
homogeneous product market.81 We assume that firms are not only competitors in the product
market, but they can also form pairwise collaborative agreements.82 These pairwise links involve
a commitment to share R&D results and thus lead to lower marginal cost of production of the
collaborating firms.83 The amount of this cost reduction depends on the effort the firms invest
into R&D. Given the collaboration network G ∈ Gn, where Gn denotes the set of all graphs with
n nodes, each firm sets an R&D effort level unilaterally.84 Given the effort levels ei ≥ 0, marginal
cost ci ≥ 0 of firm i is given by [cf. Spence, 1984]85 ,86

ci(e, G) = c̄i − αei − β
n∑

j=1

aijej , (66)

where aij = 1 if firms i and j set up a collaboration (0 otherwise) and aii = 0. The parameter
α ≥ 0 measures the relative cost reduction due to a firms’ own R&D effort while the parameter
β ≥ 0 measures the relative cost reduction due to the R&D effort of its collaboration partners.87

We further allow for ex ante heterogeneity among firms in the variable cost c̄i ≥ 0, for i = 1, . . . , n

[see also Banerjee and Duflo, 2005], expressing their different technological and organizational
capabilities.88

Moreover, we also assume that firms incur a direct cost γe2i , γ ≥ 0, for their R&D efforts and
a fixed cost ζ ≥ 0 for each R&D collaboration.89 The profit of firm i, given the R&D network G

81Generalizations to Bertrand competition are straight forward [see König et al., 2014b; Westbrock, 2010].
82Such R&D collaborations often involve competing firms, as for example a strategic alliance between Pfizer and

Bayer, both operating in the pharmaceuticals sector (with primary standard industry classification code 2834) to
develop treatments for obesity, type 2 diabetes and other related disorders in the year 2006 illustrates.

83R&D partnerships have become a widespread phenomenon characterizing technological dynamics, especially in
industries with rapid technological development such as, for instance, the pharmaceutical and chemical industries
[see e.g. Hagedoorn, 2002; Powell et al., 2005; Roijakkers and Hagedoorn, 2006]. In these industries firms have
become more specialized in specific domains of a technology and they tend to combine their knowledge with that
of other firms that are specialized in different domains in order to jointly generate innovations that can help to
develop new products or reduce their production costs [Ahuja, 2000; Powell et al., 1996]. For example, Bernstein
[1988] finds that R&D spillovers decrease the unit costs of production for a sample of Canadian firms. Similarly
Belderbos et al. [2004] find evidence for production cost reductions due to R&D collaborations using data on a
large sample of Dutch innovating firms.

84See also Kamien et al. [1992] for a similar model of competitive RJVs in which firms unilaterally choose their
R&D effort levels.

85Note that we have neglected spillovers among non-collaborating firms. For an extension incorporating this
additional spillover channel see König et al. [2014b].

86This generalizes earlier studies such as the one by D’Aspremont and Jacquemin [1988] where spillovers were as-
sumed to take place between all firms in the industry and no distinction between collaborating and non-collaborating
firms was made.

87Note that in this model, firms are exposed to business stealing effects if their rivals increase their output via
cost reducing R&D collaborations.

88Blundell et al. [1995] argued that because the main source of unobserved heterogeneity in models of innovation
lies in the different knowledge stocks with which firms enter a sample, a variable that approximates the build-up
of firm knowledge at the time of entering the sample is a particularly good control for unobserved heterogeneity.

89In Section 2.4 we discuss several extensions of the model including heterogeneous linking costs.
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and the quantities 0 ≤ qi ≤ q̄ and efforts 0 ≤ ei ≤ ē, is then given by

πi(q, e, G) = (pi − ci)qi − γe2i − ζdi, (67)

with vectors q = (qi)
n
i=1 and e = (ei)

n
i=1. Inserting marginal costs from Equation (66) gives

πi(q, e, G) = piqi − c̄iqi + αqiei + βqi

n∑

j=1

aijej − γe2i − ζdi.

The first-order condition with respect to R&D effort ei is given by ∂πi(q,e,G)
∂ei

= αqi − 2γei = 0.
Solving for ei and taking into account that ei ∈ [0, ē] delivers e∗i = min{λqi, ē}, where we have
denoted by λ = α

2γ .
90 This equation can be viewed as reflecting learning-by-doing effects on

R&D efforts. It reflects various empirical studies which have found that the R&D effort of a firm
is correlated with its output or size [Cohen and Klepper, 1996a,b]. We then can write marginal
costs from Equation (66) as follows91

ci(e
∗(q), G) = c̄− λαqi − λβ

n∑

j=1

aijqj . (68)

Profits can be written as

πi(q, G) ≡ πi(q, e
∗(q), G) = piqi − c̄qi − λαq2i + λβqi

n∑

j=1

aijqj − λ2γq2i − ζdi. (69)

Next we consider the demand for goods produced by firm i. A representative consumer
maximizes [Singh and Vives, 1984]

U(I, q1, . . . , qn) = I + a
n∑

i=1

qi −
1

2

n∑

i=1

q2i −
b

2

n∑

i=1

∑

j 6=i

qiqj , (70)

with the budget constraint I+
∑n

i=1 qi ≤ E and endowment E. The parameter a captures the total
size of the market, whereas b ∈ (0, 1], measures the degree of substitutability between products.
In particular, b = 1 depicts a market of perfect substitutable goods, while b → 0 represents the
case of almost independent markets.92 The constraint is binding and the utility maximization of
the representative consumer gives the inverse demand function for firm i

pi = a− qi − b
∑

j 6=i

qj . (71)

Firm i then sets its quantity, qi, in order to maximize its profit, πi, given by Equation (69).
We also assume that there is a maximum production capacity q such that qi ≤ q for all i ∈ N .
Inserting marginal cost from Equation (68) and inverse demand from Equation (71) we can write
firm i’s profit as

πi(q, G) = (a− c̄i)qi − (1− λα + λ2γ)q2i − bqi
∑

j 6=i

qj + λβ

n∑

j=1

aijqiqj − ζdi. (72)

90König et al. [2014b] show that with qi ∈ [0, q̄] we must have that 0 ≤ ei ≤ qi ≤ q̄, and requiring that
mini∈N c̄i > q̄(1 + β(n− 1)), implies that the best response effort level of firm i is given by e∗i = λqi.

91We assume that firms always implement the optimal R&D effort level. Since the optimal R&D effort decision
only depends on a firm’s own output, we assume that a firm does not face any uncertainty when implementing this
strategy. In Section 2.2 we will, however, introduce noise in the optimal output and collaboration decisions, since
these depend on the decisions of all other firms in the industry and their characteristics, which might be harder to
observe.

92Observe that we do not ex ante impose any restrictions on the parameter b, in particular, we do not require
that b = 1 nor b = 0.
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In the following we will denote by ηi ≡ a− c̄i, ν ≡ 1− λα+ λ2γ and ρ ≡ λβ, so that Equation (72)
becomes [cf. Ballester et al., 2006]

πi(q, G) = ηiqi − νq2i︸ ︷︷ ︸
own concavity

−bqi

n∑

j 6=i

qj

︸ ︷︷ ︸
global substitutability

+ ρqi

n∑

j=1

aijqj

︸ ︷︷ ︸
local complementarity

−ζdi,

which is exactly Equation (1) in Section 2.

D. Multinomial Logit Output Choice

Consider a discretization (partition) QN = {0,∆q, 2∆q, . . . , q} of the interval Q = [0, q] into N

subintervals with length ∆q = q̄/N for some (large) N . Let the profit of firm i from choosing an
output level qi ∈ QN be given by πi(qi,q−i, G) + εi. When the error term εi is independently and
identically type-I extreme value distributed with parameter ϑ we get [cf. Anderson et al., 1992]:93

P

(
qi = argmax

q′i∈Qs

{πi(qi,q−i, G) + εi}

)
=

eϑπi(qi,q−i,G)

∑
q′i∈QN

eϑπi(q′i,q−i,G)
.

Assume that the output adjustment rate is given by χN/q̄ > 0. Then

P (ωt+∆t = (qi,q−it, Gt)|ωt = (qt, Gt)) =
χN

q̄
P

(
qi = argmax

q′i∈Qs

{πi(q
′
i,q−i, G) + ε}

)
∆t+ o(∆t)

=
χN

q̄

eϑπi(qi,q−it,Gt)

∑
q′i∈QN

eϑπi(q′i,q−it,Gt)
∆t+ o(∆t)

= χ
eϑπi(qi,q−it,Gt)

∑
q′i∈QN

eϑπi(q′i,q−it,Gt)∆q
∆t+ o(∆t). (73)

Using the trapezoidal rule we can write the sum in the denominator in the last line of Equation
(73) as follows [see e.g. Atkinson, 1989]

∑

q′i∈QN

eϑπi(q
′
i,q−it,Gt)∆q =

∫

Q

eϑπi(q
′,q−it,Gt)dq′ +

∆q

2

(
eϑπi(0,q−it,Gt) + eϑπi(q̄,q−it,Gt)

)
+ o(∆q). (74)

Then in the limit of N → ∞, respectively, ∆q ↓ 0, we can write

P (ωt+∆t = (qi,q−it, Gt)|ωt = (qt, Gt)) = χ
eϑπi(q,q−it,Gt)

∫
Q
eϑπi(q′,q−it,Gt)dq′

∆t+ o(∆t),

which is exactly Equation (3). See also Anderson et al. [2004, 2001]; Ben-Akiva and Watanatada
[1981]; McFadden [1976] for further discussion. The transition probability then states that with
increasing values of ϑ (lower levels of noise), firms choose output levels with higher probability
that yield higher profits.

E. Firm Heterogeneity

In the following sections we will discuss three possible extensions of the model that incorporate
firm heterogeneity. First, in Section E.1 we allow for heterogeneous collaborations costs. Second,
in Section E.2 we incorporate heterogenous spillovers between collaborating firms.

93For a type-I extreme value distributed random variable ε we have that P(ε ≤ c) = e−ec/ζ−γ

, where γ ≈ 0.58 is

Euler’s constant. The mean is E(ε) = 0 and the variance is given by Var(ε) = π2ζ2

6
.
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E.1. Heterogeneous Marginal Collaboration Costs

In the following we assume that the marginal cost of collaboration between firms i and j can be
written as ζi(G) =

∑n
j=1 aijψij (cf. Equation (23)), where the function ψij is additively separable

ψij = si + sj, and we assume that the cost si ≥ 0 is proportional to the inverse of the firm’s
productivity, that is si = 1

φi
, where φi > 0 is the productivity (or efficiency) of firm i [similar

to e.g. Melitz, 2003; Melitz et al., 2008]. This implies that firms with higher productivity incur
lower collaboration costs. The probability of a link between firms i and j is then given by (cf.
Equation (16)):94

pϑ(qi, si, qj , sj) =
eϑ(ρqiqj−si−sj)

1 + eϑ(ρqiqj−si−sj)
. (75)

Next, we assume that the firms’ productivities, φi ≥ c > 0, are Pareto distributed [cf. e.g. Gabaix,
2009; König et al., 2016; Melitz et al., 2008], with density f(x) = γ

c

(
c
x

)γ+1
with x > c, where c > 0

is a lower-cut-off and γ > 0 is a positive parameter. The complementary distribution function is
then given by F (x) = 1 −

(
c
x

)γ
. It follows that the cost s = 1

φ
has the density f(s) = γcγsγ−1 for

s ∈
(
0, 1

c

)
, and the cumulative distribution function F (s) = (cs)

γ .95

Proposition 5. Assume that the firms output levels are concentrated on q∗ in the limit of ϑ → ∞, then
under the continuum approximation,96 the degree distribution is given by

P (k) =
cγ

k

(
ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

)γ−1(
k

(n− 1)cγ

) 1
γ

, (76)

and for large k the degree distribution P (k) decays as O
(
k−

γ−1
γ

)
.

Proof of Proposition 5. The generating function of the degree d1(G) is given by

E

(
x
d1(G)
1

)
= E

(
E

(
x
d1(G)
1

∣∣∣ q1, s1
))

= E

((
E

(
1 + p(q1, s1, q2, s2)x1
1 + p(q1, s1, q2, s2)

∣∣∣∣ q1, s1
))n−1

)
,

With the cost distributed as f(s) = γcγsγ−1 for s ∈
(
0, 1

c

)
, we can write

E

(
x
d1(G)
1

∣∣∣ q1 = q, s1 = s
)
= E

(
1 + p(q, s, q2, s2)x1
1 + p(q, s, q2, s2)

∣∣∣∣ q, s
)n−1

= (1 + (x1 − 1)E (p(q, s, q2, s2)| q1 = q, s1 = s))
n−1

=

(
1 + (x1 − 1)

∫

Q

dq′µϑ(q′)

∫
ds′γcγ(s′)γ−1p(q, s, q′, s′)

)n−1

=

(
1 + (x1 − 1)

∫

Q

dq′µϑ(q′)

∫
ds′γcγ(s′)γ−1 eϑ(ρqq

′−s−s′)

1 + eϑ(ρqq′−s−s′)

)n−1

.

94Similar specifications can be found in the empirical literature on network formation [cf. Graham, 2015]. For
example, Graham [2014] and Fafchamps and Gubert [2007] consider an econometric network formation model in

which the probability of a link between agents i and j is given by P(aij = 1) = e
Xi+Xj+Z⊤

ijβ

1+e
Xi+Xj+Z⊤

ij
β

where Xi is an

agent specific fixed effect and Zij is a vector of pair specific covariates. Similarly, Chatterjee et al. [2011] analyze

a network formation model with linking probability P(aij = 1) = e
Xi+Xj

1+e
Xi+Xj

.
95In the following propositions we will assume that that the firms output levels are concentrated on q∗ in the limit

of ϑ→ ∞, and assumption that is typically satisfied in the simulation studies that we did. Moreover, concentration
can be shown to hold in the basic model with homogeneous firms that has been analyzed in the main part of the
paper.

96This is an approximation which has shown to be accurate in various network formation models as the network
size becomes large [Dorogovtsev and Mendes, 2013, pp. 117].
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In the limit of ϑ→ ∞ in Equation (75) we obtain

lim
ϑ→∞

pϑ(q, s, q′, s′) = lim
ϑ→∞

eϑ(ρqq
′−s−s′)

1 + eϑ(ρqq′−s−s′)
= 1{ρqq′>s+s′},

so that we can write

E

(
x
d1(G)
1

∣∣∣ q1 = q, s1 = s
)
=

(
1 + (x1 − 1)

∫

Q

dq′µϑ(q′)

∫
ds′γcγ(s′)γ−1

1{ρqq′>s+s′}

)n−1

=

(
1 + (x1 − 1)γcγ

∫ ρqq∗−s

0

ds′(s′)γ−1

)n−1

= (1 + (x1 − 1)cγ (ρqq∗ − s)
γ
)
n−1

= e(x1−1)(n−1)cγ(ρqq∗−s)γ .

This is the generating function of a Poisson random variable with expectation and variance given by
d̄(q, s) ≡ (n − 1)cγ (ρqq∗ − s)

γ
. When the cut-off c is small, the variance becomes small, and we can

approximate the Poisson random variable with a constant random variable at the expected value. Making
further a continuum approximation, where we treat the degree as a continuous variable, we can write

P (d1(G) = k| q1 = q, s1 = s) = δ
(
k − d̄(q, s)

)
= δ (k − (n− 1)cγ (ρqq∗ − s)

γ
) .

Note that under the continuum approximation there exists a one-to-one mapping from the degree k to the
cost s, where for a given k and output q, the cost s is given by

s = ρqq∗ −

(
k

(n− 1)cγ

) 1
γ

.

Using the fact that97

δ
(
k − (n− 1)cγ

(
ρ(q∗)2 − s

)γ)
= δ

(
s−

(
ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

))
1

γk

(
k

(n− 1)cγ

) 1
γ

. (77)

and assuming that the output distribution concentrates on q∗, the degree distribution is given by

P (k) =

∫
dsP (d1(G) = k| q1 = q∗, s1 = s) f(s)

= γcγ
∫
dsδ

(
s− (n− 1)cγ

(
ρ(q∗)2 − s

)γ)
sγ−1

= γcγ
∫
dsδ

(
k −

(
ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

))
1

γk

(
k

(n− 1)cγ

) 1
γ

sγ−1

=
cγ

k

(
ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

)γ−1(
k

(n− 1)cγ

) 1
γ

= O
(
k−

γ−1
γ

)
.

✷

Hence, we obtain a power law degree distribution with parameter γ−1
γ

, consistent with previous
empirical studies which have found power law degree distributions in R&D alliance networks [e.g.
Powell et al., 2005]. An illustration can be seen in Figure E.1 for the case of γ = 2 and n = 200

firms.

Proposition 6. Assume that the firms output levels are concentrated on q∗ in the limit of ϑ → ∞, then

97When g(x) is a continuously differentiable function in R it holds that δ(g(x)) =
∑m

i=1
δ(x−xi)
|g′(xi)|

where the m

roots xi satisfy g(xi) = 0 for all i = 1, . . . ,m.
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Figure E.1: (Top left panel) The empirical and the theoretical cumulative cost distribution F (s) = (cs)γ with
γ = 2 and c = 0.02. The empirical distribution is indicated with circles and the theoretical distribution with a
dashed line. (Top right panel) The degree distribution P (d). The dashed line indicates the theoretical prediction
of Equation (76). (Bottom left panel) The average nearest neighbor degree distribution knn(d), decreasing with
increasing degrees d and thus indicating a dissortative network. The dashed line indicates the theoretical prediction
of Equation (78). (Bottom right panel) The clustering degree distribution C(d), decreasing with increasing degree
d. The parameters used are b = 0.75, ν = 1 and ρ = 1. The distributions are computed across 10 independent
simulation runs with n = 200 firms.
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under the continuum approximation, the averge nearest neighbor degree distribution is given by

knn(k) = 1 +
(n− 1)2γc2γ

k

∫ ( k
(n−1)cγ )

1
γ

0

ds′(s′)γ−1(ρ(q∗)2 − s′)γ . (78)

Proof of Proposition 6. Next we compute the average nearest neighbor degree distribution

knn(k) = 1 +
1

P (k)

∫
ds

∫

Q

dqf(s)µϑ(q)g(k|q, s)k̃nn(q, s),

where

k̃nn(q, s) =

∫
ds′
∫

Q

dq′p(q′, s′|q, s)d̄(q′, s′),

g(k|q, s) = P (d1(G) = k| q1 = q, s1 = s) = δ
(
k − d̄(q, s)

)
,

d̄(q, s) = (n− 1)cγ (ρqq∗ − s)
γ

p(q′, s′|q, s) =
(n− 1)p(q, s, q′, s′)f(s′)µϑ(q′)

d̄(q, s)
,

lim
ϑ→∞

pϑ(q, s, q′, s′) = lim
ϑ→∞

eϑ(ρqq
′−s−s′)

1 + eϑ(ρqq′−s−s′)
= 1{ρqq′>s+s′}

µϑ(q) = δ(q − q∗)

f(s) = γcγsγ−1.

It then follows that

p(q′, s′|q, s) =
(n− 1)1{ρqq′>s+s′}γc

γ(s′)γ−1δ(q′ − q∗)

d̄(q, s)
,

and therefore

k̃nn(q, s) =
n− 1

d̄(q, s)

∫
ds′f(s′)

∫
dq′δ(q − q∗)1{ρqq′>s+s′}d̄(q

′, s′)

=
n− 1

d̄(q, s)

∫
ds′f(s′)1{ρqq∗>s+s′}d̄(q

∗, s′)

=
n− 1

d̄(q, s)

∫ ρqq∗−s

0

ds′f(s′)d̄(q∗, s′)

= c−γ(ρqq∗ − s)−γ
∫ ρqq∗−s

0

ds′γcγ(s′)γ−1(n− 1)cγ(ρ(q∗)2 − s′)−γ

=
(n− 1)γcγJ(q, s)

(ρqq∗ − s)γ
,

where we have denoted by

J(q, s) ≡

∫ ρqq∗−s

0

ds′(ρ(q∗)2 − s′)γ(s′)γ−1.

We then get

knn(k) = 1 +
1

P (k)

∫
ds

∫

Q

dqf(s)δ(q − q∗)δ
(
k − d̄(q, s)

)
k̃nn(q, s)

= 1 +
1

P (k)

∫
dsγcγsγ−1δ

(
k − d̄(q∗, s)

)
k̃nn(q

∗, s)

= 1 +
1

P (k)

∫
dsf(s)δ

(
k − d̄(q∗, s)

) (n− 1)γcγJ(q∗, s)

(ρqq∗ − s)γ
.

9



Using Equation (77) we can write this as

knn(k) = 1 +
1

P (k)
γcγ

(
ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

)γ−1
1

γk

(
k

(n− 1)cγ

) 1
γ

× (n− 1)cγγJ

(
q∗, ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

)

= 1 +
(n− 1)2γc2γ

k
J

(
q∗, ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

)

= 1 +
(n− 1)2γc2γ

k

∫ ( k
(n−1)cγ )

1
γ

0

ds′(s′)γ−1(ρ(q∗)2 − s′)γ .

✷

Figure E.1 shows the results from numerical simulations compared with the theoretical prediction
of Equation (78).

Proposition 7. Assume that the firms output levels are concentrated on q∗ in the limit of ϑ → ∞, then
under the continuum approximation, the clustering coefficient is given by

C(k) = 1{
k<(n−1)

(
ρ(q∗)2c

2

)γ} + 1{
k>(n−1)

(
ρ(q∗)2c

2

)γ}
(n− 1)cγ

k

×


1 + γ

(n− 1)cγ

k

∫ ( k
(n−1)cγ )

1
γ

ρ(q∗)2−( k
(n−1)cγ )

1
γ

ds′(s′)γ−1
(
ρ(q∗)2 − s′

)γ

 , (79)

and for large k the clustering coefficient C(k) decays as O
(
1
k

)
.

Proof of Proposition 7. Next we analyze the clustering coefficient of a firm with degree k, which can
be written as

C(k) =
1

P (k)

∫
ds

∫

Q

dqf(s)δ(q − q∗)g(k|q, s)C̃(q, s)

=
1

P (k)

∫
dsf(s)g(k|q∗, s)C̃(q∗, s),

where

C̃(q∗, s) =

∫
ds′
∫
ds′′

∫

Q

dq′
∫

Q

dq′′p(q′, s′, q′′, s′′)p(q′, s′|q∗, s)p(q′′, s′′|q∗, s).

This can further be written as follows

C̃(q∗, s) =

∫
ds′
∫
ds′′

∫

Q

dq′
∫

Q

dq′′1{ρq′q′′>s′+s′′}

×
(n− 1)1{ρq∗q′>s+s′}f(s

′)δ(q′ − q∗)

d̄(q∗, s)

(n− 1)1{ρq∗q′′>s+s′′}f(s
′′)δ(q′′ − q∗)

d̄(q∗, s)

=
(n− 1)2

d̄(q∗, s)2

∫
ds′f(s′)

∫
ds′′f(s′′)1{ρ(q∗)2>s′+s′′}1{ρ(q∗)2>s+s′}1{ρ(q∗)2>s+s′′}

=
(n− 1)2

d̄(q∗, s)2

(
1{

s>
ρ(q∗)2

2

}
∫ ρ(q∗)2−s

0

ds′f(s′)

∫ ρ(q∗)2−s

0

ds′′f(s′′)

+1{
s<

ρ(q∗)2

2

}

(∫ s

0

ds′f(s′)

∫ ρ(q∗)2−s

0

ds′′f(s′′) +

∫ ρ(q∗)2−s

s

ds′f(s′)

∫ ρ(q∗)2−s′

0

ds′′f(s′′)

))
.
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We then get (see also Figure E.2)

C̃(q∗, s) =
γ2c2γ(n− 1)2

d̄(q∗, s)

(
1{

s<
ρ(q∗)2

2

}
∫ ρ(q∗)2−s

0

ds′(s′)γ−1

∫ ρ(q∗)2−s

0

ds′′(s′′)γ−1

+1{
s>

ρ(q∗)2

2

}

(∫ s

0

ds′(s′)γ−1

∫ ρ(q∗)2−s

0

ds′′(s′′)γ−1 +

∫ ρ(q∗)2−s

s

ds′(s′)γ−1

∫ ρ(q∗)2−s′

0

ds′′(s′′)γ−1

))

=
γc2γ(n− 1)2

d̄(q∗, s)

(
1{

s<
ρ(q∗)2

2

}
∫ ρ(q∗)2−s

0

ds′(s′)γ−1
(
ρ(q∗)2 − s

)γ

+1{
s>

ρ(q∗)2

2

}

(∫ s

0

ds′(s′)γ−1
(
ρ(q∗)2 − s

)γ
+

∫ ρ(q∗)2−s

s

ds′(s′)γ−1
(
ρ(q∗)2 − s′

)γ
))

=
γc2γ(n− 1)2

d̄(q∗, s)

(
1{

s<
ρ(q∗)2

2

} 1

γ

(
ρ(q∗)2 − s

)2γ

+1{
s>

ρ(q∗)2

2

}

(
1

γ
sγ
(
ρ(q∗)2 − s

)γ
+

∫ ρ(q∗)2−s

s

ds′(s′)γ−1
(
ρ(q∗)2 − s′

)γ
))

=
c2γ(n− 1)2

d̄(q∗, s)

(
1{

s<
ρ(q∗)2

2

}
(
ρ(q∗)2 − s

)2γ
+ 1{

s>
ρ(q∗)2

2

}
(
sγ
(
ρ(q∗)2 − s

)γ
+ γJ(s)

))
, (80)

where we have denoted by

J(s) ≡

∫ ρ(q∗)2−s

s

ds′(s′)γ−1
(
ρ(q∗)2 − s′

)γ
.

Using the fact that d̄(q, s) ≡ (n− 1)cγ (ρqq∗ − s)
γ
this can be written as

C̃(q∗, s) =
1

(ρ(q∗)2 − s)2γ

(
1{

s<
ρ(q∗)2

2

}
(
ρ(q∗)2 − s

)2γ
+ 1{

s>
ρ(q∗)2

2

}
(
sγ
(
ρ(q∗)2 − s

)γ
+ γJ(s)

))
. (81)

Hence we get

C(k) =
1

P (k)

∫
dsf(s)δ

(
k − d̄(q∗, s)

)
C̃(q∗, s)

=
1

P (k)

∫
dsγcγsγ−1δ

(
s−

(
ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

))
1

γk

(
k

(n− 1)cγ

) 1
γ

C̃(q∗, s)

=
1

P (k)
γcγ

(
ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

)γ−1
1

γk

(
k

(n− 1)cγ

) 1
γ

C̃

(
q∗, ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

)

= C̃

(
q∗, ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

)
.

Inserting Equation (81) this gives

C(k) = 1{
k<(n−1)

(
ρ(q∗)2c

2

)γ} + 1{
k>(n−1)

(
ρ(q∗)2c

2

)γ}

(
(n− 1)cγ

k
+ γ

(
(n− 1)cγ

k

)2

J

(
ρ(q∗)2 −

(
k

(n− 1)cγ

) 1
γ

))

= 1{
k<(n−1)

(
ρ(q∗)2c

2

)γ} + 1{
k>(n−1)

(
ρ(q∗)2c

2

)γ}
(
(n− 1)cγ

k

+ γ

(
(n− 1)cγ

k

)2 ∫ ( k
(n−1)cγ )

1
γ

ρ(q∗)2−( k
(n−1)cγ )

1
γ

ds′(s′)γ−1
(
ρ(q∗)2 − s′

)γ



✷

Figure E.1 shows the results from numerical simulations compared with the theoretical prediction
of Equation (79). The figure further illustrates that the model can generate two-vertex and three-
vertex degree correlations, such as a decreasing average nearest neighbor connectivity, knn(d),
indicating a dissortative network, as well as a decreasing clustering degree distribution, C(d),
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s > ρ(q∗)2

2
(right panel).

with the degree d.

E.2. Heterogeneous Technology Spillovers

In this section we allow for heterogeneity among firms in terms of their technological abilities
[cf. Cohen and Levinthal, 1990; Griffith et al., 2003]. We assume that the technologies embodied
in a firm i ∈ N = {1, . . . , n} can be represented as an N -dimensional vector hi in the technology
space HN = {0, 1}N, which consists of all binary sequences with elements in {0, 1} of length N .
The number of such sequences is 2N . The technology vector hi, with components hik ∈ {0, 1},
indicates whether firm i knows idea k ∈ {1, . . . , N} or not. We introduce a spillover function
f : HN × HN → R capturing the potential technology transfer between any pairs of firms. A
possible specification is one in which f(hi,hj) = 1{〈hi,hj〉>s}, where 〈·, ·〉 denotes the usual scalar
product in R

n, so that 〈hi,hj〉 counts the number of technologies known to both i and j, and
f(hi,hj) is one iff i and j have at least s > 0 technologies in common. This is an instance of a
random intersection graph [cf. Deijfen and Kets, 2009; Singer-Cohen, 1995] (see also Appendix B).98

Given the spillover function f(hi,hj), the marginal cost of production of a firm i becomes

ci = c̄− αei − β

n∑

j=1

aijf(hi,hj)ej ,

and profits of firm i are given by

πi = (a− c̄)qi − q2i − bqi
∑

j 6=i

qj + αqiei + βqi

n∑

j=1

aijf(hi,hj)ej − γe2i − ζdi.

98There is a variety of other functional forms that can be incorporated in our model. For example, a simple choice
for the function f could be f(hi,hj) = a|hi ∩ hj |, where a ∈ R+ and |hi ∩ hj | = h⊤

i hj =
∑N

k=1 hikhjk denotes the
common knowledge of i and j. Alternative specifications for similarity can be found in Liben-Nowell and Kleinberg
[2007] and Bloom et al. [2013]; Jaffe [1989]. Alternatively, following Berliant and Fujita [2008, 2009], a possible

parametric specification for f would be f(hi,hj) = |hi ∩ hj |
κd(hi,hj)

1−κ
2 for some κ ∈ (0, 1). The distance is the

product of the total number of ideas known by agent i but not by j times the total number of ideas known by j
but not by i, i.e. d(hi,hj) = |hi\hj |× |hj\hi| = |hi ∩hc

j |× |hc
i ∩hj | =

∑N

k=1 hik(1−hjk)
∑N

k=1(1−hik)hjk, where
u = (1, . . . , 1)⊤ and hc

i = u − hi. Other functional forms have been suggested in the literature [see e.g. Baum
et al., 2009; Nooteboom et al., 2007], such as f(hi,hj) = a1|hi ∩ hj | − a2|hi ∩ hj |

2, with constants a1, a2 ≥ 0.

12



The optimal effort levels are given by ei =
α
2γ qi = λqi. Inserting into profits yields

πi = (a− c̄)qi − (1 − λα+ λ2γ)q2i − bqi
∑

j 6=i

qj + λβqi

n∑

j=1

aijf(hi,hj)qj − ζdi

= ηqi − νq2i − bqi
∑

j 6=i

qj + ρqi

n∑

j=1

aijf(hi,hj)qj − ζdi.

We can then obtain a potential function (cf. Proposition 1) given by

Φ(q, G,h) =

n∑

i=1

((a− c̄)qi − νq2i )−
b

2

n∑

i=1

qi
∑

j 6=i

qj +

n∑

i=1

qi

n∑

j=1

aijf(hi,hj)qj − ζm.

The stationary distribution (cf. Theorem 1) is given by

µϑ(q, G,h) =
eϑΦ(q,G,h)

∑
h′∈HN

∑
G′∈Gn

∫
Qn eϑΦ(s,G′,h′)ds

.

The probability of observing a network G ∈ Gn, given an output distribution q ∈ [0, q]n and
technology portfolios h ∈ HN is determined by the conditional distribution (cf. Proposition ??)

µϑ(G|q,h) =
∏

i<j

eϑaij(ρf(hi,hj)qiqj−ζ)

1 + eϑ(ρf(hi,hj)qiqj−ζ)
, (82)

which is equivalent to the probability of observing an inhomogeneous random graph with link
probability

pϑ(qi,hi, qj ,hj) ≡
eϑ(ρf(hi,hj)qiqj−ζ)

1 + eϑ(ρf(hi,hj)qiqj−ζ)
. (83)

In the following we consider a particularly simple specification in which each firm i is assigned a
technology k ∈ {1, . . . , N} uniformly at random so that hik = 1 and hil = 0 for all l 6= k. Moreover,
let f(hi,hj) = 1{〈hi,hj〉≥1}, that is, firms i an j can only benefit from a collaboration if they have
a technology in common.

Proposition 8. Assume that each firm i is assigned a technology k ∈ {1, . . . , N} uniformly at random
and let f(hi,hj) = 1{〈hi,hj〉≥1}.

(i) The degree distribution is given by

P (k) =

(
n

k

)(
1

N

)k (
1−

1

N

)n−k
.

(ii) The average nearest neighbor degree distribution is given by

knn(k) =
k(1− 1

N
)(1 + n 1

N
− (n+ 1)

(
1
N

)n
)

1
N
(1 + n− k)

, (84)

and for large n the average nearest neighbor degree distribution, knn(k), grows linearly as O(k).

(iii) The clustering coefficient is given by C(k) = 1.

Proof of Proposition 8. We first prove part (i) of the proposition. If technologies are assigned uni-
formly at random then

P ( 〈hi,hj〉 ≥ 1| qi = q, qj = q′) =
1

N
1{ρqq′>ζ}.

Due to symmetry the firms quantities in the stationary state when ϑ → ∞ are identical and given by q∗.
In the case of ρ(q∗)2 > ζ > 0 we then we have that

P (aij = 1) =
1

N
,
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Figure E.3: (Left panel) Illustration of the matrix with elements 1{〈hi,hj〉>0} for n = 100 firms and N = 10
technologies. (Right panel) The average nearest neighbor degree distribution, knn(d), for the same parameters.
The dashed line represents the solution from Equation (85) while the circles correspond to a numerical simulation.

and the degree distribution is given by

P (k) = P (d1(G) = k) =

(
n

k

)(
1

N

)k (
1−

1

N

)n−k
.

We next give a proof of part (ii) of the proposition. The average nearest neighbor degree distribution
is then given by

knn(k) =
n∑

k′=1

k′P (d2(G) = k′ − 1| a12 = 1, d1(G) = k)

where

P (d2(G) = k′ − 1|a12 = 1, d1(G) = k) =
P (d2(G) = k′ − 1, d1(G) = k| a12 = 1)

P (k)

=
1

P (k)

(
1

N

)k′−1(
1−

1

N

)n−k′+1(
1

N

)k−1 (
1−

1

N

)n−k+1

=
P (k′ − 1)P (k − 1)

P (k)
.

We then get

knn(k) =

n∑

k′=1

k′P (d2(G) = k′ − 1| a12 = 1, d1(G) = k)

=

n∑

k′=1

k′
P (k′ − 1)P (k − 1)

P (k)

=
k(1 − 1

N
)(1 + n 1

N
− (n+ 1)

(
1
N

)n
)

1
N
(1 + n− k)

= O(k), (85)

as n → ∞. That is, the average nearest neighbor degree knn(k) is asymptotically linearly increasing with
the degree k, and thus we have an assortative network.

Finally, we give a proof of part (iii) of the proposition. The clustering coefficient is simply given by
C(k) = P (a23 = 1| a12 = 1, a23 = 1, d1(G) = k) = 1. This is because if firm 1 is connected to firm 2 then
they must have the same technology. Similarly, if firm 1 is connected to firm 3 then they also must have
the same technology. Due to transitivity, firms 2 and 3 then must have the same technology, and thus
must be connected. ✷

An illustration of the average nearest neighbor degree knn(k) can be seen in Figure E.3.
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F. Data

In the following we provide a detailed description of the data used for our empirical analysis in
Section 3.

To get a comprehensive picture of alliances we use data on interfirm R&D collaborations
stemming from two sources which have been widely used in the literature [cf. Schilling, 2009].
The first is the Cooperative Agreements and Technology Indicators (CATI) database [cf. Hage-
doorn, 2002]. The database only records agreements for which a combined innovative activity
or an exchange of technology is at least part of the agreement. Moreover, only agreements that
have at least two industrial partners are included in the database, thus agreements involving only
universities or government labs, or one company with a university or lab, are disregarded. The
second is the Thomson Securities Data Company (SDC) alliance database. SDC collects data
from the U. S. Securities and Exchange Commission (SEC) filings (and their international coun-
terparts), trade publications, wires, and news sources. We include only alliances from SDC which
are classified explicitly as research and development collaborations. A comparative analysis of
these two databases (and other alternative databases) can be found in Schilling [2009].

We merged the CATI database with the Thomson SDC alliance database. For the matching
of firms across datasets, we adopted the name matching algorithm developed as part of the
NBER patent data project [Atalay et al., 2011; Trajtenberg et al., 2009]. We could match 21% of
the firms appearing in both databases. Considering only firms without missing observations on
R&D expenditures and industry classifications (see also Appendix F.2 below on how we obtained
balance sheet and R&D expenditures information), it gives us a sample of 2, 033 firms and a total
of 720 collaborations in the year 2006. The average degree of the firms in this sample is 0.71 with
a standard deviation of 2.01, and the maximum degree is 25 attained by Pfizer Inc. Figure F.1
shows the largest connected component of the R&D collaboration network, while Figure 7 shows
the corresponding component with firms in the SIC-28 sector (see Appendix B for the definition
of a connected component). The figure indicates two clusters appearing which are related to the
different industries in which firms are operating.

Figure F.2, and Tables F.1 and F.2 show the 10, respectively 20, largest sectors at the 2-digit
and 3-digit SIC levels. The largest sector at the SIC-28 level is chemical and allied products, with
534 firms (26.27 % of the total), followed by the sector electronic and other electric equipment,
with 306 firms (15.05 % of the total). At the 3-digit SIC level the largest sector is the drugs
development sector, with 416 firms (20.46 % of the total), and the second largest sector is computer
and data processing services with 193 firms (9.49 % of the total).

Figure F.3 shows the degree distribution, P (d), the average nearest neighbor connectivity,
knn(d), the clustering degree distribution, C(d), and the component size distribution, P (s) across
different levels of sectoral aggregation, considering all firms in all sectors, firms in the SIC-28
sector only, or firms in the SIC-283 sector only. The degree distribution, P (d), decays as a power
law across all datasets considered. The clustering degree distribution, C(d), is also decreasing
with increasing degrees d across all datasets. These network tend to be moderately clustered.
The average clustering coefficient considering all firms is C = 0.074, for the firms in the SIC-
28 sector it is c = 0.043 and for the firms in the SIC-283 sector it is C = 0.038967. Further,
the component size distribution, P (s), indicates a large connected component (see also Figure
F.1) with smaller components decaying as a power law. This pattern is also consistent across
datasets. The largest connected component comprises 21.20% of all firms across sectors, 24, 07%
of all firms in the SIC-28 sector, and 29.91% of all firms in the SIC-283 sector. While the level
or sectoral aggregation does not matter much for the degree distribution, the clustering degree
distribution and the component size distribution, a different pattern can be observed for the
average nearest neighbor connectivity, knn(d). While the average nearest neighbor connectivity
knn(d) is decreasing with increasing degree for the firms restricted to the SIC-28 or SIC-283
sectors, this monotonicity behavior is less pronounced when considering all firms across sectors.
This pattern can also be observed in the assortativity coefficient, which is γ = −0.031399 for all
firms, γ = −0.25322 restricting the sample to firms in the SIC-28 sector, and γ = −0.27464 for
the firms in the SIC-283 sector. That is, while the network is weakly dissortative considering all
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Figure F.1: The largest connected component in the observed network of R&D collaborations in the year 2006 for
the firms without missing observations on R&D expenditures and industry classifications. The shade and size of
a node indicates its R&D expenditures. The 5 largest firms in terms of their R&D expenditures are mentioned in
the graph. The number of firms is 2033 and the number of firms in the largest connected component is 431. The
figure indicates a separation between the manufacturing and the chemicals and pharmaceuticals sectors.
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Figure F.2: The shares of the ten largest sectors at the 2-digit (left panel) and 3-digit (right panel) SIC levels. See
also Tables F.1 and F.2, respectively.
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Table F.1: The 20 largest sectors at the 2-digit SIC level.

Sector 2-dig SIC # firms % of tot. Rank

Chemical and Allied Products 28 534 26.27 1
Electronic and Other Electric Equipment 36 306 15.05 2
Business Services 73 205 10.08 3
Instruments and Related Products 38 204 10.03 4
Industrial Machinery and Equipment 35 188 9.25 5
Transportation Equipment 37 91 4.48 6
Engineering and Management Services 87 59 2.90 7
Food and Kindred Products 20 41 2.02 8
Primary Metal Industries 33 39 1.92 9
Communications 48 30 1.48 10
Electric Gas and Sanitary Services 49 24 1.18 11
Fabricated Metal Products 34 21 1.03 12
Health Services 80 20 0.98 13
Miscellaneous Manufacturing Industries 39 18 0.89 14
Paper and Allied Products 26 16 0.79 15
Rubber and Miscellaneous Plastics Products 30 16 0.74 16
Petroleum and Coal Products 29 14 0.69 17
Stone Clay and Glass Products 32 14 0.69 18
Wholesale Trade - Durable Goods 50 13 0.64 19
Textile Mill Products 22 12 0.59 20

Table F.2: The 20 largest sectors at the 3-digit SIC level.

Sector 3-dig SIC # firms % of tot. Rank

Drugs 283 416 20.46 1
Computer and Data Processing Services 737 193 9.49 2
Electronic Components and Accessories 367 156 7.67 3
Medical Instruments and Supplies 384 99 4.87 4
Computer and Office Equipment 357 72 3.54 5
Measuring and Controlling Devices 382 72 3.54 6
Motor Vehicles and Equipment 371 67 3.30 7
Communications Equipment 366 61 3.00 8
Special Industry Machinery 355 38 1.87 9
Research and Testing Services 873 37 1.82 10
Misc. Electrical Equipment and Supplies 369 28 1.38 11
Chemicals & Allied Products 280 26 1.28 12
Plastics Materials and Synthetic 282 25 1.23 13
General Industrial Machinery 356 25 1.23 14
Electrical Industrial Apparatus 362 17 0.84 15
Aircraft and Parts 372 16 0.79 16
Misc. Chemical Products 289 15 0.74 17
Blast Furnace and Basic Steel Products 331 15 0.74 18
Agricultural Chemicals 287 14 0.69 19
Metalworking Machinery 354 14 0.69 20
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Figure F.3: The degree distribution, P (d), the average nearest neighbor connectivity, knn(d), the clustering degree
distribution, C(d), and the component size distribution, P (s).

firms, it becomes strongly dissortative when considering only a single sector. This observation
is even more extreme when we consider all firms in the collaboration network without dropping
those for which R&D expenditures are missing. In this case we find γ = 0.03343 for all firms,
γ = −0.11703 restricting the sample to firms in the SIC-28 sector, and γ = −0.14886 for the firms
in the SIC-283 sector. The explanation for this observation can be easily given when considering
the extension of our model introduced in Section 2.4 and Appendix E.2. There we showed that
when the spillovers from collaborations depend on the technological characteristics of the firms
involved in a collaboration, and firms from different sectors have different characteristics, then
the emerging network of cross industry collaborations can be assortative, while the network of
intra-industry collaborations is dissortative.

F.1. Mergers and Acquisitions

Some firms might be acquired by other firms due to mergers and acquisitions (M&A) over time,
and this will impact the R&D collaboration network [cf. Hanaki et al., 2010].

To get a comprehensive picture of the M&A activities of the firms in our dataset, we use two
extensive datasources to obtain information about M&As. The first is the Thomson Reuters’
Securities Data Company (SDC) M&A database, which has historically been the most widely
used database for empirical research in the field of M&As. Data in SDC dates back to 1965
with a slightly more complete coverage of deals starting in the early 1980s. The second database
with information about M&As is Bureau van Dijk’s (BvD) Zephyr database, which is a recent
alternative to the SDC M&As database. The history of deals recorded in Zephyr goes back to
1997. In 1997 and 1998 only European deals are recorded, while international deals are included
starting from 1999. According to Huyghebaert and Luypaert [2010], Zephyr “covers deals of
smaller value and has a better coverage of European transactions”. A comparison and more
detailed discussion of the two databases can be found in Bollaert and Delanghe [2015] and Bena
et al. [2008].
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We merged the SDC and Zephyr databases (with the above mentioned name matching algo-
rithm; see also Atalay et al. [2011]; Trajtenberg et al. [2009]) to obtain information on M&As of
116, 641 unique firms. Using the same name matching algorithm we could identify 43.08% of the
firms in the combined CATI-SDC alliance database that also appear in the combined SDC-Zephyr
M&As database. We then account for the M&A activities of these matched firms when construct-
ing the R&D collaboration network by assuming that an acquiring firm in a M&A inherits all the
R&D collaborations of the target firm, and we remove the target firm form from the network.

F.2. Balance Sheet Statements, R&D and Productivity

The combined CATI-SDC alliance database provides the names for each firm in an alliance, but
it does not contain information about the firms’ output levels or R&D expenses. We therefore
matched the firms’ names in the combined CATI-SDC database with the firms’ names in Stan-
dard & Poor’s Compustat U.S. and Global fundamentals annual databases and Bureau van Dijk
(BvD)’s Orbis database, to obtain information about their balance sheets and income statements.

Compustat North America is a database of U.S. and Canadian active and inactive publicly
held companies extracted from company filings. It provides more than 300 annual and 100
quarterly income statements, balance sheets and statement of cash flows. Compustat Global is
a database of non-U.S. and non-Canadian companies and contains market information on more
than 33,900 active and inactive publicly held companies with annual data history from 1987. The
Compustat databases cover 99% of the world’s total market capitalization with annual company
data history available back to 1950. The databases contains only firms listed on the stock market,
so it typically excludes smaller private firms, but this is inevitable if one is going to use market
value data. Nevertheless, R&D is concentrated in publicly listed firms, and it thus covers most
of the R&D activities in the economy [cf. e.g. Bloom et al., 2013].

The Orbis database is owned by Bureau van Dijk (BvD). It is a commercial dataset, which
contains administrative data on 130 million firms worldwide. Orbis is an umbrella product that
provides firm-level data covering over 120 countries, both developed and emerging, since 2005.
The financial and balance-sheet information in Orbis comes from business registers collected by
the local Chambers of Commerce to fullfill legal and administrative requirements and are relayed
to BvD via over 40 different information providers. Differently to Compustat Orbis contains not
only information about publicly listed firms, but provides also information about private firms.

For a detailed comparison and further discussion of the Compustat and Orbis databases see
Dai [2012], Bloom et al. [2013] and Papadopoulos [2012].

For the matching of firms across datasets we adopted the name matching algorithm developed
as part of the NBER patent data project [Atalay et al., 2011; Trajtenberg et al., 2009]. We could
match 25.53% of the firms in the combined CATI-SDC database with the combined Compustat-
Orbis database. For the matched firms we obtained their their sales, R&D expenditures, sales,
employment, primary industry codes and location. U.S. dollar translation rates for foreign curren-
cies have been taken directly from the Compustat yearly averaged exchange rates. We adjusted
for inflation using the consumer price index of the Bureau of Labor Statistics (BLS), averaged
annually, with 1983 as the base year. From a firm’s sales and employment we then computed its
labor productivity as sales relative to the number of employees. We then dropped all firms with
missing information on R&D expenditures and industry codes. This pruning procedure left us
with a subsample of 2, 033 firms, on which the empirical analysis in Section 3 is based.

The empirical distributions for sales, P (s), productivity, P (x), R&D expenditures, P (e), and
the patent stocks, P (k) (using a logarithmic binning of the data with 100 bins [cf. McManus et al.,
1987]) are shown in Figure F.4. All distributions are highly skewed, indicating a large degree
of inequality in firms’ sizes, productivity and patent activities. Moreover, Figure F.5 shows a
correlation scatter plot for sales, productivity, R&D expenditures and the patent stocks. All are
highly correlated, with a Spearman correlation coefficient between sales and R&D expenditures
of ̺ = 0.69 between sales and productivity of ̺ = 0.54, and sales and the number of patents
of ̺ = 0.53. The correlation between R&D expenditure and productivity is ̺ = 0.29 and R&D
expenditures and the number of patents is ̺ = 0.56. Finally, the correlation between productivity
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Figure F.4: The sales distribution, P (s), the productivity distribution, P (x), the R&D expenditures distribution,
P (e), and the patent stock distribution, P (k) using a logarithmic binning of the data [McManus et al., 1987].

and the number of patents is ̺ = 0.22.

F.3. Geographic Location and Distance

The number of firms in each country is shown in Figures F.6 and F.7, respectively, while Table
F.3 shows the 25 countries with the largest numbers of firms. The dominant role of the U.S. with
989 collaborations making up 48.65% of the total number of collaborations is clearly visible. The
second largest country in terms of R&D collaborations is Japan with 408, which comprises 20.07%
of all collaborations. The U.S. and Japan then together account for 68.72%, that is, more than
two thirds of all R&D collaborations in the data.

In order to determine the precise locations of the firms in our data we have further added
the longitude and latitude coordinates associated with the city of residence of each firm. Among
the matched cities in our dataset 93.67% could be geo-localized using ArcGIS [cf. e.g. Dell, 2009]
and the Google Maps Geocoding API.99 We then used Vincenty’s algorithm to compute the
distances between pairs of geo-localized firms [cf. Vincenty, 1975]. The mean distance between
collaborating firms is 5, 227 km. The distance distribution, P (d), across collaborating firms is
shown in Figure F.9, while Figure F.8 shows the locations (at the city level) and collaborations
of the firms in the database. The distance distribution, P (d), is heavily skewed. We find that
R&D collaborations tend to be more likely between firms that are close, showing that geography
matters for R&D collaborations and this spillovers, in line with previous empirical studies [cf.
Lychagin et al., 2010].

99See https://developers.google.com/maps/documentation/geocoding/intro.
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Table F.3: The 25 countries with the largest numbers of
firms.

Name Code # firms % of tot. Rank

United States USA 989 48.65 1
Japan JPN 408 20.07 2
United Kingdom GBR 120 5.90 3
Canada CAN 73 3.59 4
Australia AUS 62 3.05 5
Germany DEU 48 2.36 6
Taiwan TWN 45 2.21 7
France FRA 35 1.72 8
Switzerland CHE 34 1.67 9
Sweden SWE 31 1.52 10
India IND 21 1.03 11
Finland FIN 16 0.79 12
Netherlands NLD 14 0.69 13
Iceland ISL 13 0.64 14
Slovakia SVK 13 0.64 15
Denmark DNK 12 0.59 16
Belgium BEL 11 0.54 17
Italy ITA 11 0.54 18
Israel ISR 10 0.49 19
Morocco MAR 9 0.44 20
Norway NOR 8 0.39 21
China CHN 7 0.34 22
Singapore SGP 7 0.34 23
Spain ESP 4 0.20 24
Hong Kong HKG 4 0.20 25

[0,1] [1,2] [2,5] [5,13] [13,31] [31,74] [74,176] [176,417] [417,988]

Figure F.7: The number of firms in each country.
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Figure F.8: The locations (at the city level) and collaborations of the firms in the combined CATI-SDC database.

F.4. Patents and Technological Similarity

We identified the patent portfolios of the firms in our dataset using the EPO Worldwide Patent
Statistical Database (PATSTAT) [Hall et al., 2001; Jaffe and Trajtenberg, 2002; Thoma et al.,
2010]. It includes bibliographic details on patents filed to 80 patent offices worldwide, cover-
ing more than 60 million documents. Hence filings in all major countries and the the World
International Patent Office are covered. We matched the firms in our data with the assignees
in the PATSTAT database using the above mentioned name matching algorithm. We only con-
sider granted patents (or successful patents), as opposed to patents applied for, as they are the
main drivers of revenue derived from R&D [Copeland and Fixler, 2012]. We obtained matches
for roughly 30% of the firms in the data. The technology classes were identified using the main
international patent classification (IPC) numbers at the 4 digit level.

The technological proximity fkij = fkji, k ∈ {J,M} (cf. Equation (23)), between firms i and j is
measured with two alternative metrics. The first, fJij , is based on Jaffe [1989]. Let Pi represents
the patent portfolio of firm i, where, for each firm i, Pi is a vector whose k-th component, Pik,
counts the number of patents firm i has in technology category k divided by the total number of
technologies attributed to the firm [see also Bloom et al., 2013]. The technological proximity of
firm i and j is then given by

fJij =
P⊤
i Pj√

P⊤
i Pi

√
P⊤
j Pj

. (86)

We denote by FJ the (n× n) matrix with elements (fJij)1≤i,j≤n.
As an alternative measure for technological similarity we also consider the Mahalanobis tech-

nology proximity measure, fMij , introduced by Bloom et al. [2013]. To construct this metric, let N
be the number of technology classes, n the number of firms, and let T be the (N×n) patent shares
matrix with elements Tji = Pji/

∑n
k=1 Pki, for all 1 ≤ i ≤ n and 1 ≤ j ≤ N . Further, we construct

the (N×n) normalized patent shares matrix T̃ with elements T̃ji = Tji/

√∑N
k=1 T

2
ki, and the (n×N)

normalized patent shares matrix across firms is defined by X̃ with elements X̃ik = Tki/

√∑N
i=1 T

2
ki.

Let Ω = X̃⊤X̃. Then the (n × n) Mahalanobis technology similarity matrix FM = (fMij )1≤i,j≤n is
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Figure F.9: (Left panel) The distance distribution, P (d), across collaborating firms in the combined CATI-SDC
database. (Right panel) Correlation plot for the Jaffe (fJ
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ij ) technology proximity metrics

across pairs of firms 1 ≤ i, j ≤ n.

defined as
FM = T̃⊤ΩT̃. (87)

We then use either fJij or fMij as a measure for the potential technology spillovers between col-
laborating firms in the profit function of Equation (23). Both measures are highly correlated.
The Spearman correlation coeffcient between the Jaffe and the Mahalanobis proximity metrics is
0.91882, and a correlation plot can be seen in the right panel of Figure F.9.
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G. Estimation Algorithms

In the following appendices we provide additional details regarding our estimation algorithms.
First, in Appendix G.1 we give a detailed explanation for how the DMH algorithm is implemented.
Second, in Appendix G.2 we discuss the implementation of the AEX algorithm. Further, in
Appendix G.3 we outline the convergence proof of the AEX algorithm.

G.1. Implementation of the DMH Algorithm

In our empirical model, the unknown parameters are denoted by θ = (ρ, b, δ⊤,γ⊤,κ), where ρ

captures the technology spillover effect; b captures the competition effect; δ captures effects of
firm’s exogenous characteristics in terms of productivity and sector fixed effect; γ captures effects
of dyad-specific exogenous factors in the link cost function; and κ captures the cyclic triangles
effect. For the Bayesian posterior analysis, the joint posterior (probability) density function of θ
can be constructed by

P (θ|q, G) ∝ π(θ) · µ(q|G, θ), (88)

where π(·) represents the prior density function and we assume independence between prior dis-
tributions. We specify prior distributions (ρ, b) ∼ U2(O), δ ∼ Nl(δ0,∆0), γ ∼ Nr(γ0,Γ0), and
κ ∼ N (κ0,K0). The prior of (ρ, b) is a multivariate uniform (uninformative) distribution with the
values restricted to the compact subset O of R2, in which the matrix M(G) = In + bB− ρ(A ◦ F)

is positive definite.100 The priors for δ, γ, and κ are normal distributions, which are conjugate
priors commonly used in the Bayesian literature [cf. e.g. Koop et al., 2007; Robert and Casella,
2004]. In our applications, we fix δ0 = 0, ∆0 = 100Il, γ0 = 0, Γ0 = 100Ir, κ0 = 0, and K0 = 100 to
ensure prior density is relatively flat over the range of the data.

Directly drawing samples from the posterior distribution, P (θ|q, G), would be difficult due
to high dimensionality. Therefore, we apply the Metropolis-within-Gibbs sampling procedure:
we first divide unknown parameters into blocks so that drawing from their conditional posterior
distributions is feasible. When we make draws sequentially from these conditional posterior
distributions by cycling, in the limit these draws can be treated as draws from the joint posterior
distribution. For the conditional posterior distribution of (ρ, b), which is not available in a closed
form, we use the MH algorithm to draw from this conditional distribution. It has been shown in
Tierney [1994] and Chib and Greenberg [1996] that the combination of Markov chains is still a
Markov chain with the invariant distribution equal to the correct objective distribution.

We apply the Gibbs sampler to update the following set of conditional posterior distributions:

(i) P (ρ, b|q, G, θ\(ρ, b)) ∝ µ(q, G|θ)I((ρ, b) ∈ O), where θ\(ρ, b) stands for θ with (ρ, b) excluded.

(ii) P (δ|q, G, θ\δ) ∝ φl(δ; δ0,∆0) · µ(q|G, θ), where φ denotes the normal density function.

(iii) P (γ|q, G, θ\γ) ∝ φr(γ;γ0,Γ0) · µ(q, G|θ).

(iv) P (κ|q, G, θ\κ) ∝ φ(κ;κ0,K0) · µ(q, G|θ).

We apply the DMH algorithm to simulate draws from (i) to (iv) because their distributions
are not available in a closed form. At each tth MCMC iteration, the implementation steps are
illustrated as follows:

Step I. Simulate (ρ(t), b(t)) from P
(
ρ, b
∣∣q, G,Υ(t−1)

)
by the DMH algorithm, where Υ(t−1) denotes

the rest of parameters evaluated at the (t− 1)th iteration.

(a) propose (ρ̃, b̃) from a random walk proposal density T1(ρ, b|b(t−1), ρ(t−1)).

100This requirement implies that M(G) is invertible and M(G)−1 is also positive definite. M(G) is positive
definite if and only if all of its eigenvalues are positive.

25



(b) simulate an auxiliary data q′ and G′ by M runs of the MH algorithm based on

µ(q, G|ρ̃, b̃,Υ(t−1)) =
exp

(
Φ
(
q, G, ρ̃, b̃,Υ(t−1)

))

∑
g∈Gn

∫
Qn exp

(
Φ
(
q, g, ρ̃, b̃,Υ(t−1)

))
dq

starting from the observed network G.101 The details are as follows:
First, let the initial auxiliary network G(0) equal to the observed network G, i.e., set the
auxiliary adjacency matrix A(0) = A. At the mth run, m = 1, · · · ,M , we propose G̃ from
G(m−1) by selecting node i with probability 1

n
and node j 6= i with a probability 1

n−1 randomly

and change the value a(m−1)
ij and a

(m−1)
ji in matrix A(m−1) to 1 − a

(m−1)
ij and 1 − a

(m−1)
ji and

propose it as Ã. With a certain probability, we flip all elements in A(m−1) from 0 to 1 (or 1
to 0) and propose it as Ã. Denote M̃ = In+ b̃B− ρ̃(Ã ◦F) and calculate q̃∗ = M̃−1

(
Xδ(t−1)

)
.

Simulate q̃ from Nn

(
q̃∗, M̃−1

)
. Then, with the acceptance probability

α̃(G̃|G(m−1)) = min





exp
(
Φ(G̃, q̃)

)

exp
(
Φ(G(m−1),q(m−1))

) , 1



 ,

set G(m) to G̃ and q(m) = q̃, otherwise, set G(m) = G(m−1) and q(m) = q(m−1). After the M
runs, collect G′ = G(M) and q′ = q(M).

(c) With the acceptance probability equals to

α(ρ̃, b̃|ρ(t−1), b(t−1), G′,q′)

= min





µ
(
q, G,Υ(t−1), ρ̃, b̃

)

µ (q,G,Υ(t−1), ρ(t−1), b(t−1))
·
µ
(
q′, G′,Υ(t−1), ρ(t−1), b(t−1)

)

µ
(
q′, G′,Υ(t−1), ρ̃, b̃

) ·
I((ρ̃, b̃) ∈ O)

I((ρ(t−1), b(t−1)) ∈ O)
, 1






= min





exp

(
Φ(q, G,Υ(t−1), ρ̃, b̃)

)

exp (Φ(q, G,Υ(t−1), ρ(t−1), b(t−1)))
·
exp

(
Φ(q′, G′,Υ(t−1), ρ(t−1), b(t−1))

)

exp
(
Φ(q′, G′,Υ(t−1), ρ̃, b̃)

) ·
I((ρ̃, b̃) ∈ O)

I((ρ(t−1), b(t−1)) ∈ O)
, 1




 ,

set (ρ(t), b(t)) = (ρ̃, b̃). Otherwise, set (ρ(t), b(t)) = (ρ(t−1), b(t−1)).

Step II. Simulate δ(t) from

P (δ|q, G, ρ(t), b(t),Υ(t−1)) ∝ φl(δ; δ0,∆0) · µ(q|G, ρ
(t), b(t), δ,Υ(t−1)).

(a) propose δ̃ from a random walk proposal density T2(δ|δ(t−1)).

(b) simulate an auxiliary data q′ and G′ by M runs of the MH algorithm based on

µ(q, G|δ̃, ρ(t), b(t),Υ(t−1)) =
exp

(
Φ
(
q, G, δ̃, ρ(t), b(t),Υ(t−1)

))

∑
g∈Gn

∫
Qn exp

(
Φ
(
q, g, δ̃, ρ(t), b(t),Υ(t−1)

))
dq

starting from the observed network G.

101This step mimics the MH sampler in Snijders [2002] and Mele [2010]. In practice, we set M = n2 where n is
the size of the network.
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(c) With the acceptance probability equals to

α(δ̃|δ(t−1), G′,q′)

= min





µ
(
q,G, δ̃,Υ(t−1), ρ(t), b(t)

)

µ (q,G, δ(t−1),Υ(t−1), ρ(t), b(t))
·
µ
(
q′, G′, δ(t−1),Υ(t−1), ρ(t), b(t)

)

µ
(
q′, G′, δ̃,Υ(t−1), ρ(t), b(t)

) ·
φl(δ̃; δ0,∆0)

φl(δ(t−1); δ0,∆0)
, 1





= min





exp

(
Φ(q, G, δ̃,Υ(t−1), ρ(t), b(t))

)

exp (Φ(q, G, δ(t−1),Υ(t−1), ρ(t), b(t)))
·
exp

(
Φ(q′, G′, δ(t−1),Υ(t−1), ρ(t), b(t))

)

exp
(
Φ(q′, G′, δ̃,Υ(t−1), ρ(t), b(t))

) ·
φl(δ̃; δ0,∆0)

φl(δ(t−1); δ0,∆0)
, 1




 ,

set δ(t) = δ̃. Otherwise, set δ(t) = δ(t−1).

Step III. Simulate γ(t) from P
(
γ
∣∣q, G,Υ(t−1), δ(t), ρ(t), b(t)

)
by the DMH algorithm.

(a) propose γ̃ from a random walk proposal density T3(γ|γ(t−1))

(b) simulate an auxiliary data q′ and G′ by M runs of the MH algorithm based on

µ(q, G|γ̃ ,Υ(t−1), δ(t), ρ(t), b(t)) =
exp

(
Φ
(
q, G, γ̃,Υ(t−1), δ(t), ρ(t), b(t)

))
∑

g∈Gn

∫
Qn exp

(
Φ
(
q, g, γ̃,Υ(t−1), δ(t), ρ(t), b(t)

))
dq

starting from the observed network G.

(d) With the acceptance probability equal to

α(γ̃|γ(t−1), G′,q′)

= min





µ
(
G,q, γ̃,Υ(t−1), δ(t), ρ(t), b(t)

)

µ (G,q,γ(t−1),Υ(t−1), δ(t), ρ(t), b(t))
·
µ
(
G′,q′, γ(t−1),Υ(t−1), δ(t), ρ(t), b(t)

)

µ (G′,q′, γ̃,Υ(t−1), δ(t), ρ(t), b(t))
·

φr(γ̃|γ0,Γ0)

φr(γ(t−1)|γ0,Γ0)
, 1





= min





exp
(
Φ(G,q, γ̃,Υ(t−1), δ(t), ρ(t), b(t))

)

exp (Φ(G,q,γ(t−1),Υ(t−1), δ(t), ρ(t), b(t)))
·
exp

(
Φ(G′,q′,γ(t−1),Υ(t−1), δ(t), ρ(t), b(t))

)

exp (Φ(G′,q′, γ̃,Υ(t−1), δ(t), ρ(t), b(t)))
·

φr(γ̃|γ0,Γ0)

φr(γ(t−1)|γ0,Γ0)
, 1



 ,

set γ(t) = γ̃. Otherwise, set γ(t) = γ(t−1).

Step IV. Simulate κ
(t) from P

(
κ
∣∣q, G,γ(t), δ(t), ρ(t), b(t)

)
by the DMH algorithm.

(a) propose κ̃ from a random walk proposal density T4(κ|κ(t−1))

(b) simulate an auxiliary data q′ and G′ by M runs of the MH algorithm based on

µ(q, G|κ̃,γ(t), δ(t), ρ(t), b(t)) =
exp

(
Φ
(
q, G, κ̃,γ(t), δ(t), ρ(t), b(t)

))
∑

g∈Gn

∫
Qn exp

(
Φ
(
q, g, κ̃,γ(t), δ(t), ρ(t), b(t)

))
dq

starting from the observed network G.

(d) With the acceptance probability equal to

α(κ̃|κ(t−1), G′,q′)

= min





µ
(
G,q, κ̃,γ(t), δ(t), ρ(t), b(t)

)

µ (G,q,κ(t−1),γ(t), δ(t), ρ(t), b(t))
·
µ
(
G′,q′,κ(t−1), γ(t), δ(t), ρ(t), b(t)

)

µ (G′,q′, κ̃,γ(t), δ(t), ρ(t), b(t))
·

φr(κ̃|κ0,K0)

φr(κ(t−1)|κ0,K0)
, 1






= min





exp

(
Φ(G,q, κ̃,γ(t), δ(t), ρ(t), b(t))

)

exp (Φ(G,q,κ(t−1),γ(t), δ(t), ρ(t), b(t)))
·
exp

(
Φ(G′,q′,κ(t−1),γ(t), δ(t), ρ(t), b(t))

)

exp (Φ(G′,q′, κ̃,γ(t), δ(t), ρ(t), b(t)))
·

φr(κ̃|κ0,K0)

φr(κ(t−1)|κ0,K0)
, 1




 ,

set γ(t) = γ̃. Otherwise, set γ(t) = γ(t−1).

G.2. Implementation of the AEX Algorithm

The AEX algorithm consists of two Markov chains running in parallel. Let the subscript t denote
the tth iteration of two chains. In the first chain, we simulate auxiliary network and output
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sample (G̃(t), q̃(t)) from µ(G̃, q̃|θ̃(t)), where θ̃(t) is sampled from the set of pre-specified parameter
points (θ1, · · · , θm). In our applications, we set m = 50 and (θ1, · · · , θm) are chosen from the
DMH draws using the Max-Min procedure suggested in Liang et al. [2015]. The index function
H(θ̃(t)) denotes the order index of θ̃(t), i.e., H(θ̃(t)) = i if θ̃(t) = θi. Let p = (p1, · · · , pm) be the
desired sampling frequencies from the respective distributions µ(G̃, q̃|θ1), · · · , µ(G̃, q̃|θm), where
0 < pi < 1 and

∑m
i=1 pi = 1. We follow Liang et al. [2015] to set p1 = · · · = pm = 1

m
. As required by

the SAMC algorithm, we specify a gain factor sequence, {at}, which is a positive, nonincreasing
sequence satisfying the following condition:

(A1) limt→∞ at = 0,
∑∞

t=1 at = ∞,
∑∞
t=1 a

k
t <∞ for some k ∈ (1, 2].

Following Liang et al. [2015], we set at =
t0

max(t0,t)
with a known constant t0 > 1. Since a larger

value of t0 will help the auxiliary chain to reach each distribution µ(G̃, q̃|θi) more quickly, we set
t0 = 20, 000 in this paper. Also, we let w(t)

i denote an abundance factor attached to each distribution
µ(G̃, q̃|θi) at iteration t and w(t) = (w

(t)
1 , · · · , w

(t)
m ). We set the initial values w(0)

1 = · · · = w
(0)
m = 1

in the simulation. Finally, let Ω(t)= (G̃(1), · · · , G̃(t), q̃(1), · · · , q̃(t),θ̃(1), · · · , θ̃(t),H(θ̃(1)), · · · , H(θ̃(t)),

w(1), · · · , w(t)) denote the information in the auxiliary chain that we collect up to iteration t. In
the second chain, we draw θ(t) by the exchange algorithm from the target posterior distribution
µ(θ|q, G). Explicitly, the AEX algorithm is implemented by Part I and Part II at each tth iteration
described as follows:

Part I. Auxiliary network simulation

1. Choose to update θ̃(t) or G̃(t) with a pre-specified probability. In our application, we
choose 75% for updating θ̃(t) and 25% for updating G̃(t).

(a) Update θ̃(t): Select θ̃′ from the set (θ1, · · · , θm) according to a proposal distribution
T1(·|θ̃(t−1)). With the probability

α̃
(
θ̃′
∣∣∣θ̃(t−1)

)
= min




w

(t−1)

H(θ̃(t−1))
exp(Φ(G̃(t−1), q̃(t−1), θ̃′))T1(θ̃

(t−1)|θ̃′)

w
(t−1)

H(θ̃′)
exp(Φ(G̃(t−1), q̃(t−1), θ̃(t−1)))T1(θ̃′|θ̃(t−1))

, 1



 , (89)

update (θ̃(t), G̃(t), q̃(t)) = (θ̃′, G̃(t−1), q̃(t−1)). Otherwise,
set (θ̃(t), G̃(t), q̃(t)) = (θ̃(t−1), G̃(t−1), q̃(t−1)).

(b) Update (G̃(t), q̃(t)): simulate G̃(t) and q̃(t) from µ(G̃, q̃|θ̃(t−1)) via few MH updates
starting from (G̃(t−1), q̃(t−1)). Then set θ̃(t) = θ̃(t−1).

2. For i = 1, · · · ,m, update the abundance factor w(t)
i by

log(w
(t)
i ) = log(w

(t−1)
i ) + at(ei,t − pi),

where ei,t = 1 if θ̃(t) = θi and 0 otherwise.

3. Append (θ̃(t), G̃(t), q̃(t), H(θ̃(t)), w(t)) to the collection Ω(t−1) to form Ω(t).

Part II. Adaptive Exchange algorithm for target parameter

4. Propose a candidate θ′ from a random walk proposal distribution T2(θ
′|θ(t−1)).

5. Re-sample an auxiliary network and output data (G′,q′) from the collection Ω(t) via an
importance sampling procedure. With the probability

P
(
(G′,q′) = (G̃(i), q̃(i))

)
=

∑t

j=1

{
w

(j)

H(θ̃(j))

exp(Φ(G̃(j) ,q̃(j),θ′))

exp(Φ(G̃(j) ,q̃(j) ,θ̃(j)))
I
(
G̃(j) = G̃(i)

)}

∑t

j=1

{
w

(j)

H(θ̃(j))

exp(Φ(G̃j ,q̃
(j) ,θ′))

exp(Φ(G̃(j) ,q̃(j),θ̃(j)))

} , (90)

choose (G′,q′) = (G̃(i), q̃(i)), i ∈ (1, 2, · · · , t).
6. Implement the exchange algorithm. With the probability

α(θ′|θ(t−1), G′,q′)

= min

{
exp(Φ(G,q,θ′))

exp(Φ(G,q,θ(t−1)))
·
exp(Φ(G′,q′,θ(t−1)))

exp(Φ(G′,q′,θ′))
·

π(θ′)

π(θ(t−1))
, 1

}
, (91)
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set θ(t) = θ′. Otherwise, set θ(t) = θ(t−1).

G.3. Convergence of the AEX Algorithm

In this appendix, we outline the ideas and main results behind the convergence proof of the AEX
algorithm. Interested readers are referred to Jin et al. [2013] and the supplementary material
of Liang et al. [2015] for the completed version of proof. From Part II of the AEX algorithm,
one can see that auxiliary sample (G′,q′) is drawn via a dynamic importance sampling procedure
in Equation (90), which implies that the underlying proposal distribution for auxiliary networks
changes from iteration to iteration. Therefore, AEX falls into the class of adaptive MCMC algo-
rithms with varying stationary distributions and requires an unconventional convergence theory
[Fort et al., 2011; Roberts and Rosenthal, 2007].

Liang et al. [2015] provided an ergodicity theorem for adaptive Markov chains with varying
stationary distributions, which can be used to prove ergodicity of the AEX algorithm. Consider
a state space, (X,H), where Xt ∈ X denotes the state of the Markov chain at iteration t and
H denotes the Borel set defined on X. Let γt denote realization of the adoption index Γt ∈ Y

and Ft = σ(X0, · · · , Xt,Γ0, · · · ,Γt) be the filtration generated by {Xi,Γi}ti=0. Let Pγt denote the
transition kernel at iteration t and thus,

P (Xt+1 ∈ B|Xt = x,Γt = γt,Ft−1) = Pγt(x,B), x ∈ X, γt ∈ Y, B ∈ H.

Let P hγ (x,B) = Pγ(Xh ∈ B|X0 = x) denote the h-step transition probability for the Markov chain
with the fixed transition kernel Pγ and the initial condition X0 = x. Also let P h((x, γ), B) =

P (Xh ∈ B|X0 = x,Γ0 = γ,Fh−1), B ∈ H, denote the h-step transition probability for the adaptive
Markov chain with the initial conditions X0 = x and Γ0 = γ. An adaptive Markov chain is called
ergodic if limt→∞ V (x, γ, t) = 0 for all x ∈ X and γ ∈ Y, where

V (x, γ, t) =‖ P t((x, γ), ·)− π(·) ‖= sup
B∈H

‖ P t((x, γ), B) − π(B) ‖

denotes the total variation distance between the distribution of the adaptive chain at iteration t

and the target distribution π(·).

Theorem 2. Consider an adaptive Markov chain defined on the state space (X,H) with the adoption index
Γt ∈ Y. The adoptive Markov chain is ergodic if the following conditions are satisfied:

(a) (Stationarity) There exist a stationary distribution πγt(·) for each transition kernel Pγt .

(b) (Asymptotic Simultaneous Uniform Ergodicity) For any u > 0, there exist a measurable set E(u) in
the probability space such that Pr(E(u)) ≥ 1 − u and on this set E(u), for any ǫ > 0, there exist
t(ǫ) ∈ N and n(ǫ) ∈ N such that

sup
x∈X

‖ Pnγt(x, ·)− π(·) ‖≤ ǫ,

for all t > t(ǫ) and n > n(ǫ).

(c) (Diminishing Adoption) let Dt = supx∈X
‖ PΓt+1(x, ·)− PΓt(x, ·) ‖ and limt→∞Dt = 0 in probability.

From conditions (a) and (b) of Theorem 2, it is implied that on the set E(u), for any ǫ,

‖ πγt(·)− π(·) ‖=‖ πγt(·)P
h
γt

− π(·) ‖≤ sup
x∈X

‖ Pnγt(x, ·)− π(·) ‖≤ ǫ,

for t > t(ǫ) and n > n(ǫ). Furthermore, by the triangular inequality,

‖ Pnγt(x, ·)− πγt(·) ‖<‖ P
n
γt
(x, ·)− π(·) ‖ + ‖ πγt(·)− π(·) ‖< 2ǫ,

for t > t(ǫ) and n > n(ǫ). Thus, the simultaneous uniform ergodicity of {Pγt} on the set E(u) is
established. Given condition (c) of Theorem 2 and the simultaneous uniform ergodicity of {Pγt},
Liang et al. [2015] show the weak law of large numbers for an adaptive Markov chain in the
following theorem:

29



Theorem 3. Consider an adaptive Markov chain defined on the state space (X,H). Let g(·) be a bounded

measurable function. Suppose that conditions (a), (b), and (c) of Theorem 2 hold, then 1
T

∑T
t=1 g(Xt) →

π(g), in probability as T → ∞, where π(g) =
∫
X
g(x)π(dx).

The rest of procedure is to show the AEX algorithm satisfies three conditions of Theorem 2
and thus it is ergodic and the weak law of large number holds for the average of sample path
{θ(t)}. To begin with, we assume that in the auxiliary chain, the Markov transition kernel, Pw,
for updating the state variable Xt = (G̃(t), q̃(t), θ̃(t)) ∈ X via the SAMC algorithm satisfies the
following Doeblin condition:

(A2) For any given w ∈ ̟, the Markov transition kernel Pw is irreducible and aperiodic. In
addition, there exist an integer h, a real number 0 < δ < 1, and a probability measure ν
such that for any compact subset K ⊂ ̟,

inf
w∈K

P hw(x,B) ≥ δν(B), ∀x ∈ X, ∀B ∈ H,

where H denotes the Borel set of X.

The condition (A2) will be assured by Theorem 2.2 of Roberts and Tweedie [1996] if X is com-
pact, the potential function Φ(G′, ǫ(θ), θ) is bounded away from 0 and ∞ on X, and the proposal
distribution T (y|x) satisfies the local positive condition:

(local positive condition) For every x ∈ X, there exist ǫ1 > 0, and ǫ2 > 0 such that |x− y| ≤ ǫ1 ⇒

T (y|x) ≥ ǫ2.

The following Lemma 2 shows that draws of (G′,q′) from the dynamic importance sampler of
Equation (90) converges to the distribution of µ(·|θ′) almost surely when the number of iterations
goes to infinity.

Lemma 2. Assume (i) conditions (A1) and (A2) are satisfied; (ii) X is compact; (iii) exp(Ψ(G̃, q̃|θ)) is
bounded away from 0 and ∞ on X×Θ; Given a total of N iterations, let {g(k), q(k)}nk=1 be n distinct values

of (G̃, q̃). Re-sample a random sample (G′,q′) from Ω(N) such that

P ((G′,q′) = (g(k), q(k))|θ′) =

∑N
t=1

∑m
i=1

{
w

(t)
i

exp(Ψ(G̃(t),q̃(t),θ′)

exp(Ψ(G̃(t),q̃(t),θi))
I
(
H(θ̃(t)) = i and (G̃(t), q̃(t)) = (g(k), q(k))

)}

∑N
t=1

∑m
i=1

{
w

(t)
i

exp(Ψ(G̃(t),q̃(t),θ′))

exp(Ψ(G̃(t),q̃(t),θi))
I
(
H(θ̃(t)) = i

)} ,

(92)

for k = 1, · · · , n, then the distribution of (G′,q′) converges to µ(G′,q′|θ′) almost surely as N → ∞.

Proof of Lemma 2. By the assumption that X is compact and exp(Ψ(G̃, q̃|θ)) is bounded away from 0
and ∞, it follows from the convergence and the strong law of large numbers of SAMC [Liang et al., 2015]
that

1

N

N∑

t=1

m∑

i=1

{
w

(t)
i

exp(Ψ(G̃(t), q̃(t), θ′))

exp(Ψ(G̃(t), q̃(t), θi))
I
(
H(θ̃(t)) = i

)}

→
m∑

i=1

∫

X

κ(θi)

pi

exp(Ψ(G̃, q̃, θ′))

exp(Ψ(G̃, q̃, θi))
piµ(G̃, q̃|θi)dG̃dq̃

= mκ(θ′), a.s., (93)

where µ(G̃, q̃|θi) =
exp(Φ(G̃,q̃,θi))

κ(θi)
and κ(θi) =

∫
X
exp(Φ(G̃, q̃, θi)). Similarly, for any Borel set A ∈ X,

1

N

N∑

t=1

m∑

i=1

{
w

(t)
i

exp(Φ(G̃t, q̃
(t), θ′))

exp(Φ(G̃t, q̃(t), θi))
I
(
H(θ̃(t)) = i and (G̃(t), q̃(t)) ∈ A

)}

→
m∑

i=1

∫

A

κ(θi)

pi

exp(Φ(G̃, q̃, θ′))

exp(Φ(G̃, q̃, θi))
piµ(G̃, q̃|θi)dG̃dq̃

= m

∫

A

exp(Φ(G̃, q̃, θ′))dG̃dq̃. (94)
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Putting Equations (93) and (94) together, as N → ∞, we have

P ((G′,q′) ∈ A|Ω(N), θ′) (95)

=

∑N
t=1

∑m
i=1

{
w

(t)
i

exp(Φ(G̃(t),q̃(t),θ′))

exp(Φ(G̃(t),q̃(t),θi))
I
(
H(θ̃(t)) = i and (G̃(t), q̃(t)) ∈ A

)}

∑N
t=1

∑m
i=1

{
w

(t)
i

exp(Φ(G̃(t),q̃(t),θ′))

exp(Φ(G̃(t),q̃(t),θi))
I
(
H(θ̃(t)) = i

)}

→

∫

A

µ(G̃, q̃|θ′)dG̃dq̃, a.s. (96)

Finally, by Lebesque’s dominated convergence theorem,

P ((G′,q′) ∈ A|θ′) = E[P ((G′,q′) ∈ A|Ω(N); θ′)] →

∫

A

f(G̃, q̃|θ′)dG̃dq̃. (97)

✷

Notice that {θ(t)} from the AEX algorithm form an adaptive Markov chain with the transition
kernel given by

P̃l(θ, dθ
′) =

∫

X

α(θ′|θ, G′,q′)T1(dθ
′|θ)νl(G

′,q′|θ′)dG′dq′ + δθ(dθ
′)

[
1−

∫

Θ×X

α(ϑ′|θ, G′,q′)T1(dϑ
′|θ)νl(G

′,q′|ϑ′)dG′dq′

]
,

where α(θ′|θ, G′,q′) is defined in Equation (91), δθ(dθ′) = 1 if θ ∈ dθ′ and 0 otherwise, T1(dθ′|θ) is
the proposal distribution, l denotes the cardinality of the set Ω(l), i.e., l = |Ω(l)|, and νl(G

′,q′|θ′)

denotes the distribution of (G′,q′) re-sampled from Ω(l). Different from the transition kernel of
AEX, the transition kernel of the exchange algorithm depends on the perfect draw of (G′,q′) from
µ(·|ϑ′), which is given by

P (θ, dθ′) =
∫

X

α(θ′|θ, G′,q′)T1(dθ
′|θ)µ(G′,q′|θ′)dG′dq′ + δθ(dθ

′)

[
1−

∫

Θ×X

α(ϑ′|θ, G′,q′)T1(dϑ
′|θ)µ(G′,q′|ϑ′)dG′dq′

]
,

where α(θ′|θ, G′,q′) is defined in Equation (31)

Lemma 3. Assume that (i) conditions (A1) and (A2) are satisfied; (ii) both Θ and X are compact; (iii)
the potential function Φ(G′, ǫ(θ), θ) is continuously differentiable in θ for all G′ ∈ X and bounded away
from 0 and ∞ on X × Θ; (iv) π(θ) and q(θ′|θ) are continuously differentiable in θ and θ′. Define

D̃l = sup
θ∈Θ ‖ P̃l(θ, ·)− P (θ, ·) ‖, then D̃l → 0 almost surely as l → ∞.

Define Dl = supθ∈Θ ‖ P̃l+1(θ, ·) − P̃l(θ, ·) ‖. Since Dl ≤ supθ∈Θ ‖ P̃l+1(θ, ·)− P (θ, ·) ‖ +supθ∈Θ ‖

P̃l(θ, ·)− P (θ, ·) ‖, we have liml→∞Dl = 0 almost surely by Lemma 3. Thus, P̃l satisfies condition
(c) of Theorem D1. It is known that the transition kernel of the exchange algorithm, P (θ, dθ′),
is irreducible and aperiodic and admits an invariant limit distribution. Lemma 4 shows that the
transition kernel of the AEX algorithm, P̃l(θ, dθ′), also has these properties and thus satisfies
condition (a) of Theorem 2.

Lemma 4. Assume (i) the conditions of Lemma 3 are satisfied; (ii) P is irreducible and aperiodic and

admits an invariant distribution, then P̃l is irreducible and aperiodic, and hence exists a stationary distri-
bution πl(θ|G′,q′) such that for any θ0 ∈ Θ,

lim
k→∞

‖ P̃ kl (θ0, ·)− πl(·|G
′,q′) ‖= 0.

Lemma 5 establishes the asymptotic simultaneous uniform ergodicity of the kernel P̃l’s.

Lemma 5. Assume the conditions of Lemma 4 are satisfied. If the proposal q(·, ·) satisfies the local
positive condition, then for any e > 0, there exist a measurable set E(e) in the probability space such that
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P (E(e)) > 1− e and on this set E(e), for any ǫ > 0, there exist n(ǫ) ∈ N and l(ǫ) ∈ N such that for any
n > n(ǫ) and l > l(ǫ),

‖ P̃nl (θ0, ·)− π(·|G,q) ‖≤ ǫ, for all θ0 ∈ Θ.

Putting Lemmas 3, 4, and 5 altogether, we have the following theorem in regard to ergodicity
and the weak law of large number for AEX.

Theorem 4. Assume the conditions of Lemma 5 hold. If the proposal T1(·, ·) satisfies the local positive
condition and the unnormalized density function exp(Φ(G′,q′, θ)) is upper semi-continuous in θ for all
(G′,q′) ∈ X, then the adaptive exchange algorithm is ergodic and for any bounded measurable function f ,

1

T

T∑

t=1

f(θ(t)) → π(f |G,q), in probability,

as T → ∞, where π(f |G,q) =
∫
Θ f(θ)π(θ|G,q)dθ.
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Figure G.1: Plots of MCMC draws for ρ and b under the SIC-28 subsample.
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G.4. Fixed Network

When the network link update rates vanish (by setting the rates τ = ξ = 0 of the stochastic
process in Definition 1), i.e. the network is fixed, or just looking at a time interval between any
two link changes where all firms adjust output levels instantaneously, we can study firms’ output
decisions conditional on a given fixed network configuration G. Assuming that the inverse noise
parameter ϑ is large, output levels chosen by firms will be close to the potential maximizer q∗.
We can then make the following Taylor expansion for the potential function

Φ(q, G) = Φ(q∗, G) + (q− q∗)⊤∇Φ(q∗, G) +
1

2
(q− q∗)⊤∆Φ(q∗, G)(q − q∗) + o(‖q− q∗‖).

Noting that the gradient vanishes at q∗, i.e., ∇Φ(q∗, G) = 0, and dropping terms of the order
o(‖q− q∗‖) we can write

Φ(q, G) ≈ Φ(q∗, G) +
1

2
(q− q∗)⊤∆Φ(q∗, G)(q− q∗).

Inserting the above equation into the Gibbs measure gives

µϑ(q, G) =
1

Zϑ

eϑΦ(G,q) ≈
1

Zϑ

eϑΦ(q∗,G) exp

{
1

2
ϑ(q − q∗)⊤∆Φ(q∗, G)(q− q∗)

}
.

The partition function can be written as

Zϑ =

∫

Qn

eϑΦ(q,G)dq

≈ eϑΦ(q∗,G)

∫

Qn

exp

{
1

2
ϑ(q− q∗)⊤∆Φ(q∗, G)(q − q∗)

}
dq

= eϑΦ(q∗,G)

(
2π

ϑ

)n
2

|−∇Φ(q∗, G)|−
1
2 .

Therefore, the above Laplace approximation of the Gibbs measure yields [cf. Wong, 2001, Theorem
3, p. 495]

µϑ(q, G) ≈

(
2π

ϑ

)−n
2

|−∇Φ(q∗, G)|
1
2 exp

{
−
1

2
ϑ(q− q∗)⊤(−∆Φ(q∗, G))(q − q∗)

}
.

where the potential function Φ(q, G) is given by Equation (25). The gradient can be written as
∇Φ(q, G) = η −M(G)q and the Hessian is given by ∆Φ(q, G) = −M(G). The FOCs are then given
by ∇Φ(q∗, G) = η −M(G)q∗ = 0 so that q∗ = M(G)−1Xδ when the matrix M(G) is invertible and
η = Xδ.102 Hence, the density of output levels q with the (exogenous) network G can be rewritten
as

µϑ(q|G) ≈

(
2π

ϑ

)−n
2

|M(G)|
1
2 exp

{
−
1

2

(
q−M(G)−1Xδ

)⊤
M(G)(q −M(G)−1Xδ)

}
, (98)

which implies that the output q, conditional on the R&D network G, follows a Gaussian normal
density function with mean M(G)−1Xδ and variance M(G)−1.

G.5. Matrix Perturbation

For the computational implementation of the MCMC algorithm we will have to evaluate the
inverse of M(G) whenever a link has been added or removed in the network G. To do this in an
efficient way, the following lemma will be helpful.

Lemma 6. Let ei and ej be the i-th and j-th unit basis vectors in R
n. The matrix eie

⊤
j has a one in the

102The existence of a unique potential maximizer q∗ is guaranteed when the output levels are bounded and the
matrix M(G) is positive definite [cf. Byong-Hun, 1983; König et al., 2014b].
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ij-th position and zeros everywhere else. Define the matrix

Bij ≡
A−1eie

⊤
j A

−1

1 + αe⊤j A
−1ei

.

Adding a perturbation α to the matrix A in the ij-th and the ji-th position can be written as A+αeie
⊤
j +

ρeje
⊤
i .

(i) The inverse of the perturbed matrix can be written as

(A+ αeie
⊤
j + αeje

⊤
i )

−1 = A−1 − αBij − α

(
A−1 − αBij

)
eje

⊤
i

(
A−1 − αBij

)

1 + αe⊤i (A−1 − αBij) ej
. (99)

(ii) The determinant of the perturbed matrix can be written as

det(A+ αeie
⊤
j + αeje

⊤
i ) =

(
1 + αe⊤i

(
A−1 − αBij

)
ej
) (

1 + αe⊤j A
−1ei

)
det (A) . (100)

Proof of Lemma 6. We first give a proof of part (i) of the lemma. The Sherman–Morrison formula
states that [cf. Meyer, 2000, page 124]

(A+ αuv⊤)−1 = A−1 − α
A−1uv⊤A−1

1 + αv⊤A−1u
.

Let c = ei and d = ej , where ei and ej are the i-th and j-th unit basis vectors, respectively. The matrix
cd⊤ then has a one in the (i, j)-position and zeros elsewhere, so that adding a one to the matrix A in the
(i, j)-position and the (j, i)-position (resulting from adding a link ij to the adjacency matrix A) yields a
perturbed matrix B which can be written as

B = A+ αeie
⊤
j + αeje

⊤
i = C+ αeje

⊤
i ,

where we have denoted by C ≡ A+ αeie
⊤
j . Using the Sherman–Morrison formula we then can write

B−1 = (C+ αeje
⊤
i )

−1 = C−1 − α
C−1eje

⊤
i C

−1

1 + αe⊤i C
−1ej

, (101)

while applying Sherman–Morrison to C−1 gives

C−1 = (A+ αeie
⊤
j )

−1 = A−1 − α
A−1eie

⊤
j A

−1

1 + αe⊤j A
−1ei

.

Inserting C−1 into Equation (101) yields

B−1 = A−1 − α
A−1eie

⊤
j A

−1

1 + αe⊤j A
−1ei

− α

(
A−1 − α

A−1eie
⊤
j A−1

1+αe⊤
j A−1ei

)
eje

⊤
i

(
A−1 − α

A−1eie
⊤
j A−1

1+αe⊤
j A−1ei

)

1 + αe⊤i

(
A−1 − α

A−1eie
⊤
j A−1

1+αe⊤
j A−1ei

)
ej

.

We next give a proof of part (ii) of the lemma. We have that det(A+αeie
⊤
j +αeje

⊤
i ) = det(C+αeje

⊤
i ),

where we have denoted by C ≡ A+αeie
⊤
j . The matrix determinant lemma states that [Horn and Johnson,

1990]

det(A+ uv⊤) = (1 + v⊤A−1u) det(A).

It then follows that

det(A+ αeie
⊤
j + αeje

⊤
i ) = det(C+ αeje

⊤
i ) = (1 + αe⊤i C

−1ej) det (C) ,

Similarly, from the matrix determinant lemma, we have that

det (C) = det
(
A+ αeie

⊤
j

)
= (1 + αe⊤j A

−1ei) det (A) .
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Further, the Sherman–Morrison formula states that [cf. Meyer, 2000, page 124]

(A+ αcd⊤)−1 = A−1 − α
A−1uv⊤A−1

1 + αv⊤A−1u
.

It follows that

C−1 = (A+ αeie
⊤
j )

−1 = A−1 − α
A−1eie

⊤
j A

−1

1 + αe⊤j A
−1ei

.

Putting the above results together, we find that

det(A+ αeie
⊤
j + αeje

⊤
i ) = (1 + αe⊤i C

−1ej) det (C)

=

(
1 + αe⊤i

(
A−1 − α

A−1eie
⊤
j A

−1

1 + αe⊤j A
−1ei

)
ej

)
(
1 + αe⊤j A

−1ei
)
det (A) .

✷

Note that due to Lemma 6 the determinant and the inverse of the perturbed matrix A +

αeie
⊤
j +αeje

⊤
i can be efficiently computed if the determinant, det (A), and the inverse, A−1, of A

are already known.

H. Performance of Estimation Methods: Consistency, computa-

tion time and missing data

In this paper we consider three types of Bayesian MCMC estimation methods, the likelihood par-
tition (LP), the double Metropolis-Hastings (DMH), and the adaptive exchange (AEX) algorithm
to estimate our model. In order to demonstrate the performance of each method, we conduct
a small-scale simulation study to show that (i) the true parameter values can be obtained from
each method when estimating the correct model, and (ii) to illustrate the relative computation
cost of each method. For the first part, as known from the Bayesian identification literature [see,
e.g., Berger, 1985, p.224], the Bayesian asymptotic theory related to the posterior distribution
is identical to the asymptotic distribution theory for the maximum likelihood estimator (MLE).
Therefore, the posterior distribution of parameters should be concentrated at the true value, i.e.,
consistent when the sample size goes to infinity (where the role of the prior vanishes), just like
MLE does. Regarding the latter, since estimating ERGMs is usually computationally costly, we
report the computation time (under our simulation design) so that potential users can better
gauge the feasibility of our methods when applied to their own data.

In this simulation, we generate an artificial network (G) and output data (q) from the data
generating process (DGP) described in Definition 1. We consider two network sizes (n) – 100
and 200 – for comparing posterior distributions under different sample sizes. In the DGP, we
capture individual exogenous heterogeneity in the output process by βx, where the variable x

is generated from a normal distribution, N (0, 4), and the coefficient β is set to one. The true
value of the complementarity effect ρ is set to 0.05 and the true value of the substitution effect
b is set to 0.01. Exogenous linking costs for each network link (aij) are captured by a constant
term and two dyad-specific exogenous variables c1 and c2 generated as follows: For c1, we first
draw n discrete uniform variables H from [1, 4], If H1i and H1j are the same, then we set c1,ij = 1.
Otherwise, we set it to zero. For c2, we use the exogenous variable x from the output process and
define c2,ij = |xi − xj |. The parameters assigned to the cost function γ0 + γ1c1,ij + γ2c2,ij are set
to γ = (γ0, γ1, γ2) = (−7, 2, 1). We normalize other parameters in Definition 1 as follows: ϑ = 1,
ν = 0.5, λ = 1, ξ = 1, χ = 1.

Given the artificial data, in terms of the output levels q and the network G, we first estimate
the exact same model in the DGP and simulate 50, 000 MCMC draws from the conditional poste-
rior distribution P (ρ, b,γ′, β|q, G) under the LP, DMH, and AEX methods discussed in Section 3.3
of the paper. We initially code all of the three methods in Matlab. However, we found Matlab
was not ideal for handling the heavy sequential computations that are part of the DMH and
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Figure H.1: The average computation time for a single MCMC iteration (measured in seconds)

Table H.1: Monte Carlo simulation results based on increasing levels of missing
data.

DGP 25% missing 50%missing 75% missing

mean s.d. mean s.d. mean s.d.

ρ 0.0500 0.0578 0.0070 0.0677 0.0108 0.0414 0.0156
b 0.0100 0.0098 0.0020 0.0123 0.0033 0.0172 0.0040
γ0 -7.0000 -7.0992 0.1374 -7.1463 0.2371 -7.4734 0.7513
γ1 2.0000 1.9797 0.0807 1.9851 0.1847 2.0692 0.3760
γ2 1.0000 1.0372 0.0373 1.0450 0.0623 1.1196 0.1894

Note: The number of repetitions for each simulation is set to 100.
The true parameters are provided in the first column. We consider
different levels of missing data: 25%, 50%, and 75%. The mean and
the standard deviation of the point estimates across 100 repetitions
are reported.

AEX algorithms. Therefore, we recode the DMH and AEX methods in Fortran. The average
computation time for a single MCMC iteration (measured in seconds), which is executed on a
single workstation with dual Intel Xeon 2.60 GHz CPUs, is reported in Figure H.1. One can
see that when the network size increases, the computation time required by the DMH and AEX
algorithms increases dramatically compared to the LP algorithm, even though we have adopted
a high level programming language such as Fortran in order to gain computational efficiency.
Moreover, we illustrate the distributions of the posterior draws in Figure H.2. One can see that
when the sample size increases from 100 to 200, the draws of (ρ, b, γ′) become more concentrated
around the true values.

Furthermore, we use this simulation environment to examine the impact of missing observa-
tions on the estimation results. We take the artificial network and output sample with size equal
to 200 generated from the DGP described above and conduct 100 Monte Carlo repetitions. In
each repetition, we remove different amounts of data, 25%, 50%, and 75% of the total observa-
tions, respectively, at random and estimate the model using the LP approach. We compute the
posterior mean from MCMC draws as the point estimate for each parameter and report the mean
and the standard deviation across the Monte Carlo repetitions in Table H.1. We find that the bias
and volatility of the point estimates increase with increasing amounts of missing observations.
However, from the most severe case (75% missing) that we consider, in which only 50 nodes were
left in our sample, the average biases are maintained below 15% for the complementarity effect
ρ; below 72% for the substitution effect b; and generally below 12% for the other parameters in
the linking cost function. From this simulation exercise we therefore find that the bias incurred
from missing data is relatively weak.
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Figure H.2: The distribution of the parameters ρ, b, and γ across a total of 50, 000 MCMC draws from the con-
ditional posterior distributions using the likelihood partition (LP) approach (left column), the double Metropolis-
Hastings (DMH) algorithm (middle column) and the AEX algorithm (right column) discussed in Section 3.3.
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Table I.1: Descriptive statistics.

Log R&D Expenditure Productivity Log # of Patents

Sample # of firms mean min max mean min max mean min max

SIC-36 198 9.8114 4.5667 14.8850 1.5414 0.0019 9.6015 5.1430 0.0000 11.8726

SIC-361 16 8.8642 7.1316 12.9694 0.7264 0.2081 1.3740 4.8608 3.0445 6.1137
SIC-362 11 9.6755 6.2545 11.9781 0.9454 0.0177 1.9536 5.9453 3.1781 9.5412
SIC-364 5 9.6953 6.6545 11.3892 1.0237 0.3052 1.3553 5.9174 1.3863 8.3134
SIC-365 9 10.6156 8.3330 13.6045 1.0857 0.1055 2.7267 6.9759 4.3694 10.7241
SIC-366 45 9.5828 4.8083 14.7500 1.8621 0.1967 4.6009 4.4755 0 11.8726
SIC-367 100 9.8987 4.5667 14.8850 1.7027 0.0019 9.6015 5.0129 0 10.4502
SIC-369 12 8.6530 6.0535 10.5134 0.8442 0.0068 3.7974 4.0802 0.6931 7.5358

Note: The logarithm of a firm’s R&D expenditures (by thousand dollars) measures its R&D effort. A firm’s
productivity is measured by the ratio of sales to employment. The log of the number of patents is used as a
control variable in the linking cost function [cf. e.g. Hanaki et al., 2010].

Table I.2: The number of R&D collaborations within and
across the subsectors of the SIC-36 sector.

364 361 365 362 369 366 367

364 0 1 0 0 0 0 0
361 1 2 5 0 0 2 4
365 0 5 0 0 0 0 0
362 0 0 0 0 0 0 0
369 0 0 0 0 0 0 0
366 0 2 0 0 0 3 5
367 0 4 0 0 0 5 7

I. Analysis of the SIC-36 Sector – Electronic and Other Electric

Equipment

The SIC-36 sector is the second largest 2-digit SIC sector in our sample. It consists of 198 firms
and 29 R&D collaboration links. Excluding the sectors without any observation, we obtain 8 sub-
sectors within SIC-36, ranging from “electronic transmission and distribution equipment” (SIC-
361) to “miscellaneous electrical machinery, equipment, and supplies” (SIC-369). The summary
statistics of these sectors are provided in Table I.1 and the number of R&D collaborations within
the SIC-36 sector is reported in Table I.2. Among the sub-sectors within SIC-36, the electronic
components and accessories sector (SIC-367) is the largest one. It consists of 100 firms and 7
within sectoral R&D collaborations.

The estimation results for the SIC-36 sector are reported in Table I.3. We obtain three
estimates based on, respectively, the LP, the DMH, and the AEX algorithms. The estimates for
the technology spillover effect ρ and the competition effect b across the three different estimation
algorithms are similar and significant, which confirms the robustness of our estimates. Compared
to the results of the SIC-28 sector in Table 2, the technology spillover effects in the SIC-36 sector
is 1.7 times larger (based on DMH estimates), while the size of competition effect is similar in the
two sectors. However, for the R&D linking cost, due to a smaller sample size and spare sample
variation on the network, we only found a robust significant effect for the sum of log patent
numbers on the linking cost.
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Table I.3: Estimation results based on the SIC-36 sector.

LP DMH AEX

R&D Spillover (ρ) 0.0612∗∗∗ 0.0700∗∗∗ 0.0696∗∗∗

(0.0043) (0.0058) (0.0042)
Substitutability (b) 0.0001∗ 0.0002∗ 0.0001∗

(0.0001) (0.0001) (0.0001)
Prod. (δ1) 0.0634∗∗ 0.0762 0.0681

(0.0287) (0.0756) (0.0589)
Sector FE (δ2) Yes Yes Yes

Linking Cost

Constant (γ0) 16.3972∗∗∗ 17.7430∗∗∗ 17.9334∗∗∗

(0.3329) (1.3463) (1.7124)
Same Sector (γ1) -0.7698∗ -1.2118∗ -0.1174

(0.4309) (0.7709) (0.9089)
Same Country (γ2) -0.9180∗∗ -0.5550 -0.5854

(0.4273) (0.5693) (0.6309)
Diff-in-Prod. (γ3) -0.5287 -0.4750 -0.2123

(0.4550) (0.5576) (0.5637)
Diff-in-Prod. Sq. (γ4) 0.0964 0.1313 0.0702

(0.0988) (0.1384) (0.1023)
Patents (γ5) -0.0597∗ -0.1469∗∗ -0.1680∗∗∗

(0.0312) (0.0715) (0.0674)

Sample size 198

Note: The dependent variable is log R&D expenditures. The pa-
rameters θ = (ρ, b, δ⊤, γ⊤,κ) correspond to Equation (24), where
ψij = γ⊤cij and ηi = Xiδ (cf. Section 3.2). We make 50,000
MCMC draws where we drop the first 2,000 draws during a burn-in
phase and keep every 20th of the remaining draws to calculate the
posterior mean (as point estimates) and posterior standard devia-
tion (shown in parenthesis). All cases pass the convergence diag-
nostics provided by Geweke [1992] and Raftery and Lewis [1992].
The asterisks ∗∗∗(∗∗,∗) indicate that its 99% (95%, 90%) highest
posterior density range does not cover zero.
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Britton, T., Deijfen, M., and Martin-Löf, A. (2006). Generating simple random graphs with prescribed degree

distribution. Journal of Statistical Physics, 124(6):1377–1397.
Brualdi, R. A. and Solheid, Ernie, S. (1986). On the spectral radius of connected graphs. Publications de l’ Institute

Mathematique, 53:45–54.
Buechel, B. and Hellmann, T. (2012). Under-connected and over-connected networks: the role of externalities in

strategic network formation Review of Economic Design, 16:71–87.
Byong-Hun, A. (1983). Iterative methods for linear complementarity problems with upper bounds on primary

variables. Mathematical Programming, 26(3):295–315.
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Van Mieghem, P., Stevanović, D., Kuipers, F., Li, C., van de Bovenkamp, R., Liu, D., and Wang, H. (2011).

Decreasing the spectral radius of a graph by link removals. Phys. Rev. E, 84:016101.
Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations.

Survey review 23(176), 88–93.
Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference.

Foundations and Trends in Machine Learning, 1(1-2):1–305.
Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University

Press.
Watts, A. (2001). A dynamic model of network formation. Games and Economic Behavior, 34(2):331–341.
Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393:440–442.
Weibull, J. (1997). Evolutionary game theory. The MIT press.

44


	Introduction
	Theoretical Framework
	Payoffs
	Network Dynamics and Equilibrium Characterization
	Efficiency
	Extensions
	Heterogeneous Collaboration Costs
	Heterogeneous Technology Spillovers


	Empirical Study
	Data
	Firm Heterogeneity
	Exponential Random Graph Models
	Likelihood Partition Approach
	Exchange Algorithm
	Adaptive Exchange Algorithm

	Empirical Results
	Model Fit

	Counterfactual Analyses
	Firm Exit and Key Players
	Mergers and Acquisitions
	R&D Collaboration Subsidy

	Conclusion
	Proofs
	Definitions and Characterizations
	Cournot Competition and Profits from R&D Collaborations
	Multinomial Logit Output Choice
	Firm Heterogeneity
	Heterogeneous Marginal Collaboration Costs
	Heterogeneous Technology Spillovers

	Data
	Mergers and Acquisitions
	Balance Sheet Statements, R&D and Productivity
	Geographic Location and Distance
	Patents and Technological Similarity

	Estimation Algorithms
	Implementation of the DMH Algorithm
	Implementation of the AEX Algorithm
	Convergence of the AEX Algorithm
	Fixed Network
	Matrix Perturbation

	Performance of Estimation Methods: Consistency, computation time and missing data
	Analysis of the SIC-36 Sector – Electronic and Other Electric Equipment

