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Abstract

A nudge is a paternalistic government intervention that attempts to improve
choices by changing the framing of a decision problem. We propose a welfare-
theoretic foundation for nudging similar in spirit to the classical revealed preference
approach, by investigating a model where preferences and mistakes of an agent can
be elicited from her choices under different frames. We provide characterizations of
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derive results on the required quantity of information. We also study an extended
application to a savings problem.
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1 Introduction

A nudge (Thaler and Sunstein, 2008) is a regulatory intervention that is characterized by

two properties. First, it is paternalistic in nature, because “it is selected with the goal of

influencing the choices of affected parties in a way that will make those parties better off”

(Thaler and Sunstein, 2003, p. 175). Second, it is not coercive but instead manipulates the

framing of a decision problem, which makes it more easily acceptable than conventional

paternalistic measures. Among the best-known examples already dicussed in Thaler and

Sunstein (2003) is retirement saving in 401(k) savings plans, which can be encouraged

tremendously by setting the default to automatic enrollment. Another example is the

order in which food is presented in a cafeteria, which can be used to promote a more

healthy diet.

The intriguing idea that choices can be improved by framing has made the concept

of nudging also politically attractive. Governments of numerous countries have set up

so-called “nudge units”, which develop and implement nudge-based policies. The UK

spearheaded this development in 2010 with the foundation of the Behavioral Insights

Team.1 More recently, U.S. President Barack Obama issued an executive order estab-

lishing the Social and Behavioral Sciences Team.2 The executive order encourages all

government agencies to “carefully consider how the presentation and structure of [...]

choices, including the order, number, and arrangement of options, can most effectively

promote public welfare”.

This paper addresses the problem of how to define and measure welfare. What does

it mean that a frame improves choices? How can we be sure that it is in the employee’s

own best interest to save more or to eat more healthily? The ordinary revealed preference

approach is not suitable to answer these questions, due to the behavioral inconsistencies

caused by framing. Instead, the applied nudging literature often takes criteria such as

increased savings or improved health for granted (see e.g. Goldin, 2015, for a discussion).

Other authors have entirely dismissed the idea of nudging based on the welfare problem

(see e.g. Grüne-Yanoff, 2012). We take a different, choice-theoretic approach. We inves-

tigate a framework where the welfare preference of an agent can be (partially) inferred

from her choices under different frames, and the success of a nudge is evaluated on this

basis. We thus attempt to develop a welfare-theoretic foundation for nudging in a revealed

preference spirit, but appropriately modified. The twist is that, once we accept that “in

certain contexts, people are prone to error” (Sunstein, 2014, p. 4), we may be able to

learn about these errors from choice data.3

1See http://www.behaviouralinsights.co.uk.
2See http://go.wh.gov/MKURtv.
3Kőszegi and Rabin (2008b) first emphasized the possibility of recovering both welfare preferences

and implementation mistakes from choice data, for a given behavioral model. Several contributions have
studied this problem for specific models. Recent examples include Masatlioglu et al. (2012) for a model
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Our formal framework is a variant of Rubinstein and Salant (2012), henceforth RS,

who formulate a generalized approach for eliciting an agent’s preferences from choice data.

In this framework, which we formally introduce in Section 2, a regulator has a conjecture

about the behavioral model d, which relates each pair of a welfare preference � and a

frame f to a behavioral preference d(�, f). The interpretation is that an agent with

welfare preference � acts as if maximizing d(�, f) if the situation is framed according to

f . The welfare preference represents the normatively relevant well-being of the agent but

is not observable. Behavioral preferences may be different from the welfare preference

but are in principle observable in the usual revealed preference sense. RS investigate the

problem of learning about the welfare preference from a data set that contains observations

of behavior and, possibly, frames. We follow their approach in a first step, by verifying

which welfare preferences could have generated a given data set. In a second step, we

evaluate the frames based on the acquired information.

The framework’s generality enables us to accommodate many different behavioral

models. Among others, we will study well-known models such as choice from lists, default

biases, satisficing, priming, and limited search. Our goal is not to take a stand on what

the correct behavioral model is, or to argue in favor of any one of these models. Rather,

the objective of our analysis is to understand the general properties of decision-making

processes that make it possible or impossible to improve choices by framing.

A first contribution of our paper is to provide a choice-theoretic definition of a nudge.

After identifying the welfare preferences that are consistent with a given data set and

a behavioral model, in Section 3 we evaluate the frames on the basis of each of these

preferences. Comparing frames pairwise, we say that a frame f is a weakly successful

nudge over frame f ′ if the induced choices under f are at least as good as under f ′,

irrespective of which of the consistent preferences is the actual welfare preference. This

definition captures the above-mentioned idea that the regulator aims at improving the

agent’s choices by her own standards, i.e., the regulator tries to help the agent do what

she really wants to do. It also shares with the literature (e.g. Masatlioglu et al., 2012) the

cautious approach of requiring agreement among all possible welfare preferences, thereby

ensuring that the regulator does not accidentally make the agent worse off.

Having formalized the concept of a successful nudge, we can formulate notions of global

optimality. Ideally, we may be able to identify a frame that is a successful nudge over all

the other frames. We show that the ability to identify such an optimal frame coincides

with the ability to identify the welfare preference. An optimal frame is revealed by some

sufficiently rich data set if and only if the welfare preference is fully revealed by some

of limited attention, and Kőszegi and Szeidl (2013) for a model of focusing. Caplin and Martin (2012)
provide conditions under which welfare preferences can be recovered from choice data in a setting where
frames contain payoff-relevant information, such that framing effects are fully rational.
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sufficiently rich data set. This does not mean that the welfare preference has to be fully

elicited for successful nudging, as we will show by example, but it allows us to consider two

polar cases: models in which the welfare preference can never be identified completely, and

models in which the welfare preference can be identified completely. There are interesting

examples for either class of models, such as a satisficing model that has non-identifiable

preferences and a limited search model that has identifiable preferences. We also ask how

many models belong to each of the two classes and show that the share of models with

identifiable preferences converges to 1 as the set of alternatives grows.

In Section 4 we investigate models with non-identifiable preferences more thoroughly.

Finding an optimal frame is out of reach for these models, but we can still pursue the more

modest goal of identifying frames which are dominated by others. Put differently, even

though it is impossible to find a frame that improves upon all other frames, it may still be

the case that some frames can be improved upon. Such dominated frames can indeed exist,

as we show by example. However, if the behavioral model satisfies a property that we term

the frame cancellation property, then all frames are always undominated, irrespective of

the data set’s richness. With the frame cancellation property, observation of choices never

reveals the information required to improve these choices. Several important models have

the frame cancellation property. A first example is the satisficing model in its different

versions. A second example is the much-discussed case where the agent chooses the one

alternative out of two that is marked as a default. We also present a decision-making

procedure with limited sensitivity that nests all these (and more) behavioral models.

If, by contrast, the welfare preference can ultimately be learned, then questions of

complexity arise. How many, and which, observations are necessary to determine the

optimal frame? In Section 5 we define an elicitation procedure as a rule that specifies

the order in which we impose different frames on the agent during an observation phase,

contingent on the history of previous observations. This captures the idea that a data set

may not be given randomly but can be collected deliberately with the purpose of finding

an optimal nudge as quickly as possible. Holding fixed the unknown welfare preference of

the agent, an elicitation procedure generates a sequence of expanding data sets. We define

the complexity n of the nudging problem as the minimum over all elicitation procedures

of the number of observations after which the optimal frame is guaranteed to be known.

This number can sometimes be surprisingly small. For instance, we construct an optimal

elicitation procedure for the limited search model and show that n ≤ 3. We then establish

a tight bound on n for arbitrary behavioral models. The bound, which is for instance

reached by a behavioral model of priming, corresponds to the number of possible welfare

preferences and thus grows more than exponentially in the number of alternatives. This

implies that the informational requirements of nudging can in general become prohibitively

large even with identifiable welfare preferences.
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In Section 6 we allow for the possibility that the regulator has additional, non-choice-

based prior information about the agent’s welfare preference. We study such information

in the form of restricted domains and of probabilistic beliefs over the set of preferences.

For instance, the introduction of probabilistic beliefs allows us to generalize our notion of

complexity in different ways. We investigate the expected running time of an elicitation

procedure, and we relax our requirement of optimality and require that a frame is optimal

only with a sufficiently large probability (or for a sufficiently large share of a population

for which the agent is representative). As a consequence, nudging becomes easier, and

sometimes substantially so.

In Section 7 we take the opposite direction and limit the regulator’s exogenous infor-

mation relative to the main model. We in turn relax the assumptions that the regulator

has a unique conjecture about the correct behavioral model, thereby allowing for model

uncertainty, and that the regulator can perfectly observe (and control) the frame under

which the agent chooses. In the case of model uncertainty, for instance, the regulator needs

to learn from choice data about both the welfare preference and the behavioral model.

A fundamental new difficulty then arises when there are multiple model-preference pairs

that are behaviorally equivalent but have different normative implications.

We present an extended application of our model to a savings problem in Section 8.

Different frames induce more or less patient behavior in intertemporal choice problems.

We argue that it is not a priori clear whether future-oriented or present-oriented behavior

corresponds better with an agent’s unobservable welfare preference. We model this in a

two-period setting with one short-run frame and one long-run frame. Each frame focusses

the agent on one of the two time periods. The welfare discount factor and the degree

of present- or future-bias induced by the frames can then be elicited from the agent’s

behavior. We characterize when an optimal nudge exists and, if so, whether the agent

should be nudged towards more or less patient behavior. We then take this application to

the data. We conducted an experiment on Amazon Mechanical Turk to measure subjects’

behavioral discount factors under present- and future-biased frames. We estimate the

subjects’ welfare discount factors and determine their nudgeability. We find substantial

heterogeneity in discount factors, but, contrary to conventional wisdom, for a large share

of subjects our model predicts that the optimal nudge is a frame that induces present-

oriented behavior.

As noted before, the existing literature on nudging has focussed more on documenting

the behavioral effects of framing, taking the welfare criterion for granted. We believe

that our choice-theoretic approach adds a valuable new perspective. Several of our results

imply strong informational limitations for a regulator who attempts to base the selection

of nudges on a welfare-theoretic foundation. At the same time, our analysis reveals that

seemingly minor differences between behavioral models – such as whether an agent’s
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failure to optimize is due to a low aspiration level as in the satisficing model, or due to

a restricted number of considered alternatives as in the limited seach model – can have

profoundly different consequences for the ability to improve well-being by framing.

Goldin and Reck (2015) also study the problem of identifying welfare preferences when

choices are distorted by frames, focussing mostly on binary choice problems with defaults.

They estimate the preference shares among fully rational agents by the shares of agents

who choose each alternative when it is not the default. The preference shares among

the inconsistent agents are then deduced under identifying assumptions, for instance the

assumption that they are identical to the rational agents after controlling for observable

differences. It is then possible to identify the default that induces the best choice for a

majority of the population. Informational requirements are not the only obstacle that

a libertarian paternalist has to overcome. Spiegler (2015) emphasizes that equilibrium

reactions by firms must be taken into account when assessing the consequences of a

nudge-based policy. Even abstracting from informational problems, these reactions can

wipe out the intended benefits of a policy. Finally, frames are often not chosen by a

benevolent regulator but by profit-maximizing actors in markets, which also gives rise to

questions about welfare. Siegel and Salant (2015) study contracts when a seller is able to

temporarily influence the buyers’ willingness to pay by framing. They provide conditions

under which optimal contracts make use of strategic framing, show how framing interacts

with market regulation, and discuss the welfare implications.

2 Model and Examples

We begin by introducing the formal framework, which is a variant of RS, and we illustrate

it with the help of two examples. Let X be a finite set of alternatives, with mX = |X|.
Denote by P the set of linear orders (reflexive, complete, transitive, antisymmetric) on

X . A strict preference is a linear order � ∈ P . Let F be a finite set of frames, with

mF = |F |. By definition, frames capture all dimensions of the environment that can affect

decisions but are not considered welfare-relevant.4 The agent’s behavior is summarized

by a distortion function d : P ×F → P , which assigns a distorted preference d(�, f) ∈ P

to each combination of � ∈ P and f ∈ F . The interpretation is that an agent with true

welfare preference � acts as if maximizing the behavioral preference d(�, f) if the choice

situation is framed by f .5 To fix ideas, we formally introduce two possible models.

4For specific applications, the modeller has to judge which dimensions are welfare-relevant and which
are not. For instance, it may be uncontroversial that an agent’s well-being with some level of old age
savings is independent of whether this level was chosen by default or by opt-in, but analogous statements
would not be true if a default entails substantial switching costs, or if a “frame” actually provides novel
information about the decision problem.

5This assumes that, given any frame, choices are consistent and can be represented by a preference.
Salant and Rubinstein (2008) refer to (extended) choice functions with this property as “salient consider-
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Model 1 (Perfect-Recall Satisficing). This model is taken from RS. The agent is

satisfied with any of the top k alternatives in her welfare preference, so k ∈ {2, . . . , mX}
represents her aspiration level. The frame f describes the order in which the alternatives

are presented to the agent. Whenever the agent chooses from some non-empty subset

S ⊆ X (e.g. the budget set), she considers the alternatives in S sequentially in their

order as prescribed by f ∈ F = P . She chooses the first alternative that exceeds her

aspiration level, i.e., she picks from S whichever satisfactory alternative is presented first.

If S turns out not to contain any satisfactory alternative, the agent recalls all alternatives

in S and chooses the welfare-optimal one. Choices between satisfactory alternatives will

thus always be in line with the order of presentation, while all other choices are in line

with the welfare preference. Hence we can obtain d(�, f) from � by rearranging the top

k elements according to their order in f .6

Model 2 (Limited Search). This model formalizes a choice heuristic similar to one

described in Masatlioglu et al. (2012). When the agent looks for a product online, all

alternatives in X are displayed by a search engine, but only k of them on the first result

page and mX − k of them on the second result page. The frame f here is the set of

k ∈ {1, . . . , mX − 1} alternatives on the first page, such that F is the set of all size

k subsets of X . The agent again chooses from non-empty subsets S ⊆ X (e.g. not

all displayed alternatives may be affordable to the agent or in stock with the retailer).

Whenever the first result page contains at least one of the alternatives from S, then the

agent does not even look at the second page but chooses from S ∩ f according to her

welfare preference. Only if none of the elements of S is displayed on the first page, then

the agent moves to the second page and chooses there according to her welfare preference.

Choices between alternatives on the same page will thus always be in line with the welfare

preference, but any available alternative on the first page is chosen over any alternative

on the second page. Hence d(�, f) preserves � among all first and among all second page

alternatives, but takes the first page to the top.7

The function d should be thought of as representing the regulator’s conjecture about

the relation between welfare, frames and choice. We consider the case of uncertainty

about the behavioral model in Section 7, but for now we assume that the conjecture d is

unique and given (keeping in mind that this assumption works in favor of nudging). Such

a conjecture will typically rely on insights about the decision-making process and thus

ation functions” (p. 1291). The assumption rules out behavioral models in which choices violate standard
axioms already when a frame is fixed. De Clippel and Rozen (2014) investigate the problem of learning
from incomplete data sets without such an assumption.

6In contrast to RS, we explicitly treat the order of presentation as a variable frame. We also assume
that the aspiration level k is fixed, which implies that the distortion function is single-valued.

7This model is also similar to the gradual accessibility model in Salant and Rubinstein (2008), but
the eventual choice rule is different.
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originates from non-choice data.8 For instance, eye-tracking or the monitoring of browsing

behaviors can provide the type of information necessary to substantiate a model like lim-

ited search (see the discussion in Masatlioglu et al., 2012), and methods from neuroscience

may confirm decision-processes such as perfect-recall satisficing. As noted before, it is not

our goal here to argue that a specific model is correct. Hence the only minor assumption

that we impose on the behavioral model in general is that for each � ∈ P there exists

an f ∈ F such that d(�, f) = �. This rules out that some preferences are distorted by

all possible frames and allows us to focus on the informational requirements of nudging,

without having to deal with exogenously unavoidable distortions. The assumption does

not imply the existence of a neutral frame that is non-distorting for all preferences.9 In

the satisficing model, all frames which present the k satisfying alternatives in their actual

welfare order are non-distorting for that welfare preference. In the limited search model,

the non-distorting frame places the k welfare-best alternatives on the first page.

Holding fixed a frame, the regulator now observes the agent’s choices from sufficiently

many different subsets S ⊆ X to deduce her behavioral preference, in the usual revealed

preference sense. Here the only difference to the usual approach is that the behavioral

preference is not automatically equated with the welfare preference, and that the pro-

cedure generates potentially different revealed behavioral preferences when repeated for

different frames. Formally, a data set is a subset Λ ⊆ P × F , where (�′, f ′) ∈ Λ means

that the agent has been observed under frame f ′ and her choice behavior revealed the

behavioral preference �′. Further following RS, we say that � is consistent with data

set Λ if for each (�′, f ′) ∈ Λ it holds that �′ = d(�, f ′). In that case, � is a possible

welfare preference because the data set could have been generated by an agent with that

preference.10 We illustrate the elicitation of the welfare preference, and also some first

implications for nudging, using two examples.

Example 1. Consider an agent whose decision process is described by the perfect-

recall satisficing model with aspiration level k = 2. The set of alternatives is given by

8Arguably, non-choice-based conjectures about the relation between choice and welfare always have
to be invoked, even in standard welfare economics, see Kőszegi and Rabin (2007, 2008a) and Rubinstein
and Salant (2008). For an opposing perspective and a critical discussion of the ability to identify the
decision process, see Bernheim (2009).

9Sometimes a neutral or “revelatory” frame (Goldin, 2015, p. 9) may indeed exist, for example when
the default can be removed from a choice problem. The existence of such a frame makes the welfare
elicitation problem and also the nudging problem straightforward. Often, however, this solution is not
available, e.g. defaults are unavoidable for organ donations, alternatives must always be presented in
some order or arrangement, and questions must be phrased in one way or another.

10Formally, this framework corresponds to the extension in RS where behavioral data sets contain
information about frames. It simplifies their setup by assuming that any pair of a welfare preference
and a frame generates a unique distorted behavioral preference. This is not overly restrictive, as the
different contingencies that generate a multiplicity of distorted preferences can always be written as
different frames. It is restrictive in the sense that observability and controllability of these frames might
not always be given. See Section 7.2 for the respective generalization.
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X = {a, b, c, d}. The agent has the welfare preference �1 given by c ≻1 a ≻1 b ≻1 d, so

that alternatives c and a are satisfactory. Denote the frame which presents the alternatives

in the alphabetical order by f . Thus, when choosing from some subset S ⊆ X , the

agent will consider the alternatives in S in alphabetical order and choose the first which

is satisfactory. Consequently, because a is presented before c, the agent will choose a

whenever a ∈ S, even if also c ∈ S, in which case this is a mistake. She will choose c when

c ∈ S but a /∈ S, and otherwise she will choose b over d by the perfect-recall assumption.

Taken together, these choices look as if the agent was maximizing the preference �2 given

by a ≻2 c ≻2 b ≻2 d. Formally, we have d(�1, f) = �2. Suppose the behavioral preference

�2 is observed in the standard revealed preference sense, by observing the agent’s choices

from different subsets S ⊆ X but under the fixed frame of alphabetical presentation.

Formally, the regulator obtains the data set Λ = {(�2, f)}. Given the perfect-recall

satisficing conjecture, he can then conclude that the agent’s welfare preference must be

either c ≻1 a ≻1 b ≻1 d or a ≻2 c ≻2 b ≻2 d; these two but no other welfare preferences

generate the observed behavior under frame f . Formally, the set of preferences that are

consistent with the data set is given by {�1,�2}. Therefore, with as little information

as observing behavior under a single frame, the set of possible welfare preferences can be

reduced from initially 24 to only 2.

We now illustrate some first implications for nudging, which here amounts to fixing

an optimal order of presentation. Any order that presents a before c would be optimal

if the agent’s welfare preference was a ≻2 c ≻2 b ≻2 d, but induces the above described

decision mistake between a and c if the welfare preference is c ≻1 a ≻1 b ≻1 d. The

exact opposite is true for any order that presents c before a. Hence our knowledge is

not yet enough to favor any one frame over another. Unfortunately, the problem cannot

be solved by observing the agent under additional frames. The order of presentation

fully determines choices among the alternatives a and c, so we can never learn about the

welfare preference between the two. Since precisely this knowledge would be necessary to

determine the optimal order, nudging here runs into irresolvable information problems.

Example 2. Consider an agent whose decision process is described by the limited search

model, and k = 2 alternatives are presented on the first result page. As in the previous

example, the set of alternatives is X = {a, b, c, d} and the agent has the welfare preference

�1 given by c ≻1 a ≻1 b ≻1 d. Let f = {a, b} denote the frame which puts the alternatives

a and b on the first page. Thus, whenever the agent’s choice set S ⊆ X contains either a

or b (or both), she will remain on the first page and make her choice there. Consequently,

she chooses a whenever a ∈ S, even if also c ∈ S, because c is displayed only on the second

page. This is again a mistake. She will choose b when b ∈ S but a /∈ S, and otherwise she

will choose c over d. Taken together, these choices look as if the agent was maximizing

the preference �3 given by a ≻3 b ≻3 c ≻3 d. Formally, we have d(�1, f) = �3. Suppose
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again that this behavioral preference is revealed, i.e., the regulator obtains the data set

Λ = {(�3, f)}. Reversing the distortion process now unveils that the agent truly prefers

a over b and c over d, which leaves the six possible welfare preferences marked in the

first column of Table 1. The set of preferences consistent with the observed behavior is

therefore given by {�1,�2,�3,�4,�5,�6}, meaning that the single observation reduces

the set of possible welfare preferences from 24 to 6.

Here, an optimal nudge should place the two welfare-best alternatives on the first page,

thus helping the agent avoid decision mistakes like the one between a and c under frame f

above. Unfortunately, each of the four alternatives still belongs to the top two for at least

one of the consistent welfare preferences, but none of them for all of the consistent welfare

preferences. Hence no frame guarantees fewer mistakes than any other. In contrast to the

satisficing example, however, gathering more information helps. Observing choices under

frame f ′ = {a, d} reveals the behavioral preference �7 given by a ≻7 d ≻7 c ≻7 b, from

which the welfare candidates marked in the second column of Table 1 can be deduced.

Formally, adding this observation to the data set yields Λ′ = {(�3, f), (�7, f
′)}, and

the set of consistent welfare preferences shrinks to {�1,�2,�4,�5}. Note that these

preferences all agree that a and c are the two best alternatives. Hence we know that

f ′′ = {a, c} is the optimal nudge. The actual welfare preference is still not known, so the

example also shows that identifying a nudge is not the same problem as identifying the

welfare preference.

Table 1: Reversing Limited Search

f = {a, b}: a ≻3 b ≻3 c ≻3 d f ′ = {a, d}: a ≻7 d ≻7 c ≻7 b
c ≻1 a ≻1 b ≻1 d X X

a ≻2 c ≻2 b ≻2 d X X

a ≻3 b ≻3 c ≻3 d X

a ≻4 c ≻4 d ≻4 b X X

c ≻5 a ≻5 d ≻5 b X X

c ≻6 d ≻6 a ≻6 b X

a ≻7 d ≻7 c ≻7 b X

c ≻8 b ≻8 a ≻8 d X

9



3 Nudgeability

3.1 Weakly Successful Nudge

In this section, we will provide a formal definition of a nudge. To capture the first step

of preference elicitation due to RS in a concise way, let

Λ̄(�) = {(d(�, f), f) | f ∈ F}

be the maximal data set that could be observed if the agent’s welfare preference was �,

i.e., the data set that contains an observation for each possible frame. Then the set of all

welfare preferences that are consistent with an arbitrary data set Λ can be written as

P (Λ) = {� | Λ ⊆ Λ̄(�)}.

Without further mention, we consider only data sets Λ for which P (Λ) is non-empty, i.e.,

for which there exists � such that Λ ⊆ Λ̄(�). Otherwise, the behavioral model would be

falsified by the data.11 Observe that a frame f cannot appear more than once in such

data sets. Observe also that P (∅) = P holds, and that P (Λ) ⊆ P (Λ′) whenever Λ′ ⊆ Λ.

We are interested in evaluating the frames after having observed some data set Λ and

having narrowed down the set of possible welfare preferences to P (Λ). Since previously

different frames may now have become behaviorally equivalent, let

[f ]Λ = {f ′ | d(�, f ′) = d(�, f), ∀ � ∈ P (Λ)}

be the equivalence class of frames for frame f , i.e., the elements of [f ]Λ induce the same

behavior as f for all of the remaining possible welfare preferences. We denote by F (Λ) =

{[f ]Λ | f ∈ F} the quotient set of all equivalence classes. Our central definition compares

the elements of F (Λ) pairwise from the perspective of the possible welfare preferences.

For any � and any non-empty S ⊆ X , let c(�, S) be the element of S that would be

chosen from S by an agent who maximizes �.

Definition 1 For any f, f ′ and Λ, [f ]Λ is a weakly successful nudge over [f ′]Λ, written

[f ]Λ N(Λ) [f ′]Λ,

if for each � ∈ P (Λ) it holds that c(d(�, f), S) � c(d(�, f ′), S), for all non-empty S ⊆ X.

11RS derive conditions under which data sets do or do not falsify a model conjecture. A falsified model
is of no use for the purpose of nudging and would have to be replaced by a conjecture for which P (Λ) is
non-empty.
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The statement [f ]ΛN(Λ)[f ′]Λ means that the agent’s choice under frame f (and all

equivalent ones) is at least as good as under f ′ (and all equivalent ones), no matter which

of the remaining welfare preferences is the true one. The welfare preferences enter the

definition not only for the evaluation of choices, but also because agents with different

welfare preferences react differently to frames. The binary nudging relation N(Λ) shares

with other approaches in behavioral welfare economics the property of requiring agreement

among multiple preferences (see, for instance, the multiself Pareto interpretation of the

unambiguous choice relation by Bernheim and Rangel, 2009), but the multiplicity of

preferences here simply reflects lack of information (as in Masatlioglu et al., 2012). Thus,

adding observations to a data set can only make the partition F (Λ) coarser and the

nudging relation more complete, because it can only reduce the set of possible welfare

preferences for which improved choices have to be guaranteed. In fact, the only way in

which the data set Λ matters for the binary nudging relation is via the set P (Λ).

The following Lemma 1 summarizes additional properties of N(Λ) that will be useful.

It relies on the sets of ordered pairs B(�, f) = d(�, f)\ � which record all binary com-

parisons that are reversed from � by f .12 For instance, in the satisficing example in the

preceding section, where the welfare preference was given by c ≻1 a ≻1 b ≻1 d and alpha-

betical order of presentation f resulted in the behavioral preference a ≻2 c ≻2 b ≻2 d, we

would obtain B(�1, f) =�2\�1= {(a, c)}. For the limited search example where frame

f = {a, b} distorted the same welfare preference to a ≻3 b ≻3 c ≻3 d, we would obtain

B(�1, f) =�3\�1 = {(a, c), (b, c)}.

Lemma 1 (i) [f ]ΛN(Λ)[f ′]Λ if and only if B(�, f) ⊆ B(�, f ′) for each � ∈ P (Λ).

(ii) N(Λ) is a partial order (reflexive, transitive, antisymmetric) on F (Λ).

The proof of the lemma (and all further results) can be found in Appendix A. Since

B(�, f) describes all the mistakes in binary choice that frame f causes for welfare pref-

erence �, statement (i) of the lemma formalizes the intuition that a successful nudge is a

frame that guarantees fewer mistakes. Statement (ii) implies that the binary relation is

sufficiently well-behaved to consider different notions of optimality.

3.2 Optimal Nudge

A benevolent regulator would ideally like to choose a frame that is a weakly successful

nudge over all other frames and thus guarantees the best possible choices. We call such a

frame an optimal nudge. Given a data set Λ, let

G(Λ) = {f | [f ]ΛN(Λ)[f ′]Λ, ∀f ′ ∈ F}
12Even though we often represent preferences as rankings like c ≻ a ≻ b ≻ d, we remind ourselves that

technically both d(�, f) and � are subsets of the set of ordered pairs X ×X .
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be the set of frames which have been identified as optimal. Formally, G(Λ) coincides with

the greatest element of the partially ordered set F (Λ), and it might be empty due to

incompleteness of the binary nudging relation. Since the nudging relation becomes more

complete as we collect additional observations, it follows that optimal nudges are more

likely to exist for larger data sets. Therefore, the following result provides a necessary

and sufficient condition for the existence of an optimal nudge for maximal data sets. The

result is relatively straightforward but important, as it will allow us to classify behavioral

models according to whether the search for an optimal nudge is promising or hopeless.

Definition 2 Preference � is identifiable if for each �′ ∈ P with �′ 6=�, there exists

f ∈ F such that d(�, f) 6= d(�′, f).

Proposition 1 G(Λ̄(�)) is non-empty if and only if � is identifiable.

The if-statement is immediate: an identifiable welfare preference is known once the

maximal data set has been collected, and all the non-distorting frames are optimal with

that knowledge. It is worth emphasizing again, however, that the result does not imply

that the welfare preference actually has to be learned perfectly for successful nudging.

It only tells us that, if � is the true and identifiable welfare preference, then for some

sufficiently large data set Λ we will be able to identify an optimal nudge. The set P (Λ)

might still contain more than one element at that point. The only-if-statement tells us

that there is no hope to ever identify an optimal nudge if the welfare preference cannot be

identified, i.e., if there exists another welfare preference �′ that is behaviorally equivalent

to � under all frames. In this case we say that � and �′ are indistinguishable. A frame

could then only be optimal if it does not distort any of the two, but this is impossible

as such a frame would generate different observations for � and �′ and hence would

empirically discriminate between them.

In the following, we will make use of the result in Proposition 1 and consider the

two polar classes of behavioral models where all welfare preferences are identifiable or

non-identifiable, respectively. Before turning to a detailed analysis of these two classes,

we address the question of how plausible each of them is. Our prime example for non-

identifiable preferences is the perfect-recall satisficing model. Any two welfare preferences

that are identical except that they rank the same best k alternatives differently are mapped

into the same distorted preference by any frame, and hence are indistinguishable. Our

prime example for identifiable preferences is the limited search model (formX ≥ 3). There,

we learn the welfare preference among all alternatives on the same page, and thus we can

identify the complete welfare preference by observing behavior under sufficiently many

different frames. The decision processes formalized by these two models are both plausible,

implying that both classes are important. Another way of looking at the question of
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plausibility is to ask how many models belong to each of the classes. We can provide an

answer to this question for the limiting case as the number of alternatives grows large.13

With mX alternatives, there are mP (mX) = mX ! strict preferences. The number of

models also depends on how many frames mF (mX) we allow, as a function of the number

of alternatives. This number should typically be increasing in mX , but for the following

result we only need to assume that mF (mX) ≥ 4 for sufficiently large values of mX .
14

Proposition 2 The share of models with identifiable preferences goes to 1 as mX → ∞.

The proof exploits the fact that the number of models with identifiable preferences is

given by the number of different ways to assign distinct maximal data sets to the welfare

preferences, satisfying the requirement that there must exist a non-distorting frame for

each preference. It is difficult to determine this number exactly, but we find a lower

bound that is tractable and suffices to show that the share of models with identifiable

preferences converges to 1 as the number of alternatives grows. If one accepts that the

genericity notion formalized by Proposition 2 captures model plausibility in a meaningful

way, the result is good news for the nudging project. If the number of alternatives is

large, an optimal nudge can generically be identified. However, we need to add that the

complexity of finding this optimal nudge may become prohibitive if mX is large, a problem

to which we will return in Section 5.

4 Non-Identifiable Preferences

We now investigate behavioral models with non-identifiable preferences more thoroughly.

From Proposition 1 we know that an optimal nudge cannot be found for these models.

However, our previous notion of optimality was strong, requiring an optimal frame to

outperform all other frames. Even if such a frame does not exist, we might still be able

to exclude some frames that are dominated by others. We now weaken optimality to the

requirement that a reasonable frame should not be dominated. Let

M(Λ) = {f | [f ′]ΛN(Λ)[f ]Λ only if f ′ ∈ [f ]Λ}

be the (always non-empty) set of frames which are undominated, based on our knowledge

from the data set Λ. Formally, M(Λ) is the union of all elements that are maximal in

13This approach of quantifying plausibility is similar to Kalai et al. (2002), who are interested in the
number of preferences that are necessary to rationalize an arbitrary choice function. They show that
the share of choice functions which can be rationalized by less than the maximal conceivable number of
preferences goes to 0 as the number of alternatives grows large.

14If we restricted attention to models where frames are orders of presentation, we would already obtain
mF (mX) = mX !. In general, the number of frames can be arbitrarily large. However, there can never be
more than mF (mX) = mX !mX ! different non-equivalent frames, the number of mappings from P to P .

13



the partially ordered set F (Λ). To provide an analogy, we can think of M(Λ) as the set

of Pareto efficient policies, because moving away from any f ∈ M(Λ) makes the agent

better off with respect to some � ∈ P (Λ) only at the cost of making her worse off with

respect to some other �′ ∈ P (Λ). By the same token, a frame which is not in M(Λ) can

be safely excluded, as there exists a nudge that guarantees an improvement over it.

Dominated frames can exist already ex ante with no knowledge of the agent’s welfare

preference. For instance, certain informational arrangements could be interpreted as

being dominant over others, because they objectively clarify the available information

and improve the decision quality (e.g. Camerer et al., 2003). In the following example we

show that ex ante undominated frames can become dominated for richer knowledge, too.

Example 3. Assume that X = {a, b, c, d} and consider the distortion function for the

four preferences and three frames depicted in Figure 1.15 The two preferences �1 and �2

are indistinguishable, as each frame maps them into the same distorted preference, and the

same holds for �3 and �4. Note also that none of the frames is dominated before any data

has been collected, M(∅) = {f1, f2, f3}, because each one is the unique non-distorting

frame for one possible welfare preference. Now suppose we observe Λ = {(�2, f2)}, so
that P (Λ) = {�1,�2}. It follows immediately that none of the potentially non-distorting

frames f1 and f2 is dominated. The frame f3, however, is now dominated by f1. If the

welfare preference is �2, then f1 induces a mistake between a and b, but so does f3, which

induces an additional mistake between c and d. Hence we obtain M(Λ) = {f1, f2}. We

have learned enough to identify a nudge over f3, but no additional observation will ever

allow us to compare f1 and f2.

Figure 1: Dominated Frame f3

The sometimes dominated frame f3 in Example 3 has a particular property. It maps

the indistinguishable set of preferences {�1,�2} outside of itself. This is the reason why

15The example focusses on only four welfare preferences, but it can be expanded to encompass the set
of all possible preferences. We can also add additional frames without changing its insight.
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the example violates the following property.

Definition 3 A distortion function d has the frame-cancellation property if

d(d(�, f1), f2) = d(�, f2)

holds for all � ∈ P and all f1, f2 ∈ F .

With the frame-cancellation property, the impact of any frame f1 disappears once a

new frame f2 is applied. Starting from any welfare preference �, the preference d(�, f)

obtained by applying any frame f ∈ F is then always observationally equivalent to �,

and thus is itself an indistinguishable welfare preference. Hence, for any given frame, all

maximal indistinguishable sets of preferences are closed under the distortion function, in

contrast to Example 3.

A variety of interesting behavioral models has the frame-cancellation property. One

extreme example, where frames never have an effect on behavior and d(�, f) =� always

holds, is the rational choice model.16 The opposite extreme case of frame-cancellation

arises when d(�, f) is independent of �, so that frames override the preference entirely.

This is true, for instance, when there are only two alternatives and the agent always

chooses the one that is marked as the default. The perfect-recall satisficing model has the

frame-cancellation property, too, even though the welfare preference retains a substantial

impact on behavior. In this model, the effect of the order of presentation is to overwrite

the welfare preference among the top k alternatives, which leaves no trace of previous

frames when done successively. We can also establish a connection to the analysis of

choice from lists by Rubinstein and Salant (2006). They allow for the possibility that

agents choose from lists instead of sets, i.e., the choice from a given set of alternatives

can be different when the alternatives are listed differently. Their results imply that we

can capture choice from list behavior in reduced form of a distortion function whenever

the axiom of “partition independence” is satisfied by the agent’s choices for all possible

welfare preferences.17 An example in which this holds is satisficing without recall. In

contrast to the perfect-recall version, the agent here chooses the last alternative on a list

when no alternative on the list exceeds her aspiration level. Formally, d(�, f) is obtained

16Note that all welfare preferences are identifiable in the rational choice model, which constitutes of
course the basis for the standard revealed preference approach. The rational choice model is indeed the
only model which has both identifiable preferences and the frame-cancellation property. To see why,
suppose d is not fully rational, i.e., there exist �′ and f ′ such that d(�′, f ′) =�′′ 6=�′. If d has the
frame-cancellation property we then obtain d(�′′, f) = d(d(�′, f ′), f) = d(�′, f) for all f ∈ F , hence �′

and �′′ are indistinguishable and not identifiable.
17Partition independence requires that the choice from two concatenated sublists is the same as the

choice from the list that concatenates the two elements chosen from the sublists (Rubinstein and Salant,
2006, p. 7). Such behavior can be modelled as the maximization of some non-strict preference that is
turned strict by ordering its indifference sets in or against the list order (Proposition 2, p. 8).
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from � by rearranging the top k elements in the order of f and the bottom mX − k

elements in the opposite order of f (see RS). It is easy to verify that this model also has

the frame-cancellation property. The following general class of decision processes nests

all these models with the frame-cancellation property.

Model 3 (Limited Sensitivity). The agent displays limited sensitivity in the sense that

she can sometimes not tell whether an alternative is actually better than another. Degree

and allocation of sensitivity are described by a vector (k1, k2, . . . , ks) of positive integers

with
∑s

i=1 ki = mX . A welfare preference � induces a partition of X , where block X1

contains the k1 welfare-best alternatives, X2 contains the k2 next best alternatives, and so

on. The agent can distinguish alternatives across but not within blocks. When choosing

from S ⊆ X , she therefore only identifies the smallest i for which S∩Xi is non-empty, and

the frame then fully determines the choice from this set. Thus d(�, f) is obtained from �
by rearranging the alternatives within each block of the partition in a way that does not

depend on their actual welfare ranking. Formally, let P� be the set of welfare preferences

that induce the same partition of X as �, for any � ∈ P . Then d(�′, f) = d(�′′, f) ∈ P�

must hold whenever �′,�′′ ∈ P�, for all f ∈ F . Any such function satisfies the frame-

cancellation property.18 When f is an order of presentation and the alternatives within

each block of the partition are rearranged in or against this order – because the agent

chooses the first or the last among seemingly equivalent alternatives – then the process

is a successive choice from list model (see Rubinstein and Salant, 2006, for a definition).

Special cases include rational choice for the vector (k1, k2, . . . , ks) = (1, 1, . . . , 1), perfect-

recall satisficing for (k, 1, . . . , 1), no-recall satisficing for (k,mX−k), and situations where

the welfare preference has no impact on behavior for k1 = mX .

The following result shows that there are never any dominated frames for models with

the frame-cancellation property.

Proposition 3 If d has the frame-cancellation property, then M(Λ) = F for all Λ.

If the frame-cancellation property holds, then irrespective of how many data points we

have collected, we will never know enough to improve upon any given frame. According

to our earlier analogy, all frames are always Pareto efficient. If we want to select between

them, we need to resort to approaches that can be used to compare Pareto efficient

allocations, involving stronger assumptions such as probabilistic beliefs (see Section 6.2).

18For any � ∈ P , since � ∈ P� holds, we have d(�, f1) ∈ P� for any f1 ∈ F . Then we also obtain
d(d(�, f1), f2) = d(�, f2) for any f2 ∈ F , which is the frame-cancellation property. We note that there
are models with the frame-cancellation property that do not belong to the class of limited sensitivity
models. Any model with frame-cancellation allows us to partition P into maximal indistinguishable sets
of preferences, very similar to the sets P� in the limited sensitivity model, but these sets will not in
general be generated by some vector (k1, k2, . . . , ks) as required by the limited sensitivity model.
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5 Identifiable Preferences

We now turn to models with identifiable welfare preferences, which guarantee knowledge

of an optimal nudge once a maximal data set has been observed. Collecting a maximal

data set requires observing the agent under all mF frames, however, which might be

beyond our means. We are thus interested in optimal data gathering procedures and the

required quantity of information. The idea is that a regulator, who ultimately seeks to

impose the optimal nudge, is also able to impose a specific sequence of frames on the

agent, with the goal of eliciting the welfare preference.

For each s ∈ {0, 1, . . . , mF}, let

Ls = {Λ|P (Λ) 6= ∅ and |Λ| = s}

be the collection of data sets that do not falsify the behavioral model and contain exactly

s observations, i.e., observations for s different frames. In particular, L0 = {∅}, and LmF

consists of all maximal data sets. Then L = L0 ∪ L1 ∪ . . . ∪ LmF−1 is the collection of all

possible data sets except the maximal ones. An elicitation procedure dictates for each of

these data sets a yet unobserved frame, under which the agent is to be observed next.

Definition 4 An elicitation procedure is a mapping e : L → F with the property that, for

each Λ ∈ L, there does not exist (�, f) ∈ Λ such that e(Λ) = f .

A procedure e starts with the frame e(∅) and, if the welfare preference is �, generates

the first data set Λ1(e,�) = {(d(�, e(∅)), e(∅))}. It then dictates the different frame

e(Λ1(e,�)) and generates a larger data set Λ2(e,�) by adding the resulting observation.

This yields a sequence of expanding data sets described recursively by Λ0(e,�) = ∅ and

Λs+1(e,�) = Λs(e,�) ∪ {(d(�, e(Λs(e,�))), e(Λs(e,�)))},

until the maximal data set ΛmF
(e,�) = Λ̄(�) is reached. Hence all elicitation procedures

deliver the same outcome aftermF steps, but typically differ at earlier stages. A procedure

does not use any exogenous information about the welfare preference, but the frame to

be dictated next can depend on the information generated endogenously by the growing

data set.19

We now define the complexity n of the nudging problem as the number of steps that

the quickest elicitation procedure requires until it identifies an optimal nudge for sure.

19Notice that an elicitation procedure dictates frames also for pre-collected data sets that itself never
generates. We tolerate this redundancy because otherwise definitions and proofs would become substan-
tially more complicated, at no gain.
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Formally, let

n(e,�) = min{s | G(Λs(e,�)) 6= ∅}

denote the first step at which e identifies an optimal nudge if the welfare preference is �.

Since this preference is unknown, e guarantees a result for sure only after max�∈P n(e,�)

steps. With E denoting the set of all elicitation procedures, we have to be prepared to

gather

n = min
e∈E

max
�∈P

n(e,�)

data points before we can nudge successfully.

To illustrate the concepts, we first consider the limited search model (assumingmX ≥ 3

to make all preferences identifiable). The following result shows that learning and nudging

are relatively simple in this model.

Proposition 4 For any mX ≥ 3, the limited search model satisfies

n =

{

3 if k = mX/2 and k is odd,

2 otherwise.

To understand our construction of an optimal elicitation procedure for the limited

search model, consider again Example 2. The procedure starts with an arbitrary frame,

f = {a, b}, and generates the behavioral preference a ≻3 b ≻3 c ≻3 d. We now know that

the welfare preference satisfies a ≻ b and c ≻ d. The second frame is constructed by taking

the top element from f and the bottom element from X\f , which yields f ′ = {a, d}. From
the induced behavioral preference a ≻7 d ≻7 c ≻7 b we learn that a ≻ d and c ≻ b. This

information is enough to deduce that a and c are the two welfare-optimal alternatives,

because both b and d are worse than each of them. If instead at the second step we had

learned that a ≻ d and b ≻ c, we could have concluded that a and b are optimal. If we had

learned that d ≻ a, we could have concluded that c and d are optimal. This argument can

be generalized. If k = mX/2 and k is even, for instance, the second frame is constructed

to contain the k/2 best alternatives from the previous first result page and the k/2 worst

alternatives from the previous second result page. It can be shown that the k welfare-best

alternatives can always be deduced from the resulting data set.

The nudging complexity is surprisingly small for the limited search model. This begs

the question to what extent it is representative for more general models. It obviously

always holds that n ≤ mF if all welfare preferences are identifiable, but the number of

frames mF can be extremely large (see footnote 14). We therefore derive a tighter bound

on n next. The result rests on the insight that there is always an elicitation procedure that
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guarantees a reduction of the set of possible welfare preferences at each step. Since there

are mP (mX) = mX ! different welfare preferences that the agent might have ex ante, an

elicitation procedure that reduces the set of possible preferences at each step guarantees

identification of the preference and the optimal nudge after at most mX !− 1 steps.

Proposition 5 Any behavioral model with identifiable preferences satisfies n ≤ mX !− 1.

It turns out that the bound presented in Proposition 5 is tight, because there are

models for which it is reached. We illustrate this with the following model, which describes

an, admittedly, strong effect of framing.

Model 4 (Strong Priming). The framing of the decision problem suggests that there

is a unique proper way of deciding (e.g. priming, persuasion, demand effects). Formally,

a frame f ∈ F = P is identified with the preference that it conveys as being the proper

behavior. The effect of the frame is strong, in the sense that the agent can be manipulated

to behave in the suggested way whenever there is at least some agreement between the

suggestion and the welfare preference. Manipulation fails only when the agent’s welfare

preference is exactly opposite of the suggestion. In this case the agent behaves in an

arbitrarily distorted way that uniquely identifies him. For any �∈ P , let o(�) denote

the opposite order of �. Assume mX ≥ 3 and let b : P → P be a bijective mapping such

that b(�) /∈ {�, o(�)}, for all �∈ P . Then

d(�, f) =

{

f if f 6= o(�),

b(�) if f = o(�).

Proposition 6 The strong priming model satisfies n = mX !− 1.

In the strong priming model, identification of the optimal nudge actually requires

identification of the welfare preference, because each frame is optimal only for exactly one

welfare preference. This takes all mX !− 1 steps, because observation of behavior under a

frame either reveals a specific welfare preference to be the true one, or it excludes it from

the set of possible welfare preferences. No matter in which order frames are dictated by

the elicitation procedure, it is always possible that the agent’s welfare preference is the

one not revealed until the end. Hence, learning is particularly slow in this model.

Taken together, Propositions 5 and 6 are bad news for nudging. The tight bound on n

grows more than exponentially in the number of alternatives. Thus, nudging may quickly

become infeasible despite the general identifiability of preferences.
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6 Nudging with Additional Information

6.1 Restricted Domains

Throughout the previous analysis we have maintained the assumption that the regulator

considers all preferences over the set of alternatives feasible. In some situations, however,

the regulator may be able to rule out certain preferences beforehand using non-choice

information. For instance, criteria such as non-satiation or an agreement with some

objective dimension of the alternatives may sometimes be uncontroversial and reduce the

set of plausible preferences. We can model situations in which some welfare preferences

are excluded from the outset by restricting the domain of preferences to some non-empty

P̃ ⊆ P . We then replace the set P (Λ) of welfare preferences that are consistent with data

set Λ by P̃ (Λ) = P (Λ)∩ P̃ . Based on this modified definition, all further concepts remain

unchanged. We will explore two different implications of such domain restrictions. First,

models with non-identifiable preferences may become identifiable. Second, the complexity

of the elicitation procedure can be reduced.

We extend Definition 2 by saying that a preference �∈ P̃ is identifiable on P̃ if for

each �′ ∈ P̃ with �′ 6=�, there exists f ∈ F such that d(�, f) 6= d(�′, f). It then follows

exactly as for Proposition 1 that G(Λ̄(�)) is non-empty if and only if � is identifiable

on P̃ . Hence we will call P̃ a nudging domain if all its elements are identifiable on P̃ .

The universal domain P is a nudging domain if and only if all welfare preferences are

identifiable as defined previously. To characterize nudging domains more generally, let

P� = {�′ ∈ P | d(�′, f) = d(�, f), ∀f ∈ F}

be the equivalence class of welfare preferences that are indistinguishable from �, and

denote by P̄ = {P� | �∈ P} the set of all these equivalence classes, which form a

partition of P . Then it follows that P̃ is a nudging domain if and only if |P̃ ∩ P�| ≤ 1

for all �∈ P , i.e., the domain P̃ can contain at most one element from each of the

behaviorally equivalent classes of preferences.

Unfortunately, this may not be a particularly plausible or easily justifiable requirement.

Consider the perfect-recall satisficing model. The set P� contains all preferences which

agree with � with respect to the bottom mX − k alternatives and their ranking. Hence,

the restriction necessary to obtain identifiable preferences is that for each selection and

ordering of the bottom mX −k alternatives, there exists at most one preference in P̃ . Put

differently, the preference over the bottom alternatives must fully determine the preference

over all alternatives. This is very different from often studied domain restrictions such as

single-peaked preferences (which do not constitute a nudging domain for the satisficing

model or any of the other models with non-identifiable preferences studied in this paper).
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The extent to which the domain needs to be restricted can still be interpreted as a

measure of the degree of non-identifiability of a model. Different models may be unam-

biguously comparable by their demand for exogenous information. We show this for the

satisficing models with perfect recall and no recall.

Proposition 7 Any nudging domain for no-recall satisficing is also a nudging domain

for perfect-recall satisficing, while the converse is not true whenever k < mX − 1.

A satisficer with no recall is harder to nudge than a satisficer with perfect recall

(whenever the two are behaviorally different), because more knowledge about the welfare

preference is necessary and less can be learned from behavior. As a general rule, a model

comparison as in Proposition 7 is possible whenever the partition P̄ is finer for one model

than for another.

Let us now consider the effect of domain restrictions on the complexity of nudging.

Whenever P̃ is a nudging domain for model d, we can adapt our previous definition of

complexity to

ñ = min
e∈E

max
�∈P̃

n(e,�),

no matter whether or not d has identifiable preferences on the universal domain P . We

obtain the following generalization of Propositions 5 and 6, which shows that the modified

complexity bound mirrors the amount of non-choice information we put in.

Proposition 8 Any behavioral model on a nudging domain P̃ satisfies ñ ≤ |P̃ | − 1. The

strong priming model satisfies ñ = |P̃ | − 1.

6.2 Probabilistic Beliefs

We now explore the possibility to introduce non-choice-based prior information in the form

of probabilistic beliefs. We assume that the regulator has a prior belief p over the set of

welfare preferences P . We number the preferences in the order of their prior probabilities,

so that P = {�1,�2, . . . ,�mX !} with p1 ≥ p2 ≥ . . . ≥ pmX ! > 0.20 Beliefs can be utilized

in different ways. A first possibility is to replace our previous notion of complexity n by

the expected complexity

n̄ = min
e∈E

mX !
∑

i=1

pin(e,�i).

20In contrast to the previous subsection, here we make the full support assumption pmX ! > 0. This is
for simplicity and allows us to circumvent technical issues with Bayesian updating which would otherwise
require a redefinition of elicitation procedures.
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While n was the minimal number of observations necessary to guarantee identification

of an optimal nudge, n̄ can be thought of as the average running time of the quickest

elicitation procedure. Note that different procedures may be required to achieve n or n̄,

respectively. The following result provides the expected complexity for the strong priming

model, which we used before to illustrate the potentially large complexity of the elicitation

problem.

Proposition 9 The strong priming model satisfies

n̄ =

mX !−1
∑

i=1

pii+ pmX !(mX !− 1).

At any given step, the elicitation procedure that has not yet identified the optimal

nudge should always try to verify or exclude the remaining welfare preference with the

highest belief probability, by prescribing the frame that corresponds to the opposite of

this preference. The elicitation process then concludes with highest possible probability

at every step, which gives rise to the formula in the proposition.

The complexity n̄ and its behavior for largemX depend on the shape of prior beliefs. As

an example of a relatively informative prior, consider a (truncated) geometric distribution

where the prior probabilities are given by

pi = ρi−1

(

1− ρ

1− ρmX !

)

for some parameter ρ ∈ (0, 1). In Appendix B we show that limmX→∞ n̄ = 1/(1−ρ) holds

for this distribution. The expected complexity thus remains bounded as the number of

alternatives grows, and it may be small if ρ is small. On the other hand, for a uniform

prior, where pi = 1/mX !, we show that n̄ is still of the same order of magnitude as

the previous n = mX ! − 1 and thus grows more than exponentially in the number of

alternatives.

Let us therefore consider a second way in which belief-dependent complexity could

be defined. In particular, we introduce a probabilistic notion of optimality of a nudge.

Let πΛ(�) denote the updated belief probability that the regulator attaches to welfare

preference � when the data set Λ has been collected. We thus have π∅(�i) = pi and can

apply Bayesian updating to obtain

πΛ(�) =

{

π∅(�)/
(

∑

�′ ∈P (Λ) π∅(�′)
)

if �∈ P (Λ),

0 otherwise,

for all data sets Λ with P (Λ) 6= ∅. In addition to narrowing down the set of possible

welfare preferences, collecting data magnifies differences in prior beliefs on P (Λ). Now
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let ϕΛ(f) denote the probability that frame f is an optimal nudge. With the definition

of P (Λ, f) = {�∈ P (Λ) | d(�, f) =�} as the set of remaining preferences for which f is

non-distorting, we can calculate

ϕΛ(f) =
∑

�∈P (Λ,f)

πΛ(�).

We will denote by ϕ̄Λ = maxf∈F ϕΛ(f) the confidence that an optimally chosen frame

induces non-distorted behavior.

From our previous arguments we obtain that ϕΛ(f) = 1 if and only if f ∈ G(Λ).

Hence the complexity n was based on the requirement that we want to ensure complete

confidence, ϕ̄Λ = 1. We may now content ourselves with identifying a frame that is

optimal with a sufficiently large probability q ∈ (0, 1]. The optimal elicitation procedure

then is the one that guarantees a level ϕ̄Λ ≥ q as quickly as possible. This is captured by

the generalized definition n(q, e,�) = min{s | ϕ̄Λs(e,�) ≥ q} and

n(q) = min
e∈E

max
�∈P

n(q, e,�).

The following result provides the generalized complexity for the strong priming model.

Proposition 10 The strong priming model satisfies that n(q) is the smallest integer k ≥ 0

for which

mX !−1
∑

j=1+k

pj+1 ≤ p1

(

1− q

q

)

.

At any given step, a generalized optimal procedure that has not yet identified the

optimal nudge should always try to verify or exclude the remaining welfare preference

with the second-highest belief probability, by prescribing the frame that corresponds to

the opposite of this preference. It can always occur that the procedure still does not

identify the welfare preference, but in that case it guarantees maximal posterior beliefs.

The result implies our previous result for n when we consider the limit as q → 1, i.e.,

for large enough q we always obtain n(q) = mX !− 1. With a uniform prior, for instance,

we can rearrange the condition in Proposition 10 to obtain the ceiling

n(q) = max

{⌈

(mX !− 1)−
(

1− q

q

)⌉

, 0

}

,

as shown in Appendix B. This implies n(q) = mX ! − 1 whenever q > 1/2. The uniform

prior can be interpreted as the criterion of counting the welfare preferences for which a

given frame is optimal. The result thus shows that the previous complexity bound remains
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the same as long as we require optimality for a strict majority of welfare preferences. On

the other hand, the combination of an informative prior belief and a low degree of required

confidence can reduce the complexity of the nudging problem substantially. An extreme

case is p1 ≥ q, so that the prior belief already provides sufficient confidence and n(q) = 0

follows. For the geometric distribution, we show that the generalized complexity remains

bounded as the number of alternatives grows whenever q < 1.

The complexity n(q) is also interesting for models with non-identifiable preferences.

Our previous results imply that we can never achieve ϕ̄Λ = 1 for such models, but we

may be able to achieve ϕ̄Λ ≥ q when q is sufficiently small. We can easily extend our

definition of n(q) to the case of non-identifiable preferences, by defining n(q, e,�) = ∞
whenever elicitation procedure e never achieves a confidence of q or larger when � is the

true welfare preference, i.e., when

q > q(e,�) = max
s∈{0,...,mF }

ϕ̄Λs(e,�).

Let q = ϕ̄∅ denote the prior confidence and q = maxe∈E min�∈P q(e,�) the maximal

confidence that an optimal procedure can guarantee. We thus have 0 < q ≤ q < 1 and

n(q) ∈











{0} if q ≤ q,

{1, . . . , mX !− 1} if q < q ≤ q, 21

{∞} if q < q.

For models with the frame-cancellation property, we can make the following more precise

statement.

Proposition 11 If d has the frame-cancellation property, then

n(q) =











0 if q ≤ q,

1 if q < q ≤ q,

∞ if q < q.

As shown previously, models with the frame-cancellation property stand out because

the scope of learning about optimal nudges is particularly limited. Proposition 11 shows

that, at the same time, the speed of learning is particularly fast for these models. All

that can be learned under the frame-cancellation property is learned already after a single

observation. Hence if we are willing to reduce our confidence aspiration, models with the

frame-cancellation property stand out because of the simplicity of learning.

21The fact that n(q) ≤ mX ! − 1 when q < q ≤ q follows as for Proposition 5. There is always an
elicitation procedure that guarantees a reduction of the set of possible welfare preferences at each of the
initial steps, until a further reduction is no longer possible at all. Thus the entire range of achievable
confidence levels can be achieved during the first mX !− 1 steps.
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We conclude by pointing out two potential pitfalls of this result. First, significant

learning will only be possible if there is significant information already in the prior beliefs.

Second, achieving a satisfactory level of confidence is not tantamount to having a good

guidance in the choice between frames. We illustrate this by studying the case of a uniform

prior distribution. Let s̄ denote the average size of the elements of partition P̄ , i.e., the

average number of preferences in an indistinguishable equivalence class.

Proposition 12 If d has the frame-cancellation property and prior beliefs are uniform,

then q = q = 1/s. Furthermore, ϕΛ(f) = ϕΛ(f
′) for all f, f ′ ∈ F and all Λ.

With a uniform prior, no procedure guarantees to increase the prior confidence. In

addition, all frames are always equally likely to be optimal. A regulator can thus never

do better than by choosing a frame at random.

7 Nudging with Limited Information

7.1 Model Uncertainty

We have so far assumed that there is a unique conjecture about the behavioral model,

while it may be more appropriate to assume that the regulator considers a number of

different models possible. We can replace the assumption of a unique behavioral model

by the assumption that the regulator considers any distortion function d ∈ D possible,

where D is a given set of conjectures. For instance, there could be uncertainty about the

aspiration level of a satisficer, or one of the models in D could be the rational agent.22 As

a consequence, we no longer have to learn about the welfare preference only, but about

the pair (d,�) ∈ D × P of the distortion function and the welfare preference.23

Let Λ̄(d,�) = {(d(�, f), f) | f ∈ F} denote the maximal data set generated by

the pair (d,�). Then the set of pairs (d,�) that are consistent with data set Λ is

DP(Λ) = {(d,�) | Λ ⊆ Λ̄(d,�)}. We again assume that DP(Λ) is non-empty, i.e.,

at least one conjecture is not falsified by the data. Once we have narrowed down the

set of model-preference pairs to DP(Λ), we obtain the equivalence class of frame f by

[f ]Λ = {f ′ | d(�, f) = d(�, f ′), ∀(d,�) ∈ DP(Λ)}. We can then modify our definition

of the binary nudging relation in a natural way, taking into account that both model

and welfare preference are unknown. In particular, we define [f ]Λ N(Λ) [f ′]Λ if for each

(d,�) ∈ DP(Λ) it holds that c(d(�, f), S) � c(d(�, f ′), S) for all non-empty S ⊆ X , so

that for each remaining behavioral model the agent’s choice under frame f is at least as

22It is central to the idea of asymmetric paternalism (Camerer et al., 2003) that there are different
types of agents, some of which are rational and should not be restricted by regulation.

23We continue to assume that there is a non-distorting frame for each pair (d,�), which will typically
depend both on the model and on the welfare preference.
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good as under f ′, no matter which of the welfare preferences that are consistent with the

behavioral model and the data set is the true one.

We are again interested in the existence of an optimal nudge. By the same reasoning

as in Section 3, we consider maximal data sets only. An immediate extension of Definition

2 could require identifiability of � in d, for a given pair (d,�). This property is in fact

necessary but no longer sufficient for the existence of an optimal nudge. It rules out that

the maximal data set Λ̄(d,�) could have been generated by a different welfare preference

�′ and the same model d, but it does not rule out that it could have been generated by a

different welfare preference �′ and a different model d′. Since two behaviorally equivalent

model-preference pairs (d,�) and (d′,�′) can have different normative implications (see

e.g. Kőszegi and Rabin, 2008b; Bernheim, 2009; Masatlioglu et al., 2012), identifiability

in the extended setting must aim at all aspects of the pair (d,�) that are normatively

relevant.

Definition 5 Pair (d,�) is virtually identifiable if for each (d′,�′) ∈ D×P with �′ 6=�,

there exists f ∈ F such that d(�, f) 6= d′(�′, f).

Virtual identifiability implies that the welfare preference � is known for sure once

the maximal data set has been collected. It still allows for some uncertainty about the

behavioral model, but only to the extent that we may not be able to predict the behavior

of an agent with a different welfare preference �′ 6=�.

Proposition 13 With model uncertainty, G(Λ̄(d,�)) is non-empty if and only if (d,�)

is virtually identifiable.

We can have multiple models with identifiable preferences each, that, if considered

jointly, do not have virtually identifiable model-preference pairs. Model uncertainty of this

type poses a fundamental new problem to nudging. On the other hand, adding a rational

agent to any given behavioral model with identifiable preferences preserves the property of

virtually identifiable model-preference pairs. Thus the possibility of agents being rational

has no substantial impact on our previous results. The analysis in Sections 4 and 5 could

also be adapted to the case of model uncertainty. For instance, if each distortion function

d ∈ D satisfies the frame-cancellation property, then it follows immediately that no data

set allows us to exclude any dominated frame. Applications include the uncertainty about

a satisficer’s aspiration level. With virtually identifiable model-preference pairs, on the

other hand, elicitation procedures now generate sequences of expanding data sets with

the goal of learning about both preferences and models.

We could go one step further and dispense with any model conjecture. Instead of

following our model-based approach to behavioral welfare economics, we could work with
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the purely choice-based approach by Bernheim and Rangel (2009).24 In fact, we can easily

adapt our definition of the binary nudging relation and evaluate the frame-induced choices

based on the weak unambiguous choice relation R′ (Bernheim and Rangel, 2009, p. 60),

rather than on a set of welfare preferences. Formally, a generalized choice situation (GCS)

consists of a set of alternatives S ⊆ X and a frame f ∈ F , and a choice correspondence

describes the chosen alternatives for each GCS that we have observed. Let us assume that

the observed choice has always been a unique alternative C(S, f) ∈ S. To eliminate all

traces of non-choice-based theories about mistakes, let us also assume that all the observed

GCSs are welfare-relevant. Now consider two frames f and f ′ of which we know that they

have a differential impact on behavior, i.e., we have observed two GCSs (S̄, f) and (S̄, f ′)

with C(S̄, f) = x 6= y = C(S̄, f ′). In line with our previous analysis, we could say that

f is a weak unambiguous nudge over f ′ if C(S, f)R′ C(S, f ′) holds for all matching pairs

(S, f) and (S, f ′) that we have observed. It follows immediately from the definition of

R′ that such a ranking is impossible. The mere fact that C(S̄, f) = x 6= y = C(S̄, f ′)

implies that neither xR′y nor yR′x holds, and hence neither of the two frames can be

a weak unambiguous nudge over the other. Nudging is impossible without assumptions

about decision mistakes (as already pointed out by Bernheim and Rangel, 2009, p. 62).

7.2 Imperfectly Observable Frames

So far we have assumed that frames are perfectly observable and controllable by the

regulator. Since a frame can be very complex, this assumption deserves to be relaxed. The

generalization also allows us to model fluctuating internal states of the agent that affect

her choices. For instance, consider a modified satisficing model in which the aspiration

level k fluctuates in a non-systematic and unobservable way, as in the original RS model.

We can capture this by including the aspiration level into the description of the frame

(k affects choice but not welfare), but the extended frame cannot be fully observable and

controllable for an outsider.

Imperfect observability can be modelled as a structure Φ ⊆ 2F with the property that

for each f ∈ F there exists φ ∈ Φ with f ∈ φ. The interpretation is that the regulator

observes only sets of frames φ ∈ Φ and does not know under which of the frames f ∈ φ

the agent was acting. The example with a fluctuating aspiration level can be modelled

as F = P × {2, . . . , mX} and Φ = {φp | p ∈ P} for φp = {(p, k) | k ∈ {2, . . . , mX}}.
A behavioral data set is a subset Λ ⊆ P × Φ, where (�′, φ′) ∈ Λ means that the agent

has been observed behaving according to �′ when the frame must have been one of the

24Another interesting choice-based approach is due to Apesteguia and Ballester (2015), who propose
using as a welfare benchmark the preference that is closest to a given behavior, measured by their “swaps”
criterion. Their framework does not allow for frames, but it would be interesting to develop the respective
generalization and derive the implications for nudging.

27



elements of φ′. Thus a welfare preference � is consistent with Λ if for each (�′, φ′) ∈ Λ

we have �′ = d(�, f ′) for some f ′ ∈ φ′, so that � might have generated the data set from

the regulator’s perspective. The set of welfare preferences that are consistent with Λ is

P (Λ) = {� | Λ ⊆ Λ̄(�)}, where Λ̄(�) = {(d(�, f), φ) | f ∈ φ ∈ Φ} is again the maximal

data set for �. Note that a non-singleton set of frames φ can appear more than once

in a maximal data set, combined with different behavioral preferences. This also implies

that the cardinality of Λ̄(�) is no longer the same for all � ∈ P , because two different

frames f, f ′ ∈ φ might generate two different observations for some preference but only

one observation for another preference.

In many applications, such as a satisficing model with fluctuating aspiration level, it

is reasonable to assume that the same Φ applies to observing and nudging, i.e., the frame

dimensions that the regulator can observe are identical to those that he can control. We

allow for the more general case where a set of frames can be chosen as a nudge from

a potentially different structure ΦN .
25 When comparing two elements φ, φ′ ∈ ΦN , we

will not necessarily want to compare the agents’ choices under each f ∈ φ with her

choices under each f ′ ∈ φ′. For instance, we want to compare orders of presentation for

each aspiration level separately, not across aspiration levels. To this end, we introduce

a set H of selection functions, which are functions h : ΦN → F with the property that

h(φ) ∈ φ. The elements of H capture the comparisons that we need to make: when

comparing φ with φ′ we compare only the choices under the frames h(φ) and h(φ′), for

each h ∈ H . In the satisficing model we would have one hk ∈ H for each aspiration level

k ∈ {2, . . . , mX}, defined by hk(φp) = (p, k). The only assumption that we impose on

H is that for each f ∈ φ ∈ ΦN there exist h ∈ H such that h(φ) = f . We can then

define the equivalence class [φ]Λ = {φ′ | d(�, h(φ′)) = d(�, h(φ)), ∀(h,�) ∈ H × P (Λ)}
for any Λ and φ. As before, let [φ]ΛN(Λ)[φ′]Λ if for each (h,�) ∈ H × P (Λ) it holds that

c(d(�, h(φ)), S) � c(d(�, h(φ′)), S), for all non-empty S ⊆ X .

Let G(Λ) = {φ | [φ]ΛN(Λ)[φ′]Λ, ∀φ′ ∈ ΦN} be the set of optimal nudges. We again

consider maximal data sets. An immediate extension of identifiability of � (Definition 2)

could require that for each �′ 6=� there exists f ∈ φ ∈ Φ such that d(�, f) 6= d(�′, f).

This property turns out to be necessary but not sufficient for G(Λ̄(�)) to be non-empty.

It implies that the maximal data set for � is different from the maximal data set for

every other preference, so that � is identified once Λ̄(�) has been collected and once it is

known that this set is indeed maximal. Unfortunately, the cardinality of Λ̄(�) no longer

25In continuation of our previous approach, we assume that for each � ∈ P there exists φ ∈ ΦN such
that d(�, f) = � for all f ∈ φ. This implies that nudging is not per se impeded by the lack of control over
frames. The assumption is clearly much stronger here than before. For instance, it holds in the described
satisficing application when there is perfect recall (because the order of presentation that coincides with
the welfare preference is non-distorting for all possible aspiration levels) but would not hold with no recall
(because the non-distorting order of presentation then depends on the aspiration level).
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carries that kind of information, as we could have Λ̄(�) ⊂ Λ̄(�′) for some �′ 6=�. Upon

observing Λ̄(�) we then never know if we have already arrived at the maximal data set

for �, or if there is an additional observation yet to be made. Our notion of identifiability

in the setting with imperfectly observable frames must therefore ensure that the maximal

data set reveals itself as maximal.

Definition 6 Preference � is potentially identifiable if for each �′ ∈ P with �′ 6=�,

there exist f ∈ φ ∈ Φ such that d(�, f) 6= d(�′, f ′) for all f ′ ∈ φ.

When frames are not directly observed, identifiability requires more than the existence

of a frame f ∈ φ ∈ Φ that distinguishes between � and �′. We can exclude welfare

preference �′ as a candidate only if the observed distorted preference d(�, f) could not

as well have been generated by �′ for any other f ′ ∈ φ. For instance, no preference is

potentially identifiable in the perfect-recall satisficing model with fluctuating aspiration

level.26

Proposition 14 With imperfectly observable frames, G(Λ̄(�)) is non-empty if and only

if � is potentially identifiable.

We use the term potential identifiability because there is no guarantee that we will

ever arrive at Λ̄(�). An appropriately redefined elicitation procedure might impose a

set of frames φ multiple times on the agent, but a specific element f ∈ φ still does not

materialize. This is in contrast to the case of observable frames, where a maximal data

set can always be collected in exactly mF steps.

8 Savings Application

We now study an extended application of our approach to a savings problem. The question

how to encourage savings has received much attention in the nudging literature from

the beginning.27 The application also extends our previous setting in various directions,

illustrating the flexibility and portability of our approach.

We consider a two-period environment with alternatives x = (x1, x2) ∈ X = R2
+ that

specify a present payment of x1 and a future payment of x2. In line with much of the

literature that estimates discount rates from behavioral data (see e.g. Cohen et al., 2016),

we assume that the agent is risk-neutral. This is an acceptable approximation when

26To see why, note that two preferences which coincide except for the ranking of the two top alternatives
are behaviorally equivalent for every order of presentation and every aspiration level k ≥ 2. This was
different if we allowed the agent to be sometimes rational (k = 1) as in the original RS model, in which
case all preferences are potentially identifiable.

27For a recent contribution see Bernheim et al. (2015), who derive weak generalized Pareto optimal
401(k) defaults in the sense of Bernheim and Rangel (2009), with and without pruning.
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the agent’s background consumption is large relative to the payoff consequences of the

considered choices. We thus focus on the restricted domain P̃ of welfare preferences that

can be represented by a utility function of the form

u(x1, x2) = x1 + δx2,

for some unknown discount factor 0 < δ ≤ 1. This environment extends our previous

setting by allowing an infinite set of alternatives and non-strict preferences.

We aim at modelling that the framing of the decision problem necessarily prompts the

agent to take a more short-run or a more long-run perspective. Examples of frames that

induce more or less patient choices include the timing of the choice, the default allocation,

the status quo, the phrasing of the question, or whether the agent is hungry or sated when

making the choice (see e.g. Loewenstein and Prelec, 1992). The literature has described

various channels through which these frames operate; they may focus the agent’s attention

on a particular time period, activate hot or cold states, moderate visceral influences, rouse

different behavioral selves, or set reference points. We capture these effects by defining

two frames, a short-run frame fS and a long-run frame fL. We do not advocate the

simple view that the choices under one of the two frames are always welfare-maximizing.

Frame fS may induce “lapses of self-control” but frame fL may cause future benefits to be

“excessively intellectualized at arm’s length” (Bernheim and Rangel, 2009, p. 58). Hence

we believe it is most reasonable to assume that, if anything, the choices under fS are

present-biased while the choices under fL are future-biased. We model this by assuming

that an agent with true discount factor δ acts as if maximizing the preference represented

by the utility function

uS(x1, x2) = γx1 + δx2

under frame fS, and the preference represented by the utility function

uL(x1, x2) = x1 + γδx2

under frame fL. The parameter γ ≥ 1 captures the extra focus that each frame puts

on one of the two time periods, and its magnitude measures the agent’s susceptibility to

framing. We assume that γ is an unknown parameter of the behavioral model and treat

(γ, δ) as the model-preference pair that has to be elicited from the behavioral data set.

Since both frames are distorting whenever γ > 1, we are relaxing the previous assumption

that a non-distorting frame must exist for each model-preference pair.

We first turn to the problem of eliciting (γ, δ). After a normalization of uS it follows

that the agent applies the behavioral discount factor δS = δ/γ under frame fS. Holding
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the frame fixed, this discount factor can be measured by observing the agent’s choices

from sufficiently many different subsets S ⊆ X . To that end, the experimental literature

that we will discuss below typically uses paradigms such as multiple price lists or matching

(Cohen et al., 2016). There are still many model-preference pairs that are consistent with

some measured δS (except if δS = 1), but the procedure can be repeated to also obtain a

measure of the behavioral discount factor δL = δγ under frame fL. The maximal data set

Λ = {(δS, fS), (δL, fL)} then reveals that (γ, δ) is given by γ =
√

δL/δS and δ =
√
δLδS.

Hence each model-preference pair is (fully) identifiable.

We now turn to the problem of nudging an agent who is characterized by (γ, δ).

If we required one frame to outperform the other frame for all (compact) choice sets

S ⊆ X , as we did in our previous analysis where a non-distorting frame was always

available, we would immediately find that none of the frames is a successful nudge over

the other.28 We therefore work with the weaker but reasonable requirement that only

the choices in a prespecified range of plausible market conditions have to be improved

by the optimal nudge. A market condition is described by the interest rate r and the

present value y of the agent’s investment opportunities, which jointly generate a budget

line X(r, y) = {x ∈ X | x1+x2/(1+r) = y}. Let C be a set of market conditions (r, y) for

which we want to ensure optimal choices. We then say that frame fS is a weakly successful

nudge over frame fL if each uS-optimal element in choice set S is weakly u-better than

each uL-optimal element in S, and this holds for all compact subsets S ⊆ X(r, y) for all

(r, y) ∈ C. Intuitively, we ensure that the agent’s choices under frame fS are welfare-

better than her choices under frame fL for all admissible market conditions. We consider

subsets S ⊆ X(r, y) instead of only the entire budget lines X(r, y) to reflect the possibility

that there are floors or caps on investment, or that savings rates must be selected from a

finite set. The definition of fL being a successful nudge over fS is analogous.

The set C may be generated by an interval of interest rates that we deem plausible, and

a range of money amounts potentially available for investment to the agent (e.g. shares of

current labor income). In general we only assume that C is compact and connected. Let

r denote the smallest interest rate and r the largest interest rate in C. We allow interest

rates to be negative but assume that r > −1. Then we obtain the following result on the

possibility of nudging.

Proposition 15 Frame fS is an optimal nudge if δ ≤ 1/(1+ r). Frame fL is an optimal

nudge if 1/(1 + r) ≤ δ. Both frames are undominated if 1/(1 + r) < δ < 1/(1 + r).

Impatient agents are nudged optimally by the short-run frame, and patient agents are

28Just consider the binary choice set S = {x, x′} where x = (x1, x2) and x′ = (x1 − ǫ1, x2 + ǫ2). When
ǫ2δ/γ < ǫ1 < ǫ2δ, the welfare optimal choice and the choice under frame fL is x′, while frame fS induces
the wrong choice x. When ǫ2δ < ǫ1 < ǫ2δγ, the welfare optimal choice and the choice under frame fS is
x, while frame fL induces the wrong choice x′.
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nudged optimally by the long-run frame. The precise thresholds for δ depend on the range

of market interest rates for which the nudge is supposed to work. The thresholds do not

depend on the size of the agent’s susceptibility to framing γ, and therefore the behavior of

the nudgeable types is far from being unambiguous. For instance, an impatient agent with

δ < 1/(1+r) may behave very patiently and choose the highest available savings rate under

frame fL. This happens for sufficiently high interest rates whenever γδ > 1/(1+r), and it

even happens for all interest rates when γδ > 1/(1+r). Our analysis then recommends to

overrule these seemingly cold and rational long-run choices, by nudging the agent in a way

that induces more impatient behavior. Conversely, our analysis recommends to correct

lapses of self-control of patient agents, by nudging them to take the long-run perspective.

We now use empirical estimates of behavioral discount factors to obtain quantitative

predictions from our model. As discussed above, several of the behavioral anomalies in

intertemporal choice could be mapped into the model, because they can be understood as a

frame-driven conflict between the short-run and the long-run perspective. A particularly

lucid effect is the asymmetry between delay and speed-up framing (Loewenstein, 1988;

Benzion et al., 1989; Shelley, 1993; Weber et al., 2007). If the choice problem is framed

as a problem of delaying immediate rewards, behavior often reveals greater impatience

than if it is framed as a problem of speeding up future rewards. Whether a problem

is perceived as involving delay or speed-up is typically determined by the phrasing of

the question, but it could also be induced by a default (i.e., opting into a 401(k) plan

is a delay of immediate claims while opting out is a speed-up of later claims). We will

use delay framing as an instance of fS and speed-up framing as an instance of fL. The

literature has proposed different positive models to predict the asymmetry between delay

and speed-up framing, including the added compensation hypothesis (Benzion et al.,

1989), reference-dependence and gain-loss asymmetry (Loewenstein, 1988; Shelley, 1993),

or query theory (Weber et al., 2007). Our normative analysis only assumes that the delay

frame generates present-biased and the speed-up frame generates future-biased choices

with respect to welfare.29

We conducted an experiment on Amazon Mechanical Turk to obtain individual-level

data for a large number of diverse subjects.30 The experiment took place in August

29In fact, query theory (Weber et al., 2007), which is prominent in psychology, rests on an explicit
description of the internal decision-making process, exactly as required for our normative analysis. In
our setting, it postulates that there are reasons for early consumption and reasons for late consumption,
which we could capture by a welfare utility function of the form u(x1, x2) = r1x1 + r2x2. When facing
a choice, the decision-maker has to access these reasons from memory. Access happens serially, and
the frame determines whether information about the short-run or the long-run is accessed first. Due
to “output interference”, access is “less successful for later queries than for earlier queries” (p. 517).
Denoting by 0 < s ≤ 1 the relative share of reasons retrieved successfully in the second query, we would
obtain the behavioral utility functions uS(x1, x2) = r1x1 + sr2x2 and uL(x1, x2) = sr1x1 + r2x2, which
corresponds exactly to our model with δ = r2/r1 and γ = 1/s.

30The experiments in Loewenstein (1988), Benzion et al. (1989), Shelley (1993), and Weber et al. (2007)
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2016. Our design follows the earlier literature closely; the instructions can be found in

Appendix B.2. After reporting demographic information (gender, age, education), each

participant had to answer two pairs of questions about intertemporal choice. Each pair

of questions implemented a different frame. In the short-run frame, subjects were asked

about their willingness to pay v0 for an Amazon gift card of given value to be received on

the same day. Then they were asked about the minimal discount vD for which they would

accept delaying receipt of the gift card by one year. The answers to this pair of questions

reveal the behavioral discount factor δS = (v0 − vD)/v0. In the long-run frame, subjects

were asked about their willingness to pay v1 for an Amazon gift card of given value to be

received in one year. Then they were asked about the maximal additional fee vF for which

they would accept speeding up receipt of the gift card to the same day. The answers to

this pair of questions reveal the behavioral discount factor δL = v1/(v1 + vF ). The value

of the gift card was $75 in one frame and $85 in the other frame, but the assignment of

values and the order of the questions were randomized.31 Responses were not incentivized,

but the subjects obtained a compensation of $0.75 for participation, yielding an average

hourly wage of about $19.32

Overall, 1059 subjects completed our survey. We dropped 218 subjects who did not

obey our instructions or who responded in a way inconsistent with the model.33 This

leaves us with 841 independent observations. About half of the subjects (44.8%) are

female. Ages range between 18 and 77, with a mean of 35 and a median of 32. Subjects’

educational backgrounds are diverse, including high school (32.5%), undergraduate degree

(48.6%), and graduate degree (18.4%) as the highest completed level of education.

The average of the discount factors δS revealed by the subjects in the delay frame

feature between 66 and 208 subjects but individual-level results are not reported.
31We chose different values of the gift card in the two frames to avoid suggesting that there was an

objectively correct answer to our questions, thereby generating a demand effect for consistency. We still
chose the values to be similar to each other because the earlier literature has documented an effect of the
stake size on discount rates (e.g. Benzion et al., 1989; Shelley, 1993).

32The experiments by Benzion et al. (1989) and Shelley (1993) were not incentivized either. Loewenstein
(1988) reports on three different experiments, one of which had real monetary incentives. All three
experiments by Weber et al. (2007) were incentivized. A significant framing effect is found in all these
studies, and, as we will argue below, our quantitative results are also well in the range of their findings.
More generally, Cohen et al. (2016) review the literature on the measurement of time preferences and
conclude that there are no significant differences between the results of experiments with and without
monetary incentives (p. 32f). We add that the primary goal of our experiment is to illustrate the
applicability of our theoretical approach, and one may want to replicate the results in an incentivized
experiment to increase the confidence in our findings.

33From the beginning, we restricted participation eligibility to U.S. subjects with an experience of at
least 500 approved MTurk HITs and an approval rate of at least 95%. In the short-run frame, the subjects
were instructed to report a discount vD between 0 and the value v0 that they had stated earlier. One
hundred subjects did not obey this instruction but reported values such that vD > v0. We deliberately
allowed for such responses as a test of (in)attentiveness, following a suggestion by Paolacci et al. (2010)
for experiments on MTurk. Furthermore, 118 subjects responded in a way that implies either δS = 0 or
δL = 0, which is ruled out in our model.
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Figure 2: Revealed Behavioral Discount Factors
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is 0.56 (s = 0.009). The average of the discount factors δL revealed in the speed-up

frame is 0.67 (s = 0.008). A t-test clearly rejects the null hypothesis that these averages

are identical (p = 0.000, one-sided). Hence we replicate the earlier finding that average

impatience is greater in the delay frame than in the speed-up frame. Our results are also

quantitatively within the range of the previous findings.34 Figure 2 is a scatterplot of

the individual subjects’ behavioral discount factors. The correlation between δS and δL

is positive (ρ = 0.41) and significant (p = 0.000). The share of fully rational subjects (for

whom δS = δL) is 6.3%. About one quarter of the subjects (26.3%) exhibit a framing

effect opposite to the one conjectured above (δS > δL). Column (1) in Table 2 reports a

linear regression of δS on the demographic variables, and column (2) reports the analogous

regression with δL as the dependent variable. The regressions show that only education has

a significant effect on behavioral discount rates, with higher levels of education implying

weakly higher discount factors and thus more patient behavior under both frames.35

34We report here the average one-year discount factors (δS , δL) obtained in the previous studies, for
the respective treatments that are most similar to ours. Applying our formulas to the average responses
in the VCR treatment of Loewenstein (1988) yields (0.54, 0.80). The discount rates reported in Benzion
et al. (1989) for the treatment with a $40 receipt and a one-year time horizon can be translated into
the discount factors (0.72, 0.80). Similarly, the pooled results in Shelley (1993) for receipts of $40 and
$200 and time horizons of 6 months and one year translate into the one-year discount factors (0.78, 0.83).
While these values from Benzion et al. (1989) and Shelley (1993) are systematically larger than ours,
those from Weber et al. (2007) are lower: the average one-year discount factors in Experiment 1 for gift
certificates of values $50 and $75 and a time horizon of 3 months are (0.34, 0.57).

35The dummy variables “High school”, “Undergraduate”, and “Graduate” code the highest level of
education that a subject has completed. The coefficient “Undergraduate” is significantly larger than the
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Table 2: Regression Analysis

(1) (2) (3) (4)

Dependent variable δS δL δ bias

Constant 0.463∗∗∗ 0.466∗∗∗ 0.443∗∗∗ 0.293∗∗∗

(0.051) (0.074) (0.046) (0.078)

Female -0.002 -0.134 -0.016 0.052∗∗

(0.017) (0.017) (0.015) (0.025)

Age -0.001 -0.001 -0.001 −0.002∗∗

(0.001) (0.001) (0.001) (0.001)

High school 0.077∗∗ 0.222∗∗∗ 0.141∗∗∗ 0.054

(0.036) (0.065) (0.032) (0.063)

Undergraduate 0.111∗∗∗ 0.300∗∗∗ 0.201∗∗∗ 0.022

(0.035) (0.064) (0.031) ( 0.062)

Graduate 0.141∗∗∗ 0.274∗∗∗ 0.204∗∗∗ 0.007

(0.039) (0.066) (0.034) (0.064)

Other controls Yes Yes Yes Yes

R-squared 0.039 0.036 0.031 0.031

No. of observations 841 841 841 841

Notes: The table reports linear regressions. Robust standard errors are indicated in parentheses. The
omitted education category is “None of the others”. “Other controls” are response time and dummy
variables for the randomization. The symbols ∗, ∗∗, ∗∗∗ denote significance at the 10%, 5% and 1% levels.

We next examine the welfare discount factors δ and the susceptibility to framing

parameters γ that can be deduced from the subjects’ behavioral discount rates. The

average of δ across subjects is 0.60 (s = 0.007), which means that $1.00 in one year is

worth $0.60 today from an average welfare perspective. Panel (a) of Figure 3 shows the

entire distribution of δ and reveals considerable heterogeneity across subjects. The average

of γ across subjects is 1.17 (s = 0.013), and panel (b) of Figure 3 shows its distribution

in the population. The correlation between δ and the framing bias, which we define as

|γ−1| to take account of subjects with opposite framing effect, is negative (ρ = −0.45) and

significant (p = 0.000), indicating that the subjects who are more susceptible to framing

are those who are less patient from a welfare perspective. Regression (3) in Table 2 shows

that only education affects the welfare discount factor, in the expected direction.36 Maybe

surprisingly, the framing bias |γ − 1| is not significantly affected by education, as can be

coefficient “High school” in both regressions (1) and (2), but only at marginal significance level in the
former (Wald-test, (1) p = 0.085, (2) p = 0.000). The coefficient “Graduate” is not significantly different
from the coefficient “Undergraduate” in both regressions (Wald-test, (1) p = 0.190, (2) p = 0.242). Hence
the effect of education on behavioral patience is only weakly monotonic.

36The coefficient “Undergraduate” is significantly larger than the coefficient “High school” (Wald-test,
p = 0.001), while ”Graduate” is not significantly different from ”Undergraduate” (Wald-test, p = 0.890).
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Figure 3: Welfare Discount Factors and Susceptibility Parameters
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seen from column (4) in Table 2. Hence the effect of education on behavior operates by

changing the welfare preference rather than the behavioral bias. The bias is significantly

affected by gender, with women exhibiting larger biases, and by age, with smaller biases

for older subjects.

We can now address the question of optimal nudging, by combining the theoretical

result in Proposition 15 with our empirical findings. For transparency, we restrict atten-

tion to those subjects for whom we estimated a framing effect γ ≥ 1 (but the analysis

could easily be extended to the entire subject population). Figure 4 shows how many

of the subjects should be nudged by one of the two frames, for six different intervals of

potential market interest rates. Maybe contrary to conventional wisdom, the short-run

frame fS is an optimal nudge for a substantial share of the subjects across all interest rate

conditions (between 74.0% and 95.2%). The share of subjects for whom fL is optimal

is very small (never exceeding 3.5%) and the share of non-nudgeable subjects is limited

(between 3.4% and 24.5%). These conclusions are driven by the fact that welfare discount

factors are generally low. Recall also that the framing effect is weaker for subjects with

greater welfare patience, so framing naturally affects impatient subjects more. This can,

for instance, be seen in the number of subjects whose behavior would respond to a change

in the frame for all interest rates in the relevant range. Among those who should be

nudged by fL, the share of such subjects is zero in all the six cases illustrated in Figure

4. By contrast, it varies between 0% and 8.1% among the subjects who should be nudged

by fS.

If the regulator’s goal is to select a frame that is optimal for a majority of the popu-

lation, our analysis gives rise to a clear recommendation: choose the frame that induces

present-biased behavior over the one that induces future-biased behavior. A more com-

plete analysis should take into account additional behavioral mechanisms and other con-
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Figure 4: Optimal Nudging
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sequences of savings decisions (such as externalities for the welfare state), but our results

at least challenge the view that soft paternalistic interventions should generally aim at

increasing savings.

9 Conclusions

For most of the paper, we have taken the usual revealed-preference perspective for a

single agent. Aside from its methodological justification, this is also directly relevant for

nudging, where “personalization does appear to be the wave of the future” (Sunstein,

2014, p. 100). In the digital age of big data, individual-specific data gathering and

nudging is achievable, for instance by relying on cookies. However, our results also speak

to the problem of nudging a population of agents. On the elicitation stage, an assumption

that different agents have identical preferences, possibly after controlling for observables,

or are drawn representatively from a population, would allow us to combine observations

of different agents into a single data set, facilitating the preference elicitation. On the

nudging stage, the necessity to determine one frame for a population of heterogeneous
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agents gives rise to ordinary social choice problems, which we have mostly refrained from

studying in this paper.

Our model-based approach to behavioral welfare economics should in principle be con-

ducive to nudging. Given a conjecture about how agents with different welfare preferences

act under different frames, choice data can be used to infer about welfare and to assess

which framing of the decision problem helps agents avoid mistakes. It is therefore remark-

able how difficult the problem still turns out to be. Welfare-based nudging is impossible

for interesting classes of models, and for others it is very complex information-wise. How-

ever, our analysis also shows that seemingly small differences between behavioral models

can make a big difference for nudging. For instance, a satisficing agent stops searching as

soon as some aspiration level is achieved. Our results imply that it is impossible to help

this agent make systematically better choices. If the agent stops searching at the end

of a search engine’s result page, by contrast, it is relatively easy to improve her choices

by framing. This raises important questions for future research about actual decision

processes.
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A Proofs

A.1 Proof of Lemma 1

(i) Suppose thatB(�, f) ⊆ B(�, f ′) holds for each� ∈ P (Λ). To show that [f ]ΛN(Λ)[f ′]Λ,

we proceed by contradiction and assume that there exist � ∈ P (Λ) and S ⊆ X for which

c(d(�, f), S) = x and c(d(�, f ′), S) = y with x 6= y and y � x. The definition of c

implies (x, y) ∈ d(�, f) and (x, y) /∈ d(�, f ′). Together with (x, y) /∈ � this implies

(x, y) ∈ B(�, f) but (x, y) /∈ B(�, f ′), a contradiction. For the converse, suppose that

there exist � ∈ P (Λ) and x, y ∈ X with (x, y) ∈ B(�, f) but (x, y) /∈ B(�, f ′), which

requires x 6= y. This implies (x, y) ∈ d(�, f) and (x, y) /∈ �, hence (x, y) /∈ d(�, f ′).

Then c(d(�, f ′), {x, y}) = y � x = c(d(�, f), {x, y}), which implies that [f ]ΛN(Λ)[f ′]Λ
does not hold, by Definition 1.

(ii) Reflexivity and transitivity of N(Λ) follow from the set inclusion characterization

in statement (i). To show antisymmetry, consider any f, f ′ ∈ F with [f ]ΛN(Λ)[f ′]Λ and

[f ′]ΛN(Λ)[f ]Λ. By (i) this is equivalent to B(�, f) = B(�, f ′) and thus d(�, f) = d(�, f ′)

for each � ∈ P (Λ), hence [f ]Λ = [f ′]Λ.

A.2 Proof of Proposition 1

Suppose � is identifiable, which implies that Λ̄(�) is not identical to Λ̄(�′) for any other

�′. Then P (Λ̄(�)) = {�}. Consider any f with d(�, f) = �, which exists by assumption.

For any f ′ ∈ F , we then have B(�, f) = ∅ ⊆ B(�, f ′) and hence [f ]Λ̄(�)N(Λ̄(�))[f ′]Λ̄(�)

by Lemma 1, which implies f ∈ G(Λ̄(�)). For the converse, suppose that � is not

identifiable, i.e., there exists �′ 6=� with Λ̄(�′) = Λ̄(�). Then {�,�′} ⊆ P (Λ̄(�)).

Consider any f1 with d(�, f1) = � and any f2 with d(�′, f2) = �′, so that B(�, f1) = ∅

and B(�′, f2) = ∅. Assume by contradiction that there exists f ∈ G(Λ̄(�)). Then

[f ]Λ̄(�)N(Λ̄(�))[f1]Λ̄(�) must hold, which implies B(�, f) = ∅ by Lemma 1, and hence

d(�, f) = �. The analogous argument for f2 implies d(�′, f) = �′, which contradicts

that Λ̄(�′) = Λ̄(�), i.e., that � is not identifiable.

A.3 Proof of Proposition 2

Any behavioral model d is characterized by the collection of maximal data sets (Λ̄(�))�∈P

that it assigns to the welfare preferences. Suppose there are mP ≥ 2 preferences and

mF ≥ 2 frames. Then there are (mP )
mF different maximal data sets. For a given welfare

preference �, however, only

N(mP , mF ) = (mP )
mF − (mP − 1)mF
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of them are admissible, as the others contradict the existence of a non-distorting frame

for �. The number of possible models is thus given by N(mP , mF )
mP . To obtain a

model with identifiable preferences, we need to assign a different maximal data set to

each welfare preference. Suppose we assign one of the N(mP , mF ) admissible data sets to

the first welfare preference. Then there remain at least N(mP , mF ) − 1 admissible data

sets for the second welfare preference (the exact number is still N(mP , mF ) if the data

set assigned to the first preference was not admissible for the second preference), and so

on. Observe that N(mP , mF ) ≥ mP , so we can proceed iteratively and obtain the falling

factorial

N(mP , mF )
mP = N(mP , mF )× (N(mP , mF )− 1)× . . .× (N(mP , mF )−mP + 1)

as a lower bound on the number of models with identifiable preferences. Consequently,

S(mP , mF ) =
N(mP , mF )

mP

N(mP , mF )mP

is a lower bound on the share of models with identifiable preferences. We can rewrite

S(mP , mF ) =
N(mP , mF )

N(mP , mF )
× N(mP , mF )− 1

N(mP , mF )
× · · · × N(mP , mF )−mP + 1

N(mP , mF )

=

mp−1
∏

k=1

(

1− k

N(mP , mF )

)

= exp

(

mP−1
∑

k=1

log

(

1− k

N(mP , mF )

)

)

,

where 1 > k/N(mP , mF ) > 0 holds for all k = 1, . . . , mP − 1. Recall that for x > −1 we

have log(1 + x) ≥ x/(1 + x), which implies

mP−1
∑

k=1

log

(

1− k

N(mP , mF )

)

≥
mP−1
∑

k=1

− k

N(mP , mF )− k
.

Furthermore,

mP−1
∑

k=1

− k

N(mP , mF )− k
≥

mP−1
∑

k=1

− k

N(mP , mF )−mP + 1

= − 1

N(mP , mF )−mP + 1

mP−1
∑

k=1

k

= − (mP )
2 −mP

2(N(mP , mF )−mP + 1)
.
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Altogether, we therefore have

S(mP , mF ) ≥ exp

(

− (mP )
2 −mP

2(N(mP , mF )−mP + 1)

)

= S̃(mP , mF ),

so S̃(mP , mF ) is also a lower bound on the share of models with identifiable preferences.

We are interested in asymptotic behavior as the number of alternatives mX and hence

the number of preferences mP grows. Holding mF fixed and treating mP as a real variable,

it follows with l’Hôpital’s rule that

lim
mP→∞

− (mP )
2 −mP

2(N(mP , mF )−mP + 1)
= 0

whenever mF ≥ 4. We thus obtain limmX→∞ S̃(mP (mX), mF ) = 1 whenever mF ≥ 4.

Now consider the case that the number of frames mF (mX) also depends on the number

of alternatives. Observe that S̃(mP , mF ) is strictly increasing in mF whenever mP ≥ 2.

At the same time, S̃(mP , mF ) ≤ 1 always holds since S̃(mP , mF ) is a lower bound on a

proportion. Hence we obtain

lim
mX→∞

S̃(mP (mX), mF (mX)) = 1

whenever there exists m such that mF (mX) ≥ 4 for all mX ≥ m. Then the share of

models with identifiable preferences converges to 1 as the number of alternatives grows

to infinity.

A.4 Proof of Proposition 3

Consider any d with the frame-cancellation property and any data set Λ. Fix any frame

f1 ∈ F , and let f2 ∈ F be an arbitrary frame with f2 /∈ [f1]Λ. Then, by definition of [f1]Λ,

there exists � ∈ P (Λ) such that d(�, f1) =�1 6=�2= d(�, f2). By the frame-cancellation

property, we have d(�1, f) = d(d(�, f1), f) = d(�, f) for all f ∈ F , which implies that

�1 ∈ P (Λ). We also obtain d(�1, f1) = d(�, f1) =�1, which implies B(�1, f1) = ∅.

From �1 6=�2 and the frame-cancellation property, it follows that

B(�1, f2) = d(�1, f2)\ �1 = d(d(�, f1), f2)\ �1 = d(�, f2)\ �1=�2 \ �1 6= ∅.

Hence B(�1, f1) ⊂ B(�1, f2), and Lemma 1 implies that [f2]ΛN(Λ)[f1]Λ does not hold.

Since f2 was arbitrary we conclude that f1 ∈ M(Λ), and, since f1 was arbitrary, that

M(Λ) = F .

43



A.5 Proof of Proposition 4

We assume k ≤ mX/2 throughout the proof, as cases where k > mX/2 can be dealt with

equivalently by reversing the role of the first page f and the second page X\f of the

search engine.

Case 1: k even. We first construct an elicitation procedure e and then show that it is

optimal. Let e(∅) = f1 be an arbitrary subset f1 ⊆ X with |f1| = k. Now fix any welfare

preference �. The procedure then generates a data set Λ1 = {(�1, f1)} ∈ L1, where

�1 agrees with � within the sets f1 and X\f1. Let ai denote the alternative ranked at

position i within the set f1 by �1, for each i = 1, . . . , k. Let bi denote the alternative

ranked at position i within the set X\f1 by �1, for each i = 1, . . . , k, . . . , mX − k. Then

construct the frame e(Λ1) = f2 as f2 = {a1, . . . , ak/2, bk/2+1, . . . , bk}. The procedure then

generates a data set Λ2 = {(�1, f1), (�2, f2)} ∈ L2, where �2 agrees with � within the

sets f2 and X\f2. This construction is applied to all the data sets Λ1 that are generated

by the elicitation procedure for some welfare preference. The elicitation procedure can be

continued arbitrarily for all other data sets.

Let � be an arbitrary true welfare preference. We claim that the set Tk(�) of top k

alternatives according to � can be deduced from the generated Λ2, so that the optimal

nudge is identified and n(e,�) ≤ 2 follows. Observe first that none of the alternatives

bk+1, . . . , bmX−k (if they exist) can belong to Tk(�), because Λ1 has already revealed that

each b1, . . . , bk is preferred by �. Now suppose that bk �2 a1 holds. We then know that

bk � a1 and thus Tk(�) = {b1, . . . , bk}. Otherwise, if a1 �2 bk holds, we know that a1 � bk

and thus bk /∈ Tk(�) but a1 ∈ Tk(�). In this case we can repeat the argument for a2 and

bk−1: if bk−1 �2 a2 we know that bk−1 � a2 and thus Tk(�) = {b1, . . . , bk−1, a1}; otherwise,
if a2 �2 bk−1 holds, we know that a2 � bk−1 and thus bk−1 /∈ Tk(�) but a2 ∈ Tk(�).

Iteration either reveals Tk(�) or arrives at ak/2 �2 bk/2+1, which implies ak/2 � bk/2+1. In

this case, we know that Tk(�) consists of a1, . . . , ak/2 and those k/2 alternatives that �2

and hence � ranks top within X\f2.
Since � was arbitrary, we know that max�∈P n(e,�) ≤ 2. Obviously, no single ob-

servation ever suffices to deduce Tk(�), neither in the constructed procedure nor in any

other one, hence we can conclude that n = 2.

Case 2: k odd and k < mX/2. The construction is the same as for case 1, except that

f2 = {a1, . . . , a(k−1)/2, b(k+1)/2+1, . . . , bk, bk+1}, where bk+1 exists because k < mX/2. The

arguments about deducing Tk(�) are also the same, starting with a comparison of a1 and

bk, except that the iteration might arrive at a(k−1)/2 �2 b(k+1)/2+1, in which case Tk(�)

consists of a1, . . . , a(k−1)/2 and those (k+1)/2 alternatives that �2 ranks top within X\f2.
Case 3: k odd and k = mX/2. The construction is the same as for case 1, except that

f2 = {a1, . . . , a(k+1)/2, b(k+1)/2+1, . . . , bk}. The arguments about deducing Tk(�) are also

the same, starting with a comparison of a1 and bk, except that the iteration might arrive at
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a(k−1)/2 �2 b(k+1)/2+1. In this case, we can conclude that Tk(�) consists of a1, . . . , a(k−1)/2,

plus either a(k+1)/2 or b(k+1)/2 but never both, and those (k − 1)/2 alternatives that �2

ranks top among the remaining ones in X\f2. Hence there exist welfare preferences �
for which e does not identify Tk(�) after two steps. Since the missing preference between

a(k+1)/2 and b(k+1)/2 can be learned by having e(Λ2) = f3 satisfy {a(k+1)/2, b(k+1)/2} ⊆ f3,

we know that n ≤ 3.

It remains to be shown that n > 2. Fix an arbitrary elicitation procedure e and

denote e(∅) = f1 = {a1, . . . , ak} and X\f1 = {b1, . . . , bk}, where the numbering of the

alternatives is arbitrary but fixed (remember that k = mX/2). Let �1 be the preference

given (in ranking notation) by a1 . . . ak b1 . . . bk, and consider the data set Λ1 = {(�1, f1)}
and the subsequent frame e(Λ1) = f2. Since k is odd, it follows that at least one of the

pairs {a1, bk}, {a2, bk−1}, . . . , {ak, b1} must be separated on different pages by f2, i.e., there

exists l = 1, . . . , k such that al ∈ f2 and bk−l+1 ∈ X\f2 or vice versa. Depending on the

value of l, we now construct two welfare preferences �′ and �′′. If l = 1, let

�′: b1 . . . bk−1 bk a1 a2 . . . ak,

�′′: b1 . . . bk−1 a1 bk a2 . . . ak.

If l = 2, . . . , k − 1, let

�′: a1 . . . al−1 b1 . . . bk−l bk−l+1 al al+1 . . . ak bk−l+2 . . . bk,

�′′: a1 . . . al−1 b1 . . . bk−l al bk−l+1 al+1 . . . ak bk−l+2 . . . bk.

If l = k, let

�′: a1 . . . ak−1 b1 ak b2 . . . bk,

�′′: a1 . . . ak−1 ak b1 b2 . . . bk.

For the two constructed welfare preferences �′ and �′′, the elicitation procedure first

generates the above described data set Λ1. Subsequently, it generates the same data set

Λ2 = {(�1, f1), (�2, f2)}, because �′ and �′′ differ only with respect to al and bk−l+1,

which is not revealed by frame f2. Since Tk(�′) 6= Tk(�′′), it follows that n(e,�′) > 2,

which implies max�∈P n(e,�) > 2. Since e was arbitrary, it follows that n > 2.

A.6 Proof of Proposition 5

The result follows immediately if mX = 2. Hence we fix a set X with mX ≥ 3 throughout

the proof. We denote m = mX ! for convenience.

Consider an arbitrary behavioral model, given by F and d, with mF ≥ m and identi-
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fiable preferences. Define

n̂(e,�) = min{s | P (Λs(e,�)) = {�}}

as the first step at which procedure e identifies �, and let

n̂ = min
e∈E

max
�∈P

n̂(e,�).

It follows immediately that n ≤ n̂, because P (Λs(e,�)) = {�} implies G(Λs(e,�)) 6= ∅.

We will establish the inequality n̂ < m.

Consider any e and suppose n̂(e,�) ≥ m for some � ∈ P . Since |P | = m, there must

exist k ∈ {0, 1, . . . , m− 2} such that

P (Λk(e,�)) = P (Λk+1(e,�)).

Denoting e(Λk(e,�)) = f̃ and d(�, f̃) = �̃, we thus have Λk+1(e,�) = Λk(e,�)∪{(�̃, f̃)}
and d(�′, f̃) = �̃ for all �′ ∈ P (Λk(e,�)). We now define elicitation procedure e′ by

letting e′(Λ) = e(Λ), except for data sets Λ ∈ L that satisfy both Λk(e,�) ⊆ Λ and f 6= f̃

for all (�, f) ∈ Λ, which includes Λ = Λk(e,�). For those data sets, we define

e′(Λ) =

{

e(Λ ∪ {(�̃, f̃)}) if |Λ| ≤ mF − 2,

f̃ if |Λ| = mF − 1.

Note that e′ is a well-defined elicitation procedure. First, Λ∪{(�̃, f̃)} ∈ L holds whenever

the first case applies, because ∅ 6= P (Λ) ⊆ P (Λk(e,�)) and Λ does not yet contain an

observation of f̃ . Second, the first case then applies repeatedly because e(Λ∪{(�̃, f̃)}) 6=
f̃ , so that e′ only dictates yet unobserved frames.

Consider any �′ /∈ P (Λk(e,�)), so that (�1, f) ∈ Λk(e,�′) and (�2, f) ∈ Λk(e,�)

with �1 6=�2 for some f . From Λk(e,�′) ⊆ Λs(e,�′) and thus Λk(e,�) * Λs(e,�′) for

all s ≥ k, it follows that preference �′ is unaffected by the modification of the procedure,

i.e., Λs(e
′,�′) = Λs(e,�′) for all s ∈ {0, 1, . . . , mF}, so that n̂(e′,�′) = n̂(e,�′). Now

consider any �′ ∈ P (Λk(e,�)), including �′ =�. Then Λs(e,�) = Λs(e,�′) = Λs(e
′,�′)

holds for all s ≤ k. For k < s ≤ mF − 1, the definition of e′ implies that Λs(e
′,�′) does

not contain an observation of f̃ , and that

Λs(e
′,�′) ∪ {(�̃, f̃)} = Λs+1(e,�′).

Thus

P (Λs(e
′,�′)) = P (Λs(e

′,�′) ∪ {(�̃, f̃)}) = P (Λs+1(e,�′)),
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so that n̂(e′,�′) = n̂(e,�′) − 1. Repeated application of this construction allows us to

arrive at an elicitation procedure e∗ for which n̂(e∗,�) < m for all � ∈ P , which implies

that n̂ < m.

A.7 Proof of Proposition 6

We write P = {�1,�2, . . . ,�m}, where m = mX ! and the numbering of the preferences

is arbitrary but fixed. We number the frames such that fi = o(�i). Note that each frame

fi is non-distorting for a single preference only, the one with which it coincides. This

implies n(e,�) = n̂(e,�) for all e ∈ E and �∈ P , and thus n = n̂, where n̂ refers to the

complexity of identifying the welfare preference as defined in the proof of Proposition 5.

We will establish the equality n̂ = m− 1.

Consider an arbitrary e. Define i1 such that e(∅) = fi1 , and it for t = 2, 3, . . . , m

recursively such that e(Λt−1) = fit for the data set

Λt−1 =
t−1
⋃

j=1

{(fij , fij)}.

If �im is the welfare preference, then the procedure e will generate the sequence of data

sets Λs(e,�im) = Λs for all s ∈ {0, 1, . . . , m − 1}, with Λ0 = ∅. It follows from the

definition of d that P (Λs) = {�is+1
,�is+2

, . . . ,�im} holds for each s ∈ {0, 1, . . . , m− 1}.
This implies n̂(e,�im) = m−1, and hence max�∈P n̂(e,�) ≥ m−1. Since e was arbitrary,

it follows that n̂ ≥ m − 1. Together with the result n̂ < m established in the proof of

Proposition 5, this implies n̂ = m− 1.

A.8 Proof of Proposition 7

We first show that the partition P̄ for the perfect-recall model, denoted P̄ PR, is weakly

finer than the one for the no-recall model, denoted P̄NR, and strictly so whenever k <

mX − 1. Fix any �∈ P and consider the equivalence class P PR
� in the perfect-recall

model. For any �′ ∈ P PR
� it holds that Tk(�′) = Tk(�), where Tk(.) is the set of top k

alternatives according to the respective preference. Hence �′ ∈ PNR
� , which implies that

P PR
� ⊆ PNR

� and hence that P̄ PR is weakly finer than P̄NR. If k < mX − 1, we have

|X\Tk(�)| ≥ 2. Construct �′′ from � by swapping the preference between the bottom 2

alternatives. Then Tk(�′′) = Tk(�) and hence �′′ ∈ PNR
� , but �′′ /∈ P PR

� . Thus P̄ PR is

strictly finer than P̄NR in that case.

The fact that P̄ PR is weakly finer than P̄NR immediately implies that any nudging

domain for no-recall satisficing is also a nudging domain for perfect-recall satisficing. If

k < mX −1, the domain P̃ = {�,�′′} for two preferences � and �′′ as constructed above
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is a nudging domain for perfect-recall satisficing but not for no-recall satisficing.

A.9 Proof of Proposition 8

The proof is similar to the proofs of Propositions 5 and 6 and therefore omitted.

A.10 Proof of Proposition 9

As argued in the proof of Proposition 6, the strong priming model satisfies n(e,�) =

n̂(e,�) for all e ∈ E and �∈ P , where n̂(e,�) denotes the first step at which procedure

e identifies �. Hence

n̄ = min
e∈E

m
∑

i=1

pin̂(e,�i),

where we again write m = mX ! for convenience. We also keep the numbering of frames

such that fi = o(�i).

Consider an arbitrary e. Define it for t = 1, 2, . . . , m exactly as in the proof of

Proposition 6, i.e., as the index of the frame prescribed by e at step t when the agent has

been successfully manipulated by all previous frames. It then follows from the definition

of d that n̂(e,�it) = t for each t = 1, 2, . . . , m− 1, and n̂(e,�im) = m− 1. Hence

m
∑

i=1

pin̂(e,�i) =

m
∑

t=1

pitn̂(e,�it) =

m−1
∑

t=1

pitt+ pim(m− 1),

which is a weighted average of the numbers 1, 2, . . . , m− 1, m− 1, where the weights are

the prior probabilities. Since p1 ≥ p2 ≥ . . . ≥ pm, this weighted average is minimized by

a procedure e ∈ E with it = t, which implies the result.

A.11 Proof of Proposition 10

Since each frame is non-distorting for exactly one preference in the strong priming model,

we have ϕ̄Λ = max�∈P (Λ) πΛ(�). We now proceed in two steps. We first construct an

elicitation procedure e, and then show that it is optimal.

Step 1. We only need to describe e(Λ) for Λ with |P (Λ)| ≥ 2, as otherwise ϕ̄Λ = 1 holds

and the continuation of e is irrelevant for the generalized complexity. Given any such Λ,

let j be the second-smallest index among the preferences in P (Λ), so that πΛ(�j) is the

second-highest value among the updated probabilities. Then we define e(Λ) = fj for this

data set, where the numbering of frames is given by fi = o(�i) as before. Note that the

frame fj cannot have been observed in Λ already, since otherwise either P (Λ) = {�j} or

�j /∈ P (Λ) would hold. Hence the construction yields a well-defined elicitation procedure.
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For instance, we obtain e(∅) = f2, e({(f2, f2)}) = f3, and so on. If �1 is the welfare

preference, it follows from the definition of d that

P (Λk(e,�1)) =

{

{�1,�k+2,�k+3, . . . ,�m} if k ≤ m− 2,

{�1} if k ≥ m− 1,

and therefore

ϕ̄Λk(e,�1) =

{

p1/(p1 +
∑m

j=k+2 pj) if k ≤ m− 2,

1 if k ≥ m− 1,
(1)

where we once more write m = mX ! for convenience. If �i for i = 2, 3, . . . , m is the

welfare preference, we have

P (Λk(e,�i)) =

{

{�1,�k+2,�k+3, . . . ,�m} if k ≤ i− 2,

{�i} if k ≥ i− 1,

and therefore

ϕ̄Λk(e,�i) =

{

p1/(p1 +
∑m

j=k+2 pj) if k ≤ i− 2,

1 if k ≥ i− 1.
(2)

Given any k = 0, 1, . . . , m, the value of (1) is always weakly smaller than the value of (2).

Hence max�∈P n(q, e,�) = n(q, e,�1). The value of n(q, e,�1) is given by the smallest

integer k ≥ 0 such that

p1
p1 +

∑m
j=k+2 pj

≥ q,

which can be rearranged to the condition in the proposition.

Step 2. Now consider an arbitrary elicitation procedure e. Define it for t = 1, 2, . . . , m

exactly as in the proof of Proposition 6. For any i = 1, 2, . . . , m let t(i) be such that

i = it(i), so that frame fi is prescribed by e at step t(i) when the agent has been successfully

manipulated by all previous frames. We then obtain

P (Λk(e,�i)) =

{

{�ij | j = k + 1, k + 2, . . . , m} if k ≤ t(i)− 1,

{�i} if k ≥ t(i),

and

ϕ̄Λk(e,�i) =

{

pij∗(k)/(
∑m

j=k+1 pij) if k ≤ t(i)− 1,

1 if k ≥ t(i),
(3)
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where j∗(k) is an index j in {k + 1, k + 2, . . . , m} for which pij is maximal. Given any

k = 0, 1, . . . , m, the value of (3) is minimized when t(i) = m, i.e., for welfare preference

�i =�im . Hence max�∈P n(q, e,�) = n(q, e,�im). We now claim that the value of (3) for

�im is weakly smaller than the value of (1), for all k = 0, 1, . . . , m, from which it follows

that the procedure constructed in step 1 is indeed optimal. We only need to establish the

inequality

pij∗(k)
∑m

j=k+1 pij
≤ p1

p1 +
∑m

j=k+2 pj

for all k ≤ m− 2. It can be rearranged to

pij∗(k)



p1 +
∑

j∈{k+2,...,m}

pj



 ≤ p1



pij∗(k) +
∑

j∈{k+1,k+2,...,m}\{j∗(k)}

pij



 ,

which can further be rearranged to

∑

j∈{k+2,...,m} pj
∑

j∈{k+1,k+2,...,m}\{j∗(k)} pij
≤ p1

pij∗(k)
.

This holds, because p1 ≥ p2 ≥ . . . ≥ pm implies that the LHS is weakly smaller than 1

while the RHS is weakly larger than 1.

A.12 Proof of Proposition 11

We only need to consider the case q < q ≤ q, which presupposes the existence of a

procedure e∗ with which

ϕ̄∅ < q ≤ max
s∈{1,...,mF }

ϕ̄Λs(e∗,�)

for all �∈ P . We will show that, with the frame-cancellation property, for all �∈ P it

holds that P (Λ1(e
∗,�)) = P (Λs(e

∗,�)) for all s = 2, . . . , mF , and therefore

ϕ̄Λ1(e∗,�) = max
s∈{1,...,mF }

ϕ̄Λs(e∗,�).

This then immediately implies n(q) = 1. We will in fact establish the stronger property

that P (Λ) = P (Λ′) whenever ∅ 6= Λ ⊆ Λ′.

We first show that, for any two �,�′ ∈ P , the maximal data sets Λ̄(�) and Λ̄(�′)

are either disjoint or identical. Suppose Λ̄(�) and Λ̄(�′) are not disjoint, so there exists
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f ′ ∈ F such that d(�, f ′) = d(�′, f ′). Then the frame-cancellation property implies

d(�, f) = d(d(�, f ′), f) = d(d(�′, f ′), f) = d(�′, f)

for all f ∈ F , so that Λ̄(�) = Λ̄(�′).

Now fix any two data sets Λ and Λ′ with ∅ 6= Λ ⊆ Λ′. Since P (Λ′) ⊆ P (Λ) always

holds, we only need to show that P (Λ) ⊆ P (Λ′). Fix any �∈ P (Λ), so that Λ ⊆ Λ̄(�).

For any �′ ∈ P (Λ′) it holds that Λ ⊆ Λ′ ⊆ Λ̄(�′). Since Λ 6= ∅, this implies that Λ̄(�)

and Λ̄(�′) are not disjoint, so that Λ̄(�) = Λ̄(�′). Hence Λ′ ⊆ Λ̄(�) and �∈ P (Λ′).

A.13 Proof of Proposition 12

We first show that, for all Λ and f , P (Λ, f) = d(P (Λ), f) holds under the frame-

cancellation property, where d(P (Λ), f) denotes the image of P (Λ) under d(., f). The first

inclusion P (Λ, f) ⊆ d(P (Λ), f) follows immediately by definition of d(P (Λ), f). Assume

then that �∈ d(P (Λ), f), so there exists �′ ∈ P (Λ) such that d(�′, f) =�. The frame-

cancellation property then implies d(�, f ′) = d(d(�′, f), f ′) = d(�′, f ′) for any f ′ ∈ F ,

which reveals that �∈ P (Λ). Furthermore, d(�, f) = d(�′, f) =�. Hence �∈ P (Λ, f),

so that the other inclusion d(P (Λ), f) ⊆ P (Λ, f) also holds. We can therefore write

ϕΛ(f) =
∑

�∈ d(P (Λ),f)

πΛ(�).

Consider Λ = ∅ first. For any f ∈ F , we claim that |d(P (∅), f)| = |d(P, f)| = |P̄ |.
Since f already partitions P into the |d(P, f)| blocks between which it distinguishes,

|d(P, f)| is clearly a lower bound on |P̄ |. Now suppose |d(P, f)| < |P̄ |, which implies

that there exist �1 6=�2 such that d(�1, f) = d(�2, f) but d(�1, f
′) 6= d(�2, f

′) for

some f ′ ∈ F . Then the frame-cancellation property implies d(�1, f
′) = d(d(�1, f), f

′) =

d(d(�2, f), f
′) = d(�2, f

′), a contradiction. Hence

ϕ∅(f) =
|d(P, f)|
mX !

=
|P̄ |
mX !

=
1

s
(4)

for all f ∈ F , i.e., initially each frame is equally likely to be optimal.

Consider any Λ 6= ∅ next. It has been shown in the proof of Proposition 11 that

P (Λ) = P (Λ′) whenever ∅ 6= Λ ⊆ Λ′, which implies that P (Λ) = P (Λ̄(�)) = P� for any

�∈ P (Λ). For any f ∈ F , we then obtain that |d(P (Λ), f)| = |d(P�, f)| = 1 immediately

from the definition of P�. Hence

ϕΛ(f) =
1/mX !

s�/mX !
=

1

s�
(5)
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for all f ∈ F , where s� = |P�|. Again, each frame is equally likely to be optimal.

Equation (4) also implies q = 1/s. Now consider any �′ ∈ P with s�′ ≥ s, which must

clearly exist. For any procedure e and any s = 1, . . . , mF , we then have by equation (5)

ϕ̄Λs(e,�′) =
1

s�′

≤ 1

s
= q,

which implies q = q.

A.14 Proof of Proposition 13

The proof is similar to the proof of Proposition 1 and therefore omitted.

A.15 Proof of Proposition 14

The proof is similar to the proof of Proposition 1 and therefore omitted.

A.16 Proof of Proposition 15

Case 1: δ ≤ 1/(1 + r). Fix any (r, y) ∈ C. If either δ < 1/(1 + r) or r < r, or both, we

have δ < 1/(1 + r). Then the marginal rate of substitution of x1 for x2 according to the

welfare utility u, which is given by MRSu = 1/δ, is strictly larger than the absolute value

of the slope of the budget line, which is given by 1+r. The unique u-optimal element from

any compact S ⊆ X(r, y) is thus the unique alternative that maximizes x1 in S. From

MRSuS
= 1/δS = γ/δ ≥ 1/δ it follows that this is also the unique uS-optimal element in

S. Hence each uS-optimal element in S is weakly u-better than each uL-optimal element.

If instead δ = 1/(1 + r) and r = r holds, we have MRSu = 1 + r and all elements in any

S ⊆ X(r, y) are u-optimal. It again follows that each uS-optimal element in S is weakly

u-better than each uL-optimal element. Thus fS is a weakly successful nudge over fL and

hence an optimal nudge.

Case 2: 1/(1 + r) ≤ δ. Analogous arguments imply that fL is an optimal nudge in

that case.

Case 3: 1/(1 + r) < δ < 1/(1 + r). If γ = 1, the utility functions u, uS, and uL

all coincide, which implies that each frame is a weakly successful nudge over the other,

and hence none of them is dominated. Then assume γ > 1. Choose (r, y) ∈ C such that

δ/γ < 1/(1 + r) < δ, which exists because C is connected. Consider S = X(r, y). From

MRSuL
< MRSu < 1+r it then follows that (0, y(1+r)) is the unique u-optimal element in

S and also the unique uL-optimal element in S. By contrast, from MRSuS
> 1+r it follows

that (y, 0) is the unique uS-optimal element in S. Hence the uS-optimal element is not

weakly u-better than the uL-optimal element, and therefore fS is not a weakly successful
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nudge over fL. Analogous arguments for some (r, y) ∈ C with δ < 1/(1 + r) < γδ imply

that fL is also not a weakly successful nudge over fS. Hence none of the two frames is

dominated.

B Additional Material

B.1 Complexities for the Strong Priming Model

Expected complexity, geometric distribution. Fix some ρ ∈ (0, 1) and let

pi = ρi−1

(

1− ρ

1− ρm

)

for each i = 1, 2, . . . , m, where m = mX ! for convenience. Note that this is indeed a

probability distribution, because pi ∈ (0, 1) and

m
∑

i=1

pi =

(

1− ρ

1− ρm

) m
∑

i=1

ρi−1 =

(

1− ρ

1− ρm

)(

1− ρm

1− ρ

)

= 1,

where the second equality follows from a standard result about the geometric sequence.

The expression for n̄ in Proposition 9 can then be written as

n̄ =

(

1− ρ

1− ρm

)m−1
∑

i=1

ρi−1i+

(

1− ρ

1− ρm

)

ρm−1(m− 1).

Using the standard result that

m−1
∑

i=1

ρi−1i =

(

1− ρm

(1− ρ)2

)

−
(

mρm−1

1− ρ

)

,

we can further simplify to

n̄ =

(

1

1− ρ

)

+

(

(1− ρ)(m− 1)ρm−1 −mρm−1

1− ρm

)

.

Due to ρ ∈ (0, 1), the second term vanishes as m → ∞. Hence limmX→∞ n̄ = 1/(1− ρ).

Expected complexity, uniform distribution. Let pi = 1/m for each i = 1, 2, . . . , m. The

expression for n̄ in Proposition 9 can then be written as

n̄ =
1

m

m−1
∑

i=1

i+

(

m− 1

m

)

=

(

m− 1

2

)

+

(

m− 1

m

)

= (mX !− 1)

(

1

2
+

1

mX !

)

,

which is of the same order of magnitude as the previously given n = mX !− 1.
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Generalized complexity, geometric distribution. For the geometric distribution, the

LHS of the inequality in Proposition 10 can be rewritten as

m−1
∑

j=1+k

pj+1 =

(

1− ρ

1− ρm

) m−1
∑

j=1+k

ρj =

(

1− ρ

1− ρm

)(

ρ1+k − ρm

1− ρ

)

=
ρk+1 − ρm

1− ρm
.

Thus n(q) is the smallest integer k ≥ 0 for which

ρk+1 − ρm

1− ρm
≤
(

1− ρ

1− ρm

)(

1− q

q

)

,

or

ρk ≤ ρm−1 +

(

1− ρ

ρ

)(

1− q

q

)

.

For q = 1 this implies n(1) = m − 1. Since the RHS of the inequality converges to

((1 − ρ)/ρ)((1 − q)/q) as m → ∞, for q < 1 we obtain that n(q) must converge to the

smallest integer k ≥ 0 for which

ρk ≤
(

1− ρ

ρ

)(

1− q

q

)

holds. Hence

lim
mX→∞

n(q) = max















log
(

1−ρ
ρ

1−q
q

)

log ρ









, 0







.

Generalized complexity, uniform distribution. For the uniform distribution, the condi-

tion in Proposition 10 becomes that n(q) is the smallest integer k ≥ 0 for which

k ≥ (m− 1)−
(

1− q

q

)

holds. Hence we obtain

n(q) = max

{⌈

(m− 1)−
(

1− q

q

)⌉

, 0

}

.

B.2 Experimental Instructions

The following contains screenshots of the MTurk experiment. Figure 5 shows the descrip-

tion of the HIT on MTurk. Upon participation, subjects were directed to a Qualtrics

page for the experiment. They first had to accept the consent form in Figure 6. We then

collected some demographics (Figure 7) before subjects faced two pairs of questions about
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intertemporal choice as shown in Figures 8 and 9. The value of the gift cards ($75 and

$85) and the order of the questions were randomized. Finally, subjects were given an exit

code with which they could demand payment on MTurk (Figure 10).

Figure 5: Screenshot of the description of the HIT on MTurk.
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Figure 6: Screenshot of the first page of the experiment.
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Figure 7: Screenshot of the second page of the experiment.
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Figure 8: Screenshot of the third page of the experiment.
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Figure 9: Screenshot of the fourth page of the experiment.
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Figure 10: Screenshot of the fifth and final page of the experiment.
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