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Abstract. The Hotelling game of pure location allows interpretations in

spatial competition, political theory, and professional forecasting. In this

paper, the doubly symmetric mixed-strategy equilibrium for n � 4 firms is

characterized as the solution of a well-behaved boundary value problem.

The analysis suggests that, in contrast to the cases n = 3 and n ! ∞,

the equilibrium for a finite number of n � 4 firms tends to overrepresent

locations at the periphery of its support interval. Moreover, in the class of

examples considered, an increase in the number of firms universally leads

to a wider range of location choices and to a more dispersed distribution

of individual locations. The results are used to comment on the potential

benefit of competition in forecasting markets.
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1. Introduction

The present paper deals with what is known as the Hotelling (1929)

model of pure location, in which each of a given finite number of firms si-

multaneously and independently chooses a location on the unit interval so

as to maximize its expected market share.1 While traditional applications

related to spatial competition and political theory remain important, the

framework has more recently been recognized as capturing also strategic

aspects of the competition between professional forecasters (Laster et al.,

1999; Ottaviani and Sørensen, 2006; Marinovic et al., 2013).

The game-theoretic analysis of the pure location game was initially

concerned mainly with equilibria in pure strategies (Lerner and Singer,

1937; Eaton and Lipsey, 1975).2 However, for n = 3, there is no pure-

strategy equilibrium. Moreover, in cases where the pure-strategy equi-

librium exists, the equilibrium typically vanishes if the density function

associated with the underlying distribution of consumer preferences is ei-

ther strictly convex or strictly concave (Osborne and Pitchik, 1986). Finally,

pure-strategy equilibria may sometimes be harder to coordinate upon (see,

e.g., Xefteris, 2014).3 It should, therefore, not come as a surprise that atten-

tion has also been devoted to the analysis of mixed-strategy equilibria.

Of particular interest has been the so-called doubly symmetric equilib-

1The pure location model is a simplified variant of Hotelling’s original set-up (cf.
Chamberlin, 1938, Appendix C). For an introduction to the literature on spatial competi-
tion, see Gabszewicz and Thisse (1992).

2See also Graitson (1982), Denzau et al. (1985), and Cox (1987).
3As an illustration, consider the location model with n = 5 firms. In the pure-strategy

equilibrium, two firms locate at the first sextile, two others at the fifth sextile, and one
firm at the market center. Thus, the market share of the central firm is twice as large as
that of its competitors, making coordination on the pure-strategy equilibrium potentially
difficult.
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rium in which each firm uses the same mixed strategy and in which, in

addition, the distribution of individual choices that represents the mixed

equilibrium strategy is symmetric with respect to the midpoint of the lo-

cation interval. Shaked (1982) showed that the doubly symmetric mixed-

strategy equilibrium with n = 3 firms is unique, and uniform on the in-

terval [14 , 3
4 ]. For general n � 3, Osborne and Pitchik (1986) proved that

there exists an atomless doubly symmetric mixed-strategy equilibrium,

where the support is necessarily an interval if consumer preferences are

distributed uniformly. Moreover, as the number of firms n goes to infin-

ity, any convergent sequence of twice continuously differentiable equilib-

rium distributions must ultimately approach the underlying distribution

of customer preferences. Despite these general insights, however, a more

qualitative description of the mixed-strategy equilibrium for n � 4 firms

remained elusive.4

The contribution of this paper is a re-formulation of the equilibrium

condition for the location game with n � 4 firms in terms of a well-

behaved boundary value problem. Based on the resulting characteriza-

tion of the equilibrium distribution, a numerical solution is obtained for

small values of n by studying trajectories that depart from the midpoint of

the location interval. It turns out that, in all cases considered, the doubly

symmetric equilibrium involves a tendency to overrepresent locations at

the periphery of its support interval. Moreover, an increase in the number

4Osborne and Pitchik (1986, p. 227) write: “Even if C is uniform this is a difficult prob-
lem — (2) is a nonlinear integral equation, about which little in general is known.” Also
the brute-force approach via discretization of the strategy space has remained ineffective.
See, e.g., Huck et al. (2002) for the case of n = 4 firms.

3



of firms universally leads to a wider range of locations that are used in

equilibrium, and to a more dispersed distribution of individual choices.

Based upon those findings, we comment on the potential impact of policy

measures that mitigate competition among professional forecasters.

The remainder of the paper is structured as follows. Section 2 reviews

the location game. Section 3 discusses the first-order condition. The equi-

librium is characterized and discussed in Section 4. Section 5 concludes.

Two appendices provide details on the numerical procedure as well as

technical proofs, respectively.

2. Review of the location game

This section introduces the set-up, and reviews some well-known re-

sults regarding the doubly symmetric mixed-strategy equilibrium of the

location game. The exposition will follow the literature on professional

forecasting cited above. However, alternative interpretations in spatial

competition and political theory will be immediate.

A public authority wishes to collect information about the value of a

macroeconomic indicator ξ 2 R, which is ex-ante distributed according to

an uninformative uniform prior.5 A finite number n � 3 of professional

forecasters is assumed to have access to privileged information about ξ.

Specifically, nature draws a value ξ0 2 R, which is observable information

to any forecaster but not to the public authority, such that the true state of

the world ξ lies somewhere in the interval [ξ0, ξ0 + 1]. Ex-post, i.e., after

the public authority has taken any decisions on the basis of the solicited
5The assumption of an improper prior simplifies the chosen interpretation, and may

be dropped without loss in alternative interpretations.
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estimates, ξ becomes publicly known. To elicit the forecasters’ private in-

formation, the public authority organizes a contest in which the forecaster

whose estimate turns out to be closest to the true state of the world receives

a prize (where the value of the prize is normalized to unity). Submitting

an estimate is costless, yet any forecaster may submit at most one estimate.

As set forth more generally in Osborne and Pitchik (1986), the expected

payoff of forecaster 1 when it chooses the estimate ξ0 + z and each of the

competitors 2, ..., n randomizes according to a distribution F is given as

Π(z) = (n� 1)
Z 1

z
f (y)(1� F(y))n�2 z+ y

2
dx (1)

+
n�2

∑
k=1

�
n� 1

k

�
k(n� k� 1)

�
Z z

0

Z 1

z
f (x) f (y)F(x)k�1(1� F(y))n�k�2 y� x

2
dydx

+(n� 1)
Z z

0
f (x)F(x)n�2(1� z+ x

2
)dx,

where f = F0 denotes the density of the equilibrium distribution.6 The

right-hand side of equation (1) obviously reflects the variety of possible

scenarios for the representative forecaster: Ending up below all n� 1 com-

peting estimates; then, for k = 1, ..., n � 2, having a total of k competing

estimates below and n� k� 1 competing estimates above; or, finally, end-

ing up above all other estimates.

For a mixed-strategy equilibrium to be doubly symmetric, it is required

that (i) all forecasters use the same mixed strategy F, and (ii) the strategy F

is unchanged when reflected at the midpoint of the location interval, i.e.,

6Only distributions allowing a density will be considered in this paper. Moreover, for
convenience, all functions depending on a location will be treated as functions on the unit
interval, i.e., as functions of z rather than of ξ0 + z.
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F(1� z) = 1� F(z) for all z 2 [0, 1]. The following result summarizes

what is known about the doubly symmetric mixed-strategy equilibrium

of the location game in the uniform case.

Theorem 1. For n � 3, there exists a doubly symmetric mixed-strategy

equilibrium F = Fn, where the distribution F has support [α, 1 � α] for some

α = αn 2 [0, 1
2). For n = 3, the equilibrium is unique, and such that individual

estimates are distributed uniformly over the interval [ξ0 +
1
4 , ξ0 +

3
4 ]. Moreover,

if Fn is twice continuously differentiable and converges uniformly (including in

terms of its first and second derivatives) to some twice continuously differentiable

F∞, then F∞ induces a uniform distribution of estimates on [ξ0, ξ0 + 1].

Proof. See Osborne and Pitchik (1986, Prop. 3 and 4). The case n = 3 is

treated in Shaked (1982). �

3. Discussion of the first-order condition

For any given number of competitors k � 1, consider the function

Gk(z) =
Z z

α
F(x)kdx. (2)

As will become clear from the proof of the lemma below, Gk(z) corre-

sponds to the average distance between z and the highest of k lower es-

timates.7 Using this notation, marginal expected payoffs of the represen-

tative forecaster may be written in a relatively compact way.

Lemma 1. On the support of F, forecaster 1’s marginal expected payoffs are

7Similarly, provided F is symmetric, Gk(1 � z) corresponds to the average distance
between z and the lowest of k higher estimates.
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given as

Π0(z) = �ϕ(z) + ϕ(1� z) + f (z) fψ(z)� ψ(1� z)g , (3)

where ϕ(z) = F(z)n�1/2 and

ψ(z) =
1
2

n�2

∑
k=1

�
n� 1

k

�
kF(z)k�1Gn�k�1(1� z) (4)

+(n� 1)F(z)n�2(1� z).

Proof. See Appendix B. �

Condition (3) captures two pairs of mirror-image effects resulting from

a marginal increase in forecaster 1’s estimate. First, there is a marginal cost

ϕ(z), due to a reduced probability of winning the contest in the scenario

in which forecaster 1’s estimate is the highest, and a mirror-image mar-

ginal benefit ϕ(1� z), due to an increased probability of winning in the

scenario in which forecaster 1’s estimate is the lowest. Second, there is a

marginal benefit, represented by ψ(z) and measured in units of the den-

sity, due to an increased probability that the estimates of any given set of

competitors end up below forecaster 1’s estimate, and a mirror-image cost

represented by ψ(1� z), due to a reduced probability that the estimates

of any complementary set of competitors end up above forecaster 1’s es-

timate. The doubly symmetric mixed-strategy equilibrium just balances

these two pairs of effects at any point of the support interval.

Setting marginal payoffs to zero, one finds the key equation

f (z) =
ϕ(z)� ϕ(1� z)
ψ(z)� ψ(1� z)

. (5)
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An obvious obstacle to interpreting equation (5) as a differential equation

in the usual meaning of the term is that the functions ϕ and ψ are evaluated

at both z and 1� z. This problem is addressed by a functional equation

that is stated in the following lemma.

Lemma 2. The functions G1, G2, ... satisfy the functional equation

Gk(1� z) = Ck � z�
k

∑
m=1

(�1)m
�

k
m

�
Gk(z) (6)

for any integer k � 1, with constants

Ck =
1
2 +

k�1

∑
m=1

(�1)m
�

k
m

�
Gm(

1
2) +

n
1+ (�1)k

o
Gk(

1
2). (7)

Proof. See Appendix B. �

4. Equilibrium characterization

After these preparations, the equilibrium distribution can be character-

ized as the solution of a boundary value problem with a relatively simple

structure.

Theorem 2. Let n � 3. Then there exists a function Φn : R2n�2 ! R [

f+∞,�∞g such that any doubly symmetric mixed-strategy equilibrium F = Fn

of the location game with n firms corresponds to the first element of a tuple

(eF, eG1, ..., eGn�2, eC1, ..., eCn�2,eα), (8)

composed of functions eF, eG1, ..., eGn�2 : [eα, 1 � eα] ! R and constants eC1, ...,eCn�2 2 R, eα 2 [0, 1
2), such that (8) satisfies the system of ordinary first-order
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differential equations

eF0(z) = Φn(eF(z), eG1(z), ..., eGn�2(z), eC1, ..., eCn�2, z), (9)

eG0k(z) = eF(z)k (k = 1, ..., n� 2), (10)

as well as the boundary conditions eF(eα) = eG1(eα) = ... = eGn�2(eα) = 0, eF(1
2) =

1
2 , and

eCk =
1
2 +

k�1

∑
m=1

(�1)m
�

k
m

� eGm(
1
2) +

n
1+ (�1)k

o eGk(
1
2) (11)

for k = 1, ..., n � 2. Conversely, if the first component eF of a solution of the

boundary value problem stated above is restricted to be monotone increasing and

symmetric with respect to a reflection at z = 1
2 , then eF represents a doubly sym-

metric mixed-strategy equilibrium of the location game.

Proof. See Appendix B. �

The proof of Theorem 2 is constructive. Specifically, the function Φn

used in the characterization simply corresponds to the right-hand side of

equation (5).

In the case n = 3, one can check that the two-dimensional system (9-10)

reduces to the differential equation

eF0(z) = 2eF(z)� 1
4eF(z)� 6z+ 1

, (12)

with boundary conditions eF(eα) = 0 and eF(1
2) =

1
2 .8 As shown by Shaked

(1982), equation (12) has precisely one solution satisfying eF(1
2) =

1
2 . Thus,

8More generally, it can be seen as a consequence of Lemma 2 that, for n odd, the
function Φn defined in the proof of Theorem 2 does not depend on bGn�2. Thus, for n
odd, the dimension of the system (9-10) reduces to n � 2. For n even, however, this
simplification is not possible.
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the unique solution of the boundary value problem is eF(z) = 2z� 1
2 , with

eα = 1
4 .

In cases where n � 4, the differential equation (9) becomes more in-

volved, so that an explicit solution is not readily available. In particular,

there is no obvious substitution that would simplify the equation.9 We

also checked that, in general, there is no distribution with a quadratic den-

sity function that solves (9). However, the characterization paves the way

to a numerical computation of the equilibrium distribution.10

Figure 1. The density of the doubly symmetric mixed-strategy

equilibrium for n = 3, ..., 7 firms.

9E.g., in the case n = 4, an application of Shaked’s (1982) substitution h(z) = (eF(z)�
1
2 )/(z�

1
2 ) does not lead to a substantial simplification of the three-dimensional system

(9-10).
10A description of the numerical approach is provided in Appendix A.
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Figure 1 shows the doubly symmetric mixed-strategy equilibrium for

n 2 f3, 4, 5, 6, 7g. As can be seen, the numerical density f (z) is strictly

M-shaped in all calculated examples where n � 4. This finding is some-

what puzzling because it implies that the equilibrium for a finite number

of forecasters n � 4 differs qualitatively from the equilibria in the well-

understood cases n = 3 and n ! ∞.11

A second observation from Figure 1 is that, as n increases, the estimates

submitted by any individual forecaster cover a larger support, and become

more dispersed (in the sense of a mean-preserving spread). The widening

of the support is intuitive, however, because an increase in the population

density with unchanged α would probably reduce expected payoffs more

substantially in the interior of the support than at the boundary.

5. Concluding remarks

In this paper, we characterized the doubly symmetric mixed-strategy

equilibrium in the Hotelling game of pure location for n � 4 firms and

subsequently used the characterization to compute the equilibrium for

small values of n. It turned out that, in the cases considered, increasing

the number of professional forecasters lowers the quality of the individ-

ual forecasts even though the costs of providing an accurate estimate were

assumed to be negligible.

We conclude that competition is not universally beneficial in forecast-

11Huck et al. (2002) hypothesize that the probability of getting “squeezed” between
two competitors should be relatively small to make locations at the center as attractive as
locations at the periphery. However, that intuition does not really explain our findings
because the same intuition should apply likewise in the cases n = 3 and n ! ∞, where
the equilibrium is, however, not markedly M-shaped.
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ing markets, which might explain why, occasionally, competition at the

level of individual estimates is explicitly avoided. This is the case, for ex-

ample, for the Joint Economic Forecast prepared twice yearly since 1950

by leading economic research institutes on behalf of the German Ministry

of Economic Affairs.12

Appendix A: Details on the numerical approach

An effective way to approximate the equilibrium is a “shooting method”

that works with trajectories starting at the midpoint of the location inter-

val.13 For intuition, note that the starting point of the trajectory at z = 1
2 is

an (n� 1)-dimensional vector

X0 = (F(1
2), G1(

1
2), ..., Gn�2(

1
2)), (13)

whose first component is fixed through the symmetry condition F(1
2) =

1
2 , whereas the remaining components G1(

1
2), ..., Gn�2(

1
2) are initially un-

known. Any given approximation for X0 may then be improved by adapt-

ing the values G1(
1
2), ..., Gn�2(

1
2) until the corresponding trajectory satis-

fies the boundary conditions at the boundary of the support interval with

sufficient accuracy.

The details of the approximation are described below. The unknown

components of the vector X0 were initialized with the corresponding val-

ues for the uniform distribution, i.e., with

Gk(
1
2) =

Z 1/2

0
zkdz = 1

k+1(
1
2)

k+1 (14)

12For a general approach to mitigating the inefficiencies caused by strategic informa-
tion transmission, see Ewerhart and Schmitz (2000).

13The alternative computation of trajectories from the boundary of the equilibrium
support proved to be numerically instable.

12



for k = 1, ..., n � 2. The iteration repeated the following steps. First, the

gradient of the trajectory at the midpoint of the location interval was com-

puted using the relationship14

f (1
2) =

1+ 2n�3

(n� 2)
n

1+∑n�3
k=1 (

n�3
k )2

kGk(
1
2)
o . (15)

Next, the trajectory itself was computed on the basis of a discrete variant

of system (9-10), where the grid step was ε = 10�4. Finally, α was deter-

mined to be the left-most grid point z at which the first component of the

trajectory exceeded unity. The multivariate approximation was executed

by a solver plug-in of a standard spreadsheet software, where we used

∑n�2
k=1 (Gk(α))

2 < 10�9 as a stopping condition.

Appendix B: Proofs

Proof of Lemma 1. Differentiation of equation (1) yields

Π0(z) =
n� 1

2

Z 1

z
f (y)(1� F(y))n�2dy� (n� 1) f (z)(1� F(z))n�2z

+ f (z)
n�2

∑
k=1

�
n� 1

k

�
k(n� k� 1) (16)

�
�

F(z)k�1
Z 1

z
f (y)(1� F(y))n�k�2 y� z

2
dy

�(1� F(z))n�k�2
Z z

0
f (x)F(x)k�1 z� x

2
dx
�

+(n� 1) f (z)F(z)n�2(1� z)� n� 1
2

Z z

0
f (x)F(x)n�2dx.

We will now rewrite the two integrals in the interior of the curly brackets.

14A proof of this equation can be found in Appendix B.
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First, applying integration by parts, one can check thatZ z

0
f (x)F(x)k�1 z� x

2
dx =

F(x)k

k
z� x

2

�����
x=z

x=0

+
1
2

Z z

0

F(x)k

k
dx (17)

=
Gk(z)

2k
, (18)

where we have used that F(x) = 0 for x 2 [0, α]. Second, applying the

substitution x = 1� y, and noting the symmetry property 1� F(1� x) =

F(x), one obtains Z 1

z
f (y)(1� F(y))n�k�2 y� z

2
dy (19)

=
Z 1�z

0
f (x)F(x)n�k�2 1� z� x

2
dx.

Hence, equations (17-18), with z and k replaced by 1 � z and n � k � 1,

respectively, implyZ 1

z
f (y)(1� F(y))n�k�2 y� z

2
dy =

Gn�k�1(1� z)
2(n� k� 1)

. (20)

Next, the terms obtained for the integrals via (17-18) and (20) are plugged

into equation (16). Using also the obvious relationships

n� 1
2

Z 1

z
f (y)(1� F(y))n�2dy =

1
2
(1� F(z))n�1, (21)

n� 1
2

Z z

0
f (x)F(x)n�2dx =

1
2

F(z)n�1, (22)

one arrives at

Π0(z) =
1
2
(1� F(z))n�1 � (n� 1) f (z)(1� F(z))n�2z (23)

+
f (z)

2

n�2

∑
k=1

�
n� 1

k

�
�
n

kF(z)k�1Gn�k�1(1� z)� (n� k� 1)(1� F(z))n�k�2Gk(z)
o

+(n� 1) f (z)F(z)n�2(1� z)� 1
2

F(z)n�1.
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A simple re-ordering of terms, mapping index k to n� k� 1 and vice versa,

shows finally that

n�2

∑
k=1

�
n� 1

k

�
(n� k� 1)(1� F(z))n�k�2Gk(z)

=
n�2

∑
k=1

�
n� 1

k

�
k(1� F(z))k�1Gn�k�1(z). (24)

Using now (24) to rewrite (23), and exploiting the symmetry of F once

more, the lemma follows. �

Proof of Lemma 2. By definition, Gk(1� z) =
R 1�z

α F(x)kdx. Splitting

the integral and subsequently exploiting symmetry, one finds

Gk(1� z) =
Z 1�α

α
F(x)kdx�

Z 1�α

1�z
F(y)kdy (25)

= Gk(1� α)�
Z z

α
F(1� x)kdx (26)

= Gk(1� α)�
Z z

α
(1� F(x))kdx. (27)

Thus,

Gk(1� z) = Gk(1� α)� z+ α�
k

∑
m=1

(�1)m
�

k
m

�
Gm(z), (28)

for any z 2 [α, 1� α]. Evaluating equation (28) at z = 1
2 yields

Gk(1� α) = 1
2 � α+

k�1

∑
m=1

(�1)m
�

k
m

�
Gm(

1
2) +

n
1+ (�1)k

o
Gk(

1
2). (29)

Plugging this back into (28) proves the claim. �

Proof of Theorem 2. (Necessity) To construct Φn, one first writes differ-

ential equation (5) in explicit form, i.e., using the definitions of ϕ(z) and

15



ψ(z) provided in Lemma 1. This yields

F0(z) =
�

F(z)n�1 � F(1� z)n�1

2

�
(30)

�

8<: (n� 1)(1� z)F(z)n�2 � (n� 1)zF(1� z)n�2 + 1
2 ∑n�2

k=1 (
n�1

k )k

�
�

F(z)k�1Gn�k�1(1� z)� F(1� z)k�1Gn�k�1(z)
	

9=;
�1

.

Re-ordering the terms of the sum by mapping index k to n � k � 1, and

subsequently using the relationship (n�1
k )(n� k� 1) = (n� 1)(n�2

k ), one

obtains

F0(z) =

�
F(z)n�1 � F(1� z)n�1

n� 1

�
(31)

�

8<: 2(1� z)F(z)n�2 � 2zF(1� z)n�2 +∑n�2
k=1 (

n�2
k )

�
�

F(z)n�k�2Gk(1� z)� F(1� z)n�k�2Gk(z)
	
9=;
�1

.

Replacing all occurrences of F(1� z) by 1� F(z), and similarly, all occur-

rences of G1(1 � z), ..., Gn�2(1 � z) by the corresponding expressions in

Lemma 2, we arrive at

F0(z) =
�

F(z)n�1 � (1� F(z))n�1

n� 1

�
(32)

�

8>>>>>><>>>>>>:

2(1� z)F(z)n�2 � 2z(1� F(z))n�2 +∑n�2
k=1 (

n�2
k )

�
�

F(z)n�k�2
n

Ck � z�∑k
m=1(�1)m( k

m)Gk(z)
o

� (1� F(z))n�k�2Gk(z)
�

9>>>>>>=>>>>>>;

�1

.
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In analogy with (32), define the function Φn : R2n�2 ! R[ f+∞,�∞g by

Φn(bF, bG1, ..., bGn�2, bC1, ..., bCn�2, z) =

( bFn�1 � (1� bF)n�1

n� 1

)
(33)

�

8><>:
2(1� z)bFn�2 � 2z(1� bF)n�2 +∑n�2

k=1 (
n�2

k )

�
nbFn�k�2

nbCk � z�∑k
m=1(�1)m( k

m)
bGm

o
� (1� bF)n�k�2 bGk

o
9>=>;
�1

.

Then, by construction, F is the first component of a solution of the bound-

ary value problem stated in Theorem 2, thereby proving the first part of

the theorem. (Sufficiency) Suppose that eF is monotone increasing, and

that eF is symmetric in the sense that eF(1 � z) = 1 � eF(z) for any z 2

[eα, 1 � eα]. Then, from eGk(eα) = 0 and eG0k(z) = eF(z)k, it follows thateGk(z) =
R z

α
eF(x)kdx. From the symmetry of eF, one may derive just as

in the proof of Lemma 2 that

eGk(1� z) = eCk � z�
k

∑
m=1

(�1)m
�

k
m

� eGk(z), (34)

for any integer k � 1, where

eCk =
1
2 +

k�1

∑
m=1

(�1)m
�

k
m

� eGm(
1
2) +

n
1+ (�1)k

o eGk(
1
2). (35)

By assumption, equation (32) holds with F, G1, ..., Gn�2, C1, ..., Cn�2 replaced

by eF, eG1, ..., eGn�2, eC1, ..., eCn�2. Using the symmetry of eF and the functional

equations (34) for k = 1, ..., n� 2, one arrives at

eF0(z) = ( eF(z)n�1 � eF(1� z)n�1

n� 1

)
(36)

�

8><>:
2(1� z)eF(z)n�2 � 2zeF(1� z)n�2 +∑n�2

k=1 (
n�2

k )

�
neF(z)n�k�2 eGk(1� z)� eF(1� z)n�k�2 eGk(z)

o
9>=>;
�1

.
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Hence, invoking Lemma 1, eF solves the first-order condition, and expected

payoffs are constant on the interval [eα, 1� eα]. Moreover, by the nature of

expected payoffs in the location game, any location z < eα yields strictly

lower expected payoffs than eα, and similarly, any location z > 1� eα yields

strictly lower expected payoffs than 1� eα. Thus, eF really corresponds to a

doubly symmetric mixed-strategy equilibrium. �

Proof of Equation (15). A straightforward application of the rule of

L’Hôpital to the differential equation (5) shows that

f (1
2) =

ϕ0(1
2)

ψ0(1
2)

. (37)

Noting that F(1
2) =

1
2 , one readily verifies that

ϕ0(1
2) =

n� 1
2n�1 f (1

2). (38)

Moreover, using G0n�k�1(
1
2) = Fn�k�1(1

2) = (
1
2)

n�k�1, one can check that

ψ0(1
2) = f (1

2)
n�2

∑
k=1

�
n� 1

k

�
k(k� 1)

2k�1 Gn�k�1(
1
2)�

n�2

∑
k=1

�
n� 1

k

�
k

2n�1

�n� 1
2n�2 + f (1

2)
(n� 1)(n� 2)

2n�2 . (39)

Exploiting the identities

n�2

∑
k=1

�
n� 1

k

�
k(k� 1)

2k�1 Gn�k�1(
1
2)

=
1

2n�2

n�2

∑
k=1

�
n� 1

k

�
k(k� 1)2n�k�1Gn�k�1(

1
2) (40)

=
1

2n�2

n�2

∑
k=1

�
n� 1

k

�
(n� k� 1)(n� k� 2)2kGk(

1
2) (41)

=
(n� 1)(n� 2)

2n�2

n�3

∑
k=1

�
n� 3

k

�
2kGk(

1
2) (42)
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and

n�2

∑
k=1

�
n� 1

k

�
k = (n� 1)

n�2

∑
k=1

�
n� 2
k� 1

�
= (n� 1)(2n�2 � 1), (43)

it follows that

ψ0(1
2) = f (1

2)
(n� 1)(n� 2)

2n�2

(
1+

n�3

∑
k=1

�
n� 3

k

�
2kGk(

1
2)

)
(44)

� (n� 1)(1+ 2n�2)

2n�1 .

Plugging now (38) and (44) into (37), and subsequently solving for f (1
2),

one arrives at equation (15). �
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