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1 Introduction10

While rent-seeking contests with continuous and independent type distribu-11

tions are quite interesting, basic issues such as existence and uniqueness of a12

pure-strategy Nash equilibrium (PSNE) have been addressed only partially.13

Indeed, previous work on the issue of existence focused either on symmetric14

contests (Fey, 2008; Ryvkin, 2010) or on the case of a continuous technol-15

ogy (Wasser, 2013a, 2013b). Moreover, little general was known about the16

uniqueness of the equilibrium.17

Below, it is shown that in any rent-seeking contest with independent and18

continuous types, there exists a unique PSNE.1 The result holds even when19

the contest is ex-ante asymmetric,2 so that the equilibrium may entail in-20

active types.3 Moreover, no restriction is imposed on the shape of the type21

distributions. Generally, existence ensures consistency of a model, whereas22

uniqueness strengthens numerical analyses, theoretical results, and experi-23

mental �ndings.24

The rest of the paper is structured as follows. Section 2 describes the25

set-up. Existence is dealt with in Section 3. Section 4 discusses uniqueness.26

A numerical illustration can be found in Section 5. Section 6 concludes. An27

Appendix contains technical lemmas.28

1Uniqueness means here that for any given player, any two PSNE strategies di¤er at
most on a null set. This corresponds to the strongest form of uniqueness for PSNE.

2Asymmetry may be re�ected, e.g., in heterogeneous distributions of marginal costs or
in heterogeneous economies of scale.

3Wärneryd (2003) explicitly allows for inactive types in a common-value setting.
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2 Set-up29

There are N � 2 players. Each player i = 1; :::; N observes a signal (or30

type) ci, drawn from an interval Di = [ci; ci], where 0 < ci < ci. Signals are31

independent across players. Moreover, player i does not observe the signal32

cj of any other player j 6= i. The distribution function of player i�s signal is33

denoted by Fi = Fi(ci). Each player i chooses a level of activity yi � 0 at34

cost gi(yi). It is assumed that gi(0) = 0, and that gi is twice continuously35

di¤erentiable on R+, with g0i > 0 on R++, and g00i � 0. Player i�s payo¤ is36

�i(yi; y�i; ci) = pi(yi; y�i) � cigi(yi), where pi(yi; y�i) = yi=(yi +
P

j 6=i yj) if37

yi +
P

j 6=i yj > 0, and pi(yi; y�i) = 1=N otherwise.438

A strategy for player i is a (measurable) mapping �i : Di ! R+. De-39

note by Si the set of strategies for player i. For a pro�le ��i = f�jgj 6=i 240

S�i =
Q
j 6=i Sj, and a type ci 2 Di, player i�s interim expected payo¤ is given41

by �i(yi; ��i; ci) =
R
D�i

�i(yi; ��i(c�i); ci)dF�i(c�i), where D�i =
Q
j 6=iDj,42

��i(c�i) = f�j(cj)gj 6=i, and dF�i(c�i) =
Q
j 6=i dFj(cj). A Bayesian Nash43

equilibrium (BNE) is a pro�le �� = f��i gNi=1 2 S =
QN
i=1 Si such that44

�i(�
�
i (ci); �

�
�i; ci) � �i(yi; �

�
�i; ci) for any i = 1; :::; N , any ci 2 Di, and45

any yi � 0. A pure-strategy Nash equilibrium (PSNE) is a pro�le �� 2 S46

such that for any i = 1; :::; N , and for almost any ci 2 Di, the inequality47

�i(�
�
i (ci); �

�
�i; ci) � �i(yi; ���i; ci) holds for any yi � 0.548

4As usual, a simple change of variables allows to capture other types of contest success
functions and other forms of uncertainty, e.g., about valuations. Cf. Ryvkin (2010).

5As shown in the Appendix, this amounts to the standard de�nition.
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3 Existence49

This section builds on prior work by Fey (2008), Ryvkin (2010), and Wasser50

(2013a). Existence is shown �rst for the "-constrained contest, for " > 0, in51

which each player i = 1; :::; N may use only strategies with values in [";1).52

Lemma 3.1 There is a level of activity E > 0 such that, for any su¢ -53

ciently small " > 0, there exists a BNE �" in the "-constrained contest such54

that each player i�s strategy �"i is continuous, monotone, and bounded by E.55

Proof. Since costs are strictly increasing and convex, there is an E >56

0 such that any yi > E is suboptimal. Moreover, �i exhibits decreasing57

di¤erences in yi and ci. Hence, existence of a monotone PSNE e�" in the "-58

constrained contest follows from Athey (2001, Cor. 2.1). Note now that type59

ci�s "-constrained problem, maxyi�"�i(yi; e�"�i; ci), has a unique solution yi =60

�"i (ci). Indeed, if e�"�i(c�i) 6= 0 with positive probability, then �i(�; e�"�i; ci)61

is strictly concave on ["; E], while otherwise, the unique solution is yi = ".62

Hence, �"i (ci) = e�"i (ci) with probability one, for any i = 1; :::; N . This implies63

that �"i (ci) is also type ci�s best response to �
"
�i, for any i = 1; :::; N , and64

any ci 2 Di. Thus, �" = (�"1; :::; �
"
N) is a BNE in the "-constrained contest.65

Clearly, each �"i is monotone. Finally, continuity of �
"
i follows from Berge�s66

Theorem, as �i(�; �"�i; �) is continuous on the compact set ["; E]�Di. �67

Consider now a sequence f"mg1m=1 such that "m & 0, and select a BNE �m68

in the "m-constrained contest for each m 2 N, with the properties speci�ed69

in the previous lemma.70

Lemma 3.2 The sequence f�mg1m=1 has a uniformly converging subse-71
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quence.72

Proof. In view of Lemma 3.1 and the Theorem of Arzelà-Ascoli, it su¢ ces73

to �nd a � > 0 such that �mi has everywhere a slope exceeding �� for any74

m 2 N and any i. In terms of the transformed choice variable y�i = yi + �ci,75

a type ci�s expected payo¤ in �m may be written as76

�
�

i (y
�
i ; �

m
�i; ci) =

Z
D�i

(y�i � �ci)dF�i(c�i)
y�i � �ci +

P
j 6=i �

m
j (cj)

� cigi(y�i � �ci), (1)77

provided that y�i � �ci = yi > 0. Hence, for � su¢ ciently large, the cross-78

partial79

@2�
�

i

@y�i @ci
=

Z
D�i

2�
P

j 6=i �
m
j (cj)dF�i(c�i)�

yi +
P

j 6=i �
m
j (cj)

�3 � g0i(yi) + ci�g00i (yi)| {z }
�0

(2)80

� 2�

NE

Z
D�i

P
j 6=i �

m
j (cj)dF�i(c�i)�

yi +
P

j 6=i �
m
j (cj)

�2 � g0i(yi) (3)81

�
�
2�ci
NE

� 1
�
g0i(yi) (4)82

is seen to be positive in the range of ci where yi = �mi (ci) > 0. Thus, for �83

large, y�i is weakly increasing in ci, which proves the claim. �84

By Lemma 3.2, one may assume that f�mg1m=1 converges uniformly to85

some �� 2 S. Next, it is shown that in ��, at least one player is active with86

probability one.87

Lemma 3.3 There is some player i such that ��i (ci) > 0 with probability88

one.89
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Proof. Suppose that for each i, there is a set Di � Di of positive measure90

such that ��i (ci) = 0 for all ci 2 Di. Then, by uniform convergence, there91

exists, for any " > 0, an m0 = m0(") such that �mi (ci) < " for any i, any92

ci 2 Di, and any m � m0. But, from the Kuhn-Tucker condition for type ci93

in the "m-constrained contest,94

0 �
Z
D�i

P
j 6=i �

m
j (cj)dF�i(c�i)�

�mi (ci) +
P

j 6=i �
m
j (cj)

�2 � cig0i(E), (5)95

where D�i =
Q
j 6=iDj. Integrating over Di, and subsequently summing over96

i = 1; :::; N , one obtains97

0 �
Z
D

(N � 1)dF (c)PN
i=1 �

m
i (ci)

�
NP
i=1

g0i(E)

Z
Di
cidFi(ci), (6)98

where D =
QN
i=1Di and dF (c) =

QN
i=1 dFi(ci). For " small, however, this is99

impossible. �100

The following is the �rst main result of this paper.101

Theorem 3.4 In the unconstrained contest, �� is a PSNE in continuous102

and monotone strategies.103

Proof. Fix a player i 2 f1; :::; Ng. For any m 2 N, since �m is a104

BNE in the "m-constrained contest, �i(�mi (ci); �
m
�i; ci) � �i(yi; �

m
�i; ci) for105

any ci 2 Di and any yi � "m. Therefore, if the event ���i(c�i) = 0 is null,106

letting m ! 1 implies �i(��i (ci); �
�
�i; ci) � �i(yi; �

�
�i; ci) for any ci 2 Di107

and any yi > 0. Suppose next that ���i(c�i) = 0 with positive probability.108

Then, by Lemma 3.3, ��i (ci) > 0 with probability one. Let ci 2 Di with109
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��i (ci) > 0. If yi > 0, then the argument proceeds as above. To complete110

the proof, note that �i(�; ���i; ci) is l.s.c., so that yi = 0 cannot be the only111

pro�table deviation for ci. �112

4 Uniqueness113

Consider two PSNE �� and ��� such that, for some player i, the event ��i (ci) 6=114

���i (ci) has positive probability. Then, as noted below, �
� and ��� must di¤er115

in an essential way for at least two players.116

Lemma 4.1 There are players i 6= j such that each of the independent117

events ��i (ci) 6= ���i (ci) and ��j(cj) 6= ���j (cj) has positive probability.118

Proof. Suppose there is some i such that ���i(c�i) = ����i(c�i) with119

probability one. Then, �i(�; ���i; ci) = �i(�; ����i; ci) for any ci 2 Di. Thus,120

��i (ci) = �
��
i (ci) with probability one, which is a contradiction. �121

The following is the second main result of this paper.122

Theorem 4.2 The PSNE in the unconstrained contest is unique.123

Proof. Following Rosen (1965), write ��;s = (1�s)��+s��� for 0 � s � 1,124

and consider125

�s =
NX
i=1

Z
Di

�i(�
�;s; ci) (�

��
i (ci)� ��i (ci)) dFi(ci) (7)126

for s = 0; 1, where �i(�; ci) = @�i(�i(ci); ��i; ci)=@yi denotes type ci�s mar-127

ginal expected payo¤ at a pro�le � 2 S.6 From the Kuhn-Tucker con-128

6It is shown in the Appendix that �0 and �1 are well-de�ned.
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ditions, �i(��; ci) � 0 for almost any ci 2 Di; moreover, ��i (ci) = 0 if129

�i(�
�; ci) < 0. It follows that �0 � 0, and similarly, �1 � 0. To pro-130

voke a contradiction, it will be shown now that �1 � �0 < 0. Denote by131

�i(�; ci; c�i) = @�i(�i(ci); ��i(c�i); ci)=@yi type ci�s marginal ex-post payo¤132

at � 2 S, when facing c�i 2 D�i. Then, by Lemma A.2 in the Appendix,133

�1 � �0 =

Z
D

NX
i=1

(�i(�
��; ci; c�i)� �i(��; ci; c�i))zi(ci)dF (c) (8)134

=

Z
D

NX
i=1

�Z 1

0

@�i(�
�;s; ci; c�i)

@s
zi(ci)ds

�
dF (c), (9)135

where zi(ci) = ���i (ci)� ��i (ci). An application of the chain rule delivers136

@�i(�
�;s; ci; c�i)

@s
=

NX
j=1

@2pi(�
�;s
i (ci); �

�;s
�i (c�i))

@yi@yj
zj(cj)� ci g00i (�

�;s
i (ci))| {z }
�0

zi(ci),

(10)137

for any i, any ci 2 Di, and any c�i 2 D�i. It follows that138

�1 � �0 �
Z
D

 Z 1

0

 
NX
i=1

NX
j=1

@2pi(�
�;s
i (ci); �

�;s
�i (c�i))

@yi@yj
zi(ci)zj(cj)

!
ds

!
dF (c).

(11)139
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One can verify, however, that140

NX
i=1

NX
j=1

@2pi(yi; y�i)

@yi@yj
zizj (12)141

= �
NX
i=1

2Y�i
Y 3

z2i +

NX
i=1

X
j 6=i

Y � 2Y�i
Y 3

zizj (13)142

= � 2

Y 3

NX
i=1

Y�iz
2
i �

2

Y 3

NX
i=1

X
j>i

X
k 6=i;j

ykzizj (14)143

= � 1

Y 3

NX
i=1

Y�iz
2
i �

1

Y 3

NX
i=1

NX
j=1

X
k 6=i;j

ykzizj (15)144

= � 1

Y 3

NX
i=1

(z2i Y�i + yiZ
2
�i) � 0 (16)145

for any (y1; :::; yN) 2 RN+nf0g and any (z1; :::; zN) 2 RN , where Y =
PN

i=1 yi,146

Y�i =
P

j 6=i yj, and Z�i =
P

j 6=i zj. Moreover, z
2
i Y�i = zi(ci)

2
P

j 6=i �
�;s
j (cj) is147

positive for any s 2 (0; 1) if ��i (ci) 6= ���i (ci) and ��j(cj) 6= ���j (cj) for some148

j 6= i. Thus, by Lemma 4.1, �1 � �0 < 0. �149

5 Numerical illustration150

Figure 1 shows PSNE strategies in a two-player lottery contest, where types151

are distributed uniformly on D1 = [0:01; 1:01] and D2 = [0:51; 5:51], respec-152

tively. Note that player 2 remains inactive for c2 > c�2 � 4:21.153

154
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155

Figure 1: An equilibrium involving inactive types156

6 Concluding remark157

While this paper has focused on the existence and uniqueness of a PSNE in158

asymmetric rent-seeking contests, it follows from the proofs that also any of159

the BNE studied by Fey (2008) and Ryvkin (2010) is unique.160

7 Appendix: Technical lemmas161

Lemma A.1 A pro�le �� 2 S is a PSNE in the unconstrained contest if and162

only if
R
D
�i(�

�
i (ci); �

�
�i(c�i); ci)dF (c) �

R
D
�i(b�i(ci); ���i(c�i); ci)dF (c) for163

any i = 1; :::; N , and any b�i 2 Si.164

Proof. Let �� be a PSNE, and consider a deviation b�i 2 Si for some165

player i. Then, �i(��i (ci); �
�
�i; yi) � �i(b�i(ci); ���i; ci) for almost any ci 2 Di.166

Integrating over Di, the assertion follows via Fubini�s theorem. Conversely,167
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suppose that �� is not a PSNE. Then, there is a player i and a set Di � Di168

of positive measure such that ��i (ci) is not a best response to �
�
�i for ci, for169

any ci 2 Di. De�ne b�i(ci) as ci�s best response to ���i if it exists; otherwise170

as ��i (ci)=2 if �
�
i (ci) > 0, and as prf���i(c�i) = 0g=(2cig0i(E)) if ��i (ci) = 0.171

Then b�i is a pro�table deviation. �172

Lemma A.2 Let �� 2 S be a PSNE in the unconstrained contest. Then,173

for almost any ci 2 Di, the function �i(��; ci; �) is integrable, with �i(��; ci) =174 R
D�i

�i(�
�; ci; c�i)dF�i(c�i). Moreover, �i(��; �) is integrable.175

Proof. The �rst claim is obvious if ��i (ci) > 0 for almost any ci 2 Di.176

Suppose that ��i (ci) = 0 with positive probability. Then, by Lemma 3.3, the177

event ���i(c�i) = 0 is null. Take some c�i 2 D�i with ���i(c�i) 6= 0. Then,178

for any ci 2 Di, by concavity, the di¤erence quotient �i(yi; ���i(c�i); ci)=yi179

is monotone increasing as yi & 0, with limit �i(��; ci; c�i). Since also180

�i(yi; �
�
�i(c�i); ci)=yi � �cig0i(E), the �rst claim follows from Levi�s theorem.181

The second claim follows from Lebesgue�s theorem, because �i(��; �) � 0 from182

the Kuhn-Tucker conditions, and because �i(��; �) � �cig0i(E), as above. �183
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