

University of Zurich

Department of Economics

Working Paper Series

ISSN 1664-7041 (print) ISSN 1664-705X (online)

Working Paper No. 159

Unique Equilibrium in Rent-Seeking Contests with a Continuum of Types

Christian Ewerhart

May 2014

Unique Equilibrium in Rent-Seeking Contests with a Continuum of Types

Christian Ewerhart[†]

May 26, 2014

5 Abstract It is shown that rent-seeking contests with continuous and inde-

⁶ pendent type distributions possess a unique pure-strategy Nash equilibrium.

7 Keywords Rent-seeking · Private information · Pure-strategy Nash equi-

 $_{\rm 8}~$ librium \cdot Existence \cdot Uniqueness

3

4

⁹ JEL Classification C7, D7, D8

[†]Department of Economics, University of Zurich, Schönberggasse 1, CH-8001 Zurich, Switzerland; phone: +41-44-6343733; e-mail: christian.ewerhart@econ.uzh.ch.

10 **1** Introduction

¹¹ While rent-seeking contests with continuous and independent type distribu-¹² tions are quite interesting, basic issues such as existence and uniqueness of a ¹³ pure-strategy Nash equilibrium (PSNE) have been addressed only partially. ¹⁴ Indeed, previous work on the issue of existence focused either on symmetric ¹⁵ contests (Fey, 2008; Ryvkin, 2010) or on the case of a continuous technol-¹⁶ ogy (Wasser, 2013a, 2013b). Moreover, little general was known about the ¹⁷ uniqueness of the equilibrium.

Below, it is shown that in any rent-seeking contest with independent and continuous types, there exists a unique PSNE.¹ The result holds even when the contest is ex-ante asymmetric,² so that the equilibrium may entail inactive types.³ Moreover, no restriction is imposed on the shape of the type distributions. Generally, existence ensures consistency of a model, whereas uniqueness strengthens numerical analyses, theoretical results, and experimental findings.

The rest of the paper is structured as follows. Section 2 describes the set-up. Existence is dealt with in Section 3. Section 4 discusses uniqueness. A numerical illustration can be found in Section 5. Section 6 concludes. An Appendix contains technical lemmas.

¹Uniqueness means here that for any given player, any two PSNE strategies differ at most on a null set. This corresponds to the strongest form of uniqueness for PSNE.

²Asymmetry may be reflected, e.g., in heterogeneous distributions of marginal costs or in heterogeneous economies of scale.

 $^{^{3}}$ Wärneryd (2003) explicitly allows for inactive types in a common-value setting.

$_{29}$ 2 Set-up

There are $N \geq 2$ players. Each player i = 1, ..., N observes a signal (or 30 type) c_i , drawn from an interval $D_i = [\underline{c}_i, \overline{c}_i]$, where $0 < \underline{c}_i < \overline{c}_i$. Signals are 31 independent across players. Moreover, player i does not observe the signal 32 c_j of any other player $j \neq i$. The distribution function of player i's signal is 33 denoted by $F_i = F_i(c_i)$. Each player *i* chooses a level of activity $y_i \ge 0$ at 34 cost $g_i(y_i)$. It is assumed that $g_i(0) = 0$, and that g_i is twice continuously 35 differentiable on \mathbb{R}_+ , with $g'_i > 0$ on \mathbb{R}_{++} , and $g''_i \ge 0$. Player *i*'s payoff is 36 $\Pi_i(y_i, y_{-i}, c_i) = p_i(y_i, y_{-i}) - c_i g_i(y_i)$, where $p_i(y_i, y_{-i}) = y_i/(y_i + \sum_{j \neq i} y_j)$ if 37 $y_i + \sum_{j \neq i} y_j > 0$, and $p_i(y_i, y_{-i}) = 1/N$ otherwise.⁴ 38

A strategy for player *i* is a (measurable) mapping $\sigma_i : D_i \to \mathbb{R}_+$. De-39 note by S_i the set of strategies for player *i*. For a profile $\sigma_{-i} = {\sigma_j}_{j \neq i} \in$ 40 $S_{-i} = \prod_{j \neq i} S_j$, and a type $c_i \in D_i$, player *i*'s interim expected payoff is given 41 by $\overline{\Pi}_{i}(y_{i}, \sigma_{-i}, c_{i}) = \int_{D_{-i}} \Pi_{i}(y_{i}, \sigma_{-i}(c_{-i}), c_{i}) dF_{-i}(c_{-i})$, where $D_{-i} = \prod_{j \neq i} D_{j}$, 42 $\sigma_{-i}(c_{-i}) = \{\sigma_j(c_j)\}_{j \neq i}$, and $dF_{-i}(c_{-i}) = \prod_{j \neq i} dF_j(c_j)$. A Bayesian Nash 43 equilibrium (BNE) is a profile $\sigma^* = \{\sigma_i^*\}_{i=1}^N \in S = \prod_{i=1}^N S_i$ such that 44 $\overline{\Pi}_i(\sigma_i^*(c_i), \sigma_{-i}^*, c_i) \geq \overline{\Pi}_i(y_i, \sigma_{-i}^*, c_i)$ for any i = 1, ..., N, any $c_i \in D_i$, and any $y_i \geq 0$. A pure-strategy Nash equilibrium (PSNE) is a profile $\sigma^* \in S$ 46 such that for any i = 1, ..., N, and for almost any $c_i \in D_i$, the inequality $\overline{\Pi}_i(\sigma_i^*(c_i), \sigma_{-i}^*, c_i) \geq \overline{\Pi}_i(y_i, \sigma_{-i}^*, c_i)$ holds for any $y_i \geq 0.5$ 48

⁴As usual, a simple change of variables allows to capture other types of contest success functions and other forms of uncertainty, e.g., about valuations. Cf. Ryvkin (2010).

⁵As shown in the Appendix, this amounts to the standard definition.

49 **3** Existence

⁵⁰ This section builds on prior work by Fey (2008), Ryvkin (2010), and Wasser ⁵¹ (2013a). Existence is shown first for the ε -constrained contest, for $\varepsilon > 0$, in ⁵² which each player i = 1, ..., N may use only strategies with values in $[\varepsilon, \infty)$.

Lemma 3.1 There is a level of activity E > 0 such that, for any sufficiently small $\varepsilon > 0$, there exists a BNE σ^{ε} in the ε -constrained contest such that each player *i*'s strategy σ_i^{ε} is continuous, monotone, and bounded by *E*.

Proof. Since costs are strictly increasing and convex, there is an E >56 0 such that any $y_i > E$ is suboptimal. Moreover, $\overline{\Pi}_i$ exhibits decreasing 57 differences in y_i and c_i . Hence, existence of a monotone PSNE $\tilde{\sigma}^{\varepsilon}$ in the ε -58 constrained contest follows from Athey (2001, Cor. 2.1). Note now that type 59 c_i 's ε -constrained problem, $\max_{y_i \geq \varepsilon} \overline{\Pi}_i(y_i, \widetilde{\sigma}_{-i}^{\varepsilon}, c_i)$, has a unique solution $y_i =$ 60 $\sigma_i^{\varepsilon}(c_i)$. Indeed, if $\widetilde{\sigma}_{-i}^{\varepsilon}(c_{-i}) \neq 0$ with positive probability, then $\overline{\Pi}_i(\cdot, \widetilde{\sigma}_{-i}^{\varepsilon}, c_i)$ 61 is strictly concave on $[\varepsilon, E]$, while otherwise, the unique solution is $y_i = \varepsilon$. 62 Hence, $\sigma_i^{\varepsilon}(c_i) = \widetilde{\sigma}_i^{\varepsilon}(c_i)$ with probability one, for any i = 1, ..., N. This implies 63 that $\sigma_i^{\varepsilon}(c_i)$ is also type c_i 's best response to $\sigma_{-i}^{\varepsilon}$, for any i = 1, ..., N, and 64 any $c_i \in D_i$. Thus, $\sigma^{\varepsilon} = (\sigma_1^{\varepsilon}, ..., \sigma_N^{\varepsilon})$ is a BNE in the ε -constrained contest. 65 Clearly, each σ_i^{ε} is monotone. Finally, continuity of σ_i^{ε} follows from Berge's 66 Theorem, as $\overline{\Pi}_i(\cdot, \sigma_{-i}^{\varepsilon}, \cdot)$ is continuous on the compact set $[\varepsilon, E] \times D_i$. \Box 67

⁶⁸ Consider now a sequence $\{\varepsilon_m\}_{m=1}^{\infty}$ such that $\varepsilon_m \searrow 0$, and select a BNE σ^m ⁶⁹ in the ε_m -constrained contest for each $m \in \mathbb{N}$, with the properties specified ⁷⁰ in the previous lemma.

Lemma 3.2 The sequence $\{\sigma^m\}_{m=1}^{\infty}$ has a uniformly converging subse-

72 quence.

81

Proof. In view of Lemma 3.1 and the Theorem of Arzelà-Ascoli, it suffices to find a $\lambda > 0$ such that σ_i^m has everywhere a slope exceeding $-\lambda$ for any $m \in \mathbb{N}$ and any *i*. In terms of the transformed choice variable $y_i^{\lambda} = y_i + \lambda c_i$, a type c_i 's expected payoff in σ^m may be written as

$$\overline{\Pi}_{i}^{\lambda}(y_{i}^{\lambda},\sigma_{-i}^{m},c_{i}) = \int_{D_{-i}} \frac{(y_{i}^{\lambda}-\lambda c_{i})dF_{-i}(c_{-i})}{y_{i}^{\lambda}-\lambda c_{i}+\sum_{j\neq i}\sigma_{j}^{m}(c_{j})} - c_{i}g_{i}(y_{i}^{\lambda}-\lambda c_{i}), \quad (1)$$

⁷⁸ provided that $y_i^{\lambda} - \lambda c_i = y_i > 0$. Hence, for λ sufficiently large, the cross-⁷⁹ partial

$$\geq \frac{2\lambda}{NE} \int_{D_{-i}} \frac{\sum_{j \neq i} \sigma_j^m(c_j) dF_{-i}(c_{-i})}{\left(y_i + \sum_{j \neq i} \sigma_j^m(c_j)\right)^2} - g_i'(y_i) \tag{3}$$

$$\geq \left(\frac{2\lambda \underline{c}_i}{NE} - 1\right) g'_i(y_i) \tag{4}$$

is seen to be positive in the range of c_i where $y_i = \sigma_i^m(c_i) > 0$. Thus, for λ large, y_i^{λ} is weakly increasing in c_i , which proves the claim. \Box

By Lemma 3.2, one may assume that $\{\sigma^m\}_{m=1}^{\infty}$ converges uniformly to some $\sigma^* \in S$. Next, it is shown that in σ^* , at least one player is active with probability one.

Lemma 3.3 There is some player i such that $\sigma_i^*(c_i) > 0$ with probability one. **Proof.** Suppose that for each *i*, there is a set $\mathcal{D}_i \subseteq D_i$ of positive measure such that $\sigma_i^*(c_i) = 0$ for all $c_i \in \mathcal{D}_i$. Then, by uniform convergence, there exists, for any $\varepsilon > 0$, an $m_0 = m_0(\varepsilon)$ such that $\sigma_i^m(c_i) < \varepsilon$ for any *i*, any $c_i \in \mathcal{D}_i$, and any $m \ge m_0$. But, from the Kuhn-Tucker condition for type c_i in the ε_m -constrained contest,

$$0 \ge \int_{\mathcal{D}_{-i}} \frac{\sum_{j \ne i} \sigma_j^m(c_j) dF_{-i}(c_{-i})}{\left(\sigma_i^m(c_i) + \sum_{j \ne i} \sigma_j^m(c_j)\right)^2} - c_i g_i'(E),$$

$$(5)$$

where $\mathcal{D}_{-i} = \prod_{j \neq i} \mathcal{D}_j$. Integrating over \mathcal{D}_i , and subsequently summing over i = 1, ..., N, one obtains

98
$$0 \ge \int_{\mathcal{D}} \frac{(N-1)dF(c)}{\sum_{i=1}^{N} \sigma_{i}^{m}(c_{i})} - \sum_{i=1}^{N} g_{i}'(E) \int_{\mathcal{D}_{i}} c_{i}dF_{i}(c_{i}), \tag{6}$$

⁹⁹ where $\mathcal{D} = \prod_{i=1}^{N} \mathcal{D}_i$ and $dF(c) = \prod_{i=1}^{N} dF_i(c_i)$. For ε small, however, this is ¹⁰⁰ impossible. \Box

¹⁰¹ The following is the first main result of this paper.

9

Theorem 3.4 In the unconstrained contest, σ^* is a PSNE in continuous and monotone strategies.

Proof. Fix a player $i \in \{1, ..., N\}$. For any $m \in \mathbb{N}$, since σ^m is a BNE in the ε_m -constrained contest, $\overline{\Pi}_i(\sigma_i^m(c_i), \sigma_{-i}^m, c_i) \geq \overline{\Pi}_i(y_i, \sigma_{-i}^m, c_i)$ for any $c_i \in D_i$ and any $y_i \geq \varepsilon_m$. Therefore, if the event $\sigma_{-i}^*(c_{-i}) = 0$ is null, letting $m \to \infty$ implies $\overline{\Pi}_i(\sigma_i^*(c_i), \sigma_{-i}^*, c_i) \geq \overline{\Pi}_i(y_i, \sigma_{-i}^*, c_i)$ for any $c_i \in D_i$ and any $y_i > 0$. Suppose next that $\sigma_{-i}^*(c_{-i}) = 0$ with positive probability. Then, by Lemma 3.3, $\sigma_i^*(c_i) > 0$ with probability one. Let $c_i \in D_i$ with ¹¹⁰ $\sigma_i^*(c_i) > 0$. If $y_i > 0$, then the argument proceeds as above. To complete ¹¹¹ the proof, note that $\overline{\Pi}_i(\cdot, \sigma_{-i}^*, c_i)$ is l.s.c., so that $y_i = 0$ cannot be the only ¹¹² profitable deviation for c_i . \Box

113 4 Uniqueness

Consider two PSNE σ^* and σ^{**} such that, for some player *i*, the event $\sigma_i^*(c_i) \neq \sigma_i^{**}(c_i)$ has positive probability. Then, as noted below, σ^* and σ^{**} must differ in an essential way for at least two players.

Lemma 4.1 There are players $i \neq j$ such that each of the independent events $\sigma_i^*(c_i) \neq \sigma_i^{**}(c_i)$ and $\sigma_j^*(c_j) \neq \sigma_j^{**}(c_j)$ has positive probability.

Proof. Suppose there is some *i* such that $\sigma_{-i}^*(c_{-i}) = \sigma_{-i}^{**}(c_{-i})$ with probability one. Then, $\overline{\Pi}_i(\cdot, \sigma_{-i}^*, c_i) = \overline{\Pi}_i(\cdot, \sigma_{-i}^{**}, c_i)$ for any $c_i \in D_i$. Thus, $\sigma_i^*(c_i) = \sigma_i^{**}(c_i)$ with probability one, which is a contradiction. \Box

¹²² The following is the second main result of this paper.

Theorem 4.2 The PSNE in the unconstrained contest is unique.

Proof. Following Rosen (1965), write $\sigma^{*,s} = (1-s)\sigma^* + s\sigma^{**}$ for $0 \le s \le 1$, and consider

$$\Phi_{s} = \sum_{i=1}^{N} \int_{D_{i}} \overline{\pi}_{i}(\sigma^{*,s},c_{i}) \left(\sigma_{i}^{**}(c_{i}) - \sigma_{i}^{*}(c_{i})\right) dF_{i}(c_{i})$$
(7)

for s = 0, 1, where $\overline{\pi}_i(\sigma, c_i) = \partial \overline{\Pi}_i(\sigma_i(c_i), \sigma_{-i}, c_i) / \partial y_i$ denotes type c_i 's marginal expected payoff at a profile $\sigma \in S$.⁶ From the Kuhn-Tucker con-

⁶It is shown in the Appendix that Φ_0 and Φ_1 are well-defined.

ditions, $\overline{\pi}_i(\sigma^*, c_i) \leq 0$ for almost any $c_i \in D_i$; moreover, $\sigma_i^*(c_i) = 0$ if $\overline{\pi}_i(\sigma^*, c_i) < 0$. It follows that $\Phi_0 \leq 0$, and similarly, $\Phi_1 \geq 0$. To provoke a contradiction, it will be shown now that $\Phi_1 - \Phi_0 < 0$. Denote by $\pi_i(\sigma, c_i, c_{-i}) = \partial \Pi_i(\sigma_i(c_i), \sigma_{-i}(c_{-i}), c_i)/\partial y_i$ type c_i 's marginal ex-post payoff at $\sigma \in S$, when facing $c_{-i} \in D_{-i}$. Then, by Lemma A.2 in the Appendix,

$$\Phi_{1} - \Phi_{0} = \int_{D} \sum_{i=1}^{N} (\pi_{i}(\sigma^{**}, c_{i}, c_{-i}) - \pi_{i}(\sigma^{*}, c_{i}, c_{-i})) z_{i}(c_{i}) dF(c)$$
(8)

$$= \int_D \sum_{i=1}^N \left\{ \int_0^1 \frac{\partial \pi_i(\sigma^{*,s}, c_i, c_{-i})}{\partial s} z_i(c_i) ds \right\} dF(c), \tag{9}$$

where $z_i(c_i) = \sigma_i^{**}(c_i) - \sigma_i^*(c_i)$. An application of the chain rule delivers

$$\frac{\partial \pi_i(\sigma^{*,s}, c_i, c_{-i})}{\partial s} = \sum_{j=1}^N \frac{\partial^2 p_i(\sigma_i^{*,s}(c_i), \sigma_{-i}^{*,s}(c_{-i}))}{\partial y_i \partial y_j} z_j(c_j) - c_i \underbrace{g_i''(\sigma_i^{*,s}(c_i))}_{\ge 0} z_i(c_i),$$
(10)

138 for any i, any $c_i \in D_i$, and any $c_{-i} \in D_{-i}$. It follows that

$$\Phi_1 - \Phi_0 \leq \int_D \left(\int_0^1 \left(\sum_{i=1}^N \sum_{j=1}^N \frac{\partial^2 p_i(\sigma_i^{*,s}(c_i), \sigma_{-i}^{*,s}(c_{-i}))}{\partial y_i \partial y_j} z_i(c_i) z_j(c_j) \right) ds \right) dF(c).$$

$$(11)$$

139

137

¹⁴⁰ One can verify, however, that

141
$$\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2 p_i(y_i, y_{-i})}{\partial y_i \partial y_j} z_i z_j$$
(12)

$$= -\sum_{i=1}^{N} \frac{2Y_{-i}}{Y^3} z_i^2 + \sum_{i=1}^{N} \sum_{j \neq i} \frac{Y - 2Y_{-i}}{Y^3} z_i z_j$$
(13)

$$= -\frac{2}{Y^3} \sum_{i=1}^{N} Y_{-i} z_i^2 - \frac{2}{Y^3} \sum_{i=1}^{N} \sum_{j>i} \sum_{k\neq i,j} y_k z_i z_j$$
(14)

$$= -\frac{1}{Y^3} \sum_{i=1}^{N} Y_{-i} z_i^2 - \frac{1}{Y^3} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k \neq i,j} y_k z_i z_j$$
(15)

$$_{^{145}} = -\frac{1}{Y^3} \sum_{i=1}^{N} (z_i^2 Y_{-i} + y_i Z_{-i}^2) \le 0$$
 (16)

for any $(y_1, ..., y_N) \in \mathbb{R}^N_+ \setminus \{0\}$ and any $(z_1, ..., z_N) \in \mathbb{R}^N$, where $Y = \sum_{i=1}^N y_i$, $Y_{-i} = \sum_{j \neq i} y_j$, and $Z_{-i} = \sum_{j \neq i} z_j$. Moreover, $z_i^2 Y_{-i} = z_i(c_i)^2 \sum_{j \neq i} \sigma_j^{*,s}(c_j)$ is positive for any $s \in (0, 1)$ if $\sigma_i^*(c_i) \neq \sigma_i^{**}(c_i)$ and $\sigma_j^*(c_j) \neq \sigma_j^{**}(c_j)$ for some $j \neq i$. Thus, by Lemma 4.1, $\Phi_1 - \Phi_0 < 0$. \Box

5 Numerical illustration

Figure 1 shows PSNE strategies in a two-player lottery contest, where types are distributed uniformly on $D_1 = [0.01, 1.01]$ and $D_2 = [0.51, 5.51]$, respectively. Note that player 2 remains inactive for $c_2 > c_2^* \approx 4.21$.

154

142

156

155

Figure 1: An equilibrium involving inactive types

157 6 Concluding remark

¹⁵⁸ While this paper has focused on the existence and uniqueness of a PSNE in ¹⁵⁹ asymmetric rent-seeking contests, it follows from the proofs that also any of ¹⁶⁰ the BNE studied by Fey (2008) and Ryvkin (2010) is unique.

¹⁶¹ 7 Appendix: Technical lemmas

Lemma A.1 A profile $\sigma^* \in S$ is a PSNE in the unconstrained contest if and only if $\int_D \prod_i (\sigma_i^*(c_i), \sigma_{-i}^*(c_{-i}), c_i) dF(c) \geq \int_D \prod_i (\widehat{\sigma}_i(c_i), \sigma_{-i}^*(c_{-i}), c_i) dF(c)$ for any i = 1, ..., N, and any $\widehat{\sigma}_i \in S_i$.

Proof. Let σ^* be a PSNE, and consider a deviation $\widehat{\sigma}_i \in S_i$ for some player *i*. Then, $\overline{\Pi}_i(\sigma_i^*(c_i), \sigma_{-i}^*, y_i) \geq \overline{\Pi}_i(\widehat{\sigma}_i(c_i), \sigma_{-i}^*, c_i)$ for almost any $c_i \in D_i$. Integrating over D_i , the assertion follows via Fubini's theorem. Conversely, suppose that σ^* is not a PSNE. Then, there is a player *i* and a set $\mathcal{D}_i \subseteq D_i$ of positive measure such that $\sigma_i^*(c_i)$ is not a best response to σ_{-i}^* for c_i , for any $c_i \in \mathcal{D}_i$. Define $\widehat{\sigma}_i(c_i)$ as c_i 's best response to σ_{-i}^* if it exists; otherwise as $\sigma_i^*(c_i)/2$ if $\sigma_i^*(c_i) > 0$, and as $\operatorname{pr}\{\sigma_{-i}^*(c_{-i}) = 0\}/(2\overline{c}_i g_i'(E))$ if $\sigma_i^*(c_i) = 0$. Then $\widehat{\sigma}_i$ is a profitable deviation. \Box

Lemma A.2 Let $\sigma^* \in S$ be a PSNE in the unconstrained contest. Then, for almost any $c_i \in D_i$, the function $\pi_i(\sigma^*, c_i, \cdot)$ is integrable, with $\overline{\pi}_i(\sigma^*, c_i) = \int_{D_{-i}} \pi_i(\sigma^*, c_i, c_{-i}) dF_{-i}(c_{-i})$. Moreover, $\overline{\pi}_i(\sigma^*, \cdot)$ is integrable.

Proof. The first claim is obvious if $\sigma_i^*(c_i) > 0$ for almost any $c_i \in D_i$. 176 Suppose that $\sigma_i^*(c_i) = 0$ with positive probability. Then, by Lemma 3.3, the 177 event $\sigma_{-i}^*(c_{-i}) = 0$ is null. Take some $c_{-i} \in D_{-i}$ with $\sigma_{-i}^*(c_{-i}) \neq 0$. Then, 178 for any $c_i \in D_i$, by concavity, the difference quotient $\prod_i (y_i, \sigma^*_{-i}(c_{-i}), c_i)/y_i$ 179 is monotone increasing as $y_i \searrow 0$, with limit $\pi_i(\sigma^*, c_i, c_{-i})$. Since also 180 $\Pi_i(y_i, \sigma^*_{-i}(c_{-i}), c_i)/y_i \ge -\overline{c}_i g'_i(E)$, the first claim follows from Levi's theorem. 181 The second claim follows from Lebesgue's theorem, because $\overline{\pi}_i(\sigma^*, \cdot) \leq 0$ from 182 the Kuhn-Tucker conditions, and because $\overline{\pi}_i(\sigma^*, \cdot) \geq -\overline{c}_i g'_i(E)$, as above. \Box 183

184 References

- [1] Athey, S., 2001. Single crossing properties and the existence of pure strategy equilibria in games of incomplete information, Econometrica 69(4),
 861–889.
- [2] Fey, M., 2008. Rent-seeking contests with incomplete information. Public
 Choice 135(3), 225–236.

- [3] Rosen, J.B., 1965. Existence and uniqueness of equilibrium points for
 concave N-person games. Econometrica 33(3), 520–534.
- [4] Ryvkin, D., 2010. Contests with private costs: Beyond two players. European Journal of Political Economy 26(4), 558–567.
- ¹⁹⁴ [5] Wärneryd, K., 2003. Information in conflicts. Journal of Economic Theory
 ¹⁹⁵ 110(1), 121–136.
- ¹⁹⁶ [6] Wasser, C., 2013a. A note on Bayesian Nash equilibria in imperfectly
- discriminating contests. Mathematical Social Sciences 66(2), 180–182.
- ¹⁹⁸ [7] Wasser, C., 2013b. Incomplete information in rent-seeking contests. Eco ¹⁹⁹ nomic Theory 53(1), 239–268.