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1 Introduction

Many economic institutions rely on competition to provide effort incentives.

Contests where only a small subset of players is rewarded with a prize are

a prominent example. The recent literature has argued that there are many

natural examples where this prize should be regarded as endogenous, in-

fluenced by the efforts of the players. Several authors have carefully an-

alyzed the mixed-strategy equilibria of all-pay auctions with endogenous

prizes (AEP) for symmetric and asymmetric contestants.2 While this lit-

erature provides a very general and complete analysis of the equilibrium for

any given all-pay auction with endogenous prizes, this paper complements

previous work by addressing issues of implementation and optimality.

As an illustration, consider firms engaging in patent races to obtain new

products. When firms exert high research efforts, this will usually not only

increase the chances of obtaining the patent, but it will also help to improve

the quality of the product and thereby the monopoly profits obtained in the

product market. Thus, the prize obtained by winning the patent is an in-

creasing function of efforts. The shape of this function cannot be designed

freely by a regulator. Technology determines the relation between effort and

quality; demand determines the relation between quality and profits. Con-

tests with similar features are pervasive. As we will detail in Section 6, they

include beauty contests, where a client invites suppliers to submit project

proposals and then procures the project from the supplier who submitted

the best proposal, as well as promotion races where employees compete to

climb up the career ladder within an organization. We will see that prize

functions may be increasing or decreasing in these cases.3

Such motivated, we analyze a model of an all-pay auction with complete

information, one prize and identical prize functions for all players.4 In the

first part of the paper, we go further and assume that players also have the

same effort cost functions and thus are perfectly symmetric.

2See, in particular, Kaplan et al. (2003) and Siegel (2009, 2010, 2012).
3For further examples, see, e.g., Chowdhury (2010) and Siegel (2012).
4The model is similar to those previously analzed by Siegel (2009, 2010, 2012) and

Kaplan et al. (2003).

2



The first main question is: If we have little information on the details of

a competitive environment (e.g., a patent race), except that it is generated

by an AEP, what can we say about the possible effort distributions that can

result as mixed-strategy equilibria? In other words, what kind of behavior

can be implemented by suitable AEP? Our results show that implementation

of very general distributions is possible with symmetric players; in other

words, the mere fact that a competitive environment corresponds to an AEP

imposes hardly any restrictions on the effort distributions. In spite of their

simple and special structure, AEPs are thus very rich in terms of the behavior

they can induce.

In some contexts, however, there are natural properties of prize functions

that can be exploited to obtain stronger restrictions on the outcomes of

AEPs. For instance, in the patent race where the prize function reflects

expected monopoly profits and its shape depends on demand parameters,

the prize function is usually increasing and often concave in effort. With

these additional restrictions, we show that only equilibrium distributions

with decreasing density functions can arise.

The second main question addresses a central welfare issue in the context

of effort incentives. In many competitive situations, the efforts of losers are

wasted from an ex-post point of view, that is, they only serve to induce

the winner to exert higher efforts. Again, this is the case in patent races

where only the winner can introduce the good. We therefore ask under

which circumstances AEP induce high expected highest effort without also

generating excessive loser efforts. Specifically, we show that the ratio between

expected highest efforts and expected average efforts becomes higher for AEP

than for all-pay auctions with fixed prizes. Particularly high ratios can be

obtained when there is an approximately linear relation between effort and

prize or when there are hurdles, that is, reservation values that are necessary

to obtain a prize.

Finally, we study the above-mentioned applications. We show that, given

the expected average efforts of firms competing to introduce product innova-

tions, patents lead to higher expected product quality than research prizes

that compensate for efforts. For promotion contests, we show that a principal

who gives a fixed prize for promotion is not necessarily better of if contestants
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also take into account that high efforts may have direct positive effects on

their utility.

In Section 2, we discuss the related literature. Section 3 introduces the

framework. Section 4 deals with symmetric players, Section 5 with asym-

metric players. In Section 6, we provide several applications. Section 7

concludes.

2 Related Literature

The literature on contests has been nicely surveyed by Konrad (2009). We

thus focus more specifically on AEPs.

Kaplan et al. (2003) have treated a symmetric two-player innovation

game with symmetric information, where firms commit to the timing of an

innovation. After a simple transformation of variables, the game is almost

identical to the AEP with symmetric firms that we consider.5 Depending

on the prize function, the authors obtain (i) equilibria with randomization

on an interval containing zero efforts, (ii) equilibria with an atom at zero

and randomization on an interval starting with a positive effort, (iii) more

general equilibria with non-connected support.

The asymmetric case has been treated both by Kaplan et al. (2003) and

by Siegel (2009, 2010) under mutually exclusive assumptions.6 In Kaplan et

al., the support of the strong player’s effort distribution does not contain zero,

whereas the support for the weak player contains an atom at zero. In Siegel

(2009, 2010), the support of the effort distribution is a compact interval

containing the minimal effort, even for the strong player. Also, expected

prizes with two players are positive only for the strong player and zero for

the weak player.7 In some important dimensions, Siegel’s analysis is more

general than both our paper and Kaplan et al. (2003). He considers more

than two players and multiple prizes and he allows for investments that are

5Essentially, one can define the effort as the inverse of the time needed for innovation.
6Kaplan et al. deal only with the two-player case and assume that the prize becomes

zero for zero efforts. Siegel assumes that prizes are positive for minimal efforts (and that
net prizes are declining in efforts).

7This result has been generalized in Siegel (2012).
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conditional on winning or losing. Also, he allows for very general types of

prize and cost asymmetries.8

Contrary to the existing literature, our main concern is to analyze which

CDFs can be implemented as MSE of AEPs and which prize functions induce

high expected highest efforts. To this end, we allow for prize functions that

are compatible with the assumptions of Siegel as well as Kaplan et al. Ac-

cordingly, we obtain both equilibria where small positive efforts are avoided

by the strong player (as in Kaplan et al. 2003) and equilibria where they

are played (as in Siegel 2009, 2010).9 We also provide a recursive formula

for MSE with arbitrarily many connected components in the symmetric case.

Though this possibility arises in Kaplan et al. (2003) and Siegel (2012), there

is no analogous result there.

A more broadly related literature allows for asymmetric information in

AEP. Kaplan et al. (2002) derive comparative static results when the prize

function differs across player types, which are private information. In a sim-

ilar setting, Cohen et al. (2008) consider the optimal prize function for a

principal who cares about maximizing total effort or expected highest effort

(net of expected prizes). Interestingly, the optimal prize function can be

decreasing in efforts for suitable prize functions when there are many par-

ticipants. We do not deal with asymmetric information, because we want

to focus on which effort distributions can be generated endogenously rather

than as a reflection of type distributions.

Moldovanu and Sela (2001) is a paper that does not deal with AEP, but

deserves to be mentioned. It also analyzes the question of maximizing the

expected highest effort, but in a setting with fixed prizes and asymmetric

information. Instead of asking how the shape of the prize function affects

expected highest effort, the authors address the role of the number of prizes.

8Chowdhury (2010) analyzes a modified all-pay auction where prizes are fixed, but
not guaranteed even for a player who has exerted effort. If the probability that a prize
is actually distributed is increasing in the effort of the high-effort player, the game is
isomorphic to an AEP with endogenous prizes.

9Several authors have also considered the case that prizes depend not only on the effort
of the winner, but also on the loser (Skaperdas 1992, Chung 1996, Baye et al. 2010); Sacco
and Schmutzler (2008) provide an experimental analysis.
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3 Set-Up and Terminology

We consider a game with complete information. Risk-neutral players i ∈ I ≡
{1, 2, ..., n} simultaneously choose efforts xi from Xi = R+ at costs Ki(xi).

Assumption A1: Ki(xi) = kixi for positive constants ki > 0

such that k1 ≤ k2 ≤ ... ≤ kn = 1.10

Let x−i = (x1, ..., xi−1, xi+1, ..., xn). Player i wins a prize of size a(xi)

with probability p(xi,x−i) = 1 if xi > maxj 6=i xj and p(xi,x−i) = 0 if xi <

maxj 6=i xj. If several players exert the same highest effort, each of them wins

with the same probability. The expected payoff of player i is

πi(xi,x−i) = p(xi,x−i)a(xi)− kixi. (1)

Except where otherwise mentioned, we maintain the following assumptions

on the prize function a(xi), a: R+ → R+.

Assumption A2: a(xi) is (i) right continuous on R+, and (ii)
it is continuously differentiable to the right on (0,∞).

Assumption A3: (i)∀i ∈ I∃ri > 0 s.t. a(ri) = kiri and a(xi) <

kixi for xi > ri.

(ii) a(xi) is continuously differentiable in an open neighborhood

of ri, with a′(ri) < ki for i = 1, ..., n.

We apply the notation a′(xi) to denote the right derivative even where no

left derivative exists. We call prize functions satisfying A2 and A3 admissible.

The left panel in Figure 1 depicts examples. A3(i) corresponds to the finite

reach assumption, which is required for existence of an MSE.11 A3(ii) rules

out degenerate cases where the prize function touches the cost function from

below at ri (as in the right panel of Figure 1).

10The requirement that max (k1, ..., kn) = 1 is a normalization that guarantees that
efforts can be identified with monetary costs in the symmetric case.
11See Siegel (2009, 2010); similarly in Kaplan et al. (2003).
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Definition 1 An all-pay auction with endogenous prize (AEP) is a
simultaneous game with players i ∈ I ≡ {1, 2, ..., n}, action spaces Xi = R+

and payoffs functions πi(xi,x−i) given by (1), where Ki(xi) satisfies A1 and

a: R+ → R+ satisfies A2 and A3.

Figure 1: Admissible and non-admissible prize functions

All our statements refer to AEPs. Contrary to the setting with fixed

prizes, A1 is not a strong restriction with endogenous prizes.12 An AEP

with some arbitrary effort measure xi and a corresponding monotone in-

creasing (potentially non-linear) cost function can always be transformed

into an equivalent all-pay auction satisfying A1.13 In Section 4, we impose

the additional restriction of symmetric cost functions.

(SYM): ki = 1 for all players (Ki ≡ K).

As Siegel (2009, 2010), we use the following concepts for an AEP.

Definition 2 (i) The reach of player i is ri as in A3(i).

12Moldovanu and Sela (2001) analyze how the optimal number of prizes depends on the
second derivatives of the effort cost functions.
13Consider the transformation xTi = Ki(xi). Let K−1(x−i) ≡(
K−11 (x1), ...,K

−1
i−1(xi−1),K

−1
i+1(xi+1), ...,K

−1
n (xn)

)
. Then consider the all-pay auc-

tion with endogenous prize defined by aT (xTi ) = a(K−1(xTi )) and K
T
i (x

T
i ) = xTi , where

firms choose efforts xTi , the winner obtains a
T and the cost function is KT

i . This AEP has
the same economic content, except for the renormalization of variables. Nevertheless, the
transformation leads to important changes in the interpretation of results. For instance,
if the principal cares about the expectation of the effort xi in the all-pay auction with a
quadratic cost function, his objective function will be the expected root of the effort x̃i
after the transformation.
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(ii) The threshold T of the game is r2.
(iii) The power of player i is wi = max {a (T )− kiT, 0}.

The reach is higher for players with lower effort costs; thus, it is decreasing

in i. Actions above the threshold are dominated for i = 2, ..., n; unless

dominated strategies are played by the opponent, the strongest player can

secure himself the prize by choosing efforts just above the threshold. With

(SYM), actions above the threshold are dominated for all players.

As pure strategies often do not exist in AEP, we focus on mixed strategies.

Definition 3 (i) A mixed strategy of player i in an AEP is given by a
cumulative distribution function (CDF) Fi : R→ R such that Fi(xi) = 0 for
xi < 0. 14

(ii) A mixed strategy profile F consists of mixed strategies F1, ..., Fn on

X1, ..., Xn.

(iii) A mixed strategy profile F is a mixed strategy equilibrium (MSE) if

each Fi maximizes (1) given F−i.

(iv) The support Si of a mixed strategy Fi is defined as the set
{xi ∈ Xi |Fi (xi + ε)− Fi (xi − ε) > 0∀ε > 0}. We write S = Si when Si is
independent of i.

The following definition is central.

Definition 4 An admissible prize function a(.) implements a profile F
of CDFs if F is an MSE for the AEP given by a(.). When a(.) implements
a symmetric F =(F, ..., F ), we also say that a(.) implements the CDF F .

Under symmetry, the following types of MSE are of particular interest.

Definition 5 Suppose SYM holds.

(i) A symmetric MSE with CDF F is an interval equilibrium without
atoms if it admits a density f which is positive only on S = [0, T ].
(ii) A symmetric MSE with CDF F is called an interval equilibrium with

14 Equivalently, one can define a mixed strategy by a probability measure P on Xi; the
corresponding F is given by F = P [0, xi]. When a mixed strategy is given by F , the
corresponding P is induced by P

(
x1i , x

2
i

]
= F (x2i )− F (x1i ).
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atoms if it has support [0, T ], but has an atom.
(iii) A symmetric MSE with CDF F is a hurdle equilibrium if S = {0} ∪
[HS, T ] for some HS > 0, the hurdle.

The following definitions will play an important role.

Definition 6 (i) a(xi) satisfies decreasing (average) effort productivity
(DEP) if a(xi)

xi
is strictly decreasing on [0, T ].

(ii) The effort hurdle (H∗S ≡ H∗S(a)) is the minimal xi such that
a(xi)
xi

is

strictly decreasing on
(
xi, T

]
.

H∗S exists by A3(ii). If DEP holds, H
∗
S = 0. DEP implies that a(xi) > 0

for xi ∈ (0, T ], because a(T )
T
= 1 > 0. If a(xi) is differentiable, H∗S is the

minimal xi < T such that a′(xi) <
a(xi)
xi

for all xi ∈ (xi, T ].

4 Symmetric Case

The main result for symmetric players, Proposition 3, shows which CDFs

can be implemented as symmetric interval equilibria. We also provide gen-

eral implementation results for distributions without small positive efforts in

the support (Propositions 5 and 6). Moreover, we investigate which prize

functions implement MSE with high expected highest efforts. As a prepa-

ration, we characterize the MSE for symmetric prize functions under DEP

in Proposition 1, and we also discuss uniqueness (Proposition 2). In Section

4.4, we show that additional MSE arise if DEP is relaxed.

4.1 Existence, Characterization and Uniqueness

We first focus on interval equilibria; more equilibria will be discussed in

Section 4.4. We distinguish between three mutually exclusive cases, C1-C3.

(C1) (i) a(0) > 0 and (ii) DEP holds.

Siegel (2010) uses C1(i), and instead of C1(ii) he assumes declining net

prizes a(xi)−xi, as for a1 (xi) in the left panel of Figure 1.15 For differentiable

15Similar assumptions are used in Siegel (2009).
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a(xi), declining net prizes imply a′(xi) < 1 and thus a′(xi) <
a(xi)
xi
for a(xi) ≥

xi, so that DEP holds.16 C1 also holds for strictly concave functions such as

a2 (xi) in Figure 1 even if they do not satisfy declining net prizes. Some non-

concave functions such as a3 (xi) also satisfy C1. The following alternative

condition allows for prizes that are zero when there is no effort.

(C2) (i) a(0) = 0, (ii) a′(0) ≡ limxi→0 a
′(xi) =∞ and (iii) DEP holds.

This obviously excludes declining net prizes, but it includes concave prize

functions such as a4 (xi) in Figure 1.17

Finally, we allow for prize functions with a(0) = 0 and finite slope at zero.

(C3) (i) a(0) = 0, (ii) a′(0) <∞ and (iii) DEP holds.

We can now characterize the MSE.

Proposition 1 Suppose SYM and DEP hold.

(i) An MSE exists for which

[F (xi)]
n−1 =

xi
a(xi)

for 0 < xi ≤ T (2)

(ii) If C1 and C2 hold, the equilibrium CDF is atomless; if C3 holds, there

is an atom at 0 with mass
(

1
a′(0)

) 1
n−1
.

Intuitively, the indifference condition for an MSE requires that players are

exactly compensated for expected efforts. Thus, (2) must hold. The proof

shows that the conditions of the proposition suffi ce to make sure that (2)

defines an MSE.

We rule out other symmetric MSE than those in Proposition 1 if DEP

holds. Moreover, interval equilibria cannot exist if DEP does not hold.

16This implication holds because with a′(xi) < 1 the net prize a(xi) − xi has at most
one fixed point and a(xi) > xi if and only if xi lies to the left of this point. Thus
a′(xi) < 1 <

a(xi)
xi

whenever a(xi) > xi.
17Specifically, the class a(x) = αxγ with α > 0 and γ < 1 satisfies C2. Note that αxγ is

not necessarily monotone increasing (only if γ ∈ (0, 1)).
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Proposition 2 Suppose SYM holds.

(i) If DEP holds, the MSE described in Proposition 1 is unique.

(ii) If DEP does not hold, the AEP does not have an interval equilibrium.

Thus, an AEP has an interval equilibrium if and only if DEP holds.

4.2 Implementation Results

We now consider the converse problem. Suppose given a CDF F , does there

exist an admissible prize function which implements this CDF? We provide a

complete characterization of the CDFs that can be implemented as interval

equilibria of a suitable AEP. From Propositions 1 and 2, any candidate prize

function with MSE F and support [0, T ] must satisfy

aF (xi) =
xi

[F (xi)]
n−1 for 0 < xi ≤ T

aF (0) = limxi→0
xi

[F (xi)]
n−1 for xi = 0

. (3)

Also by Propositions 1 and 2, a prize function satisfying (3) is admissible

and yields the equilibrium CDF F if and only if A2, A3 and, in addition, C1

or C2 hold. This leads to the following result.

Proposition 3 Suppose a CDF F has a density f such that {xi| f(xi) > 0} =
[0, C] for C > 0.

(i) F can be implemented as interval equilibrium without atoms if and only

if the following conditions both hold:

lim
xi→0

F (xi)
n−2f(xi) > 0. (4)

lim
xi→0

F (xi)
n−2f(xi) < ∞ or lim

xi→0

F (xi)− xi (n− 1) f(xi)
F (xi)n

> 0 (5)

(ii) If (4) holds, but (5) does not, then F can be implemented as interval

equilibrium with atom at zero.
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The proof shows that (4) guarantees that aF is admissible.18 (5) makes

sure that aF satisfies C1 or C2. Hence, F = (F, ..., F ) really is an interval

equilibrium without atoms in case (i) and with atoms in case (ii).

Additional properties of a(xi) require further restrictions on F :

Corollary 1 Under the conditions of Proposition 3, a(xi) can be chosen to
be strictly increasing if and only if

f(xi)

F (xi)
<

1

(n− 1)xi
∀xi ∈ [0, C] (6)

Proposition 3 is very powerful if n = 2.

Corollary 2 If n = 2, any CDF F with a finite and strictly positive den-

sity on [0, C] for C > 0 can be implemented as interval equilibrium without

atoms for an admissible prize function a(xi). If f is differentiable, this prize

function is

(i) strictly concave if and only if ∀xi ∈ R+

f ′(xi)

f(xi)
+
2

xi
− 2 f(xi)

F (xi)
< 0; (7)

(ii) strictly increasing if and only if f(xi)
F (xi)

< 1
xi
∀xi ∈ R+;

(iii) not strictly increasing and concave unless f ′(xi) < 0 ∀xi ∈ R+.

Condition (ii) requires f(xi)
F (xi)

to be smaller than for the uniform distribu-

tion, which is the MSE for the AEP with fixed prize.

Even when the density is not finite, implementation is often possible for

n = 2. For instance, in Section 4.3 we show that power distributions can be

obtained as MSE for suitable prize functions.19

For n > 2, implementation by admissible prize functions is only possible

if the density is unbounded.

Corollary 3 Let n > 2. A CDF F with density f cannot be implemented as
an interval equilibrium if limxi→0 f(xi) <∞.

18If (4) does not hold, the candidate function does not converge to a finite value as
efforts approach zero, so that A2 is violated.
19In this case, the first condition in (5) is violated, but the second one is not.
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4.3 Optimality

How does the prize function affect expected average and highest efforts? We

compare prize equivalent AEP, that is, AEP resulting in the same expected

prize payments in the MSE.

Expected Average Efforts In any MSE of a symmetric AEP containing 0

in the support, players must receive expected prizes that exactly compensate

their effort costs. Thus, the following result is immediate from A1.

Proposition 4 If SYM holds, any two prize-equivalent AEPs yield the same

expected effort.

Expected Highest Efforts As argued in the introduction, it is often de-

sirable in applications to induce a high expected highest effort (first-order

statistic), while keeping average efforts low. For n = 2, this amounts to a

high ratio

ρ2 =
2
∫ C
0
xif(xi)F (xi)dxi∫ C
0
xif(xi)dxi

.

Because F (xi) ≤ 1, ρ2 ≤ 2. To understand how close ρ2 can be to this

maximum, we focus on a rich class of examples. For parameters α > 0 and

γ < 1, we consider the prize functions

a(xi) = αxγi . (8)

For γ = 0, (8) defines a fixed prize all-pay auction. The limit case γ = 1 is a

linear prize function. More generally, γ corresponds to higher sensitivity of

prizes to efforts: The ratio between the prize of a player that wins with effort

xH and the prize of a player that wins with effort xL < xH is increasing in γ.

As (8) satisfies A2-A3 and C2, it defines an AEP if K(xi) = xi. Thus, by

Propositions 1 and 2, the unique symmetric MSE is the power distribution

F (xi) = Pα;γ(xi) ≡
{

1
α
x1−γi for 0 < xi ≤ α

1
1−γ

1 for xi ≥ α
1

1−γ
. (9)
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Standard calculations show that prize equivalence implies α
1

1−γ 1−γ
2−γ = C,

where C is the expected cost (effort); examples of such equivalence classes

are depicted in Figure A1. Solving for α yields

α =

(
C
2− γ
1− γ

)1−γ
. (10)

Inserting (10) in (8), a(xi; γ) =
(
C 2−γ
1−γ

)1−γ
xγi for γ < 1 gives a class of

prize equivalent AEP. Several members of a class of prize equivalent AEP

are depicted in Figure A2 for C = 1 and γ = −0.1, 0, 0.5 and 0.8.

Figure 2: Expected average and highest effort in symmetric game as a func-
tion of γ for a(xi) ≡ 1 (left panel) and within a class of prize-equivalent APA
(right panel)

Using (9), any class of prize equivalent AEP given by (10) corresponds

to a class of equilibrium CDFs
(
C 2−γ
1−γ

)γ−1
x1−γi . The upward-sloping curve

in the right panel in Figure 2 shows the equilibrium expected highest effort

µ2:2 as a function of γ within a class of prize equivalent AEP: Thus, within

the class of incentive systems that lead to power distributions, the resulting

expected highest effort approaches the theoretical maximum of twice the

expected average effort as γ → 1. For completeness, the panel also contains

the expected average effort µ∅, which is independent of γ within each class

of prize-equivalent AEP (consistent with Proposition 4). The left panel in

Figure 2 displays expected highest and average efforts as decreasing functions

of γ for α = 1. The difference to the right panel arises because, as γ increases,

α must increase to guarantee prize equivalence. A ceteris paribus increase

14



in γ has negative effects on efforts, but the concomitant increase in α has

positive effects. Thus, we obtain:

Result: For n = 2, the maximum possible expected highest effort
level within the class a(xi) = αxγi is approximated by choosing γ

close to one, that is, by approximating a linear prize function.

Note that decreasing prize functions (γ < 0) lead to lower expected high-

est effort levels than increasing price functions (γ ∈ (0, 1)). This is worth
pointing out, because Cohen et al. (2008) have shown that decreasing prize

functions can play an effort-enhancing role when there is uncertainty about

player types (See Section 2). However, even in their case, this requires the

number of players to be suffi ciently large.

4.4 Beyond Interval Equilibria

DEP is a convenient property of prize functions, but it is not always plausible.

For instance, in patent races, extremely low efforts will typically not generate

a positive prize. Therefore, we now show that, when DEP is violated, more

general equilibria may exist.

4.4.1 Equilibrium Characterization

We will construct non-degenerate intervals [H1, J1], [H2, J2],...,
[
HK , JK

]
such that H1 = H∗S, J

1 = T and Hk > Jk+1 so that one of the following two

cases arises: (i) TheMSE has supportHk ≡ [H1, J1] ∪ [H2, J2]∪...∪
[
HK , JK

]
,

where HK = 0 (Figure 3); (ii) the MSE has support {0} ∪ Hk (not de-

picted). The sequences are constructed so that the restriction of a(xi)
xi

to Hk

is monotone decreasing. We use the following mild non-linearity restriction.

(C4) a(xi)
xi

is non-constant on any open interval in [0, T ].

Specifically, we use the following recursive definition.
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Figure 3: Equilibria with Non-Connected Support

Definition 7 Suppose C4 holds. Let J1 = T and H1 = H∗S. Moreover, for

all k where the corresponding quantities are well-defined, let

Jk = max

{
xi < Hk−1

∣∣∣∣∣ a(xi)
xi

=
a(Hk−1)
Hk−1 and ∃ε > 0 such that

a(xi)
xi

is strictly increasing on (xi − ε, xi)

}

Hk = max

{
xi < Jk

∣∣∣∣a (xi)xi
is strictly decreasing on

[
xi, J

k
]}

We impose the following very weak restriction on a (xi).

(C5) a(xi)
xi

has finitely many local maxima on [0, T ].

Proposition 5 Suppose SYM, (C4) and (C5) hold
(i) If there exists ε > 0 such that a(x̃i)

x̃i
> maxxi>x̃i

a(xi)
xi
∀x̃i ∈ (0, ε], a MSE

without atoms exists for which S = HK and [F (xi)]
n−1 a(xi) = xi on HK.

(ii)If maxxiε(0,T )
a(xi)
xi

exists, a MSE exists for which S = {0}∪HK. There is

an atom at 0 with size
(

HK

a(HK)

) 1
n−1
. Also, [F (xi)]

n−1 a(xi) = xi on HK.

The condition in (i) generalizes DEP: It does not require that a(xi)
xi

is

decreasing globally, but nevertheless the highest values are attained near zero.

In this case, the support still contains a non-degenerate interval including

zero. When (ii) applies, low positive values (below Hk > 0) are not attained.

We also have the following uniqueness result:
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Proposition 6 Suppose SYM, (C4) and(C5) hold. There exist no other

equilibria than those described in Proposition 5.

4.4.2 Implementation

We restrict implementation results to the particularly interesting case of hur-

dle equilibria, which have the potentially attractive property that small pos-

itive efforts are not played. As argued repeatedly, it may be useful to have

prize functions that generate effort distributions without small positive ef-

forts. We first show that Proposition 5 implies a condition for existence of

hurdle equilibria, which is, for instance, satisfied by a5 in Figure 1:

Corollary 4 If H∗S > 0 is an interior global maximum of a(xi)
xi

on [0, T ], a

hurdle equilibrium exists. The support is S = {0} ∪ [H∗S, T ] and

[F (xi)]
n−1 =

xi
a(xi)

for H∗S ≤ xi ≤ T ; (11)

there is an atom at 0 with mass
(

H∗S
a(H∗S)

) 1
n−1

. (12)

Corollary 4 leads to an implementation result for such distributions.

Proposition 7 Suppose SYM holds. Consider a strictly increasing CDF F

with a density f such that {xi| f(xi) > 0} = [0, C] for some C > 0. For

HS ∈ (0, C), let

FHS(xi) =

{
F (xi) for xi > HS

F (HS) for xi ≤ HS

.

Then, there exists an AEP for which the unique MSE is the hurdle equilibrium

described in Corollary 4 with hurdle HS.

The simplest way to construct the required prize function is by choosing

aF
HS (xi) = 0 for xi ≤ HS and aF

HS (xi) =
xi

(F (xi))
n−1 for xi ∈ (HS, T ]; above

T , aF
HS can be extended by any function that satisfies aF

HS (xi) ≤ xi. Im-

plementation of a CDF as a hurdle equilibrium is unique only on the interval

[HS, T ]. For values below the hurdle, any suffi ciently kinked prize function

guarantees that downward deviations from the hurdle are not attractive.
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4.4.3 Optimality

As argued above, it appears plausible that hurdle equilibria induce high ex-

pected highest efforts. To this end, we reconsider the class of power func-

tions αxγi . We now fix γ at specific values and consider hurdles that we allow

to vary. Specifically, we write HS = hT for the threshold T = α
1

1−γ and

h ∈ (0, 1). Using an analogous procedure as in Section 4.3, we then consider
parameter choices h ∈ [0, 1), γ ∈ [0, 1) that yield the same expected average
effort. It turns out that these level curves are upward sloping: If the overall

level of prizes α is reduced, a reduction of the hurdle parameter h is neces-

sary to keep average efforts at the same level. Figure 4 depicts the ratio of

expected highest to average efforts as a function of h when expected average

efforts are fixed at one. Thus, a simultaneous increase in the prize and the

hurdle that keeps expected average efforts fixed increases expected highest

efforts.

Figure 4: Expected highest effort with hurdle equilibria

5 Asymmetric cost functions

We now consider asymmetric costs functions. For simplicity, we use a more

restrictive version of A2 from now on.

Assumption A2’: a(xi) is (i) continuous, and (ii) continuously differ-
entiable on (0,∞).
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We first deal with the characterization of the MSE and with implemen-

tation. As in Section 4.3, we then use a rich class of parameterized examples

to show which prize functions yield high expected highest efforts.

5.1 Characterization of MSE

We confine ourselves to the two-player case. We suppose that k1 ≡ k < 1 =

k2. Pure-strategy equilibria may exist for large cost asymmetries.

Proposition 8 If n = 2 and argmaxx1∈[0,r1] a(x1)− kx1 ∈ [r2, r1], the AEP
has a pure-strategy equilibrium (x∗1, x

∗
2) with x

∗
2 = 0.

In particular, a PSE exists if a(xi) is strictly concave and a′ (T ) > k.

From now on, we therefore assume that asymmetries are less pronounced, so

that the following assumption holds together with A1, A2’and A3.

Assumption A6: a′(T )− k < 0
We give conditions under which we can characterize MSE. C1’replaces

C1 with the condition from Siegel (2010).20

(C1’) a(0) > 0 and a(xi)− kxi is strictly decreasing.

The alternative condition C2 is replaced as follows:

(C2’) a(xi) is strictly concave.

Recall that C2 does not require concavity. However, contrary to C2, C2’

does not restrict behavior of a (xi) near zero.

Definition 8 In the case of asymmetric cost functions, the effort hurdle,
H∗A, is given by min {xi ≥ 0|ka (xi)− a′(xi) (w1 + kxi) ≥ 0}.

This generalizes Definition 6, as w1 = 0 for symmetric cost functions.

20To repeat, however, the framework of Siegel is more general in other dimensions.
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Proposition 9 (a) If C1’or C2’holds, an MSE (F ∗1 , F
∗
2 ) exists such that:

(i) F ∗1 has support S1 = [H∗A, T ] and

F ∗1 (x1) =
x1

a (x1)
for H∗A ≤ x1 ≤ T . (13)

(ii) F ∗2 has support S2 = {0} ∪ [H∗A, T ] and

F ∗2 (x2) =


w1+kH∗A
a(H∗A)

for x2 = 0

w1+kx2
a(x2)

for H∗A ≤ x2 ≤ T
. (14)

(b) H∗A = 0 if and only if

a′(0)w1 − ka(0) ≤ 0. (15)

(c) Expected payoffs are zero for player 2 and w1 = (1− k)T for player 1.

Several points are worth emphasizing. First, as in the symmetric case, the

maximum of the support is the threshold for both players. Second, however,

for strictly concave objective functions (C2’), the support is not necessarily

the entire interval [0, T ]. Instead, an asymmetric hurdle equilibrium can exist

where players have the same minimal positive effort level H∗A in the support.

(15) shows that this happens if asymmetries are large (k is small and w1 is

large) and zero efforts are unattractive (a(0) small and a′(0) high). Moreover,

the high-cost player must have an atom at zero, whereas the low-cost player

has an atom at H∗A. Third, for the two-player case treated here, Proposition

9 goes beyond Theorem 1 of Siegel (2009) and Theorem 3 of Siegel (2010).

Siegel requires that C1’holds. The proof of Part (b) of Proposition 9 shows

that, in this case, the support is [0, T ] for both players, which is in line with

Siegel’s results. We show that the conclusion of Siegel can hold even if C1’

is violated, but C2’holds instead. We also identify conditions under which

the support is not [0, T ]. Finally, part (c) of Proposition 9 holds much more

generally, as Siegel (2012) has shown.

Moreover, all equilibria must be of the form just described.

Proposition 10 Suppose that C1’or C2’holds. Any MSE must be of the
form described in Proposition 9.
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For C1’, Proposition 10 is already shown by Siegel (2009, 2010). Our

proof thus focuses on C2’.

5.2 Implementation

Next, we present implementation results. Suppose given HA > 0, C > HA

and CDFs F1 and F2 with supports [HA, C] and {0} ∪ [HA, C], respectively.

We ask under which conditions a prize function with MSE (F1, F2) exists.

Propositions 9 and 10 imply that the equilibrium CDF F2 must satisfy

F2 (x2) =


(
(1−k)C
x2

+ k
)
F1(x1) for H∗A ≤ x1 < C(

(1−k)C
x2

+ k
)
F1(H

∗
A) for 0 ≤ x1 < H∗A

. (16)

Thus, once the CDF of the strong player is fixed, the CDF of the weak

player is determined by (16). The only candidate prize function that can

implement F1 on [HA, C] is aF1(x1) = x1
F1(x1)

. We start with implementation

by a decreasing net prize function. By Proposition 9(b), this requires that

the MSE has support [0, C] for both players.

Proposition 11 Suppose a CDF F1 has density f1 and {x1| f1(x1) > 0} =
[0, C] for C > 0. Let F2 be given by (16). Then (F1, F2) can be implemented

as the MSE of an AEP with a decreasing net prize function if and only if

F1(x1)− x1f1(x1) < k (F1(x1))
2 . (17)

(17) implies that the candidate net prize function is decreasing.

Next, we ask which CDFs can result as MSE for strictly concave a(xi).

Proposition 12 Suppose a CDF F1 has differentiable density f1 and ∃ C >

HA ≥ 0 such that {x1| f1(x1) > 0} = [HA, C]. If F2 is given by (16), (F1, F2)

can be implemented as the MSE of an AEP with a strictly concave a(xi) if

and only if
f ′1(x)

f1(x)
+
2

x
− 2 f1(x)

F1(x)
< 0. (18)

Compared to the symmetric case, several points are worth noting. We

obtain analogous CDFs on [0, C] as for the symmetric case as candidates for
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the effort distribution of the low-cost player. However, the lower end of the

distribution is replaced by an atom. Moreover, the other player’s CDF is

completely determined by the choice of the first player’s CDF.

5.3 Optimality

We analyze expected efforts for prize functions given by (8). We consider

small asymmetry (k = 0.95) and large asymmetry (k = 0.85). Figure 5

describes the equilibrium CDF for k = 0.95 and α = 1 and three different

values of γ, (0, 0.5, 0.8). We shall refer to these cases as the fixed prize case,

Figure 5: Equilibrium CDFs for player 1 (left) and 2 (right); α = 1, k = 0.95

the intermediate case and the almost-linear case, respectively.

5.3.1 Equilibrium structure

In the fixed prize case, only the weak player has an atom at zero. As γ

increases, atoms for both players emerge and the support becomes smaller.

For k = 0.85 (not depicted), the supports are smaller than for k = 0.95 and

the atoms are larger; the MSE thus approaches an asymmetric PSE (which

arises when k ≤ 1 − γ.) Figure A3 shows the density functions for both

players.

5.3.2 Comparative Statics

Figure A4 displays individual efforts as a function of γ, with α fixed as 1.

The expected effort is higher for the strong player than for the weak player.
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An increase in asymmetry (reduction in k) implies higher expected effort for

the strong player and lower expected effort for the weak player. Near the

fixed prize case (γ = 0), the effort differences are small. Figure A5 displays

expected average prizes, expected average efforts and expected highest ef-

forts as a function of γ. Contrary to the symmetric case, the expected prizes

and expected average efforts differ. Even though the weak player is exactly

compensated for his efforts on expectation, the strong player’s expected ef-

forts differ from his expected prizes. His expected prizes and efforts are both

above costs, and they are generally not identical.

Figure A6 shows that the winning probability of the more effi cient player

is far from 1, in particular, for weak asymmetries (k = 0.95).

5.3.3 Comparing efforts for prize-equivalent AEP

Figures A7 and A8 show that the expected effort of player 1 (2) is increasing

(decreasing) in γ for fixed expected prize. As in the symmetric case, the

expected highest effort is increasing in γ (Figure 6) within a class of prize

equivalent AEP. In particular, the expected highest effort is higher in the

almost-linear case than in the fixed prize case. Figure 6 also shows that, con-

trary to the symmetric case, the expected average effort is non-monotone in γ

(with an interior minimum). As in the symmetric case, increasing γ increases

k = 0.95 k = 0.85

Figure 6: Expected highest effort and expected average effort for prize-
equivalent APA, where the expected prize equals 1
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the expected highest effort. Contrary to the symmetric case, however, γ has

ambiguous effects on expected average efforts, because it increases the effort

of the strong player and reduces the effort of the weak player.

6 Applications

This section shows how innovation races, promotion contests and beauty

contests can be interpreted as AEP.

6.1 Incentives for product innovations

Consider the following set-up. Two symmetric firms spend R&D costs xi to

obtain a patent on a new product. The patent is awarded to the firm with

the higher xi; xi is also positively related to product quality. Once one of the

firms (say, firm 1) has obtained a patent, it is not possible without infringing

on the patent to produce a substitute that prevents the successful firm from

obtaining monopoly power.21 The R&D effort is without value for the loser.

Market demand is D(p;x1), which is decreasing in p and increasing in x1. Let

pm(x1) be the monopoly price corresponding to quality x1. For simplicity,

marginal costs are constant and normalized to zero.

We can model the patent race between the two firms as an AEP with

a(x1) = pm(x1)D(p
m(x1);x1), the monopoly profit of a firm with quality x1.

It is natural to assume that profits are increasing in quality. Moreover, in

many cases, the profit function is concave in x1. For instance, consider a

linear demand function D(p;x1) = (x1)
γ/2 − p, where γ ∈ (0, 1). Then, the

positive demand effects of higher R&D costs decline suffi ciently fast that

the monopoly profits (x1)
γ

4
are concave under the parameter restriction. By

Corollary 2, for parameters such that profits are increasing and concave in

x1, the resulting MSE has a decreasing density. Moreover, we can compare

the expected quality in the market with a patent (which is the expected

21Alternatively, one might assume that there are no patents, but that the market can
only sustain the better firm, which limit prices the competitor. Then, we obtain an all-pay
auction with negative externalities, as treated experimentally by Darai et al. (2010) and
Sacco and Schmutzler (2011).
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highest R&D effort) with the one that would have obtained in a race where

the successful player obtains a fixed prize (γ = 0) which compensates him

exactly for the expected average effort. Applying the arguments of Section

4.3, the expected highest R&D effort is higher in the patent race than in the

race where the fixed prize is given. Thus patents induce a higher expected

highest effort for any given expected average effort than fixed prizes.

6.2 Promotion contests

Consider a promotion contest where two employees exert effort yi that is

used to determine who is promoted to the higher level. The direct value

of promotion is A > 0. Suppose that the effort has additional benefits to

the employee, because it is useful for his future career within the firm. For

instance, the employee’s knowledge about the organization might improve

as he exerts more effort, making his life in the organization easier in the

future. Suppose that these effects are potentially relevant if the employee is

promoted and if he is not, but that their size is different in the two cases,

given by L(yi) and W (yi), respectively. Net payoffs are therefore L(yi) − yi
for the loser and A+W (yi)− yi for the winner.
Assume that 0 ≤ L′(yi) < 1 and 0 ≤ W ′(yi) < 1. Then ψ(yi) ≡ yi −

L(yi) is a strictly increasing function capturing the effort cost net of benefits

without promotion. Let φ(xi) ≡ ψ−1(xi). Defining xi ≡ yi − L(yi), a loser
who chooses xi earns a net prize of −xi. A winner earns A + W (yi) −
yi = A +W (φ(xi)) − L (φ(xi)) − xi. Thus, with the prize function a(xi) ≡
max (A+W (φ(xi))− L (φ(xi)) , 0), the game is an AEP if A +W (φ(xi)) −
L (φ(xi)) ≥ 0 ∀xi ∈ R+ and A2 and A3 hold. A simple example where this
is true is when there exist constants λ,ω ∈ (0, 1) such that L(yi) = λyi and

W (yi) = ωyi. Then φ(xi) = xi
1−λ and, for a(xi) ≡ A + (ω−λ)xi

1−λ . In particular,

the prize function is decreasing if and only if ω < λ, that is, if and only

if effort has a stronger effect on the benefits in the current job than in the

higher job.

Figure 7 shows the equilibrium distribution of yi in three different cases,

in all of which A = 5. The straight line in the middle depicts the uniform

distribution of yi when ω = 0.25 and λ = 0.25, so that the effort effects on
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L and W are the same and W (φ(xi))−L (φ(xi)) ≡ 0 (fixed prize case). The
convex CDF corresponds to ω = 0 and λ = 0.5, so that exerting effort has

positive effects only in the old job. The concave CDF corresponds to the case

that ω = 0.5 and λ = 0, so that exerting effort has positive effects only after

promotion. Though the principal pays A in each case, the expected efforts are

highest in the latter case where the expected prize for the agents also consists

of the expectation of W (φ(xi)) − L (φ(xi)) > 0. Agents intrinsic concerns

for their performance in the job can thus lead to higher or lower expected

average efforts, depending on whether the efforts have stronger effects with

or without promotion.

Figure 7: Effort distributions in the promotion game

6.3 Beauty Contests

Suppose a downstream firm (the client) wants to procure a task from one

of two suppliers i ∈ {1, 2}. These firms simultaneously choose costly and
observable efforts xi ∈ R+ to prepare this project. Suppose the expected
value of the project for the principal is an increasing function V (xi) of effort

and that the party who is awarded the contract receives a fixed and commonly

known prize A > 0.22 The client awards the task to the supplier who exerted

the higher effort. After that, the supplier carries out the task at a cost of

22The analysis can be easily modified to account for the case that parties who exerted
higher effort receive a higher payment.
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C(xi). This function can be decreasing or increasing. A decreasing function

makes sense when high effort results in good preparation of the project, which

makes it simpler to carry out. An increasing function is plausible when

convincing the principal requires coming up with a project that is costly

to finance ex post. In such a context, the logic of the previous subsection

applies: When the interests of the client and the suppliers are aligned, that

is, efforts reduce future costs of carrying out the project, the prize function

is increasing in effort, conversely when efforts make the project more costly

to carry out in the future.

7 Conclusion

Many economic institutions have features of all-pay auctions with endogenous

prizes. This paper has shown that very general distributions can be obtained

as mixed-strategy equilibria of all-pay auctions with endogenous prizes, at

least in symmetric settings. It also shows which incentive systems yield high

expected highest effort, while avoiding excessive effort of losers. Compared

to all-pay auctions with fixed prizes, all-pay auctions with endogenous prizes

generally do better in this respect, in particular, when prize functions are

approximately linear. When the prize functions have hurdles below which

there is no positive prize, this leads to further improvements.

The companion work of Jönsson (2013) analyzes symmetric AEP exper-

imentally. Though the behavior of subjects differs substantially from the

prediction of Proposition 1, prelimary results suggest that the comparative

statics insights of Section 4.3 hold: Modifying an AEP in such a way that

expected average efforts are fixed, but prizes become more sensitive to efforts

yields higher expected efforts.

The paper can be extended in various directions. Richer objective func-

tions of principals might be studied: Principals might be interested in other

goals than maximizing expected average or highest effort. For instance, they

might care about the minimal efforts, or they might want to secure that all

players choose efforts close to some target level. And even if they care about

the expected highest effort, they may be risk averse, which might lead to

very different optimal incentive systems than those described above. Never-
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theless, the techniques developed in this paper would appear to be a useful

step in deriving the appropriate systems for such alternative targets: The

implementation results at least show what kind of behavior can be induced

with suitable AEP.
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9 APPENDIX

9.1 Appendix 1: Proofs

9.1.1 Proof of Proposition 1

We appeal to the standard characterization result for MSE with continuous

action spaces (adapted from Osborne 2004, Proposition 142.2).

Lemma 1 F is a MSE if and only if (i) there is no action which, given the

opponents’behavior, yields higher expected payoff than F and (ii) F assigns

zero probability to the set of actions for which, given the opponents’behavior,

the expected payoff is less than her expected equilibrium payoff.

We now prove Proposition 1. DEP implies that F (xi) as in (2) is strictly

increasing on (0, T ]. Moreover F (T ) = 1. If a(0) > 0 (C1) or a′(0) = ∞
(C2), then limxi→0 F (xi) = 0 and F is a CDF without atoms, with support

[0, T ]. If neither C1 nor C2 holds, but C3 does, then limxi→0 (F (xi))
n−1 =

1
limxi→0 a(xi)

> 0. Hence limxi→0 F (xi) > 0 and F is a CDF with support [0, T ]

and an atom at zero with mass limxi→0 F (xi). (2) implies that expected

payoffs are zero on [0, T ]. Because a(xi) < xi for all xi > T, F corresponds

to a MSE by Lemma 1.

9.1.2 Proof of Proposition 2

We first prove several lemmas.

Lemma 2 If SYM holds, any symmetric MSE must satisfy (i) or (ii):

(i) It has no atoms, and M ≡ min S = 0.
(ii) It has an atom at 0 with mass denoted as F (0).

Case (ii) requires that a(0) = 0 and qna′(0) ≤ 1 where qn = (F (0))n .

Proof. The proof has three steps:
Step 1: M ≡ min S = 0 for every symmetric MSE without atoms.
Step 2: A symmetric MSE with an atom at x̃ > 0 does not exist.

Step 3: A symmetric MSE with an atom at 0 requires a(0) > 0 or qna′(0) >

1.
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Step 1: Suppose M > 0. For any sequence xn → M , the probability of

winning approaches zero. By continuity, limxn→M a(xn) = a(M) < ∞. The
expected net payoff thus falls below zero as xn →M , so that M /∈ S.
Step 2: Suppose x̃ > 0 is an atom. This requires a(x̃) ≥ x̃. In the proposed

MSE, for each player and each m ∈ {1, ..., n}, there is a probability qm > 0

that he is among the m players with the highest effort. The expected net

gain for a player from shifting the atom to the right by ε is approximately∑n
m=2 qm

m−1
m
a(x̃) +

∑n
m=1 εqma

′(x̃) − ε, which is positive if a (x̃) > 0 and ε
is suffi ciently small. Thus, shifting the atom to the right by some suffi ciently

small ε increases expected payoffs, a contradiction.

Step 3: Suppose there is an atom at 0. Then in the proposed MSE, all

players tie with some probability qn > 0. The expected net gain from shifting

the atom to the right by ε is approximately qn n−1n a(0) + εqna
′(0)− ε, which

is positive for suffi ciently small ε if a(0) > 0 or qna′(0) > 1. Thus, unless

a(0) = 0 and qna′(0) ≤ 1, shifting the atom to the right by some suffi ciently

small ε increases expected payoffs, a contradiction.

Lemma 3 If SYM holds, then F (xi)n−1a(xi) = xi for all xi ∈ S.23

Proof. By Lemma 2, for every symmetric MSE and all ε > 0, there exist
xi < ε such that xi is played. Also, there is no atom at 0 unless a(0) = 0.

Thus, expected payoffs approach zero as xi does. By Lemma 1 (i), there

exists no xi ∈ Xi for which F (xi)n−1a(xi) − xi > 0. Moreover, as 0 ∈ S, F
assigns zero probability to the set of xi for which F (xi)n−1a(xi)− xi < 0 by
Lemma 1(ii). Right continuity of F and a thus imply F (xi)n−1a(xi)−xi = 0
∀xi ∈ S.

Lemma 4 If SYM holds, xL, xH ∈ S and 0 < xL < xH ,
a(xH)
xH
≤ a(xL)

xL
.

Proof. (2) implies a(xL)
xL

= 1
[F (xL)]

n−1 and
a(xH)
xH

= 1
[F (xH)]

n−1 . Monotonicity

of F implies a(xH)
xH
≤ a(xL)

xL
.

Lemma 5 If SYM and DEP hold, there can be no xL < xH such that xL ∈ S,
xH ∈ S, xL > 0 and

(
xL, xH

)
∩ S = ∅.

23For a similar, which is applicable if, e.g., C1 holds, see Siegel 2009, Corollary 3.
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Proof. There are no atoms at xH by Lemma 2.
(
xL, xH

)
∩ S =∅ would

imply F (xL) = F (xH). Thus, by Lemma 3,
a(xH)
xH

=
a(xL)
xL

, violating DEP.

Lemma 6 If SYM and DEP hold, S = {0} ∪ [L, T ] for some L ≥ 0.

Proof. By Lemma 2, minS =0. By A3(i), S ⊂ [0, T ]. Next, for all ε > 0,
S∩ (T − ε, T ] 6= ∅, because there exists a left neighborhood of T such that
a(xi)−xi > 0 in the entire neighborhood by A3(ii). Hence, maxS < T would

imply that a player obtains a positive profit by choosing xi ∈ (maxS, T ). By
Lemma 5, S∩ (0,∞) is an interval.

Lemma 7 If SYM holds, [H∗S, T ] ⊂ S.

Proof. Suppose that [H∗S, T ] $ S. Arguments in the proof of Lemma 6
that do not depend on DEP show that T ∈ S. Thus, there exists an L ∈
(H∗S, T ] ∩ S and ε > 0 such that (L− ε, L) ∩ S =∅. Choose xi ∈ (L− ε, L).

The mass of players choosing xi ≤ L is
(

L
a(L)

) 1
n−1

and there is no atom at L

by Lemma 2. A player who deviates from L to xi earns expected net payoffs
L

a(L)
a (xi)− xi. This is positive if a(xi)xi

> a(L)
L
, which is true for L > xi > H∗S,

a contradiction. Thus, L = H∗S.

We now prove Proposition 2.

(i) From Lemmas 6 and Lemma 7, if SYM and DEP hold, S = {0} ∪
[H∗S, T ]. Thus, F (xi)

n−1a(xi) = xi on [H∗S, T ] by Lemma 3. DEP implies

H∗S = 0. Thus the MSE is as described in Proposition 1.

(ii) Suppose DEP does not hold, that is,H∗S > 0. By Lemma 4, [0, T ]  S.
However, by Lemma 7, [H∗S, T ] ⊂ S. As S ⊂ [0, T ], therefore there exists no
xi > 0 such that S = [0, xi].

9.1.3 Proof of Proposition 3

(i) Consider a CDF F that admits a density f such that {xi| f(xi) > 0} =
[0, C] for C > 0. Then, aF as in (3) on [0, C] is admissible: As to A2, differ-

entiability holds on (0, C]. Continuity at 0 holds if and only if limxi→0 a
F (xi)

is finite, that is, (4) holds. In this case, aF is also right differentiable at 0.

Further, aF can always be extended to the right in a continuously differen-

tiable way such that aF (xi) < xi on [C,∞) and therefore A3(i) holds. A3(ii)
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holds because
(
aF
)′
(C) < 1 for f(C) > 0. It remains to be shown that aF

satisfies C1 or C2 if and only if (5) holds. First, consider C1(ii) and C2(iii),

that is, DEP. This requires

F (xi)− xi (n− 1) f(xi)
F (xi)n

<
1

F (xi)(n−1)
. (19)

(19) follows from f(xi) > 0. (5) is equivalent with the requirement that

limxi→0 a
F (xi) > 0 or limxi→0

(
aF
)′
(xi) = ∞ if limxi→0 a

F (xi) = 0, that is,

with C1(i) or C2(i) and C2(ii).

(ii) The preceding analysis shows that C3 holds in this case.

9.1.4 Proof of Corollary 1

For aF (xi) = xi
[F (xi)]

n−1 ,
(
aF
)′
(xi) =

[F (xi)]−xi(n−1)f(xi)
[F (xi)]

n > 0. (6) thus holds if

and only if aF (xi) is increasing on (0, C]. As aF (0) = limxi→0 a
F (xi), aF (xi)

is increasing on [0, C].

9.1.5 Proof of Corollary 2

Implementability follows immediately from Proposition 3: For n = 2, (4)

holds if f(xi) > 0 and (5) holds if f(xi) is bounded. Part (i) and (ii) of the

Corollary are straightforward. (iii) is implied by (i) and (ii).

9.1.6 Proof of Corollary 3

aF (xi) as in (3) violates (4) if limxi→0f(xi) <∞.

9.1.7 Proof of Proposition 5

(i) By (C4) and (C5), the sequences Hk and Jk are well-defined and stop after

finitely many iterations. F defines a distribution: It is increasing on each[
Hk, Jk

]
, satifies F

(
Jk+1

)
= F

(
Hk
)
, F (0) ≥ 0 and F (J1) = F (T ) = 1.

All xi ∈ HK yield zero expected payoffs. For xi /∈ HK , expected payoffs

are negative if xi > J1 = T . If xi ∈
(
Jk+1, Hk

)
for k ∈ 1, ..., k − 1, then

a(xi)
xi
≤ a(Hk)

Hk . Expected payoffs a (xi) Hk

a(Hk)
− xi are therefore non-positive.

(ii): analogous.
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9.1.8 Proof of Proposition 6

By Lemma 3, [F (xi)]
n−1 a(xi) = xi on S. Second, we show that HK ⊂

S. From Lemma 7, [H1, J1] ⊂ S. Next suppose
[
Hk, Jk

]
⊂ S, but ∃xi

∈
[
Hk+1, Jk+1

]
/∈ S: Clearly, for every x̃i ∈

(
Hk+1, Jk

]
and all ε > 0

∃xi ∈ (x̃i − ε, x̃i) such that a (xi) Hk

a(Hk)
− xi > 0, a contradiction. Thus,[

Hk+1, Jk+1
]
⊂ S and, by induction, HK ⊂ S. Finally, we show that

S ⊂ {0} ∪ HK . For xi > J1 = T , expected payoffs are negative. Moreover,

by Lemma 4, if xL ∈ S and xH ∈ S, a(xH)xH
≤ a(xL)

xL
. Thus, as

[
Hk, Jk

]
⊂ S,(

Jk+1, Hk
)
∩ S =∅. If the conditions of Proposition 5(i) hold, HK = 0 and

thus S ⊂ {0}∪HK =HK . If the conditions of Proposition 5(ii) hold, HK > 0

and F
(
Hk
)
= Hk

a(Hk)
> 0. Hence, there is an atom at 0 or Hk. The latter

possibility violates Lemma 2.

9.1.9 Proof of Corollary 4

The assumptions imply that K = 1 and H1 = 0. Thus, Proposition 5 gives

the result.

9.1.10 Proof of Proposition 7

Let aF
HS (xi) =

 0 if xi ∈ [0, HS)(
xi

F (xi)

) 1
n−1

if xi ≥ HS

. HS is the global maximum

of a
FHS (xi)
xi

on (0, T ], and it is interior. Corollary 4 yields the result.

9.1.11 Proof of Proposition 8

Let x∗1 = argmaxx1∈[0,r1] a(x1) − kx1, x∗2 = 0. By construction, x∗1 is a best
response for player 1. Because x∗1 > r2, player 2 will not deviate to x2 ≥ x∗1.

Deviation to x2 ∈ (0, x∗1) yields negative payoffs.

9.1.12 Proof of Proposition 9

We first prove a series of lemmas.

Lemma 8 (i) Player 2 earns expected payoffs of zero on {0} ∪ [H∗A, T ].
(ii) Player 1 earns expected payoffs w1 = (1− k)T on [H∗A, T ].
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Proof. (i) Choosing x2 = 0 yields expected payoffs of 0 if a(0) = 0 or if
H∗A > 0. If a(0) > 0 and H

∗
A = 0, then limx1→0F1(x1) = 0, so that expected

payoffs of player 2 are still zero if he chooses 0. (13) implies that net expected

payoffs are zero for x2 > 0 as well. (ii) By (14), player 1 obtains expected

payoff w1 for all x1 ∈ [H∗A, T ].

Lemma 9 Deviations of player i = 1, 2 to xi /∈ Si are non-profitable if

H∗A = 0 or ka(H
∗
A)− a′(H∗A) (w1 + kH∗A) ≤ 0. (20)

Proof. By definition of T , deviations of player 2 to x2 > T are non-

profitable. As C1’ and C2’ each imply a′(x1) < k for x1 > T , player 1

does not benefit from deviating to x1 > T . Thus deviations to xi /∈ Si
are unprofitable if H∗A = 0 and, in particular, under C1’. If C2’holds and

H∗A > 0, player 2 cannot deviate profitably to x2 ∈ (0, H∗A), as this would
involve positive efforts without ever obtaining the prize. Player 1 cannot

profitably deviate to x1 ∈ (0, H∗A) if a′(x1)F2(0) − k ≥ 0 ∀ x1 ∈ (0, H∗A]. As
C2’requires concavity of a(xi), this holds if a′(H∗A)F2(0)− k ≥ 0. Inserting
F2 (0) gives a′(H∗A)

w1+kH∗A
a(H∗A)

−k ≥ 0, that is, ka(H∗A)−a′(H∗A) (w1 + kH∗A) ≤ 0.

Lemma 10 F ∗1 is a CDF. F
∗
2 is a CDF if and only if

ka(H∗A)− a′(H∗A) (w1 + kH∗A) ≥ 0. (21)

Proof. By definition of T , F ∗1 (T ) = 1. By C1’or C2’, F
∗
1 (x1) is increas-

ing on [0, T ]. Thus, (13) defines a CDF; it has an atom at H∗A with mass

F ∗1 (H
∗
A) =

H∗A
a(H∗A)

. For F ∗2 to be a CDF, it has to be increasing, which requires

ka(x2)− a′(x2) (w1 + kx2) ≥ 0 ∀x2 ∈ [H∗A, T ] . (22)

C1’implies (22) because a′(x2) < k and w1 = a(T ) − T < a(x2) − x2. If

C2’holds, the left-hand side of (22) is increasing in x2. Thus, (22) holds on

[H∗A, T ] if and only if ka(H
∗
A)− a′(H∗A) (w1 + kH∗A) ≥ 0.
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Lemma 11 If
ka(0)− a′(0)w1 ≥ 0. (23)

(20) and (21) both hold for H∗A = 0.

Proof. H∗A = 0 implies (20). (23) is (21) for H
∗
A = 0.

Lemma 12 If C2’holds and

ka(0)− a′(0)w1 < 0, (24)

H∗A ∈ (0, T ) is the only effort level that satisfies both (20) and (21).

Proof. For x1 > 0, (20) and (21) hold if and only if

ka(x1)− a′(x1) (w1 + kx1) = 0 (25)

(25) holds for x1 = H∗A as H
∗
A > 0. C2’implies that the left hand side of (25)

is increasing, so that the solution is unique.

We now derive Proposition 9. If C1’holds, a(0) > a(T ) − kT = w1 and

k > a′(0). Thus (23) holds. Hence, by Lemma 11, (20) and (21) hold for

H∗A = 0. Thus, Lemmas 9 and 10 imply that Part (a) of Proposition 9 holds.

If C2’holds, Lemma 12 implies that H∗A > 0 satisfies (20) and (21); thus F1
and F2 are distributions by Lemma 10, and they correspond to an MSE by

Lemma 9; so that Part (a) of the Proposition also holds in this case. Part

(b) follows from the Definition of H∗A. Part (c) follows from Lemma 8.

9.1.13 Proof of Proposition 10

As the result for C1’ has been shown by Siegel (2009, 2010), we confine

ourselves to C2’. The proof follows from Lemmas 13-22. With few exceptions,

these results are so general that they do not require C2’(or C1’).

Lemma 13 Si ⊂ [0, T ] for any MSE and i = 1, 2.

Proof. x2 > T is not a best response for player 2 because a (x2) < x2.

Thus S2 ⊂ [0, T ]. If player 1 chooses x1 > T , his net payoff is thus a(x1)−kx1.
As a′(xi) < k for all xi ≥ T , there exists an x̃1 in (T, x1) such that the net

payoff is a(x̃1)− kx̃1 > a(x1)− kx1. Thus x1 > T is not a best response.
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Lemma 14 If player i has an atom in x∗, then for j 6= i, there exists an

ε > 0 such that there are no best responses in [x∗ − ε, x∗].

Proof. Suppose player i has an atom in x∗ with mass p(x∗). Suppose

for all ε > 0 there exists a best response xj ≤ x∗ such that |xj − x∗| < ε.

By deviating to xj + ε, player j would increase his expected prize by at

least approximately p(x∗)a(x
∗)
2
; his costs would increase by ε. As ε→ 0, the

increase in the expected prize is higher than the increase in expected costs,

so that xj is not a best response.

Lemma 15 In any MSE, 0 ∈ S2 and the expected net payoff of player 2 is
zero, that is, F1 (x2) a (x2) = x2 for all best responses x2.

Proof. Player 2 obtains a payoff of at least zero by choosing 0. Thus,
F1 (x2) a (x2) ≥ x2 for any best response and, by continuity, for any x2 ∈ S2.
To show that Player 2 does not obtain an expected payoff above zero, it

suffi ces to show that there exists a best response x2 for which he wins with

probability arbitrarily close to zero. Let x ≡ inf S1 ∪ S2. First, suppose
no player has an atom at x. By definition of x one can find a sequence xn
converging to x such that xn is a best response for at least one player i.

As there is no atom at x, the probability of winning and thus the expected

payoff converges to zero as xn → x. By Lemma 13, player 1 obtains a payoff

of approximately w1 by choosing x1 just above T . Thus, xn cannot consist of

best responses for player 1. Hence, the xn are best responses of player 2 who

therefore obtains a payoff of zero in the MSE. Second, suppose exactly one

player has an atom at x. Then this player obtains zero payoffs at x; and it

must therefore be player 2. Third, by Lemma 14, it is impossible that both

players have atoms at x. Finally, x = 0 and thus x ∈ S2: Because player 2
wins with probability zero, his net payoffs would be negative if x > 0.

Lemma 16 maxSi = T for i = 1, 2.

Proof. By Lemma 13, it suffi ces to show thatmaxSi ≥ T . IfmaxS1 < T ,

then by A3(ii), given the equilibrium strategy of player 1, player 2 could

obtain positive payoffs by choosing x2 ∈ (maxS1, T ), contradicting Lemma
15. If maxS2 < T , a′(T ) − k < 0 implies that player 1 could profitably

deviate downwards from T . Therefore maxS2 = T .
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Lemma 17 If DEP holds, there can be no atom of player 2 at any x∗ > 0.

Proof. If player 2 has an atom at x∗ > 0, then by Lemma 14 there exists
an ε > 0 such that there are no best responses of player 1 in (x∗ − ε, x∗] =
∅. Thus, by choosing x2 ∈ (x∗ − ε, x∗), player 2 would obtain profits of
F1(x

∗)a(x2)−x2. By Lemma 15, these profits are x∗

a(x∗)a(x2)−x2. Optimality
of x∗ thus requires x∗

a(x∗)a
′(x∗) > 1, violating DEP.

Lemma 18 The expected payoff of player 1 is w1 in any MSE.

Proof. By Lemma 16, given the equilibrium strategy of player 2, player

1 can guarantee himself a payoff of arbitrarily close to w1 > 0 with certainty

by choosing an effort level just above T . By Lemma 17, player 2 cannot have

an atom at T . Therefore, player 1 must obtain an expected payoff of exactly

w1 at T .

Lemma 19 Let H1 ≡ minS1.Then (0, H1) ∩ S2 = ∅.

Proof. Player 2’s expected payoffs for x2 ∈ (0, H1) are negative.

Lemma 20 (i) If C2’holds, then @ x, x ∈ S1 with x < x such that (x, x) ∩
S2= ∅.
(ii) If C2’holds, then @ x, x ∈ S2∩(0,∞) with x < x such that (x, x)∩S1 = ∅.

Proof. (i) Suppose ∃ x, x ∈ S1 with x < x such that (x, x) ∩ S2 =
∅. If so, then, by choosing x1 ∈ (x, x), player 1 would obtain profits of
F2(x)a(x1) − x1 and thus, using Lemma 17, F2(x)a(x1) − x1. x ∈ S1 thus
requires F2(x)a′(x) = F2(x)a

′(x) ≥ 1. x ∈ S1 requires F2(x)a′(x) ≤ 1. These
two conditions together violate C2’.

(ii) Suppose ∃ x, x ∈ S2 ∩ (0,∞) with x < x such that (x, x) ∩ S1 = ∅.
Then x /∈ S1 is impossible. To see this, note that Player 2 has no atoms at
any x2 > 0 by Lemma 17. Thus limε→0 F2 (x− ε) = F2 (x) and ∀ε > 0∃δ ∈
(0, ε) such that F2 (x− δ)−F2 (x− ε) > 0. If x /∈ S1, ε can be chosen so that
F1 (x2) a (x2) = F1 (x− ε) a (x2) on [x− ε, x− δ]. Thus F1 (x− ε) a′ (x2) ≡ 1
on this interval, violating C2’. By analogous arguments, x /∈ S1 is impossible.
Thus, x, x ∈ S1 and (i) shows that (x, x) ∩ S2 6= ∅. As player 2 has no
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atom, this would require that there exists an open subinterval of (x, x) in S2.
Because (x, x) ∩ S1 = ∅, this would imply that F1(x)a(x2) − x2 is constant
on (x, x), which is incompatible with C2’.

Lemma 21 If C2’ holds, ∃HA > 0 such that S1 = [HA, T ] and S2 = {0}
∪ [HA, T ].

Proof. Let H2 = min (S2 ∩ (0,∞)). By Lemma 19, H1 ≤ H2. We show

that H1 < H2 is impossible. First, suppose there exists x1 ∈ (H1, H2) ∩ S1.
This implies F2(0)a(H1) − H1 = F2(0)a(x1) − x1, violating C2’. Second,

suppose (H1, H2) ∩ S1 = ∅. Thus, H1 must be an atom of player 1. As

H2 is not an atom of player 2 by Lemma 17, F2(H1) = F2(H2) = F2(0) and

H2 ∈ S1. Thus, F2(0)a′(H1) ≤ 1 and F2(0)a′(H2) ≥ 1. These conditions

together violate C2’.

Thus H1 = H2. Therefore, if H1 = 0, then H2 = 0 and, by Lemma 16 ,

{0, T} ⊂ Si (i = 1, 2). Suppose Si  [0, T ]. Then there exist x > x > 0 such

that (x, x) ∩ Si = ∅. Hence, by Lemma 20, x /∈ Sj or x /∈ Sj (j 6= i). Thus,

there exists a subinterval of (x, x) which has empty intersection with S1 and
S2. Choose the interval such that x is minimal and x is maximal. Then by
Lemma 17, there can be no atom of player 2 in x or x. Thus either there is an

atom of player 1 at these effort levels or S2 must contain intervals of the form
(x− ε, x) or (x, x+ ε) > 0. Because of C2’, the latter possibility can only

arise if x ∈ S1 (x ∈ S1). In any event, x ∈ S1, x ∈ S1 and (x, x) ∩ S2 = ∅,
which is inconsistent with C2’ by Lemma 20. If H1 = H2 ≡ HA > 0,

analogous arguments show that S1 = [HA, T ] and S2 ∩ (0,∞) = [HA, T ] by

Lemma 20.

Lemma 22 Suppose C2’holds and HA 6= H∗A. Then there can be no MSE

with S1 = [HA, T ] and S2 = {0} ∪ [HA, T ].

Proof. This follows from Lemma 12.

Proposition 10 now follows immediately: Lemmas 21 and 22 imply that

S1 = [H∗A, T ] and S2 = {0} ∪ [H∗A, T ]. Lemmas 15 and 18 imply that the
distribution must satisfy (13) and (14).
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9.1.14 Proof of Proposition 11

We first show that (17) is suffi cient for implementation by monotone net

prize functions. By Proposition 9, this requires that a(x1) satisfies A2 and

A3 and C1’. As to A2, the candidate function a(x1) = x1
F1(x1)

is continuously

differentiable for x1 > 0. Continuity at 0 requires limx1→0a(x1) =
1

f1(0)
<∞,

which is equivalent with f1(0) > 0. A3 is clearly satisfied. C1’is equivalent

with (17). Necessity follows because A2 is violated if (17) does not hold.

9.1.15 Proof of Proposition 12

We show that (18) is suffi cient for implementation by a strictly concave price

function. By Proposition 9, this is true if the candidate prize function satisfies

A2 and A3 and C2’. A2 follows as in the proof of Proposition 11. A3 is clearly

satisfied. C2’is equivalent with (18).
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9.2 Appendix 4: Figures

Figure A1: Prize-equivalent APA

Figure A2: Prize functions corresponding to prize-equivalent APA
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Figure A3: Equilibrium densities for player 1 (left) and 2 (right); α = 1, k =
0.95

k = 0.95

Figure A4: Expected Efforts of players 1 and 2 with α = 1
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k = 0.95

Figure A5: Expected Highest Effort, Expected Average Effort and Expected
Average Prize with α = 1

Figure A6: Comparative Statics: Winning Probability of Player 1 for k =
0.95 and k = 0.85
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k = 0.95

Figure A7: Expected Effort of Player 1 for prize-equivalent APA

k = 0.95

Figure A8: Expected Effort of Player 2 for prize-equivalent APA
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