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Abstract

Intention-based reciprocity is an important motivation for human behavior, and it can be
exploited in the design of economic allocation mechanisms. In this paper, we address ques-
tions of robustness that arise in the context of asymmetric information about intentions.
We propose allocation mechanisms that eliminate uncertainty about the players’ intentions,
by making all types of each player equally kind, and we investigate a first notion of ex-post
fairness implementation, based on the property that learning about a player’s type does not
change the perception of that player’s intention in such mechanisms. We show that efficient
social choice functions which provide payoff insurance to the agents can be implemented in
this way, with or without voluntary participation constraints.
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1 Introduction

Private information about payoffs constitutes a key ingredient to the literature on mechanism
design. We consider a mechanism design model where behavior is driven by material as well as
psychological motives. In particular, we follow the framework of Bierbrauer and Netzer (2012)
and equip agents with intention-based preferences for reciprocity (Rabin, 1993; Dufwenberg and
Kirchsteiger, 2004). Private information about material payoffs then gives rise to private infor-
mation about intentions: players cannot fully determine the other players’ intended kindness, as
they are lacking information about these players’ types.1 We contribute to the existing literature
by addressing two problems that may arise in this context.

First, our understanding of the attribution of intentions under uncertainty is still limited.
We might, for instance, not be able to discard the hypothesis that opponent types with bad
intentions are more salient than those with good intentions, and hence are overweighted in the
process of belief formation.2 Therefore, while we could assume that players treat intentions
like material payoffs and form an expected value at the interim stage, here we take a broader
approach. We propose an equilibrium notion that requires intentions to be type-invariant, and we
construct mechanisms that implement certain materially efficient social choice functions in this
way. An equilibrium where each type of a player displays the same kindness remains robust for
a large class of assumptions about the attribution of intentions under asymmetric information.

Second, if players were informed about all private information after taking their actions, then
they could infer the other players’ true intentions and may regret their decisions, as they may
have acted differently had they known these intentions beforehand. Such psychological regret can
be a concern in the same way and in addition to material ex-post regret, linked to the uncertainty
about material payoff types, as addressed in the theory of ex-post implementation.3 We therefore
propose a notion of ex-post fairness implementation which requires that all players would want
to stick to their interim decisions even if they were informed about all private information ex-
post. We again utilize the property of type-invariance to eliminate psychological regret, as it
renders intentions fully transparent in the first place. Our notion of ex-post fairness equilibrium
rules out material ex-post regret at the same time. The mechanisms that we construct align
individual and social objectives both on the interim and on the ex-post stage.

In spite of the strong demands implied by our notions of robustness, we show that materially
Pareto efficient social choice functions can be implemented whenever they provide insurance to

1Models of intention-based preferences rely on the framework of psychological game theory (Geanakoplos
et al., 1989; Battigalli and Dufwenberg, 2009). Most of the papers that develop or apply models where intentions
matter do not explicitly consider asymmetric information (e.g. Rabin, 1993; Dufwenberg and Kirchsteiger, 2000,
2004; Charness and Rabin, 2002; Falk and Fischbacher, 2006; Cox et al., 2007; Segal and Sobel, 2007, 2008;
Hahn, 2009; Sebald, 2010; Nishimura et al., 2011; Dufwenberg et al., 2011, 2013; Hoffmann and Kolmar, 2013;
Netzer and Schmutzler, 2013). Bierbrauer and Netzer (2012) and von Siemens (2009, 2013) explicitly model
intention-based social preferences under asymmetric information. Models within the framework of Levine (1998)
rely on asymmetric information and signalling to generate reciprocity via type-dependent preferences.

2A large experimental literature has provided evidence for the general importance of intentions for behavior,
see e.g. Blount (1995) for an early and Falk et al. (2008) for a more recent contribution. However, already
Blount (1995) has pointed out that “[f]indings on attributions and the lability of preferences in social context are
particularly applicable to the relationship between games of incomplete and imperfect information” (p. 142f).

3See e.g. Bergemann and Morris (2005) and Jehiel et al. (2006), and the discussion therein. Filiz-Ozbay
and Ozbay (2007) argue that a psychological concern to avoid anticipated material ex-post regret can lead to
overbidding in auctions.
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the agents. This requires that the expected material payoff of any player i is invariant to the
private information of any other player j, where expectation is taken over the private information
of all players except j.4 In a direct revelation mechanism, the insurance property would imply
that j cannot affect the payoff of i if all players except j were to tell the truth (Bierbrauer and
Netzer, 2012; Bartling and Netzer, 2013). This property provides the basis for type-invariant
kindness: It implies that truth-telling in the direct mechanism is associated with zero kindness
for all types of all players, as nobody has the option to make anyone else better or worse off.
We then exploit the reference-dependence of intention-based social preferences and augment the
direct mechanism by messages which trigger additional budget-balanced transfers, but remain
unused in equilibrium. This allows us to manipulate reference points and increase kindness
to levels that guarantee truth-telling of all players, by turning them into maximizers of the
sum of expected material payoffs, without violating the property of type-invariance. If players
became informed about their opponents’ types ex-post, kindness perceptions would not change
and truth-telling would still be a best response, as players remain maximizers of the sum of
ex-post material payoffs.

We also address the issue of voluntary participation, by considering mechanisms that give
all players the right to enforce some status-quo allocation. Such veto rights complicate the
construction of type-invariant kindness, as their execution might be kindness-relevant for some
but not for other player types. Veto rights can thereby compromise the property of type-invariant
kindness despite the insurance property of a social choice function. However, we show that such
concerns can be addressed by a more complicated construction of a mechanism that uses different
out-of-equilibrium transfers depending on whether or not a player profits in expectation from
the execution of the veto right.

Our results complement those by Bierbrauer and Netzer (2012), who first modelled intention-
based social preferences in a mechanism design framework.5 They show that any materially
Pareto efficient social choice function can be (voluntarily) implemented in (ex-ante or ex-interim)
Bayes-Nash fairness equilibrium. Their argument rests on a manipulation of equitable payoffs
very similar to the one employed here, but it does not guarantee the property of type-invariant
kindness, which is central to the present paper. The insurance property is used by Bierbrauer
and Netzer (2012) to guarantee robustness of implementation results with respect to non-selfish
motives of the agents.6 The analysis in this paper combines these arguments about robustness
and about the possibility to manipulate social preferences by choice of a mechanism.

4Our notion of insurance is related to similar concepts in the literature on auctions and mechanism design
with risk averse bidders (Maskin and Riley, 1984) or under ambiguity (Bose et al., 2006; Bodoh-Creed, 2012).
We will discuss this in Section 4 below.

5The growing literature on behavioral mechanism design has also investigated procedural motives (Glazer and
Rubinstein, 1998), robustness to non-equilibrium behavior (Eliaz, 2002), honesty (e.g. Alger and Renault, 2006),
state-dependent and endogenous preferences (e.g. Bowles and Polanía-Reyes, 2012), level-k reasoning (Crawford
et al., 2009), learning (e.g. Mathevet, 2010; Cabrales and Serrano, 2011), lack of common knowlegde of rationality
(Renou and Schlag, 2011), irrational choice functions (e.g. de Clippel, 2012) and loss aversion (Eisenhuth, 2012).
Distributional preferences have been investigated by Desiraju and Sappington (2007), Kucuksenel (2012) and von
Siemens (2011). Jehiel and Moldovanu (2006) survey the large literature on externalities in mechanism design.
De Marco and Immordino (2013) examine reciprocity in a team design problem, based on a model that differs
from Rabin (1993) and does not exhibit reference-dependence.

6Bartling and Netzer (2013) investigate the insurance property in an auction setting and provide experimental
evidence in favour of the theoretical robustness prediction.
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The remainder of the paper is organized as follows. The general framework is introduced
in section 2. Section 3 discusses our notions of robustness. The main results are presented in
section 4. Section 5 presents an application to a public goods example, and section 6 concludes.

2 General Framework

2.1 Environment

The analysis builds on the formal framework of Bierbrauer and Netzer (2012). We fix an envi-
ronment E = [I, A, (Θi, πi)i∈I , p], where I = {1, . . . , n} is a set of agents, A is a set of feasible
allocations, Θi is a finite set of types for agent i, πi denotes the material payoff function for
agent i, and p represents a probability distribution with support Θ = ×i∈I Θi. We employ
the notation p(θi) and p(θ−i) for marginal distributions with respect to the types of subsets of
agents.

As for material payoffs, we consider a quasilinear environment with independent private val-
ues. Formally, A = Q×T where Q represents a set of possible decisions and T = {(t1, . . . , tn) ∈
Rn|

∑
i∈I ti ≤ 0} the set of feasible transfers. Each player’s material payoff is a function

πi : A×Θi → R, given by πi(a, θi) = vi(q, θi)+ ti. Types are independent, so p(θ) =
∏

i∈I p(θi).
A social choice function f is a mapping f : Θ → A. When referring to its specific parts, we

employ the notation f = (qf , tf1 , . . . , t
f
n). A social choice function is materially Pareto efficient if

(i) its decision rule qf is value maximizing, qf (θ) ∈ argmaxq∈Q
∑

i∈I vi(q, θi) for all θ ∈ Θ, and
(ii) the transfer scheme is ex-post budget balanced,

∑
i∈I t

f
i (θ) = 0 for all θ ∈ Θ. Throughout

the paper, we will restrict attention to investigating the implementability of efficient social choice
functions.

2.2 Mechanism

A mechanism Φ = [M1, . . . ,Mn, g] prescribes a finite set of messages Mi for every agent i ∈ I,
and an outcome function g : M → A where M = ×i∈I Mi. When referring to specific parts of
the outcome function, we use the notation g = (qg, tg1, . . . , t

g
n).

A mechanism Φ and the environment E jointly induce a Bayesian game, where player i’s
pure strategy is a function si : Θi → Mi. Denote by Si the set of all pure strategies for player
i. Let the first-order point belief of player i about player j’s strategy be denoted by sbij ∈ Sj .
A complete first-order belief profile of player i is denoted by sbi = (sbij)j ̸=i ∈ Sb

i = ×j ̸=i Sj .
A second-order point belief of player i concerning j’s first-order point belief about player k’s
strategy is denoted by sbbijk ∈ Sk. Player i’s second-order belief about j’s complete first-order
belief profile shall be denoted by sbbij = (sbbijk)k ̸=j ∈ Sb

j . Finally, a complete second-order belief
profile of player i is sbbi = (sbbij )j ̸=i ∈ Sbb

i =×j ̸=i S
b
j .

2.3 Utility

We first presume every player to submit his message at the interim stage, where each player
is informed about the own type θi while, at the same time, remains uninformed about the
realization of the other players’ types θ−i. We denote the interim expected material payoff of
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player i from submitting mi, given type θi and belief sbi about the other players’ strategies, as

Πi(mi, s
b
i |θi) = Eθ−i

[
πi(g(mi, s

b
i(θ−i)), θi)

]
.

Analogously, we let
Πj(mi, s

b
i) = Eθ−i

[
πj(g(mi, s

b
i(θ−i)), θj)

]
denote the material payoff that i expects to give to j when sending message mi, given belief sbi .

Next, we follow the definition of interim utility proposed by Bierbrauer and Netzer (2012,
Appendix B.1), which translates the concept of Rabin (1993) to Bayesian games. Accordingly, in
addition to material payoffs Πi(mi, s

b
i |θi), each player is motivated by psychological reciprocity

payoffs. We denote player i’s interim belief about his kindness towards player j by κij(mi, s
b
i |θi),

and his interim belief about j’s kindness towards himself by λji(s
b
ij , s

bb
ij ). Below we will define

κij and λji formally, in a way such that these terms take on positive values if associated with
kind behavior and negative values if associated with unkind behavior. Reciprocity is captured
by the assumption that mutual kindness as well as mutual unkindness increase interim utility:

Ui(mi, s
b
i , s

bb
i |θi) = Πi(mi, s

b
i |θi) +

∑
j ̸=i

yijκij(mi, s
b
i |θi)λji(s

b
ij , s

bb
ij ),

where yij ≥ 0 indicates the degree to which other-regarding concerns matter for individual i in
relation to individual j. We will also write yi = (yij)j ̸=i and y = (yi)i∈I .

2.4 Kindness

We measure interim kindness of player i towards some other player j as the difference between
the expected material payoff which player i believes to give to player j and the equitable payoff,
Πei

j , the reference point for the evaluation of kindness. In other words, we presume that, given
his belief sbi , type θi of player i believes to be kind (unkind) towards j if his message mi yields
a higher (lower) material payoff for j than equitable. Formally,

κij(mi, s
b
i |θi) = Πj(mi, s

b
i)−Πei

j (s
b
i |θi).

The equitable payoff equals a value in between the largest and smallest payoff that type θi of
player i can give to player j, conditional on belief sbi :

Πei
j (s

b
i |θi) = α

[
max
mi∈Mi

Πj(mi, s
b
i)

]
+ (1− α)

[
min

mi∈Eij(sbi |θi)
Πj(mi, s

b
i)

]

for some α ∈ (0, 1).7 The set of messages relevant for the minimization contains only messages
which induce bilaterally Pareto efficient payoff pairs: Eij(s

b
i |θi) = {mi ∈ Mi|@m′

i ∈ Mi with
Πi(m

′
i, s

b
i |θi) ≥ Πi(mi, s

b
i |θi) and Πj(m

′
i, s

b
i) ≥ Πj(mi, s

b
i), with at least one strict inequality}.

7Bierbrauer and Netzer (2012, Appendix B.1) do not explicitly specify the interim equitable payoff. Instead,
they provide a condition on interim equitable payoffs such that their concept of Bayes-Nash fairness equilibrium,
which is based on an ex-ante perspective, is identical to their notion of interim fairness equilibrium, which takes
the interim perspective.
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This assumption guarantees that messages which hurt player j without benefitting player i do
not influence the equitable payoff and hence the kindness perception of i’s behavior.

The message mi submitted by type θi of player i determines his intended interim kindness
κij(mi, s

b
i |θi) towards player j, given his belief sbi . Suppose player i knew j’s type at the in-

terim stage. Given beliefs sbij and sbbij , he could then derive a belief κji(s
b
ij(θj), s

bb
ij |θj) about

j’s intended kindness towards himself. On the interim stage, however, player i is uninformed
about θj and therefore cannot put himself into player j’s interim shoes in order to figure out the
intended kindness precisely. Following Bierbrauer and Netzer (2012), we first proceed under the
assumption that player i forms his belief about j’s kindness by taking the expectation over θj ,

λji(s
b
ij , s

bb
ij ) =

∑
θj∈Θj

p(θj)κji(s
b
ij(θj), s

bb
ij |θj). (1)

2.5 Equilibrium

We can now provide a definition of interim fairness equilibrium, adapted to the present notation
from Bierbrauer and Netzer (2012, p. 53):

Definition 1. An interim fairness equilibrium (IFE) is a profile s∗ such that, for all i ∈ I,
(i) s∗i (θi) ∈ argmaxmi∈Mi Ui(mi, s

b
i , s

bb
i |θi) for all θi ∈ Θi, and

(ii) sbij = s∗j for all j ̸= i, and
(iii) sbbijk = s∗k for all j ̸= i, k ̸= j.

A social choice function f is implementable in IFE if there exists a mechanism Φ with an IFE
s∗ such that g(s∗(θ)) = f(θ) for all θ ∈ Θ.

3 Notions of Robustness

3.1 Type-Invariance of Kindness

Picking up on the discussion in the introduction, the fact that kindness κij(s∗i (θi), s
∗
−i|θi) in IFE

will generally depend on θi may be troublesome. A mechanism designer might not be confident
that (1) correctly reflects the way players form beliefs about the others’ intentions on the interim
stage. We therefore refine the concept of IFE in order to guarantee that interim equilibrium
intentions are fully transparent to every player, despite the presence of private information. In
particular, we require a strategy profile s∗ not only to be an IFE but also to generate type-
invariant equilibrium kindness values. Formally,

kij(s
∗
i (θi), s

∗
−i|θi) = kij(s

∗
i (θ̃i), s

∗
−i|θ̃i) =: kij(s

∗) for all θi, θ̃i ∈ Θi and i, j ∈ I, j ̸= i. (2)

An IFE s∗ that additionally satisfies condition (2) is called interim fairness equilibrium with
type-invariant kindness (IFE-TI). Implementability in IFE-TI is defined accordingly.

For instance, suppose beliefs about intentions and kindness are formed in a way that deviates
from the simple expectation formulation in (1). Let

∆ji(s
b
ij , s

bb
ij ) =

[
min
θj∈Θj

κji(s
b
ij(θj), s

bb
ij |θj), max

θj∈Θj

κji(s
b
ij(θj), s

bb
ij |θj)

]
5



denote the interval spanned by the smallest and the largest values of j’s equilibrium interim
kindness towards i. An IFE-TI remains an equilibrium if we replace (1) by the assumption that
λji(s

b
ij , s

bb
ij ) ∈ ∆ji(s

b
ij , s

bb
ij ), without specifying any additional details. For instance, if players use

arbitrary weights wij(θj) ≥ 0 with
∑

θj∈Θj
wij(θj) = 1 instead of p(θj) to calculate λji, or even

focus on one of the extremes such as the least kind type of the opponent, IFE-TI remains robust
as it collapses ∆ji to a single value.

3.2 Ex-Post Fairness Implementation

Our notion of ex-post fairness implementation shall provide robustness in the sense that every
player should stick to his interim decision even if he were informed ex-post about the others’
types. Such additional information would allow each player i to update his beliefs about each
opponent j’s actual interim intention, thus moving from λji(s

b
ij , s

bb
ij ) to κji(s

b
ij(θj), s

bb
ij |θj). Notice

that κji is still based on an expectation over θ−j , which reflects the information under which
type θj actually made his choice. We then define player i’s ex-post utility as

Ui(mi, s
b
i , s

bb
i |θ) = Πi(mi, s

b
i |θ) +

∑
j ̸=i

yijκij(mi, s
b
i |θ)κji(sbij(θj), sbbij |θj), (3)

where Πi(mi, s
b
i |θ) = πi(g(mi, s

b
i(θ−i)), θi) are the ex-post material payoffs and κij(mi, s

b
i |θ) is i’s

ex-post kindness toward j, defined as the difference between Πj(mi, s
b
i |θ) = πj(g(mi, s

b
i(θ−i)), θj)

and some equitable payoff.8

We say that a social choice function f is ex-post fairness implementable if it is implementable
in an IFE-TI s∗ and if, for each player i and every type profile θ ∈ Θ, s∗i (θi) still constitutes a
best-response in terms of ex-post utility (3), given beliefs fixed on s∗. This definition captures
the above stated robustness concern, since every player would stick to his equilibrium interim
decision even if he observed the others’ private information on the ex-post stage. Now observe
that implementation of a materially Pareto efficient social choice function in an IFE-TI s∗ implies
ex-post fairness implementation if s∗ gives rise to the kindness values κji(s∗j (θj), s

∗
−j |θj) = 1/yij

for all pairs of players.9 To see the point in more detail, substitute these kindness values into
(3) and note that s∗i (θi) then constitutes a best response in ex-post utility terms if and only if it
maximizes the sum of all players’ ex-post material payoffs. By presupposition, strategy profile
s∗ results in an efficient, i.e., payoff-sum maximizing allocation g(s∗(θ)) = f(θ) for any type
profile θ ∈ Θ, so that this is indeed the case. We will address in the following section whether
and how these conditions can be achieved.

The proposed notion of ex-post fairness implementation is still restrictive. In particular, the
kindness that i attributes to θj ’s interim behavior in (3) corresponds to the true kindness of θj
in a mechanism where all choices are made on the interim stage. If a mechanism systematically
grants players the right to reconsider their decisions ex-post, and this is anticipated on the
interim stage, then the interim kindness of a given message might be different in the first place.

8Since the equitable payoff does not play a role for the present purposes, we omit its exact specification.
9Any strategy profile that results in a materially Pareto efficient social choice function and satisfies this par-

ticular condition on type-invariant kindness values must in fact be an IFE-TI, as all players are then maximizing
the sum of expected material payoffs at the interim stage. However, not every IFE-TI exhibits these particular
values. See the discussion following Proposition 1 below, and the example in Section 5.
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An analysis of games with multiple stages of announcements is currently impeded by the lack of
a theory of intentions for general extensive-form games. Our main intuition for ex-post fairness
implementation parallels the intuition for ex-post Nash equilibrium provided by Crémer and
McLean (1985, p. 349): “Of course, in our model, a bidder can never observe the types of
the other bidders. Thus, the concept of ex post Nash equilibrium corresponds to the following
reasoning by agent i. “If I believe that the other bidders are using [their equilibrium strategies],
then even if I observed their actions, I would have no incentive to change mine””.10 Besides this
general intuition, ex-post fairness implementation can also be appropriate when the anticipation
of regret affects interim decisions, in the spirit of Filiz-Ozbay and Ozbay (2007). Finally, our
construction also applies when agents do in fact observe the others’ types and can revise their
decisions ex-post, but do not anticipate this on the interim stage.

4 General Results

4.1 Insurance and Implementation

A concept which will be very important is the insurance property. Intuitively, a social choice
function gives rise to this property if each player i is insured against the realization of the
type (or the report in a direct mechanism) of any other player j, provided an expectation is
taken over the types of all other players (or provided that all other players report truthfully).
Hence unilateral deviations from truth-telling in the direct mechanism will not affect any other
player’s payoff when the insurance property is satisfied (Bierbrauer and Netzer, 2012; Bartling
and Netzer, 2013).

Definition 2. Given an environment E and social choice function f , the insurance property
holds if for each i ∈ I there exists Pi ∈ R such that

Eθ−j

[
πi
(
f(θ̃j , θ−j), θi

)]
= Pi

for all j ̸= i and θ̃j ∈ Θj.

Related notions of insurance exist in the literature on optimal auctions with risk averse
bidders (e.g. Maskin and Riley, 1984) or with ambiguity (e.g. Bose et al., 2006). Maskin and Riley
(1984) define a perfect insurance auction (p. 1491) where each bidder’s payment is deterministic
and depends only on the own type and the event of winning or losing the auction, with marginal
utilities of income being equated across these two cases. In our framework with material payoffs
that are linear in transfers, this is satisfied by a large class of mechanisms, such as first-price or
all-pay auctions which do not satisfy our insurance property based on overall payoffs.11 Bose
et al. (2006) define a full insurance mechanism (p. 416) where each bidder’s ex-post payoff
depends only on the own type, and they show that full insurance is optimal with ambiguity

10Crémer and McLean’s concept corresponds to the earlier notion of uniform equilibrium proposed by
d’Aspremont and Gerard-Varet (1979), which builds on the concept of “complete ignorance” (see e.g. Luce and
Raiffa, 1957).

11See Eisenhuth (2012) and Eisenhuth and Ewers (2012) for an analysis of such mechanisms with loss averse
bidders. Maskin and Riley (1984) show that a perfect insurance auction will typically not be optimal with risk
averse bidders, when the auctioneer can use risk to relax incentive constraints.
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averse bidders.12 The property of full insurance is stronger than our insurance property, as we
require invariance of payoffs with respect to another player’s type only from an ex-ante expected
perspective. We can now state our first main result:

Proposition 1. Assume that y ∈ ]0,∞[n(n−1). If a social choice function f is materially Pareto
efficient and the insurance property is satisfied, then f is implementable in an IFE-TI s∗ in
which κij(s

∗) = 1/yji holds for all pairs of players.

Proof. We first prove the result for n = 2. We comment on the case where n > 2 afterwards.
Throughout, we fix a social choice function f that is efficient and we suppose that the insurance
property holds. We also assume y12, y21 > 0, and we proceed in two steps. First, we construct a
specific mechanism Φ for f . Second, we show that Φ has an IFE-TI in which f is realized with
the desired kindness levels.

Step 1. Construct mechanism Φ = [M1,M2, g] as follows. For both i = 1, 2 we let Mi =

Θi × {0, 1}, so that a message mi = (ηi, γi) ∈ Mi contains an announced type ηi ∈ Θi and
an announced number γi ∈ {0, 1}. Given a message profile m = (m1,m2) ∈ M , we also write
η = (η1, η2) ∈ Θ for the profile of announced types, and γ = (γ1, γ2) ∈ {0, 1}2 for the profile
of announced numbers. The outcome function g is defined as follows. For all m ∈ M , let
qg(m) = qf (η), i.e. only the announced types η matter for the decision rule, which follows f .
For all m ∈ M , i = 1, 2 and j ̸= i, let tgi (m) = tfi (η) + ri(γ), where

ri(γ) =


+eij if γi = 1, γj = 0,

−eji if γi = 0, γj = 1,

0 otherwise.

Hence, transfers also depend on the announced types η according to f , plus an additional term
that depends on the announced numbers γ. If i announces γi = 1 and j announces γj = 0, then
i takes an additional amount of eij from j, and vice versa. In the following, use of i and j always
presumes j ̸= i. Since f is efficient and the additional transfers ri always sum to zero across
players, mechanism Φ is budget balanced for all profiles m ∈ M . As long as the announcements
satisfy γi = γj = 0, the mechanism corresponds to a direct mechanism for f .

Step 2. Consider strategy profile sT = (sT1 , s
T
2 ) where sTi (θi) = (θi, 0) for all θi ∈ Θi. The

profile sT corresponds to truth-telling in a direct mechanism. Under sT we have g(sT (θ)) = f(θ)

for all θ ∈ Θ, so that f is realized. We will show that, for appropriately chosen values of e12
and e21, strategy profile sT is an IFE-TI of Φ, and the desired kindness levels arise. In the
hypothetical equilibrium sT , beliefs are correct: sbi = sbbj = sTj for i = 1, 2.

We first derive the kindness term κij((θi, 0), s
T
j |θi). Given the definition of Φ, choice of mi

by player i induces the following pair of payoffs:

[
Πi(mi, s

T
j |θi),Πj(mi, s

T
j )
]
=


[
Pi(ηi, θi), Pj

]
for mi = (ηi, 0) with ηi ∈ Θi,[

Pi(ηi, θi) + eij , Pj − eij
]

for mi = (ηi, 1) with ηi ∈ Θi,

where Pi(ηi, θi) = Eθj [πi(f(ηi, θj), θi)], and Pj = Eθj [πj(f(ηj , θj), θj)] is a constant because of
12Perfect and full insurance coincide for certain classes of risk preferences, see Bose et al. (2006) for a discussion.
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the insurance property.
Fix eij = 1/[(1−α)yji], implying maxmi∈Mi Πj(mi, s

T
j ) = Pj . Let η∗i ∈ argmaxηi∈Θi Pi(ηi, θi).

Since any message (η∗i , 1) simultaneously maximizes Πi(mi, s
T
j |θi) and minimizes Πj(mi, s

T
j ), we

have (η∗i , 1) ∈ Eij(s
T
j |θi), and thus minmi∈Eij(sTj |θi)Πj(mi, s

T
j ) = Pj − 1/[(1 − α)yji]. It follows

that Πei
j (s

T
j |θi) = Pj − 1/yji and therefore κij((θi, 0), s

T
j |θi) = 1/yji as required. Replicating

the same argument for player j and eji = 1/[(1 − α)yij ] yields the type-invariant kindness
κji((θj , 0), s

T
i |θj) = 1/yij . We thus have λij(s

T ) = 1/yji and λji(s
T ) = 1/yij in the hypothetical

equilibrium.
Consider now player i’s interim utility for any θi ∈ Θi:

Ui(mi, s
T
j , s

T
i |θi) = Πi(mi, s

T
j |θi) + yijκij(mi, s

T
j |θi) · (1/yij).

Omitting terms that do not depend on mi, mi = (θi, 0) is a maximizer of this expression if and
only if it is a maximizer of

Πi(mi, s
T
j |θi) + Πj(mi, s

T
j ) = Eθj

[
vi(q

g(mi, s
T
j (θj)), θi) + vj(q

g(mi, s
T
j (θj)), θj)

]
,

where the equality holds due to budget balance of Φ. Since f is efficient, so that qf is value
maximizing, mi = (θi, 0) is a solution to the interim utility maximization problem, for any
θi ∈ Θi. Replicating the argument for player j, we can conclude that sT is an IFE-TI.

The case of n > 2. The arguments for n = 2 can be generalized to the case of n > 2, by
defining message sets Mi = Θi× [{0} ∪ (I\{i})]. The announcement of mi = (ηi, γi) corresponds
to the announcement of type ηi in a direct mechanism, but player i obtains an additional transfer
eij from player j if and only if γi = j and γk = 0 for all k ̸= i. The above arguments can then
be applied analogously for each pair of players, and bilateral type-invariant kindness of truth-
telling sTi (θi) = (θi, 0) can be adjusted by choice of the additional transfers payments so that
each player’s goal becomes the maximization of the sum of material payoffs.

The mechanism that we construct in the proof of Proposition 1 works like a direct mechanism,
where each player announces a type, but with the new feature that each player i can claim an
additional payment of eij from any opponent j.13 Truthful revelation s∗ without claiming such
payments then becomes kind behavior. We show that the (budget-balanced) payments eij can be
adjusted so that the type-invariant interim kindness κij(s

∗) = 1/yji is achieved for each pair of
players. The insurance property is crucial for this to be possible. It implies that the realized and
revealed type is irrelevant for kindness; all that matters is the fact that no additional payment is
claimed. Each player then becomes a maximizer of the sum of expected material payoffs on the
interim stage. Since the social choice function f is efficient, truth-telling is then a best-response
to truth-telling of the opponents, which implies that the mechanism implements f in IFE-TI.
Due to the specific values of equilibrium kindness, our arguments from Section 3.2 imply that
it also implements f in ex-post fairness equilibrium.

13This mechanism is isomorphic to an augmented revelation mechanism (Mookherjee and Reichelstein 1994).
The reason why it is formally not an augmented revelation mechanism is that we define message sets with a
product structure, Mi = Θi×Di for some set Di, instead of defining it as a union Mi = Θi∪Di so that Θi ⊆ Mi.
See also Bierbrauer and Netzer (2012) and de Clippel (2012). Saran (2011) discusses the validity of the revelation
principle for general menu-dependent preferences.
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If only implementation in IFE-TI but not ex-post fairness implementation was required, a
much simpler construction would suffice. In fact, the direct revelation mechanism implements
any efficient social choice function with the insurance property in IFE-TI. This is true because
efficiency and insurance jointly imply standard Bayesian incentive-compatibility (see Lemma 1
below) and Bayesian incentive-compatibility and the insurance property jointly imply that f is
implemented by a fairness equilibrium with (type-invariant) kindness levels of zero in the direct
mechanism (see Bierbrauer and Netzer, 2012).

Lemma 1. If f is materially Pareto efficient and satisfies the insurance property, then f is
Bayesian incentive-compatible.

Proof. From material Pareto efficiency of f it follows that

n∑
i=1

πi(f(θj , θ−j), θi) ≥
n∑

i=1

πi(f(θ̂j , θ−j), θi)

for all j ∈ I, (θj , θ−j) ∈ Θ and θ̂j ∈ Θj . Taking expectation with respect to θ−j , this becomes

n∑
i=1

Eθ−j
[πi(f(θj , θ−j), θi)] ≥

n∑
i=1

Eθ−j
[πi(f(θ̂j , θ−j), θi)].

Due to the insurance property of f , we have that

Eθ−j
[πi(f(θ̃j , θ−j), θi)] = Pi

is independent of θ̃j for all agents i ̸= j, so that we can simplify the inequality to

Eθ−j
[πj(f(θj , θ−j), θj)] ≥ Eθ−j

[πj(f(θ̂j , θ−j), θj)],

which is the conventional Bayesian incentive-compatibility condition.

As the next section shows, even IFE-TI implementation (without the additional requirement
of ex-post implementability) will become more difficult when voluntary participation is required.

4.2 Voluntary Participation

The analysis in the previous section ignored the question whether or not some type of some
player would prefer to opt out of the mechanism (see Myerson and Satterthwaite, 1983, for the
classical impossibility result). To show that voluntary participation can be guaranteed as well,
we now require that the mechanism used to implement f admits veto rights: every player must
have a message which enforces a fixed status quo allocation ā = (q̄, t̄1, . . . , t̄n) ∈ A. We assume
that ā is budget balanced,

∑
i∈I t̄i = 0, but allow it to be chosen arbitrarily otherwise.14 If

IFE-TI implementation of a social choice function f is possible in such a mechanism, we say
that f is voluntarily implementable in IFE-TI.

14Our assumption implies that the mechanism remains budget balanced out-of-equilibrium, which simplifies
the proof. Our result would continue to hold, however, if

∑
i∈I t̄i < 0 was true.
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Voluntary implementation raises several novel issues compared to the previous section. First,
the direct mechanism with veto rights no longer implements f in IFE with zero kindness, despite
efficiency and the insurance property, because some types of some players might prefer to opt
out of the mechanism. Second, veto rights generally complicate the problem of achieving type-
invariant kindness. Execution of the veto may induce bilaterally Pareto efficient payoff pairs
for some but not for other types, so that the veto is relevant for the computation of equitable
payoffs in the former but not in the latter case. Equitable payoffs and kindness can therefore
vary with the realized type despite the insurance property of f , because the insurance property
constrains payoffs derived from type reports but not from the exercise of a veto. Finally, truth-
telling in a direct mechanism with veto rights goes along with different kindness values than
in a direct mechanism without veto rights. Hence our construction of off-equilibrium payments
must be different, and, in particular, it can become necessary to decrease equilibrium kindness.
Nevertheless, we can establish the following result:

Proposition 2. Assume that y ∈ ]0,∞[n(n−1). If a social choice function f is materially Pareto
efficient and the insurance property is satisfied, then f is voluntarily implementable in an IFE-TI
s∗ in which κij(s

∗) = 1/yji holds for all pairs of players.

Proof. As before, we first prove the result for n = 2 and comment on the case n > 2 afterwards.
We fix a social choice function f that is efficient and we suppose that the insurance property
holds. We also fix an arbitrary budget balanced status quo ā = (q̄, t̄1, t̄2) ∈ A. We proceed in
two steps. First, we construct a mechanism Φ for f which admits veto rights. Second, we show
that Φ has an IFE-TI in which f is realized with the desired kindness levels.

Step 1. Construct mechanism Φ = [M1,M2, g] as follows. Let Mi = (Θi ∪ {ν}) × {0, 1}, so
that a message mi = (ηi, γi) ∈ Mi again comprises two components. First, ηi ∈ Θi ∪ {ν} allows
player i to report either a type from Θi or to exercise a veto ν. Second, player i announces
a number γi ∈ {0, 1}. Given a profile m = (m1,m2) ∈ M , we again write η = (η1, η2) and
γ = (γ1, γ2). The outcome function g is defined differently for two cases. First, if m has ηi = ν

for at least one i = 1, 2, we let qg(m) = q̄ and tgi (m) = t̄i + r̄i(γ), where

r̄i(γ) =


+dij if γi = 1, γj = 0,

−dji if γi = 0, γj = 1,

0 otherwise.

Hence allocation ā is chosen, with possible additional transfers depending on γ. Second, if m
has η ∈ Θ, we let qg(m) = qf (η) and tgi (m) = tfi (η) + ri(γ), where

ri(γ) =


+eij if γi = 1, γj = 0,

−eji if γi = 0, γj = 1,

0 otherwise.

Hence, the outcome function selects allocation f(η) where additional transfers may occur in
accordance with γ. Since f is efficient, ā is budget balanced, and the additional transfers r̄i

and ri always sum to zero across players, Φ is budget balanced for all profiles m ∈ M . If the
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announcements satisfy γi = γj = 0, then the allocations induced by Φ are equivalent to the
allocations given by a direct mechanism with additional veto rights for every player.

Step 2. Consider sT = (sT1 , s
T
2 ) where sTi (θi) = (θi, 0) for all θi ∈ Θi, so that the veto rights

remain unused and g(sT (θ)) = f(θ) for all θ ∈ Θ. We will show that sT is an IFE-TI in which
the desired kindness levels arise for appropriate values of e12, e21, d12 and d21.

We first derive κij((θi, 0), s
T
j |θi). Player i with type θi can induce the following payoff pairs:

[
Πi(mi, s

T
j |θi),Πj(mi, s

T
j )
]
=



[
Pi(ηi, θi), Pj

]
for mi = (ηi, 0) with ηi ∈ Θi,[

Pi(ηi, θi) + eij , Pj − eij
]

for mi = (ηi, 1) with ηi ∈ Θi,[
P̄i(θi), P̄j

]
for mi = (ν, 0),[

P̄i(θi) + dij , P̄j − dij
]

for mi = (ν, 1),

where Pi(ηi, θi) and Pj are defined as in the proof of Proposition 1, P̄i(θi) = πi(ā, θi) is player
i’s material payoff in ā and P̄j = Eθj [πj(ā, θj)] is player j’s expected material payoff from ā.
Define δj = P̄j − Pj , which does not depend on any type and thus is known to the mechanism
designer, who can distinguish between the following three cases:

(a): δj ≥ 0. Let eij = [1+αyjiδj ]/[(1−α)yji] and dij = [1+yjiδj ]/[(1−α)yji], so eij , dij > 0.
We obtain

P̄j ≥ Pj > Pj − eij = P̄j − dij

and hence maxmi∈Mi Πj(mi, s
T
j ) = P̄j . Player i’s own payoff can be maximized only by either

a message mi = (η∗i , 1) for η∗i ∈ argmaxηi∈Θi Pi(ηi, θi), or by message mi = (ν, 1). Hence,
one of these messages must belong to Eij(s

T
j |θi). All of them yield the same minimal payoff

for j, so minmi∈Eij(sTj |θi)Πj(mi, s
T
j ) = P̄j − dij . As a result, Πei

i (s
T
j |θi) = Pj − 1/yji and

κij((θi, 0), s
T
j |θi) = 1/yji.

(b): −1/[(1−α)yji] < δj < 0. Let eij = 1/[(1−α)yji] and dij = [1+(1−α)yjiδj ]/[(1−α)yji],
so again eij , dij > 0. We obtain

Pj > P̄j > Pj − eij = P̄j − dij .

Thus, maxmi∈Mi Πj(mi, s
T
j ) = Pj and minmi∈Eij(sTj |θi)Πj(mi, s

T
j ) = Pj − eij , by the same argu-

ment as in case (a). This again implies Πei
i (s

T
j |θi) = Pj − 1/yji and κij((θi, 0), s

T
j |θi) = 1/yji.

(c): δj ≤ −1/[(1− α)yji]. Let eij = −δj and dij = [1 + yjiδj ]/[αyji], so eij > 0 and dij < 0.
We obtain

P̄j − dij ≥ Pj > P̄j = Pj − eij

and maxmi∈Mi Πj(mi, s
T
j ) = P̄j−dij . Player i’s own payoff can be maximized only by a message

(η∗i , 1) where η∗i ∈ argmaxηi∈Θi Pi(ηi, θi), or by message (ν, 0). Hence one of these messages
must be contained in Eij(s

T
j |θi). All of them yield the same minimal payoff for j, so that

minmi∈Eij(sTj |θi)Πj(mi, s
T
j ) = P̄j , Πei

i (s
T
j |θi) = Pj − 1/yji, and κij((θi, 0), s

T
j |θi) = 1/yji.

We have shown that κij((θi, 0), s
T
j |θi) = 1/yji can be achieved by an appropriate choice of

eij and dij in any case. The remainder of the proof is analogous to the proof of Proposition 1.
The case of n > 2. As for Proposition 1, the arguments for n = 2 can be generalized to the
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case of n > 2, now using message sets Mi = (Θi ∪ {ν})× [{0} ∪ (I\{i})].

The mechanism constructed in the proof can be interpreted as follows: We first fix the direct
revelation mechanism for f and extend it with veto rights. Analogous to the construction for
Proposition 1, we then allow each player to claim extra payments from any other player, over
and above the transfers of f or the status quo allocation. The goal of these extra payments is
again to manipulate kindness of truth-telling to values that turn players into maximizers of the
sum of expected material payoffs. The amount of these payments depends on whether the claims
are coupled with either a type report or the execution of the veto right. When enforcement of
the status quo benefits or does not hurt player j too strongly (cases (a) and (b) in the proof),
then the transfers that i can claim from j in addition to executing the veto are designed to
give the same minimal payoff to player j as when i reports a type and claims the associated
additional transfers. This minimum is therefore independent of whether or not the status quo
is bilaterally Pareto efficient from the perspective of type θi of player i, which yields the desired
type-invariance. If enforcement of the status quo hurts player j strongly (case (c) in the proof),
then execution of the veto defines the minimal payoff that i can give to j. The transfers that i

can claim in addition to reporting a type are tailored to induce that same minimum, which again
yields type-invariance. The transfers that i can claim in addition to the veto become negative
and are used to adjust the maximal payoff that i can give to j until the desired equitable payoff
is obtained. This construction stabilizes equitable payoffs and therefore kindness such that it
does not vary with the realized type in equilibrium.

5 Public Goods Example

5.1 Environment

In this section, we will illustrate the relevance of the insurance property and provide examples of
the mechanisms used in our proofs. We work with a simple public goods application.15 Consider
an environment with two players, I = {1, 2}, and the problem of whether or not to provide a
public good, Q = {0, 1}. Each player can be of either high or low type, Θi = {θLi , θHi }, both of
which are equally likely. Types capture the players’ willingness to pay for the public good, so
we have vi(1, θi) = θi − c and vi(0, θi) = 0, where c > 0 is the per capita cost of providing the
public good, assumed to be shared equally by default. We assume

c < θL1 < θH1 and θL2 < c < θH2 ,

which implies that player 1 would always like to have the public good provided, but player 2

only if he has the high type. We also assume that

θL1 + θL2 < 2c < θH1 + θL2 ,

which implies that Pareto efficiency requires to provide the good except if θ = (θL1 , θ
L
2 ).

15This example application was also used in Bierbrauer and Netzer (2011), an earlier version of Bierbrauer and
Netzer (2012).
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5.2 Expected Externality Mechanism

The expected externality mechanism (AGV) for an efficient decision rule (d’Aspremont and
Gerard-Varet, 1979; Arrow, 1979) is ex-post budget balanced, hence materially Pareto efficient,
and Bayesian incentive-compatible. As Bierbrauer and Netzer (2012) have shown, it always
satisfies the insurance property for the case of two players. Table 1 summarizes this mechanism
for our example, by stating the decision rule qf and player 1’s transfer tf1 . The transfer for player
2 is given by tf2 = −tf1 .

θL2 θH2

θL1 (0, (θH2 − θH1 )/2) (1, (θH2 − θH1 − θL1 + c)/2)

θH1 (1, (θH2 − θH1 + θL2 − c)/2) (1, (θH2 − θH1 + θL2 − θL1 )/2)

Table 1: AGV (qf , tf1).

Ex-ante expected payoffs of the two players in the truth-telling Bayes-Nash equilibrium are

P1 =
1

2
θH2 +

1

4
θL2 − 3

4
c and P2 =

1

2
θH1 +

1

4
θL1 − 3

4
c.

Due to the insurance property, each player i = 1, 2 obtains the same expected payoff Pi even if
the other player j ̸= i deviates from truth-telling to any of the other possible strategies. This
implies that the truth-telling strategy profile is associated with type-invariant kindness levels
of zero in this mechanism. Psychological concerns are therefore irrelevant to both players, and
Bayesian incentive-compatibility implies that truth-telling is also an IFE-TI.

5.3 Ex-post Fairness Implementation

The previous result can still be seen as a corollary of the general robustness arguments in Bier-
brauer and Netzer (2012). The AGV does, however, not guarantee ex-post fairness implemen-
tation. To see why, assume that both players have followed a truth-telling strategy ex-interim,
have correct beliefs about this fact, and type profile θ = (θL1 , θ

L
2 ) has realized. Since updating

the interim kindness values to the new information still results in mutual kindness of zero, the
maximization of ex-post utility (3) boils down to a maximization of own material ex-post payoffs
for both players. The condition for player 1 wanting to deviate ex-post to the non-truthful type
announcement θH1 becomes (θL1 − c) + (θL2 − c)/2 > 0. With

θL1 = 3/2, θH1 = 2, θL2 = 1/4, θH2 = 2, c = 1, (4)

for instance, we can verify that this is true, so that the expected externality mechanism is not
ex-post fairness incentive-compatible.

To achieve ex-post fairness implementation, we can instead apply the construction provided
in the proof of Proposition 1 and augment the AGV by giving player i = 1, 2 the option to take
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an additional amount of eij = 1/[(1− α)yji] from player j ̸= i. With

α = 1/2, y12 = 1, y21 = 1, (5)

for instance, we obtain e12 = e21 = 2. Truthful type revelation without claiming this additional
payment is then still an IFE-TI, but the associated kindness values are now κij(s

∗) = 1/yji

instead of zero. Updating leaves these values unchanged, so that ex-post utility coincides with
the sum of ex-post material payoffs. No player therefore regrets having helped to induce a
materially Pareto efficient allocation, or not having taken more money from the other player.

5.4 Voluntary Participation

Consider finally the possibility that each player can veto the AGV mechanism on the interim
stage, thereby inducing the null allocation ā = (0, 0) instead of the allocations described in
Table 1. Without social preferences, player 2 of type θL2 would strictly prefer to do so whenever
(θH1 − θH2 )/2 + (θL2 − c)/4 < 0, which is again the case for the parameters introduced in (4)
above. The same holds with intention-based social preferences. It is easily verified that both
types of player 1 suffer in material terms from using the veto, provided that player 2 always tells
the truth. Since P2 > 0, the veto also hurts player 2’s expected material payoff, which makes
it an inefficient action for both types of player 1. Inefficient actions do not influence equitable
payoffs, so truth-telling of player 1 remains associated with a type-invariant kindness of zero,
from our earlier arguments. Player 2 then cares for material payoffs only, and still prefers to opt
out of the mechanism if type θL2 has realized.

To guarantee voluntary participation, we can use the construction provided in the proof of
Proposition 2. With the parameters given in (4) and (5), case (b) from the proof applies. As
before, we obtain the payments e12 = e21 = 2 that each player can claim from the other if none
of them makes use of the veto. We obtain the smaller payments d12 = 11/8 and d21 = 27/16

that can be claimed when at least one player makes use of the veto. The value of dij is defined
by the equality −dij = Pj − eij and ensures that the maximal damage that player i can do to j

by using a veto strategy is the same as by using a type-announcement strategy.

6 Conclusions

We have studied notions of robustness in implementation for a mechanism design framework
where agents are characterized by intention-based social preferences. Within this model, players
are uncertain about their opponents’ intentions, as they are uncertain about their material pay-
off types. We have firstly addressed robustness with regard to assumptions about how agents
accommodate the uncertainty about others’ intentions. Our concept of implementation in IFE-
TI provides robustness in this regard, as it renders intentions transparent despite the presence
of asymmetric information. We have secondly proposed a notion of ex-post fairness implemen-
tation, which provides robustness to the extent that no player would want to change his interim
decision even if he were informed about the others’ private information ex-post. This concept
rules out any ex-post regret.

15



As our main result, we have established that any materially Pareto-efficient social choice
function which provides insurance can be implemented under both robustness concepts, even
if participation in the mechanism is voluntary. The insurance property is essential to our con-
struction, because it facilitates the property of type-invariant kindness. The mechanisms that
we construct allow the designer to manipulate reference points for kindness perceptions in order
to align individual and social motives both on the interim stage and on the ex-post stage, even
if participation is voluntary.

References

Alger, I. and Renault, R. (2006). Screening ethics when honest agents care about fairness.
International Economic Review, 47:59–85.

Arrow, K. (1979). The property rights doctrine and demand revelation under incomplete in-
formation. In Boskin, M. J., editor, Economics and Human Welfare. Academic Press, New
York.

Bartling, B. and Netzer, N. (2013). An externality-robust auction: Theory and experimental
evidence. Mimeo.

Battigalli, P. and Dufwenberg, M. (2009). Dynamic psychological games. Journal of Economic
Theory, 144:1–35.

Bergemann, D. and Morris, S. (2005). Robust mechanism design. Econometrica, 73:1771–1813.

Bierbrauer, F. and Netzer, N. (2011). Mechanism design and intentions. Mimeo.

Bierbrauer, F. and Netzer, N. (2012). Mechanism design and intentions. University of Zurich,
Department of Economics, Working Paper No. 66.

Blount, S. (1995). When social outcomes aren’t fair: The effect of causal attributions on pref-
erences. Organizational Behavior and Human Decision Processes, 63:131–144.

Bodoh-Creed, A. (2012). Ambiguous beliefs and mechanism design. Games and Economic
Behavior, 75:518–537.

Bose, S., Ozdenoren, E., and Pape, A. (2006). Optimal auctions with ambiguity. Theoretical
Economics, 1:411–438.

Bowles, S. and Polanía-Reyes, S. (2012). Economic incentives and social preferences: Substitutes
or complements? Journal of Economic Literature, 50:368–425.

Cabrales, A. and Serrano, R. (2011). Implementation in adaptive better-response dynamics: To-
wards a general theory of bounded rationality in mechanisms. Games and Economic Behavior,
73:360–374.

Charness, A. and Rabin, M. (2002). Understanding social preferences with simple tests. Quar-
terly Journal of Economics, 117:817–869.

16



Cox, J., Friedman, D., and Gjerstad, S. (2007). A tractable model of reciprocity and fairness.
Games and Economic Behavior, 59:17–45.

Crawford, V., Neeman, Z., Kugler, T., and Pauzner, A. (2009). Behaviorally optimal auction
design: Examples and observations. Journal of the European Economic Association, 7:377–
387.

Crémer, J. and McLean, R. (1985). Optimal selling strategies under uncertainty for a discrimi-
nating monopolist when demands are interdependent. Econometrica, 53:345–361.

d’Aspremont, C. and Gerard-Varet, L.-A. (1979). Incentives and incomplete information. Journal
of Public Economics, 11:25–45.

de Clippel, G. (2012). Behavioral implementation. Mimeo.

De Marco, G. and Immordino, G. (2013). Partnership, reciprocity and team design. Research
in Economics, 67:39–58.

Desiraju, R. and Sappington, D. (2007). Equity and adverse selection. Journal of Economics
and Mangement Strategy, 16:285–318.

Dufwenberg, M., Gächter, S., and Hennig-Schmidt, H. (2011). The framing of games and the
psychology of play. Games and Economic Behavior, 73:459–478.

Dufwenberg, M. and Kirchsteiger, G. (2000). Reciprocity and wage undercutting. European
Economic Review, 44:1069–1078.

Dufwenberg, M. and Kirchsteiger, G. (2004). A theory of sequential reciprocity. Games and
Economic Behavior, 47:268–298.

Dufwenberg, M., Smith, A., and Van Essen, M. (2013). Hold-up: With a vengeance. Economic
Inquiry, 51:896–908.

Eisenhuth, R. (2012). Reference dependent mechanism design. Mimeo.

Eisenhuth, R. and Ewers, M. (2012). Auctions with loss averse bidders. Mimeo.

Eliaz, K. (2002). Fault tolerant implementation. Review of Economic Studies, 69:589–610.

Falk, A., Fehr, E., and Fischbacher, U. (2008). Testing theories of fairness - intentions matter.
Games and Economic Behavior, 62:287–303.

Falk, A. and Fischbacher, U. (2006). A theory of reciprocity. Games and Economic Behavior,
54:293–315.

Filiz-Ozbay, E. and Ozbay, E. (2007). Auctions with anticipated regret: Theory and experiment.
American Economic Review, 97:1407–1418.

Geanakoplos, J., Pearce, D., and Stacchetti, E. (1989). Psychological games and sequential
rationality. Games and Economic Behavior, 1:60–79.

17



Glazer, A. and Rubinstein, A. (1998). Motives and implementation: On the design of mechanisms
to elicit opinions. Journal of Economic Theory, 79:157–173.

Hahn, V. (2009). Reciprocity and voting. Games and Economic Behavior, 67:467–480.

Hoffmann, M. and Kolmar, M. (2013). Intention-based fairness preferences in two-player con-
tests. Economics Letters, 120:276–279.

Jehiel, P., Meyer-Ter-Vehn, M., Moldovanu, B., and Zame, W. (2006). The limits of ex post
implementation. Econometrica, 74:585–610.

Jehiel, P. and Moldovanu, B. (2006). Allocative and informational externalities in auctions and
related mechanisms. In Blundell, R., Newey, W., and Persson, T., editors, Proceedings of the
9th World Congress of the Econometric Society.

Kucuksenel, S. (2012). Behavioral mechanism design. Journal of Public Economic Theory,
14:767–789.

Levine, D. (1998). Modelling altruism and spitefulness in experiments. Review of Economic
Dynamics, 1:593–622.

Luce, R. D. and Raiffa, H. (1957). Games and Decisions. John Wiley and Sons, Inc., USA.

Maskin, E. and Riley, J. (1984). Optimal auctions with risk averse buyers. Econometrica,
52:1473–1518.

Mathevet, L. (2010). Supermodular mechanism design. Theoretical Economics, 5:403–443.

Mookherjee, D. and Reichelstein, S. (1990). Implemention via augmented revelation mechanisms.
Review of Economic Studies, 57:453–475.

Myerson, R. and Satterthwaite, M. (1983). Efficient mechanisms for bilateral trading. Journal
of Economic Theory, 28:265–281.

Netzer, N. and Schmutzler, A. (2013). Explaining gift-exchange – the limits of good intentions.
Journal of the European Economic Association, forthcoming.

Nishimura, N., Cason, T., Saijo, T., and Ikeda, Y. (2011). Spite and reciprocity in auctions.
Games, 2:365–411.

Rabin, M. (1993). Incorporating fairness into game theory and economics. American Economic
Review, 83:1281–1302.

Renou, L. and Schlag, K. (2011). Implementation in minimax regret equilibrium. Games and
Economic Behavior, 71:527–533.

Saran, R. (2011). Menu-dependent preferences and revelation principle. Journal of Economic
Theory, 146:1712–1720.

Sebald, A. (2010). Attribution and reciprocity. Games and Economic Behavior, 68:339–352.

18



Segal, U. and Sobel, J. (2007). Tit for tat: Foundations of preferences for reciprocity in strategic
settings. Journal of Economic Theory, 136:197–216.

Segal, U. and Sobel, J. (2008). A characterization of intrinsic reciprocity. International Journal
of Game Theory, 36:571–585.

von Siemens, F. (2009). Bargaining under incomplete information, fairness, and the hold-up
problem. Journal of Economic Behavior and Organization, 71:486–494.

von Siemens, F. (2011). Heterogeneous social preferences, screening, and employment contracts.
Oxford Economic Papers, 63:499–522.

von Siemens, F. (2013). Intention-based reciprocity and the hidden costs of control. Journal of
Economic Behavior and Organization, 92:55–65.

19


