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1 Introduction

While policymakers and climate scientists have long argued that overcoming the chal-

lenges brought about by climate change requires policies that encourage the development

of new technologies which reduce the energy- and emissions-intensity of production and

consumption, the economics literature had initially focused on models with exogenous

technological change (see e.g. Nordhaus, 1994). In these models, the optimal policy re-

sponse is a Pigovian tax on greenhouse gas emissions, which progressively increases over

time. The growing theoretical literature on directed technical change (henceforth DTC)

in the environmental context shows that taking into account the endogeneity of inno-

vation can profoundly affect policy recommendations, and the empirical literature has

provided ample evidence that innovation indeed responds to economic incentives such

as an increase in fuel or energy prices. This chapter presents a short and non-exhaustive

review of this literature, which notably builds on Acemoglu, Aghion, Bursztyn and Hé-

mous (2012, henceforth AABH) and Aghion, Dechezleprêtre, Hémous, Martin and van

∗Antoine Dechezleprêtre, OECD and Grantham Research Institute on Climate Change and the Envi-
ronment, London School of Economics, antoine.dechezlepretre@oecd.org and David Hémous, University
of Zurich and CEPR, david.hemous@econ.uzh.ch. We very much thank Morten Olsen since a large part
of this book chapter is adapted from our co-authored review article “Hémous, David and Morten Olsen.
2021. “Directed Technical Change in Labor and Environmental Economics.” Annual Review of Eco-
nomics 13: Submitted. DOI: https://doi.org/10.1146/annurev-economics-092120-044327”. We thank
Philippe Aghion and Peter Howitt for their work on Schumpeterian growth which made this literature
possible and to whom this volume is dedicated. In particular, we had the chance to co-author with
Philippe and we are reviewing here some of our joint work. David was also a PhD student of Philippe.
Finally, section 2.4 is based on joint working notes of Philippe and David.
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Reenen (2016). The review (especially the theoretical part) reproduces in part our recent

review in Hémous and Olsen (2021).1

DTC has a long tradition in economics. Hicks (1932) already suggested that an in-

crease in relative prices should induce innovation to economize on the more expensive

input, so that labor scarcity with respect to capital should induce labor-saving innova-

tion; and Kennedy (1964) linked the direction of innovation to input cost shares. While

early endogenous growth theory models, such as Aghion and Howitt (1992) only in-

troduce one type of innovation, a key feature of DTC growth models is the presence

of several types of innovation. The earliest example is Aghion and Howitt (1996) who

model separately research and development and analyze researchers’ incentives to allo-

cate their effort to one or the other stage of innovation.2 Closer to the original questions

of Hicks (1932) and Kennedy (1964), Acemoglu (1998, 2002) developed the canonical

DTC model where innovation can augment either low- or high- skill labor.

While growth theorists developed endogenous growth models with DTC in the 1990s,

environmental economists did not adopt these until later. Yet, a growing empirical liter-

ature investigated the impact of energy prices on innovation (Newell, Jaffe and Stavins,

1999, Popp, 2002), and on the quantitative side, several papers added induced technical

change to computable general equilibrium (CGE) models. Still, these authors did not

build on modern growth theory and therefore either ignored knowledge externalities or

modeled them in an ad-hoc way: for instance, in Nordhaus (2002) and Popp (2004,

2006), technological progress results from the accumulation of an R&D stock similar to

capital.3 Bovenberg and Smulders (1995, 1996) present endogenous growth models in

an environmental context but with only one type of innovation.

We focus our review on DTC models in environmental economics which build on

modern endogenous growth theory and especially Acemoglu (1998, 2002)’s framework.

This literature largely focuses on energy and climate-change economics. The main source

of difference between these models is whether they consider directed innovation affecting

two inputs which are complement or substitute. The complement case (starting with

Smulders and de Nooij, 2003) is used to study energy or fossil fuel resource-saving in-

1For other literature reviews see Popp, Newell and Jaffe (2010), Fischer and Heutel (2013), Popp
(2019) and Grubb et al. (2021).

2In their model, research corresponds to the arrival of a new potential line of products and develop-
ment to secondary innovations which introduce one of these products.

3See also Goulder and Schneider (1999), Massetti, Carraro, and Nicita (2009) or Sue Wing (2003).
Gerlagh and Lise (2005) and Grimaud and Rouge (2008) microfound innovation but still impose ad-hoc
relationships between its social and private values.
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novation as energy and fossil fuel resources are complement to capital or labor. The

substitute case (starting with AABH) focuses on the development of clean technologies

which can replace dirty ones such as renewables versus fossil fuels in electricity produc-

tion. The substitute case offers policy recommendations that contrast more sharply with

the earlier exogenous technical change literature than the complement case—essentially

because the complement case naturally leads to an economy featuring a balanced growth

path, while the substitute case does not. Models with DTC have since been used to study

the impact of energy price shocks on innovation in green technology, the determinants

of historical energy transitions and the optimal design of unilateral carbon taxes with

endogenous innovation and international trade. On the empirical side, the literature

has provided unambiguous evidence that energy and carbon prices are able to redirect

innovation activity toward clean technologies, providing strong empirical validation of

the basic DTC framework, although many specific questions remain largely unexplored.

Section 2 presents our review of the theoretical literature and a simple original exten-

sion of the AABH framework. Section 3 discusses the empirical evidence. We conclude

and discuss future research avenues in Section 4.

2 Theoretical insights from the DTC literature

In this section, we first review the main lessons from AABH. This paper presents a

framework where clean technologies (such as renewables) can substitute for dirty ones

(such as fossil fuels) and shows that the optimal policy with endogenous innovation is

markedly different from that with exogenous innovation. We then adapt this model to

contrast the substitute case with that of two complement inputs, which is adapted to

study energy-saving innovation for instance. Section 2.3 presents further applications of

the DTC framework. Section 2.4 presents an original extension to the AABH’s model,

where innovations in the dirtier sector can also reduce the emission rate.

2.1 The substitute case: clean and dirty energy

In AABH, a final good Yt (the numeraire) is produced with a dirty input Ydt and a clean

input Yct, according to a CES production function:

Yt =
(
Y

ε−1
ε

ct + Y
ε−1
ε

dt

) ε
ε−1

. (1)
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The elasticity of substitution between the two inputs, ε, is greater than 1 so that the

two inputs are gross substitutes.4 This framework is appropriate to study a situation

where the clean input can replace the dirty input over time as the latter is not necessary

for production. It applies for instance to the choice between renewable or nuclear en-

ergy and fossil fuels, between electric and fossil fuel vehicles or between bioplastics and

traditional plastics. Both Papageorgiou, Saam and Schulte (2017) using macro data and

Jo (2020) using micro data estimate elasticities of substitution between clean and dirty

energy inputs between 2 and 3; while Stöckl and Zerrahn (2020) and Wiskich (2021) find

elasticities larger than 3 in electricity production.

Greenhouse gas emissions are proportional to the use of the dirty input: Pt = ξYdt.

This formulation is equivalent to one where emissions are the result of consuming a freely

available fossil fuel resource which enters production in a Leontief way with the dirty

input. It is also equivalent to the case where the dirty input is an extraction input and

Ydt represents the extracted fossil fuel resource. Therefore, AABH focus on innovations

which reduce the effective costs of dirty inputs such as fossil fuel power plants, fossil fuel

vehicles or fossil fuels themselves but which keep the emission intensity of these inputs

constant. This ignores innovations aimed at improving energy efficiency or resource

productivity (“thermal efficiency”), which we introduce in section 2.4.

The clean and dirty inputs are each produced using a combination of labor and a

sector-specific set of machines indexed by i and of mass one. These machines are distinct

for each sector j ∈ {c, d}, and their productivity evolves endogenously. The current level

of productivity for machine i ∈ [0, 1] employed in sector j ∈ {c, d} is denoted Aji > 0.

The production functions for the two sectors are:

Yj =
1

1− β
Lβj

∫ 1

0

Aβjix
1−β
ji di for j ∈ {c, d}, (2)

where Lj is the mass of workers hired in sector j. Machines are produced monopolistically

and their production costs 1− β units of the final good.

Innovation is modeled in a quality-ladder fashion (Aghion and Howitt, 1992). Time

is discrete, and at the beginning of every period, scientists of mass S = 1 can work

to innovate either in the clean or the dirty sector. Given this choice, each scientist is

randomly allocated to one machine in their target sector without congestion (i.e. at

most one scientist is allocated to each sector). The probability of a successful innovation

4Aghion and Howitt (2009, ch. 16) look at the perfect substitutes case, ε = ∞, and preempt some
of AABH results.
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in sector j is given by ηj and there are no cross-sectoral spillovers in innovation. An

innovation increases the quality of the targeted machine by a factor 1 + γ (without loss

of generality we assume 1 + γ > (1 − β)
β−1
β , so that the technological leader charges

the unconstrained monopoly price). AABH assume that the innovator obtains a patent

for one period only. As we discuss below, this assumption makes the gap between the

private and social returns of innovation particularly salient, but the insights of AABH

generalize to settings where patents last longer.5 As the supply of R&D resources is

fixed, clean R&D fully crowds out dirty R&D. This is not an innocuous assumption as

a policy which aims at increasing clean innovation also depresses dirty innovation and

output growth (see Popp, 2004).

The aggregate technology in sector j can be defined as Aj ≡
∫ 1

0
Ajidi. The innovation

process then leads to the following law of motion for input j ∈ {c, d} technology:

Ajt = (1 + γηjsjt)Ajt−1,

where sjt is the mass of scientists in sector j, ηj their productivity and γ the innovation

size. This innovation set-up features a “building-on-the-shoulders-of-giants” externality

typical of Schumpeterian growth models: a successful innovator at time t will not only

improve the current technology from Aj,t−1 to (1+γ)Aj,t−1, but she will also enable future

innovators to build on the technology (1 + γ)Aj,t−1 instead of having to build on Aj,t−1.

This stands in contrast with horizontal innovation models where future innovators still

need to develop new products “from scratch”.

To determine the allocation of scientists, one needs to compute the expected profits

realized by innovators in the two sectors. The maximization problems of the clean

and dirty input producers give rise to iso-elastic demand functions (with a demand

elasticity of 1/β) for the machines. As the monopolists maximize profits given by πji =

pjixji − (1− β)xji, they charge a mark-up 1/(1− β) leading to machine price of 1. The

quantity xji produced by a monopolist and their profits πji are given by:

xji = p
1/β
j LjAji and πji = βp

1/β
j LjAji. (3)

5For simplicity, in sectors without innovation and therefore with no patent, the monopoly rights are
attributed at random to an entrepreneur.
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Plugging (3) in (2) gives the equilibrium quantity of intermediate input j:

Yj =
1

1− β
p

(1−β)/β
j AjLj. (4)

Since scientists are randomly allocated within a sector, the expected technology obtained

by an innovator in sector j is given by (1 + γ)Aj(t−1). From (3), the expected profits of

a scientist working for sector j are then given by:

Πjt = ηj (1 + γ) βp
1
β

jtLjtAj(t−1) =
ηjβpjtYjt
1 + γηjsjt

, (5)

where the second equality uses (4). The ratio of expected profits is then given by:

Πct

Πdt

=
ηc (1 + γηdsdt)

ηd (1 + γηcsct)

pctYct
pdtYdt

=
ηc
ηd

(
pct
pdt

) 1
β

︸ ︷︷ ︸
price effect

Lct
Ldt︸︷︷︸

market size effect

Act−1

Adt−1︸ ︷︷ ︸
direct productivity effect

. (6)

Scientists will be allocated to the sector with the highest expected profits, namely to the

clean one if this ratio is greater than 1, to the dirty one if it is less than 1 or potentially

to both if it is equal to 1. The first equality in (6) shows that scientists target the sector

with the largest revenue (adjusted with the productivity of the innovation technology)

since profits are proportional to revenues. This is in line with Kennedy (1964)’s finding

that the relative incentive to innovate combines the innovation possibility frontier (which

here is independent of technologies) and the relative factor shares (which here are the

revenue shares of the clean and dirty sectors). The second equality decomposes relative

revenues between a price effect, a market size effect, and a direct productivity effect.

Labor allocation between the two sectors is endogenous and equating the marginal

product of labor in the two sectors implies that the price ratio is given by

pc/pd = (Ac/Ad)
−β . (7)

Therefore, the price effect pushes innovation toward the less advanced sector. Demand

from the final good producer implies that

Yc/Yd = (pc/pd)
−ε . (8)
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Combining (4), (7) and (8) gives the labor allocation across the two sectors as:

Lc/Ld = (Ac/Ad)
σ−1 , (9)

where we define σ = 1 + β (ε− 1). Since ε > 1, σ > 1 and the relatively more advanced

sector attracts relatively more workers. Intuitively, this occurs because the allocation of

labor itself depends on relative technologies and relative prices, and this price effect is

dominated when the two inputs are substitute. Therefore, the market size effect in (6)

pushes innovation toward the more advanced sector.

Using (6), (7) and (9), we obtain the relative expected profits from innovation as:

Πct

Πdt

=
ηc
ηd

(
1 + γηcsct
1 + γηdsdt

)σ−2(
Act−1

Adt−1

)σ−1

. (10)

Since the two inputs are substitute σ > 1, the direct productivity effect and the market

size effect dominate the price effect and innovation tends to be directed toward the most

advanced sector. This is the first lesson of the framework: there is path dependence in

innovation in laissez-faire, as societies with a relatively high level of dirty technologies

today should expect even more dirty innovations in the future.6 For sufficiently large or

low values of Ac(t−1)/Ad(t−1), the equilibrium features a corner solution with innovation

in only one sector. In particular, for a sufficiently low initial ratio Ac0/Ad0, all innovation

at time 1 occurs in the dirty sector, Act/Adt further decreases over time and innovation

remains locked in dirty technologies. Intuitively, clean innovations will have a hard time

taking-off in laissez-faire as an innovation which improves a component in a fossil fuel

power plant will have a much larger market than one which improves a component in

a solar panel. As a result, while the canonical DTC models of Acemoglu (1998, 2002)

focus on a balanced growth path (BGP), AABH focus on unbalanced trajectories.7

Therefore, the production of the dirty inputs and CO2 emissions grow without bound

if fossil fuel technologies are initially ahead. A social planner can avoid such an outcome

by implementing clean research subsidies and/or a carbon tax. A clean research subsidy

directly multiplies the right-hand-side of equation (6), while a carbon tax decreases the

producer price pdt for given technologies by imposing a wedge between the producer

6For more discussion on path dependence see the review of Aghion, Hepburn, Teytelboym and
Zenghelis (2019).

7A BGP can be obtained by introducing (strong) cross-sectoral knowledge spillovers in the innovation
function. For instance, if scientists’ productivity obeys ηj(A(−j)t/Ajt)

(1−δ)/2, then a BGP can be
obtained when σ < 2− δ, while there is still path dependence if σ > 2− δ.
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price of the dirty input and its marginal product in final good production. That is, (6)

and (10) become

Πct

Πdt

=
(1 + qt) ηcp

1
β

ctLctAct−1

ηdp
1
β

dtLdtAdt−1

= (1 + qt) (1 + τt)
ε ηc
ηd

(
1 + γηcsct
1 + γηdsdt

)σ−2(
Act−1

Adt−1

)σ−1

,

(11)

where qt is a clean research subsidy and τt is an (ad-valorem) carbon tax.8

Provided that the policy intervention is sufficiently large and maintained for a suf-

ficiently long time, the social planner can redirect innovation away from dirty toward

clean technologies, ensuring that clean technologies catch up and eventually overtake

dirty ones. Once this has been been achieved, market forces will favor clean innovation.

A temporary intervention is enough to ensure that emissions decline in the long-run pro-

vided that the two inputs are sufficiently substitute (ε > 1/β).9 Yet, such an intervention

is not costless: when clean technologies are catching up with dirty ones, productivity

growth is low since innovation targets the less productive input. This makes delaying an

intervention costly: while the economy remains in laissez-faire, the gap between clean

and dirty technologies grows, requiring a longer and therefore costlier intervention later

on. This brings us to the second lesson of the framework: taking endogenous technical

change into account calls for an earlier intervention.10

The third lesson from the framework is that a carbon tax is not enough to obtain

the first best. Formally, AABH consider a social planner who maximizes the intertem-

poral welfare of a representative agent who cares about consumption and environmental

quality. They show that the first best allocation can be decentralized using a Pigovian

carbon tax and research subsidies to clean innovation (plus a subsidy to all machines to

remove the monopoly distortion). Why is a carbon tax not enough? Innovation in the

first best is allocated to the sector with the highest social value, where the ratio of social

8Alsina-Pujols and Hovdahl (2021) show how other instruments such as limited patent enforcement
for dirty innovation can also redirect innovation toward the clean sector. Nowzohour (2021) analyzes
the role of frictions in the reallocation of scientists.

9The laissez-faire production of dirty input is decreasing in the clean technology Ac if ε > 1/β.
Intuitively, when ε < 1/β, the two inputs are sufficiently complement that an increase in the clean
technology increases demand in the dirty input so much that dirty input production grows through an
increase use of machines even if the dirty technology does not grow.

10A similar result is obtained by Gerlagh, Kverndokk and Rosendahl (2009) who find that endogenous
innovation in abatement technology calls for a front-loaded policy.
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values is given by:

SVct
SVdt

=

ηc (1 + γηdsdt)
∑
τ≥t
λt,τp

1
β
cτLcτAcτ

ηd (1 + γηcsct)
∑
τ≥t
λt,τp

1
β

dτLdτAdτ

, (12)

with λt,τ the discount factor between t and τ . pdτ is the producer price of the dirty input

before any carbon taxation is applied, so a higher social cost of emissions which increases

the optimal carbon tax decreases the producer price pdτ and raises the relative social

value of a clean innovation. Therefore, the social planner allocates innovation according

to the discounted benefits that a higher technology brings in every period. In contrast,

in the absence of a direct research subsidy, the market allocation depends on the ratio

of current profits given by equation (6). With a research subsidy, the market allocation

is given by (11), so that a properly chosen research subsidy can close the gap between

the ratio of private and social values.

This explains why the market and the social planner would generally not allocate

innovation in the same way without the appropriate research subsidy, but AABH’s claim

is stronger: they argue that the social planner needs to systematically implement research

subsidies. In other words, one should expect the ratio of clean to dirty private values

of innovation to be lower than that of the social values of innovation. How can that

be the case? Essentially because the market’s “short-termism” affects clean and dirty

technologies differently. Assume that dirty technologies are initially more advanced but

that the social planner would like to implement an “energy transition” so that clean

technologies are expected to dominate in the future (as is arguably the case). Then,

in the long-run, dirty technologies will have a small market, λt,τp
1
β

dτLdτAdτ is relatively

small for large τ , and a large share of the social benefits of a dirty innovation (say an

improvement in a natural gas power plant) is realized in the short-run. The gap between

private and social value for a dirty innovation is not that large. In contrast, the market

for clean technologies in the future is large, and a large share of the social benefits of

a clean innovation (say an improvement in solar panels) will be realized in the future

(here, in the form of even better solar panels), and the gap between the social and private

values of a clean innovation is very large.

In AABH, the market is particularly myopic because patents last for only one period

but the intuition extends to set-up with longer lived patents (as mentioned in AABH

and extensively analyzed in Greaker, Heggedal and Rosendahl, 2018). The reason is that

the myopia of the market ultimately stems from the building-on-the-shoulders-of-giants
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externality, which innovators do not internalize. To show this, consider an extreme case

with perpetual patents. That is successful innovators must pay royalties to the previous

incumbent to compensate them for their profit loss. Then, the ratio of private values of

innovation is given by:

Πct

Πdt

=

ηc (1 + γηdsdt)
∑
τ≥t
λt,τp

1
β
cτLcτAct

ηd (1 + γηcsct)
∑
τ≥t
λt,τp

1
β

dτLdτAdt

. (13)

While in (12) the sum involves the technology at time τ , Ajτ , the sum in (13) is over

the technology at the time of invention, t, Ajt. This difference reflects the building-on-

the-shoulders-of-giants externality which the social planner internalizes: an innovator

improves not only the current technology, but also all future technologies since future

innovators will build up on her innovation. It is worth pointing out that the inefficiency

in the direction of innovation in AABH is therefore intimately linked to the Schumpete-

rian nature of innovation in their model: in contrast, the optimal policy in a model with

horizontal innovation, permanent patents and DTC need not feature research subsidies

on top of Pigovian taxation. In general, finite-lived patents, creative destruction, imita-

tion, and the building-on-the-shoulders-of-giants externality all contribute to make the

private value of an innovation short-sighted relative to its social value. In the context of

an energy transition, this short-termism of the market leads to too little clean innovation

relative to dirty even with Pigovian taxation, which calls for clean research subsidies.11

In summary, three lessons can be drawn from the AABH framework. First, there is

path dependence in the development of clean versus dirty technologies, which explains

why clean technologies have had a hard time taking off without government support.

Second, policy action should be more frontloaded than what a model with exogenous

technology would predict. Third, climate change policy should not simply involve Pigo-

vian carbon taxation, instead governments should also use clean research subsidies to

boost clean innovation. All these features arise because AABH consider the choice be-

tween two substitute inputs and their associated technologies.

To derive quantitative predictions, Acemoglu, Akcigit, Hanley and Kerr (2016) embed

11Gerlagh, Kverndokk and Rosendahl (2014) make a similar point in a model with clean innovation
only. This contrasts the DTC literature covered here with an earlier literature which simply assumed a
certain (constant) ratio between private and social values of innovation (Nordhaus, 2002, Popp, 2004,
2006, or Gerlagh and Lise, 2005).
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the AABH framework within a firm dynamics model. They assume that the final good

is a Cobb-Douglas aggregate of a mass 1 of intermediates. Each intermediate can be

produced with a clean or a dirty input which are perfect substitute, and which each have

their own technology evolving on their own ladder. In the spirit of Klette and Kortum

(2004), a firm is a collection of leading clean or dirty technologies in different lines.

There are two types of innovations: incremental innovations build on the clean or dirty

technology separately, while radical innovation builds on the leading technology whether

it is clean or dirty. This generates cross-sectoral spillovers which mitigate (without

eliminating) path dependence in innovation. In addition, the dirty technology input

requires the use of an exhaustible resource. This leads to an increase in the resource

price over time which ensures that a transition to clean innovation occurs in laissez-

faire. They calibrate the model using firm-level data in the energy sector and patent

data. They find that the switch to clean innovation occurs too late to avoid large climate

damages in laissez-faire. In contrast, the optimal policy implements a rapid switch from

dirty to clean innovation thanks to large clean research subsidies and a carbon tax.

These conclusions are very much in line with AABH.

2.2 The Complementarity case: Energy-saving Innovation

While AABH focus on the decarbonization of energy production, an alternative way to

reduce emissions is to develop energy- or resource-saving innovations. To analyze this

case within our framework, assume that the final good is now produced with

Yt =
(
Y

ε−1
ε

Pt + Y
ε−1
ε

Et

) ε
ε−1

, (14)

where YPt denotes a production input, YEt an energy-services input and importantly the

two inputs are complement: ε < 1. The production input is produced with sector-specific

machines and a capital labor aggregate L, while the energy-services input is produced

with energy (or a fossil fuel resource) E:

YP =
Lβ

1− β

∫ 1

0

AβPix
1−β
Pi di and YE =

Eβ

1− β

∫ 1

0

AβEix
1−β
Ei di. (15)

We define aggregate technologies APt and AEt. Since the two inputs are complement, an

increase in the energy-augmenting technology AEt is energy-saving (or if E is a resource,

resource-saving). Theoretical papers have then made different assumptions about the
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supply of E: Smulders and de Nooj (2003) assume a constant resource flow, Shanker

and Stern (2018) assume a perfectly elastically supplied resource, while Di Maria and

Valente (2008), André and Smulders (2014) and Hassler, Krusell and Olovsson (2021)

assume that the resource is exhaustible.

This literature derives and analyzes stylized facts on energy consumption and growth.

For instance, Hassler et al. (2021) build a quantitative macroeconomic model calibrated

to the US economy. As energy demand is very unresponsive to price changes in the

short-run, they find an elasticity of substitution between energy and the capital-labor

aggregate close to 0. Yet, the energy share is relatively stable in the long-run. They

account for this puzzling pattern through a DTC model. In line with this model, they

find that energy-saving technical change took off in the 70s with the oil shocks. Their

model further predicts that resource scarcity (which could result from climate regula-

tion) will only lead to a small increase in the energy share. Interestingly, they argue that

the market allocation of innovation is not systematically inefficient. Such a conclusion

contrasts sharply with AABH. What drives this difference? In a word, the complemen-

tarity between energy and other inputs, which implies that the economy will feature a

BGP.

To see this more clearly, let us assume the same innovation technology and market

structure as in section 2.1. Without loss of generality, further assume that L is fixed.

The market allocation of innovation then depends on the relative expected profits from

labor-augmenting over energy-augmenting innovation, which are given by:

ΠPt

ΠEt

=
ηP (1 + γηEsEt)

ηE (1 + γηP sPt)

pPtYPt
pEtYEt

=
ηP
ηE

(
pPt
pEt

) 1
β L

E

APt−1

AEt−1

=
ηP (1 + γηEsEt)

ηE (1 + γηP sPt)

(
LAPt
EAEt

)σ−1
σ

.

(16)

The key difference with the model of section 2.1 is that since the two inputs are com-

plement (σ < 1), the price effect now dominates. We can consider in turn, the three

cases for the path of E. If the resource flow is constant, then following the last equality

in (16), innovation favors the least advanced sector so that the economy must converge

to a balanced growth path (BGP) where both technologies grow at the same rate and

the expected profits are equal (ΠPt = ΠEt). Given the first equality, the energy share is

constant in the long-run and equal to ηP/(ηE + ηP ).

A decrease in the resource flow increases the energy price and the energy share,

leading to an increase in energy-saving innovation. As a result, if the resource flow

decreases over time (because of resource exhaustion or a growing carbon tax), faster
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growth in energy-saving innovation compensates for it so that the effective amount of

energy AEtE grows at the same rate as effective labor APtL.12 The economy still con-

verges toward a BGP with a constant interior energy share. This is the same logic as

in Acemoglu (2003) where labor scarcity leads to labor-augmenting technical change.

For the same reason, if the resource price is constant, then innovation in the long run is

labor-augmenting.

The social planner still allocates scientists according to the ratio of social values which

is given by an equation analogous to (12). In general, the social planner allocation and

the market allocation still differ, but they converge toward the same balanced growth

path provided that a Pigovian tax corrects for the environmental externality. As a result,

research subsidies may still be necessary in the transition, but they become much less

critical and need not even be in favor of energy-saving innovations. In fact, in the specific

example studied by Hassler et al. (2021), the ratio of social values is always equal to

that of private values and they are not necessary in the transition either (see also Hart,

2008). As the two inputs are complement, the market now favors the least advanced

technology adjusting for resource availability, which ensures that the economy moves

toward a balanced growth path, in line with the social planner’s solution. While public

intervention is crucial to engineer a transition from fossil fuels to clean energy, carbon

pricing can do the heavy lifting for the development of energy-saving technologies.

As a result of DTC, a very low short-run elasticity between energy and labor-capital is

compatible with a higher long-run elasticity. For instance, in the model sketched here, the

long-run energy share is fixed at ηP/(ηE +ηP ) when the resource flow is constant (and is

still close to this value when it decreases over time). In the long-run, the economy behaves

as if the production function were Cobb-Douglas. In fact, climate models with exogenous

technological change often assumed such a Cobb-Douglas production function, are they

missing a lot by ignoring the dynamics of technical change? Casey (2019) shows that

unfortunately this is the case. He considers a similar set-up with a Leontieff production

function between energy and the capital-labor aggregate but DTC leading to a unit long-

run elasticity and compares it with a Cobb-Douglas economy with exogenous technical

change. Both models are calibrated to the US economy. He shows that, following the

implementation of a carbon tax, emissions decrease slower in the Leontieff with DTC

economy than in the Cobb-Douglas economy, leading to significantly more cumulative

emissions and therefore higher damages.

12While a tax on energy services YE moves innovation toward AP for any ε, a tax on energy, E, moves
innovation toward AE when ε < 1.
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2.3 Applications to Environmental Questions

We now review papers which apply the DTC framework in the context of energy shocks,

energy transitions and carbon leakage.

Energy market shocks. Fried (2018) uses the oil shocks of the 1970s to calibrate

a more detailed DTC model. As in section 2.2, she considers a final good produced

with a production input and energy services. Energy services are themselves a CES

aggregate of local fossil fuel energy, oil imports and green energy with an elasticity of

substitution greater than 1 (similar to AABH). Innovation can be targeted at the local

fossil fuel energy, green energy or the production input, and she introduces cross-sectoral

knowledge spillovers. She compares this economy with one without DTC. She finds that

a carbon tax has a large effect on the innovation allocation, so that the carbon tax

necessary to cut emissions by 30% in 20 years is 19.2% smaller in a world with DTC

than in a world without DTC.13

Acemoglu, Aghion, Barrage and Hémous (2021) extend AABH to analyze the conse-

quences of the US shale gas revolution on welfare and emissions in the long-run. They

model electricity as a CES aggregate of clean, natural-gas based and coal-based electric-

ity (with an elasticity greater than 1). Fossil-fuel electricity is produced with a power

plant input and the associated resource. Both coal and natural gas generate emissions

but natural gas is much cleaner. Scientists can improve the productivity of fossil-fuel

power plants or clean power plants. In the short-run, the shale gas boom reduces the

price of natural gas, electricity production relies more heavily on natural gas and less on

coal and emissions decrease. At the same time, the market for innovations in fossil-fuel

power plants expands, which leads to a reallocation of innovation away from clean and

toward fossil fuel technologies. In line with this prediction, they document that the

ratio of green to fossil fuel patents in electricity production has decreased substantially

since 2011 (2 years after the beginning of the boom). Calibrating their model to the US

electricity sector, they predict that because of this innovation response, the shale gas

boom will eventually lead to an increase in emissions. They also compute the optimal

policy and show that the shale gas boom calls for larger clean research subsidies.14

13Hart (2019) adds energy-saving innovation, physical limits to productivity and intersectoral knowl-
edge spillovers to an integrated assessment model with AABH features. The optimal policy still features
both a carbon tax and clean research subsidies but the presence of knowledge spillovers reduces the
relative importance of research subsidies.

14Acemoglu and Rafey (2019) similarly find that progress in geoengineering technology can back-
fire. When the government cannot commit to its environmental policy, an exogenous improvement
in geoengineering technology may decrease future environmental taxes, which decreases current clean
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Historical energy transitions. A number of papers have used DTC to account

for past energy transitions. Stern, Pezzey and Lu (2020) study the transition from wood

to coal which occurred during the Industrial Revolution and perhaps in part caused it.

The final good is a CES aggregate of a wood-based input and a fossil-fuel based input.

The two inputs enter the production function symmetrically but while the supply of

wood is fixed exogenously, coal is extracted at a constant cost. Similarly to AABH,

the two inputs are substitute, so innovation tends to be allocated toward the more

abundant input (everything else given). If wood is initially abundant, the economy first

relies on the wood based input and innovates in that sector. Yet, without sufficient

increasing returns to scale in innovation, output grows less than exponentially. Over

time, however, the relative price of coal drops and the relative supply of coal versus wood

increases. This eventually redirects innovation toward the coal-based input, at which

point economic growth takes off. Gars and Olovsson (2019) use a similar DTC model,

where innovation in fossil fuel technologies can ensure higher growth than innovation in

wood powered technologies, to explain the 19th century Great Divergence. They show

that when a country starts using fossil fuels, the world fossil fuel price increases, which

may discourage other countries from innovating in fossil-fuel technologies.

Lemoine (2020) builds a DTC model which generates endogenous energy transitions.

Similar to Acemoglu, Aghion, Barrage and Hémous (2021), he models separetely the

resource used in energy production and the complementary input necessary to produce

energy. He models and calibrates historical energy transitions but finds that in the

climate change context, research subsidies are still necessary to accelerate the transition

to renewables.

Carbon leakage. The previous papers ignored international aspects and studied

either the whole world or a country in isolation. Yet, given the limited results from in-

ternational climate negotiations, several countries have been pursuing unilateral climate

policies, the effectiveness of which is limited by carbon leakage. Carbon leakage occurs

when a reduction in emissions in one country (following the implementation of a carbon

policy) is undone by an increase in emissions in the rest of the world. Several papers

use DTC models to study whether the innovation response amplifies or mitigate carbon

leakage. Di Maria and Smulders (2004) and Di Maria and van der Werf (2008) consider

a two-country (North, South), two goods (energy-intensive, non–energy-intensive) trade

model. The North introduces a unilateral carbon tax so that part of the production

innovation and can lead to an increase in emissions.
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of the energy-intensive good moves to the South. In the first paper, innovation occurs

endogenously in the North only and the South imitates exogenously. The unilateral

carbon tax then increases innovation in the non-energy intensive good which amplifies

carbon leakage when the goods are complement and mitigates it when they are substitute

(because energy-augmenting innovation is energy-saving when the two inputs are com-

plement and energy-using otherwise). The second paper instead assumes that innovation

occurs globally. Then, global innovation is redirected toward the non-energy-intensive

good when the two inputs are substitute and to the energy-intensive good when they are

complement, always mitigating carbon leakage. Acemoglu, Aghion and Hémous (2014)

and van den Bijgaart (2017) look at the same problem in a two-country version of the

AABH model (so with two substitute inputs). Again, a carbon tax in the North leads

to a reallocation of part of the production of the dirty input to the South. They take

as given the innovation response in the North (contrary to the two previous papers)

and respectively find that the imitation and innovation responses in the South amplify

carbon leakage.

Hémous (2016) starts from a set-up similar to Di Maria and Smulders (2004) and Di

Maria and van der Werf (2008) with trade in an energy-intensive good and a non–energy-

intensive good, but he now assumes that the energy-intensive good is itself produced like

the final good in AABH as a CES aggregate between a clean input and a dirty input.

His model can capture the fact that the emission intensity of the same (energy-intensive)

good varies across countries depending on whether the good is produced with clean or

dirty energy. Innovators optimally decide to improve the non-energy-intensive technol-

ogy, the clean one or the dirty one. In addition, he assumes that utility is Cobb-Douglas

between the energy-intensive and non-energy-intensive goods. The paper contrasts two

policies. As before a unilateral carbon tax in the North leads to carbon leakage, and

the innovation response in the South tends to amplify leakage: as the market for the

energy-intensive good expands in the South, innovation there is reallocated toward that

sector, and within that sector to dirty technologies (provided that dirty technologies

are initially more advanced). In contrast, the North government could implement a

green industrial policy, which boosts the development of clean technologies within the

energy-intensive sector in the North, and as a result, decreases Northern emissions. Im-

portantly, such a policy can also reduce emissions in the South through two channels.

First, because innovation in the North is allocated toward clean instead of dirty or non-

energy-intensive technologies, the North builds a comparative advantage in that sector.
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This leads to negative leakage and less dirty innovation in the South (instead the South

innovates more in the non-energy-intensive good). Second, if knowledge spillovers are

large enough, the South may start innovating in clean instead of dirty technologies in

the energy-intensive sector. Therefore, trade acts a double-edged sword: it diminishes

the effectiveness of unilateral carbon taxes but also ensures that the appropriate policy

can decrease emissions globally.15

2.4 Modeling grey innovation

As mentioned before, the baseline AABH model ignores improvements in dirty tech-

nologies that reduce the pollution intensity of the dirty good. In contrast, Gans (2012)

models innovation in the fossil fuel sector as fossil fuel augmenting. Here, we present a

simple extension of AABH which combines both types of dirty innovations. We make

two changes to the framework of section 2.1. First, the dirty input Ydt is now produced

competitively using a resource-based input Yrt and a non-resource based input Ypt:

Ydt =
(
Y

θ−1
θ

rt + Y
θ−1
θ

pt

) θ
θ−1

, (17)

where θ < 1 (i.e the two inputs are complement). The clean, resource-based and non-

resource-based inputs are all produced competitively according to (2) for j ∈ {c, r, p}
and machines are still produced in the same way.16 Second, we assume that emissions

are now proportional to the use of machines in the resource-based sector xrit, that is

Pt = ξ
∫ 1

0
xritdi (implicitly, the use of these machines is associated with the consumption

of a fossil fuel in a Leontief way).

In Appendix 5, we derive that the equilibrium level of pollution is given by:

Pt = ξ

(
Adt
Art

)1−λ
Aσ−1
dt

Aσ−1
ct + Aσ−1

dt

(
Aσ−1
ct + Aσ−1

dt

) 1
ε−1 L, (18)

with λ ≡ 1 +β (θ − 1) defined analogously to σ and the average productivity in sector d

15Witajewski-Baltvilks and Fischer (2019) also extend AABH to a two-country model but allow for
trade directly in machines (instead of the intermediate inputs), so that innovation incentives depend
on market conditions in both countries. When the North is large enough, a unilateral clean research
subsidy can redirect innovation toward clean technologies in both countries. In addition, it may induce
a climate-skeptic South government to implement its own clean research subsidy for purely economic
motives as long-run growth is higher if both countries innovate in the same sector.

16Note that here we are ignoring energy saving innovations which augment energy productivity in the
production of the final good regardless of the source of energy.
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defined as Adt ≡
(
Aλ−1
rt + Aλ−1

pt

) 1
λ−1 . The first fraction reflects the substitution within the

production of the dirty intermediate between the resource-based and the non-resource

based input, as θ < 1, λ < 1 and this term is decreasing in Art and increasing in Apt.

The second fraction reflects the substitution between the clean and the dirty input, it

increases in Adt and decreases in Act. The third term is the overall productivity in

the economy; it reflects a scale effect and increases in all technologies. This equation

illustrates well the role of each technology: Act represents clean alternative to existing

fossil-fuel based technologies (for instance, renewables in energy generation or electric

cars in transport); Art represents resource and therefore emission saving innovations in

the production of fossil-fuel based inputs (for instance higher thermal efficiency in fossil

fuel power plants or higher efficiency in petroleum engines) and Apt represents other

improvements in fossil-fuel based technologies which lead to an increase in the demand

for fossil fuels and therefore in emissions (labor saving innovations in power plants or

faster engines in cars).

An increase in clean technologies reduces pollution provided that the clean and dirty

inputs are sufficiently substitute: ε > 1+1/β–the threshold is now different because ma-

chines instead of the input are associated with emissions. An increase in the non-resource

based productivity increases emissions. An increase in the resource-saving technology

increases or decreases emissions depending on the relative productivity levels. In that

sense, they represent “grey innovations”.

The innovation technology is the same as in Section 2.1: scientists decide to innovate

in clean, resource-based or non resource-based technologies with a probability of success

ηj for j ∈ {c, r, p} depending on the expected profits resulting from their research ef-

forts. Expected profits are still given by (5). Within the dirty sector, the allocation of

innovation between the two inputs now depends on the ratio:

Πrt

Πpt

=
ηr
ηp

(
1 + γηrsrt
1 + γηpspt

)λ−2(
Art−1

Apt−1

)λ−1

. (19)

Since the resource-based and non-resource based inputs are complement, λ < 1, innova-

tion targets the less advanced sector (as in the energy-saving case of Section 2.2) so that

should innovation occur in the dirty sector in laissez-faire, it remains balanced between

the resource-based and non-resource based inputs. In contrast, innovation between the

clean and the dirty sector still features path dependence and asymptotically only occurs

in one of the two sectors (except for a knife-edge case). If the clean sector is initially
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sufficiently backward relative to the dirty sector, then innovation in laissez-faire occurs

in the dirty sector and emissions grow without bound.

Research subsidies can then be used to redirect innovation toward clean or grey

technologies. In this context, an interesting question is whether a social planner should

aim at making the dirty sector less polluting by focusing on grey innovations or fully

switch to clean technologies. A full analysis of the social planner problem is beyond the

scope of this book chapter, but a first element of response can be found in looking at

the growth rates that can be achieved with either strategy. In the long-run, innovating

in clean technologies leads to a growth rate of γηc and, if the clean and dirty inputs are

sufficiently substitute, ε > 1 + 1/β, to a decline in emissions. As in AABH, a switch to

clean innovation can be achieved through a temporary research subsidy.

Innovation in dirty technologies is balanced between the two sectors in laissez-faire, so

that asymptotically the mass of scientists in resource-saving innovation is srt = ηp/(ηr +

ηp) and the mass of scientists in the resource-using innovation is spt = ηr/(ηr + ηp)

leading to a growth rate of output and emissions given by γηrηp/(ηr + ηp). Nevertheless,

it is possible to ensure a decline in emissions through innovation in the resource-using

technology only. From (18), note that Pt would decrease over time if the resource-

saving technology Art grows faster than the average dirty productivity Adt (even if clean

productivity Act is constant). Since λ < 1, the dirty productivity grows asymptotically at

the minimum rate of the resource-saving and the resource-using technology. Therefore,

a permanent subsidy to resource-saving innovation can guarantee long-run economic

growth with declining emissions but only at the cost of a reduction in long-run economic

growth.17 In Appendix 5, we demonstrate:

Proposition 1. i) A temporary subsidy to clean innovation can ensure positive long-run

growth at rate γηc with declining emissions when ε > 1 + 1/β. ii) A permanent subsidy

to grey innovation can ensure positive long-run growth at a rate approximately equal to

γηrηp/
(
ηr +

(
1 + (1− λ)−1) ηp) when γ is small while ensuring that emissions decline.

Therefore, provided that ε > 1 + 1/β, a patient social planner would tend to prefer a

switch toward green innovation when the clean innovation productivity parameter is rel-

atively high and the resource-based and non-resource based inputs are less complement.

17The asymptotic results technically require that there are no physical limits to how high Art can be,
which for some type of innovations may not be realistic (see e.g. Hart, 2019). Nevertheless the analysis
is informative as long as we are sufficiently far away from the physical limits. At any rate, the presence
of physical limits would reinforce the case for a switch to clean innovation.
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Intuitively, when the production function for the dirty input is closer to Cobb-Douglas,

the resource saving effect of Art is smaller, requiring to sacrifice more growth to ensure a

decline in emissions. This will be the case in particular when ηc = ηrηp/ (ηr + ηp), that

is, absent environmental concerns, the clean and the dirty technologies would have the

same growth potential.

Finally, it is easy to show that a carbon tax (now paid on the use of the machines

xrit) redirects innovation within the dirty sector toward the resource-saving technology

as in Gans (2012) if innovation occurs in the dirty sector; and/or away from the dirty

sector and toward clean technologies. Aghion, Dechezleprêtre, Hémous, Martin and van

Reenen (2016), which we discuss in Section 3, precisely look at the effect of gas prices

on clean, grey and “purely” dirty innovation in the car industry.

3 Empirical evidence

A large empirical literature has looked for evidence of induced technical change in en-

vironmental economics. Popp, Newell and Jaffe (2010), Popp (2019) and Grubb et al.

(2021) provide extensive literature reviews; here, we briefly review the earlier literature

before focusing on a few recent contributions.

3.1 Energy prices and directed technical change

The closest empirical studies to the theoretical directed technical change literature ex-

amine the effect of changing energy prices on innovation. Newell, Jaffe and Stavins

(1999) provide the first example by showing that the energy efficiency of home appli-

ances available for sale changed in response to energy prices between 1958 and 1993.

Technical change in air conditioners was biased against energy efficiency in the 1960s

when energy prices were low, but this bias reversed after the oil shocks of the 70s which

led to significant energy price increases.

The early paper by Newell, Jaffe and Stavins (1999) was a pioneer and a remarkable

exception in at least one dimension: the vast majority of the subsequent literature has

turned to patent data as an indicator of innovation induced by energy price dynamics.

Patent data have a number of attractive features: they are available over long time

periods, at a highly technologically disaggregated level—allowing researchers to precisely

distinguish between clean and dirty innovations in various sectors—and can be linked

with their owners (companies). They also suffer from limitations: in particular, only a
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small proportion of inventions are patented, and their value is highly heterogeneous. To

date, however, no superior indicator has emerged. The literature using detailed product

characteristics, as Newell et al. (1999), is comparably much more limited. This is a

remarkable gap in the literature, and an interesting question would be to investigate the

extent to which new patents do translate into more energy efficient products.

In a seminal paper, Popp (2002) uses time-series data on patent applications in the

US from 1970 to 1994 across eleven energy demand or supply technologies, such as solar

panels, fuel cells, heat pumps or waste heat recovery. He then regresses the percentage

of all successful domestic patent applications per year in each technology field on the

price of energy in the U.S. in that year. He finds a short-run patents-to-price elasticity of

0.03-0.06 and a larger long-run elasticity of energy efficiency innovation on energy prices

of 0.35 (with over half of the effect occurring during the first five years after the price

shock). Using a methodology similar to Popp (2002), Crabb & Johnson (2010) find an

elasticity for energy efficient innovation in the US car industry over 1980-1999 of about

0.3 for retail gasoline price. Verdolini and Galeotti (2011) extend this analysis to 17

OECD countries for the period 1979-1998 and confirm Popp’s finding with a short-run

(1-year) elasticity of 0.04-0.06. Kruse & Wetzel (2016) further confirm this finding for

11 ‘green’ technologies in 26 OECD countries over 1978-2009. In the buildings sector,

Costantini, Crespi, & Palma (2017) find taxation on residential energy consumption to

induce patent applications for energy-efficient technologies in buildings across 23 OECD

countries (1990-2010). Importantly, a consistent finding from this literature is that the

innovative response to policy happens quickly: much of the innovative response to higher

(fossil fuel-based) energy prices occurs within five years or less.

Most of the early literature uses macro (sector- or country-level) data, making it

difficult to claim causality. For example, in Popp (2002), there is no variation in energy

prices across technology fields (average U.S. industry energy prices are used and thus

they only vary through time). This prevents the inclusion of time dummies in the esti-

mated equation, making it impossible to control for macro-economic shocks potentially

correlated with both innovation and the energy price. The more recent literature has pro-

vided microeconomic evidence by constructing or observing firm-specific energy prices.

In a direct empirical application of the AABH framework, Aghion, Dechezleprêtre, Hé-

mous, Martin and van Reenen (2016) focus on the car industry and analyze the effect

of gasoline prices on innovation, distinguishing between clean patents (associated with

electric, hybrid and hydrogen engines), dirty patents (associated with combustion en-
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gines) and ’grey’ patents (associated with energy efficiency improvements of combustion

engines). To construct firm-specific fuel prices, they take advantage of the fact that

innovators in the car industry sell their products across various national markets, and

are thus differently exposed to country-specific fuel price variations, depending on their

sales distribution (as proxied by the geographical distribution of their patent portfolio).

This fuel price is computed as a weighted average of country-level fuel prices where the

firm-specific weights are computed using a firm’s patent history pre-sample (as a proxy

for firm’s market shares).18 In the spirit of a shift-share instrument, the effect of fuel

price on firms’ innovation is identified by cross-country variations in fuel prices or taxes

affecting firms differently according to their exposure to different markets. They esti-

mate a large positive effect of fuel prices on clean innovation with an elasticity close to 1

and a negative effect on dirty innovation with an elasticity close to -0.5.19 Innovation in

fuel efficiency technology (’grey’ innovation, a subset of dirty innovations) is also stimu-

lated, but to a lesser degree, with an elasticity of 0.3. Furthermore, Aghion et al. (2016)

find evidence for path dependence in the direction of innovation at the firm level – the

propensity to patent in clean is greater when firms have accumulated more clean knowl-

edge on which to build. Through simulations, they show that, in line with AABH, path

dependence exacerbates the gap between clean and dirty knowledge in business-as-usual

but reduces the increase in fuel prices necessary to induce clean technology to catch-up

with dirty technology.

Several papers have used the same method as Aghion et al. (2016) to generate energy

price variation at the firm level and make further contributions to the empirical DTC

literature. Noailly and Smeets (2015) focus on the electricity production sector and study

how clean and dirty innovations respond to fuel price (as in Aghion et al., 2016) but also

to the market size, where firm-level market size is calculated in an analogous manner (see

also Lazkano, Nøstbakken and Pelli, 2017; and Lööf, Perez and Baum, 2018). Overall,

their results support the DTC hypothesis: increases in renewable market size or fossil

fuel prices lead to more renewable innovation and a larger fossil fuel market leads to

more fossil fuel innovation. An increase in fossil fuel price also leads to a large increase

18As a patent only protects an invention in the country in which it is applied for, whether a firm
decides to apply for a patent in a given country or not is indicative of the importance of that country
for the firm. Coelli, Moxnes and Ulltveit-Moe (2022) show empirically that this is a good proxy for
market share.

19In line with these results, Knittel (2011) finds that there is a trade-off between improving fuel
efficiency and other vehicle attributes, and that technical progress has responded to the implementation
of regulatory standards.
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in fossil fuel energy-efficiency innovations. Their results also support path dependency.

Having established the empirical existence of directed technical change from price

and market size effects, the literature is moving to study other factors driving technical

change as well as interaction effects. For instance, Aghion, Bénabou, Martin and Roulet

(2020) extend the set-up of Aghion et al. (2016) to study both the role of consumer

value and competition in driving innovation in the car industry. They find that when

consumers value the environment more, clean innovation in the car industry increases,

particularly when competition is more intense. They estimate that the simultaneous

increase in environmental valuation and competition which happened between 1998-

2002 and 2008-2012 had the same effect on innovation as a 40% increase in fuel price.

Another example is Fredriksson & Sauquet (2017), who find that the innovation effect

found by Aghion et al. (2016) is strongest for firms located in countries with French civil

law, rather than those with common law, suggesting that the relative ‘rigidity’ of civil

law may provide greater certainty regarding future legislation and lessen incumbents’

lobbying, increasing the incentive to innovate.

Using different identification strategies, other recent papers have established a causal

effect of climate policies on innovation based on microdata. Calel and Dechezleprêtre

(2016) examine the influence of the European Union Emissions Trading System (EU

ETS), which from 2005 created an EU-wide carbon price for electricity generation and

heavy industry. To assess the impact of the EU ETS on low-carbon innovation, they

take advantage of the existence of regulatory thresholds at the plant level which de-

termine inclusion in the system. In order to control administrative costs, the EU ETS

was designed to cover only large installations with production capacity above a certain

threshold: for example, in the steel sector, only plants with a production capacity ex-

ceeding 2.5 tonnes per hour are regulated; in the glass sector, installations are included

only if their melting capacity exceeds 20 tonnes per day. Firms operating smaller instal-

lations are not covered by EU ETS regulations, although the firms themselves might be

just as large as those affected by the regulation. Because innovation takes place at the

firm level, Calel and Dechezleprêtre (2016) can exploit these installation-level inclusion

criteria to compare firms located in the same country, operating in the same sector,

with similar resources available for research and similar patenting histories, but which

have fallen under different regulatory regimes since 2005. This provides an opportunity

to apply the sort of quasi-experimental techniques most suited to assessing the causal

impacts of environmental policies (List et al., 2003; Greenstone & Gayer, 2009). The
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authors follow a matched difference-in-difference strategy where they compare regulated

firms with a control group representing what would have happened, had the EU ETS

not been implemented. They show that the EU ETS increased low-carbon innovation

(as measured by patent filings at the European Patent Office) by 30% in the matched

sample of regulated firms. This result was confirmed by Calel (2020) in a study fo-

cusing on the UK. Similar results have been found by studies examining other carbon

pricing instruments. For example, Zhang et al. (2019) examine the role of the seven

carbon pricing pilot schemes introduced in China in 2013 on ‘green’ patent applications

by regulated firms, and report a significant positive correlation.

3.2 Other environmental policies and induced innovation

Although less directly aimed at testing the validity of the DTC hypothesis, a broader

literature has investigated the impact of environmental policy on innovation and is thus

worth mentioning here, as these studies collectively reinforce the finding that innovation

responds to economic incentives provided by environmental policies, even if the identi-

fication strategy is weaker than in microeconomic studies. For example, several early

studies used pollution abatement control expenditures (PACE) as a proxy for environ-

mental regulatory stringency. Examples include Lanjouw and Mody (1996), Jaffe and

Palmer (1997), and Brunnermeier and Cohen (2003). Each finds a significant correla-

tion within industries over time between PACE and innovative activity, as measured by

research and development expenditures or environment-related patent filings.

Renewable energy policies, which require the adoption of renewable energy technolo-

gies to generate electricity, have also been shown to incentivize innovation. In a panel

of OECD countries, Johnstone, Haščič and Popp (2010) find that public policies have

an effect on innovation in renewable energy, as measured by applications for renewable

energy patents submitted to the European Patent Office (EPO). Broad policies (such as

renewable energy mandates, which do not target a particular technology) have a larger

effect on technologies closer to competing with fossil fuels, in particular wind energy,

while technologies farther from the market (solar power) require more targeted subsi-

dies. In one of the largest subsequent studies, covering 19 EU countries over 1980-2007,

Nicolli & Vona (2016) show that feed-in tariffs increased patenting in solar photovoltaic

technology. Such results which speak to a form of path-dependence within renewables

are consistent with the AABH framework. Dechezleprêtre and Glachant (2013) show

that innovation in wind power technology responds positively to policies both at home
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and abroad. The marginal effect of domestic policies is 12 times greater than that of

foreign policies, but the aggregate effect of foreign markets on innovation is larger, be-

cause the overall foreign market is typically much larger than the domestic market -

suggesting a large overall impact of demand-pull policies on innovation through global

value chains.

Finally, a few studies evaluate the effect of international environmental agreements

on innovation. A recent example is Dugoua (2020). In this paper, the identification

relies on a difference-in-differences strategy, where innovation in particular molecules

directly affected by the signing of the agreement is compared to innovation in related

but unaffected molecules. She focuses on the Montreal protocol, which has regulated the

use of CFC since 1989, and finds that it led to an increase of 400% in patents pertaining to

CFC-substitutes relative to similar molecules. Interestingly, she shows that, by inducing

innovation, the initially modest protocol reduced future abatement costs, leading to a

series of increasingly ambitious follow-up agreements. The parallel with climate change,

and the AABH framework, is clear: carbon prices and technology development are

mutually reinforcing. Carbon prices induce new low-carbon technologies, which in turn

can build the case for stronger carbon pricing in the future by lowering the cost of future

green technologies.

3.3 Addressing the innovation market failures to direct tech-

nical change

From the empirical literature, there is clear and unambiguous evidence that energy

and carbon prices induce innovation in clean technologies (at least, as measured by

patents). However, the AABH framework highlights that reaching the first best requires

a combination of carbon prices with subsidies to clean R&D because the social value

of clean innovation is relatively more backloaded than that of dirty innovation. From a

policy perspective, this raises the question of whether subsidies to clean R&D actually

work. Evidence on this issue is - surprisingly - scarce. Pless, Hepburn and Farrell (2020)

report that, of the 1700 papers on the impact of direct funding for innovation reviewed

by the What Works Centre for Local Economic Growth, only 42 use rigorous statistical

methods. This emerging literature suggests that direct R&D grants and R&D tax credits

have positive effects on firms’ innovative activity (Bronzini et al., 2014; Bronzini and

Piselli, 2016; Agrawal et al., 2020; Dechezleprêtre et al., 2016; Ganguli, 2017), with

heterogeneous effects across types of firms. In addition, grants and tax credits can be
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complementary for small firms but substitutes for larger firms (Pless, 2021).

In the literature which seeks to evaluate R&D support policies, only a couple of stud-

ies focus on energy-related innovation. Yet, this sector possesses many features (high

capital intensity, long time horizons, little product differentiation, among others) which

might make the innovation process specific. Howell (2017) exploits the fact that the US

Department of Energy’s Small Business Innovation Research program allocates R&D

grants to small businesses through a grading scheme. Using a regression discontinu-

ity analysis, she finds that receiving a grant increases patenting, survival rate and the

probability of subsequently receiving venture capital among recipients, with stronger ef-

fects for firms likely to be more financially constrained. Within energy research, Howell

(2017) also shows that such R&D subsidies can increase clean innovation specifically

(in hydropower, carbon capture and storage, building and lighting efficiency, and alter-

native automotive technologies) but have no measurable effect on conventional energy

technologies (natural gas and coal), likely because firms developing these technologies

are less financially constrained.

A related question is whether there are additional reasons than the one highlighted

in the AABH framework to subsidize clean R&D. As a matter of fact, recent research

has demonstrated that knowledge spillovers are larger for clean than for dirty tech-

nologies. In a comprehensive analysis covering 1.3 million patents filed over 60 years,

Dechezleprêtre, Martin and Mohnen (2017) show that knowledge spillovers (measured

with patent citations) are 40% larger for low-carbon than for high-carbon technologies.

The higher knowledge spillovers from low-carbon technologies come primarily from their

radical novelty compared with old polluting technologies. New technology fields of-

fer potentially high marginal private returns to first movers and might thus generate

large knowledge spillovers. Comparing the spillovers from low-carbon and high-carbon

technologies to a range of other emerging technologies, such as IT and biotechnologies,

Dechezleprêtre, Martin and Mohnen (2017) find that the intensity of spillovers from

low-carbon technologies is comparable to other emerging technologies, while knowledge

spillovers from high-carbon technologies lag behind.

4 Conclusion and Future Avenues

This review highlights that the literature has firmly established that environmental in-

novations respond strongly to market incentives and that the endogeneity of innovation
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matters for macroeconomic outcomes. In fact, DTC theory often provides policy answers

that differ from models with exogenous technology: an environmental policy should be

front-loaded to kick-start the green innovation machine; carbon taxes are an impor-

tant policy tool but not the only one; unilateral environmental policies should not limit

themselves to a simple carbon tax; and the development of a bridge technology (such

as switching from coal to gas) may backfire if it is not accompanied by further efforts

to develop really clean (carbon-free) technologies. Overall, AABH and the unfolding

literature provide a strong case for a green innovation policy: climate policy should be

designed with innovation at the forefront.

This calls for further integrating DTC in climate change economics. In particular, mi-

crofounded DTC should be more systematically incorporated in Integrated Assessment

Models. Dietz and Lanz (2019) is a recent example in a detailed multisectoral model

with endogenous population dynamics. Kruse-Andersen (2020) also includes population

dynamics into a DTC model. Another important avenue is to expand the 2-country set-

ups discussed above for more realistic models of international environmental agreements

building on game-theoretic contributions such as Barrett (2006) and Harstad, Lancia and

Russo (2019). Finally, climate change is a problem riddled with uncertainties about cli-

mate dynamics, climate damages but also technological prospects. The models reviewed

here are all deterministic but the interaction between technology and uncertainty is a

promising avenue for future research.

Empirically, a number of promising research avenues emerge from this review. First,

because of data availability, the empirical evidence has mostly focused on patent filings

as a measure of innovation output, but more direct measures of innovation outcomes

(e.g. technology cost reductions) are strikingly missing. New and better measures of

clean innovation are needed. Understanding the full impact of green innovation policies,

through the supply chain (on technology providers or on downstream consumers via cost

pass-through), across borders and via spillovers (knowledge spillovers, product market

rivalry) is another promising area, although it faces an inherent trade-off with estab-

lishing causality. In this regard, measuring the crowding-out effect of policy-induced

clean innovation on other types of innovation is crucial to better understand the welfare

effects of climate policy. Third, while the impact of energy and carbon prices on clean

innovation is clear, investigation of the impact on incremental versus more radical inno-

vation (which might be needed to reach the recently adopted carbon neutrality targets)

appears lacking. More generally, exploration of the heterogeneity of the impact of green
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innovation policies across technologies, firms, countries and sectors, depending on their

characteristics (financial constraints, competition, knowledge stock) would enrich our

understanding of DTC. For example, carbon prices may work less well in certain sectors

(e.g. buildings) because of the existence of additional market failures. Finally, an impor-

tant area for research is that of policy instrument choice, in particular beyond pollution

pricing, and evaluating policy interactions and policy mixes (including, most impor-

tantly, combinations of pollution pricing instruments with innovation support policies).

More empirical research on the impact of R&D support policies specifically targeting

energy innovation is also needed.

In a word, theoretical and empirical applications of the DTC framework to the envi-

ronmental context surely have fine research days ahead.

5 Appendix

This Appendix provides mathematical details to the model sketched in Section 2.4.

Deriving equation (18). Equations (3) and (4) now apply to sectors j ∈ {c, r, p}.
Relative demand for the resource-based and non-resource based inputs in the dirty sector

leads to the relative demand:

Yrt/Ypt = (prt/ppt)
−θ , (20)

and allows to express the price of the dirty input as:

pdt = (p1−θ
rt + p1−θ

pt )
1

1−θ . (21)

Next solving for labor demand in subsectors r and p implies:

prt/ppt = (Art/Apt)
−β , (22)

plugging this expression together with (4) in (20) leads to:

Lrt/Lpt = (Art/Apt)
λ−1 . (23)

We define the total labor force working in sector d as Ldt ≡ Lrt + Lpt. Using (4) for

j = r, p, (21), (22) and (23) in (17), we get that Ydt also satisfies (4). As a result, (7),

(8) and (9) still apply.
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Using (3) and (4) for sector r, we get Pt/Yrt = ξ(1 − β)prt. Then using (21), (22),

(7) and the normalization of the final good price to 1, we get

Pt
Yrt

= ξ (1− β)

(
Aσ−1
dt + Aσ−1

ct

) 1
σ−1

Aβrt
.

Using (20) and (22), we further get that:

Pt
Ydt

= ξ (1− β)

(
Aσ−1
dt + Aσ−1

ct

) 1
ε−1

Aβdt

A1−λ
dt

A1−λ
rt

, (24)

which is decreasing in Art. Combining (4), (7), (9) and the labor market clearing condi-

tion gives the laissez-faire production of dirty input as

Yd =
Aεβd L

(1− β)
(
Aσ−1
c + Aσ−1

d

)βε−1
σ−1

. (25)

Similar steps give the final good production as

Yt =
(
Aσ−1
ct + Aσ−1

dt

)1/(σ−1) L

1− β
. (26)

The ratio of dirty input over final good is then:

Ydt
Yt

=
Aεβdt(

Aσ−1
ct + Aσ−1

dt

) εβ
σ−1

. (27)

which decreases in Act and increases in Adt. Combining these terms together gives (18).

Proof of Proposition 1. Part i) is already established in the text. Consider a

situation where innovation occurs asymptotically in the dirty sector. First note that

asymptotically, we have gAd = min
(
gAr , gAp

)
. From (18), we get that asymptotically

Pt ∼ ξA2−λ
dt Aλ−1

rt L.

Pollution decreases in the long-run if 1 + gAd = 1 + gAp < (1 + gArt)
1−λ
2−λ . From (26), the

maximal growth rate of final output achievable through this second strategy is then:

gY = gAd = gAp = γηps
∗
p,
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where the asymptotic allocation of scientists s∗p solves

(
1 + γηps

∗
p

)2−λ
=
(
1 + γηr

(
1− s∗p

))1−λ
. (28)

For γ small, this implies

s∗p =
(1− λ) ηr

(2− λ) ηp + (1− λ) ηr
,

leading to the growth rate given in Proposition 1.
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Dechezleprêtre, Antoine, Elias Einiö, Ralf Martin, Kieu-Trang Nguyen, and

John Van Reenen. 2016. “Do tax incentives for research increase firm innovation?

An RD design for R&D.” National Bureau of Economic Research.

Dechezlepretre, A, R Martin, and M Mohnen. 2017. “Knowledge spillovers from

clean and dirty technologies: A patent citation analysis, Grantham Research Institute

on Climate Change and the Environment.” Working Paper.

Dietz, Simon, and Bruno Lanz. 2019. “Can a growing world be fed when the climate

is changing?” IRENE Working Papers 19-09, IRENE Institute of Economic Research.

Di Maria, Corrado, and Simone Valente. 2008. “Hicks meets Hotelling: the direc-

tion of technical change in capital-resource economies.”Environment and Development

Economics, 13: 691–717.

Dugoua, Eugenie. 2020. “Induced Innovation and International Environmental Agree-

ments: Evidence from the Ozone Regime.”

Fischer, Carolyn, and Garth Heutel. 2013. “Environmental Macroeconomics: En-

vironmental Policy, Business Cycles, and Directed Technical Change.” Annual Review

of Resource Economics, 5: 197–210.

Fredriksson, Per G, and Alexandre Sauquet. 2017. “Does legal system matter

for directed technical change? Evidence from the auto industry.” Applied Economics

Letters, 24(15): 1080–1083.

Fried, Stephi. 2018. “Climate Policy and Innovation: A Quantitative Macroeconomic

32



Analysis.” American Economic Journal: Macroeconomics, 10(1): 9–118.

Ganguli, Ina. 2017. “Saving Soviet science: The impact of grants when govern-

ment R&D funding disappears.” American Economic Journal: Applied Economics,

9(2): 165–201.

Gans, Joshua. 2012. “Innovation and Climate Change Policy.” American Economic

Journal: Economic Policy, 4(4): 125–145.

Gars, Johan, and Conny Olovsson. 2019. “Fuel for economic growth?” Journal of

Economic Theory.

Gerglagh, Reyer, Snorre Kverndokk, and Knut Einar Rosendahl. 2009. “Opti-

mal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Inno-

vation Externalities.” Environmental Resource Economics, 43: 369–390.

Gerlagh, Reyer, and Wietze Lise. 2005. “Carbon taxes: A drop in the ocean, or

a drop that erodes the stone? The effect of carbon taxes on technological change.”

Ecological Economics, 54: 241–260.

Gerlagh, Reyer, Snorre Kverndokk, and Knut Einar Rosendahl. 2014. “The

optimal time path of clean energy R&D policy when patents have finite lifetime.”

Journal of Environmental Economics and Management, 67: 2–19.

Goulder, Lawrence H., and Stephen H. Schneider. 1999. “Induced Technological

Change and the Attractiveness of CO2 Abatement Policies.” Resource and Energy

Economics, 21(3-4): 211–253.

Greaker, Mads, Tom-Reiel Heggedal, and Knut Einar Rosendahl. 2018. “Envi-

ronmental Policy and the Direction of Technical Change.” The Scandinavian Journal

of Economics, 120(4): 1100–1138.

Greenstone, Michael, and Ted Gayer. 2009. “Quasi-experimental and experimental

approaches to environmental economics.” Journal of Environmental Economics and

Management, 57(1): 21–44.
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