Innovation vs. Imitation and the Evolution of Productivity Distributions

Michael D. Königa, Jan Lorenzb, Fabrizio Zilibottia

aDepartment of Economics, University of Zurich, Schönberggasse 1, CH-8001 Zurich, Switzerland.
bJacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.

Abstract

We develop a tractable dynamic model of productivity growth and technology spillovers that is consistent with the emergence of real world empirical productivity distributions. Firms can improve productivity by engaging in in-house R&D, or alternatively, by trying to imitate other firms’ technologies, subject to the limits of their absorptive capacities. The outcome of both strategies is stochastic. The choice between in-house R&D and imitation is endogenous, and based on firms’ profit maximization motive. Firms closer to the technological frontier face fewer imitation opportunities, and choose in-house R&D, while firms farther from the frontier try to imitate more productive technologies. The equilibrium choice leads to a balanced-growth equilibrium featuring persistent productivity differences even when starting from ex-ante identical firms. The long-run productivity distribution can be described as a traveling wave with tails following a Pareto as can be observed in the empirical data.

\textit{Key words:} innovation, growth, quality ladder, absorptive capacity, productivity differences, spillovers
\textit{JEL:} O40, E10

1. Introduction

There are large and persistent productivity differences not only across countries [e.g. Durlauf, 1996; Feyrer, 2008; Quah, 1997], but also across firms and plants within countries [Baily et al., 1992]. Such differences largely reflect the use of different technologies and managerial practices [see, e.g. Bloom and Reenen, 2011; Doms et al., 1997]. Con-
sider, for instance, the distribution of total factor productivity (TFP) from a balanced panel of 17,404 French firms in the periods between 1995 to 2003. Figure 1 shows how the empirical distribution evolves over time. Three main features emerge. First, the distribution of high-productivity firms is well described by a power-law. Second, the distribution of low-productivity firms also is approximated by a power-law, although this approximation is less accurate, arguably due to noisy data at low productivity levels. Third, the distribution is well approximated by a distribution that shifts in an affine way at a constant rate over time. We call a distribution with the latter characteristics a traveling wave. While entry, exit and reallocation are important determinants of firm dynamics, they altogether account for only 25% of total productivity growth [Acemoglu, 2009, Chap. 18]. Therefore, a theory of firm-level productivity dynamics must explain the determinants of the accumulation of technical knowledge among incumbent firms. To further the understanding of these factors, in this paper we propose a theory, related to Acemoglu et al. [2006], where firms can upgrade productivity over time through two alternative strategies: either by carrying out “in-house R&D”, or by imitating technologies used by other firms. The choice is driven by a standard profit-maximizing motive.

1The data are from the Amadeus database provided by Bureau van Dijk. The firm-level TFPs are estimated following the method introduced by Levinsohn and Petrin [2003]. A detailed description of the estimation method, and additional details about the data, can be found in Sections B.2 in the online technical Appendix B.

2Pareto distributions are also observed for distributions of several other economic variables of interest (e.g. firm size) in numerous empirical studies [e.g. De Wit, 2005; Gabaix, 1999; Saichev et al., 2009].

3In Section 5, we provide a formal definition (Definition 1) of a traveling wave.
The focus of the theory on the innovation-vs.-imitation margin is motivated by two observations. On the one hand, an important source of differences in technological know-how is the large variation across firms in R&D investments and in their success [Coad, 2009; Cohen and Klepper, 1992, 1996]. On the other hand, many firms do not invest at all in R&D; their productivity increases through the adoption of technology already in use from other firms. Thus, technical knowledge diffuses over time, albeit only slowly [Comin and Mestieri, 2013; Eeckhout and Jovanovic, 2002; Geroski, 2000; Griliches, 1957; Stoneman, 2002]. Our theory can reproduce, both qualitatively and quantitatively, the empirical regularities outlined above.

The model economy is a Schumpeterian quality-ladder growth model, in the spirit of Acemoglu et al. [2006], where differentiated intermediate goods are produced by monopolistically competitive firms. Firms producing different varieties have heterogeneous productivities that increase over time driven by firms’ endeavours to improve their technologies. For simplicity, we abstract from resource costs of R&D or imitation – the two strategies for increasing productivity. Since a firm cannot pursue both R&D and imitation at the same time, the opportunity cost of imitating is the return from R&D, and vice versa. R&D activity is modelled as a draw from an exogenous distribution of productivity upgrades. Imitation is modeled as a “matching process” whereby each imitating firm is randomly matched with another firm, and can then succeed or fail in imitating the other firm’s technology. The optimal choice between the two strategies hinges on the firm’s position in the overall productivity distribution. Firms far from the technology frontier are more likely to be matched with higher-productivity firms, and optimally choose imitation. In contrast, firms close to the technology frontier are less likely to find better firms from which they can learn, and therefore are more prone to choosing in-house R&D.4 Our model yields a steady-state productivity distribution with trending productivity resembling the empirical distribution of Figure 1. More formally, the theoretical distribution is a traveling wave with an exponentially growing average and power-law tails. We obtain an analytical representation of the equilibrium law of motion of the distribution in terms of a system of ordinary differential equations (ODEs), and even a complete analytical characterization of the steady-state distribution (traveling wave) consistent with the equilibrium law of motion. This characterization is the main contribution of our paper.

We contrast the results with alternative environments. We show that, on the one hand, a traveling wave would not emerge in an economy where some firms always

4More formally, in our model there exists a relative productivity threshold below which firms always imitate, and above which they always innovate. This prediction of our model is consistent with the empirical evidence that firms closer to the technology frontier engage in more R&D investments [see Griffith et al., 2003].
do R&D and others always imitate. In such an economy, the variance of the productivity distribution would grow over time, counterfactually. The reason is that the subpopulation of innovating firms would be excluded from any spillover from the growth at the frontier, causing an ever growing lower tail. On the other hand, the traveling wave would emerge in an economy in which each firm is assigned randomly to an innovation strategy in every period. Thus, what matters for our result is not that firms choose optimally between R&D and imitation, but that there is some “mixing” so that in every period firms lagging behind resort to imitation with some probability. More generally, the crux of the result is that all firms end up benefiting, sooner or later, from the spillovers accruing from the frontier productivity growth. Such spillovers ensure that a firm whose productivity is relatively low can grow more quickly as the frontier moves farther away. The case of profit-maximizing firms choosing between innovation and imitation is an economically interesting example of this mechanism: any repeatedly unsuccessful firm pursuing R&D can avoid falling too far behind by switching into imitation.

As an important extension, we study an economy in which firms have a limited capacity to absorb knowledge through imitation [Cohen and Levinthal, 1989; Kogut and Zander, 1992; Nelson and Phelps, 1966]. Namely, when a firm is matched with a more productive one, it can absorb only a (stochastic) share of the knowledge possessed by the other firm. The assumption of a limited absorptive capacity has no major bearing on the qualitative characterization of the equilibrium. However, this realistic feature turns out to improve significantly the quantitative fit of the theory – e.g., relative to the empirical distribution of Figure 1. Intuitively, in the model with an unlimited absorptive capacity, laggard firms benefit strongly from the spillovers arising from progress at the frontier. Thus, if one calibrates the model so as to fit the productivity spread observed in the data, the model (which is very parsimonious in the number of parameters) overpredicts productivity growth. In contrast, the model with a limited absorptive capacity slows down convergence within the distribution, yielding a much better fit with the empirical distribution. Another insight (hinging on numerical analysis) is that when the absorptive capacity is sufficiently small relative to the return to innovation, one obtains an ever growing variance rather than a traveling wave.

The explicit formulation of firms’ R&D behavior and the endogenous choice between innovation and imitation distinguishes our model from most of the previous literature. Klette and Kortum [2004] model the R&D decisions of multiproduct firms, but do not discuss imitation. Luttmer [2007] focuses on entry, exit and selection in a world where incumbent firms are subject to exogenous productivity shocks, and entrant firms can imitate incumbents. His model, like ours, generates a traveling wave. There are two main differences relative to our paper. First, we focus on the endogenous decision of inno-
vation vs. imitation by incumbent firms. Second, from a technical standpoint, Luttmer [2007] proposes an environment with continuous firm sizes, while here we analyze a Schumpeterian quality ladder model with discrete productivity steps. Nevertheless, despite the differences, in both cases a traveling wave solutions can be obtained. Moreover, Acemoglu and Cao [2015] construct, as we do, a Schumpeterian model. They obtain Zipf’s law for large firm sizes, while we focus on productivity. In their model, incumbent firms engage in incremental innovations, while entry is associated with radical innovations and creative destruction (i.e., the successful entrant replaces the incumbent). As in Luttmer [2007], their model does not feature an endogenous choice of the R&D strategy. Ghiglino [2011] constructs a search-based growth model which generates Pareto-distributed productivity levels focusing on the recombination of existing technologies into novel ones. In Perla et al. [2014] firms can choose either to produce, or to search for existing technologies to imitate. Differently from our model, their paper features no in-house R&D. Other papers focusing on innovation and imitation include Eeckhout and Jovanovic [2002], and Atkeson and Burstein [2010]. None of these focuses on the innovation-vs-imitation trade off.

Alvarez et al. [2008]; Lucas [2008] and Lucas and Moll [2014] study models of technology diffusion using the framework of Eaton and Kortum [1999]. Each producer draws from a random sample of firms and “copies” the technology of the firm with which it is matched whenever the latter has a better technology. These papers are related to our work, and explore dimensions that we do not consider. For instance, Lucas and Moll [2014] focus on the trade-off in the use of time between production and imitation and on the effects of progressive taxation. Relative to our contribution, these authors neither model explicitly the strategic decisions of firms whether to undertake in-house R&D or to copy other firms, nor do they take into account limitations in the ability of firms to imitate external knowledge. Because in their model firms can only copy from existing firms (or ideas), the equilibrium dynamics would converge in the long run to a mass point corresponding to the productivity level of the most productive firm. To avoid such a degenerate long-run distribution, they assume an unbounded distribution of knowledge. This is not necessary in our model, since here firms that are close to the technology frontier choose endogenously to innovate (i.e., draw from an exogenous productivity distribution) rather than to adopt technologies from a pool of existing ideas.

Our paper is also related to two recent contributions that were written simultaneously and independently of our paper. Benhabib et al. [2014] study a simplified deterministic framework where agents make an optimal portfolio choice between invest-

5For a recent extension of this model see Perla et al. [2014].
ments in innovation and adoption. Luttmer [2012] extends the model of selection and growth of Luttmer [2007] to an environment in which also incumbent firms can perform imitation. He obtains, as we do, convergence to a stable (balanced growth) productivity distribution. However, both the environment and the technique of analysis are different. In particular, in his model productivity growth is governed by a Brownian motion while we consider a standard Schumpeterian quality-ladder model. In this respect, our paper also relates to an earlier Schumpeterian growth literature where firms make a choice between innovation and imitation, including Cheng and Dinopoulos [1996], Segerstrom [1991], Jovanovic and Rob [1990], and Acemoglu et al. [2006]. These papers, however, do not study the endogenous evolution of the productivity distribution of firms.

The paper is organized as follows. The static model environment is introduced in Section 2. Section 3 discusses the law of motion of the productivity distribution. Section 4 studies the evolution of the distribution in an economy where the innovation strategy (in-house R&D vs. imitation) is a deterministic fixed effect of each firm. Section 5 yields the main result, characterizing the productivity distribution in a model where firms choose optimally whether to perform in-house R&D or to imitate. Sections 6 and 7 consider two extensions, and Section 8 concludes. The proofs of all propositions and lemmas, together with some additional results referred to in the text are provided in Appendix A. Additional technical material, including extensions and details of the calibration, are provided in an online technical Appendix B.

2. The Model

In the following sections we provide a micro-foundation of our model based on a monopolistically competitive environment with a competitive fringe in each sector (see Section 2.1), and introduce the basic processes of innovation and imitation (see Section 2.2) leading to productivity improvements.

2.1. Environment

The model economy is a version of Acemoglu et al. [2006] comprising a competitive final good sector and a continuum of unit measure of monopolistic sectors producing differentiated intermediated goods. The final good, denoted by $Y(t)$, is produced by a representative firm using labor and a set of intermediate goods $x_i(t), i \in \mathcal{N} = \{1, 2, \ldots, N\}$. Its technology is represented by the following production function:

$$Y(t) = \frac{1}{\alpha} L^{1-\alpha} \sum_{i=1}^{N} A_i(t)^{1-\alpha} x_i(t)^{\alpha}, \quad \alpha \in (0, 1),$$
where \(t \) denotes time, \(x_i \) is the intermediate good \(i \), and \(A_i \) is the technology level of industry \(i \). We normalize the labor force to unity, \(L = 1 \). The final good can be used for consumption, as an input to R&D, and also as an input to the production of intermediate goods. Its price is set to be the numeraire. The profit maximization program yields the following inverse demand function for intermediate goods:

\[
p_i(t) = \left(\frac{A_i(t)}{x_i(t)} \right)^{1-\alpha}.
\]

Each intermediate good \(i \) is produced by a technology leader who has access to the best technology. By this best-practice technology the marginal cost of producing any intermediate input equals one unit of the final good. The leader is subject to the potential competition of a fringe of firms that can produce the same input albeit at a higher constant marginal cost, \(\chi \), where \(1 < \chi \leq 1/\alpha \). Note that a higher value of \(\chi \) indicates less competition. Bertrand competition implies that each technology leader monopolizes its market, sets the price equal to the unit cost of the fringe, \(p_i(t) = \chi \), and sells the quantity \(x_i(t) = \chi^{-\frac{1}{\alpha}} A_i(t) \). Namely, the equilibrium entails a limit price strategy and an inactive fringe as in Acemoglu et al. [2006]. The profit earned by the incumbent in any intermediate sector \(i \) is then proportional to productivity,

\[
\pi_i(t) = (p_i(t) - 1) x_i(t) = \psi A_i(t),
\]

where we have denoted by \(\psi \equiv \frac{\chi^{-\frac{1}{\alpha}} - 1}{\alpha} \). In equilibrium, gross output is proportional to aggregate productivity:

\[
Y^{\text{tot}}(t) = \frac{1}{\alpha} \chi^{-\frac{1}{\alpha}} \sum_{i=1}^{N} A_i(t) = \frac{1}{\alpha} \chi^{-\frac{1}{\alpha}} A(t),
\]

where aggregate productivity is \(A(t) = \sum_{i=1}^{N} A_i(t) \). Similarly, net aggregate output, defined as final output minus the cost of intermediate production, is given by \(Y^{\text{net}}(t) = Y^{\text{tot}}(t) - \sum_{i=1}^{N} x_i(t) = \zeta A(t) \), where \(\zeta \equiv (\chi - a) \frac{1}{\alpha} \chi^{-\frac{1}{\alpha}} \).

Throughout the rest of the paper, when referring to firm \(i \) we always mean the most efficient producer in sector \(i \). Moreover, our population of firms comprises only the set of technology leaders in each sector. These choices are not a source of confusion since fringe firms are inactive in equilibrium.

6Given the proportionate relationship between productivity and output, all results we derive on productivity also hold for firm size (as measured, e.g., by value added). However, since we are mainly interested in the process of technological change and productivity growth, we focus on productivity instead of firm size dynamics.
2.2. Technological Change

The productivity of each intermediate good $i \in N$ is assumed to take on values along a quality ladder with rungs spaced proportionally by a factor $\bar{A} > 1$. Productivity starts at $\bar{A}^0 = 1$ and the subsequent rungs are $\bar{A}^1, \bar{A}^2, \bar{A}^3, \ldots$. Firm i, which has achieved a_i productivity improvements then has productivity $A_i = \bar{A}^{a_i}$.

Firm i's productivity $A_i \in \{1, \bar{A}, \bar{A}^2, \ldots \}$ grows as a result of technology improvements, either undertaken in-house (innovation) or due to the imitation and absorption of other firms’ technologies. The technology comes from firms in other sectors that were successful in innovating in their area of activity [Fai and Von Tunzelmann, 2001; Kelly, 2001; Rosenberg, 1976]. We consider a discrete time model where in each time period from t to $t + \Delta t$, $\Delta t > 0$, a firm i is selected at random and decides either to imitate another firm or to conduct in-house R&D, depending on which option yields higher expected profits.\(^7\)

2.2.1. Innovation

If firm i conducts in-house R&D at time t then it makes $\vartheta(t)$ productivity improvements and its productivity changes as follows:

$$A_i(t + \Delta t) = \bar{A}^{a_i(t)} + \vartheta(t) = A_i(t)\bar{A}^{\vartheta(t)}.$$ \hspace{1cm} (2)

$\vartheta(t) \geq 0$ is a nonnegative integer-valued random variable with a certain distribution. Let us denote by $\eta_b \equiv P(\vartheta(t) = b)$ for $b = 0, 1, 2, \ldots$ to quantify the distribution, satisfying $\sum_{b=0}^{\infty} \eta_b = 1$. From the productivity growth dynamics above we can go to an equivalent system by changing to the log-productivity $a_i(t) = \log A_i(t) / \log \bar{A}$. We can simplify the notation if we take \bar{A} as the base of the logarithm, so that $\log \bar{A} = 1$. This allows us to write log-productivity as $a_i(t) = \log A_i(t)$. Then, taking logs of the in-house update map in Equation (2) gives

$$a_i(t + \Delta t) = a_i(t) + \vartheta(t).$$ \hspace{1cm} (3)

An illustration of this productivity growth process can be seen in Figure 2. Note that log-productivity undergoes a simple stochastic process with additive noise, while productivity follows a stochastic process with multiplicative noise, with the stochastic factor being the random variable \bar{A}^ϑ. In the limit of continuous time we obtain a geometric Brownian motion for productivity [see e.g. Saichev et al., 2009, pp. 9].

In our analysis below, we restrict attention to the case in which innovation is an

\(^7\)We explain the innovation and imitation process in more detail in Section 3 below.
incremental step-by-step process, i.e., \(\eta_0 = 1 - p, \eta_1 = p, \eta_b = 0 \) for \(b = 2, 3, \ldots \) This is for simplicity. All results can be extended to the case in which \(\eta_b > 0 \) for all \(b \leq B < \infty \).

2.2.2. Imitation

In the case of imitation, firm \(i \) with productivity \(A_i(t) \) selects another firm \(j \) at random from the population of firms, \(\mathcal{N} \), and attempts to imitate its productivity \(A_j(t) \) as long as \(A_j(t) > A_i(t) \), which is equivalent to \(a_j(t) > a_i(t) \). Conditional on firm \(i \) selecting a firm \(j \) with higher productivity, firm \(i \) tries to climb the rungs of the quality ladder which separates it from \(a_j(t) \). We assume that each firm climbs each rung with a success probability \(q \in [0, 1] \). Moreover, the attempt finishes after the first failure. This reflects the fact that knowledge absorption is cumulative and the growth of knowledge builds on the already existing knowledge base [Kogut and Zander, 1992; Weitzman, 1998].

Taking the above mentioned process of imitation more formally, firm \(i \)'s productivity changes according to

\[
A_i(t + \Delta t) = A_i(t) \bar{A}^\kappa = \bar{A}^{a_i(t) + \kappa},
\]

where \(\kappa \) is a random variable which takes values in \(\{0, 1, 2, \ldots, a_j(t) - a_i(t)\} \) and denotes the number of rungs to be climbed towards \(a_j(t) \). The distribution of \(\kappa \) depends on the distance \(a_j(t) - a_i(t) \) and is quantified as

\[
P(\kappa = k | a_j(t) - a_i(t) = d) = \begin{cases}
q^k (1 - q) & \text{if } 0 \leq k < d, \\
q^k & \text{if } k = d, \\
0 & \text{otherwise}.
\end{cases}
\]

Note, that \(\sum_{k=0}^{\infty} P(\kappa = k) = 1 \), as necessary for a proper probability measure. Moreover,
for $q = 0$ we have that $A_i(t + \Delta t) = A_i(t)$, for $q = 1$ we have $A_i(t + \Delta t) = A_j(t)$ while for $0 < q < 1$ it holds that $A_i(t) \leq A_i(t + \Delta t) \leq A_j(t)$. This motivates us to call the parameter q a measure of firms’ absorptive capacities. The higher q, the better firms are able to climb rungs on the quality ladder.

Switching to log-productivity and setting $\log \bar{A} = 1$ in Equation (4) we obtain\(^8\)

$$a_i(t + \Delta t) = a_i(t) + \kappa. \quad (6)$$

An illustration of this imitation process can be seen in Figure 3.

3. Evolution of the Productivity Distribution

In this section, we analyze the evolution of the productivity distribution. We first establish some useful notation. We then proceed by characterizing the equilibrium dynamics of the productivity distribution.

3.1. Characterization of the Productivity Dynamics

Consider the distribution of log-productivity $a_i(t) = \log A_i(t)$ in the population of $N \in \mathbb{N}$ firms over time, where N is assumed to be a large number. Let S denote

\(^8\)If firm i with log-productivity $a_i(t)$ attempts to imitate firm j with log-productivity $a_j(t) > a_i(t)$ then the expected log-productivity i obtains is given by $E_i \left[a_i(t + \Delta t) | a_i(t) = a, a_j(t) = b \right] = \sum_{c=0}^{b-a-1} (a + c)(1-q) + bq^{b-a} = a + q \frac{b-a}{1-q}$. If $q < 1$ and b is much larger than a, the following approximation holds: $E_i \left[a_i(t + \Delta t) | a_i(t) = a, a_j(t) = b \right] \approx a + \frac{b}{1-q}$. In this case, the log-productivity firm i obtains through imitation does not depend on the log-productivity of firm j but only on its success probability q. However, it depends on the log-productivity of firm j if $a_j(t)$ is close to $a_i(t)$. The latter becomes effective for example for firms with a high productivity when there are only few other firms remaining with higher productivities that could be imitated.
the set of log-productivity values, that is $S = \{\log \bar{A}, 2\log \bar{A}, \ldots\}$. Assuming that \(\log \bar{A} = 1\) this is simply the set of positive integers, \(\mathbb{N}\). Further, let \(P_a(t)\) indicate the fraction of firms having log-productivity \(a\) at time \(t\) in \(T\). Thus, the row vector \(P(t) = (P_1(t), P_2(t), \ldots, P_a(t), \ldots)\) represents the distribution of log-productivity at time \(t\). Notice that the vector is infinite to the right. It holds that \(P_a(t) \geq 0\) and \(\sum_{a=1}^{\infty} P_a(t) = 1\). In what follows we may omit for simplicity either \(a\) or \(t\) in the arguments of \(P_a\) whenever it causes no confusion.

Our dynamics of innovation and imitation induces a discrete time, discrete space family of Markov chains \((P^N(t))_{t \in T}\) indexed by \(N \geq N_0\) \((N_0 \in \mathbb{N}\) being some arbitrary lower bound on the number of firms) is a Markov chain that takes on values in the state space \(P^N = \{P \in \mathbb{R}^{||S||} : N \cdot P \in \mathbb{N}^{||S||}, \sum_{a \in S} P_a = 1\}\), i.e. the state space of frequency vectors for a specified \(N\) indicating the fraction of firms with a certain log-productivity \(a \in S\). At times \(t \in T = \{0, \Delta t, 2\Delta t, \ldots\}\) with \(\Delta t = 1/N\), exactly one firm in the population of \(N\) firms is selected at random and given the opportunity to introduce a technology improvement (through either innovation or imitation, as discussed in the following sections). The probability \(T_{ab} : P^N \to \mathbb{R}^{||S|| \times ||S||}\) that a firm that is selected with log-productivity \(a\) switches to log-productivity \(b\) at time \(t\) is given by

\[
T_{ab}(P) = \mathbb{P}\left(P^N(t + \Delta t) = P + \frac{1}{N}(e_b - e_a) \mid P^N(t) = P \right),
\]

where \(e_a \in \mathbb{R}^{||S||}\) is the standard unit basis vector corresponding to log-productivity \(a \in S\). The transition probabilities of our Markov chain \((P^N(t))_{t \in T}\) are then given by

\[
\mathbb{P}\left(P^N(t + \Delta t) = P + z \mid P^N(t) = P \right) = \begin{cases}
 P_a T_{ab}(P) & \text{if } z = \frac{1}{N}(e_b - e_a), \ a, b \in S, \ a \neq b, \\
 1 - \sum_{b \in S} \sum_{b \neq a} P_a T_{ab}(P) & \text{if } z = 0, \\
 0 & \text{otherwise.}
\end{cases}
\]

With these definitions we are able to derive the differential Equation governing the evolution of the productivity distribution by using the following proposition:

Proposition 1. Consider the Markov chain \((P^N(t))_{t \in T}\) with transition matrix \(T(P)\). Define

\[
9\text{This proposition is an application of deterministic approximation theorems for discrete time Markov chains [cf. Kurtz, 1970; Sandholm, 2010]. We refer in particular to Chapter 10 of Sandholm [2010] for a more detailed discussion of these approximation techniques.}
$V(P) \equiv P(t)(T(P) - I)$ and let

$$\bar{V}(P) = \bigcap_{\epsilon > 0} \text{cl} \left(\text{conv} \left(V \left(\{ P' \in \mathbb{R}_+^{|S|} : \| P - P' \| \leq \epsilon \} \right) \right) \right)$$

be the closed convex hull of all values of V that obtain vectors P' arbitrarily close to P. Then in the limit of a large number N of firms, the evolution of the log-productivity distribution $P(t)$ is given by the differential inclusion

$$\frac{\partial P(t)}{\partial t} \in \bar{V}(P(t)), \quad (7)$$

for some initial distribution $P(0) : S \rightarrow [0, 1]$. Moreover, if $T(P)$ is Lipschitz continuous in P, then the evolution of the log-productivity distribution $P(t)$ is given by the differential equation

$$\frac{\partial P(t)}{\partial t} = V(P(t)) = P(t)(T(P(t)) - I). \quad (8)$$

Note that Proposition 1 covers the general case of the transition matrix $T(P)$ not being Lipschitz continuous. Then, the evolution of the log-productivity distribution follows a differential inclusion (i.e. a set-valued differential equation) as in Equation (7). In the case of a Lipschitz continuous $T(P)$, we can simply write the evolution of the productivity distribution as a differential equation, which is stated in Equation (8). Moreover, at all points of continuity of $T(P)$ the differential inclusion is actually a differential equation.

In the following sections, we derive the matrix $T(P)$ with elements $T_{ab}(P)$, $a, b \in S$, under the individual firms’ laws of motion associated with innovation in Equation (3) and imitation in Equation (6), respectively.

In Section 4 we look at the case where the decision to innovate vs. imitate is exogenous and fixed, and that this will be in contrast to the case in which a given firm will either imitate or innovate at different times, as will naturally occur when the choice is endogenous. Moreover, in the exogenous case, one can show that the log-productivity distribution of the population of the firms engaging in in-house R&D converges to a normal distribution with increasing variance over time (cf. Proposition 2). However, we do not observe such a divergence in the variance of empirically observed productivities as illustrated in Figure 1. In a more realistic model, it is therefore necessary to allow firms to engage in both innovation and imitation in order to advance their productivity levels. This is the case we are going to discuss in the subsequent Section 5, where the general model is introduced.

10See also Aubin and Cellina [1984].
4. Exogenous Innovation-Imitation Strategies

In this section, we introduce some key notation and provide an analysis of the evolution of the productivity distribution in a world where R&D strategies are exogenous with a fixed fraction of innovators and imitators. We consider three cases: in Section 4.1 all firms engage in in-house R&D, in Section 4.2 all firms try to imitate and in Section 4.3 some firms always do in-house R&D, while others always imitate. We are not interested per se in these environments. However, they provide a useful contrast with (and intuition for) the results of Section 5, where firms choose optimally between in-house R&D and imitation, and where we present the main contribution of the paper.

The reader who is more interested in the productivity dynamics with endogenous innovation choice might however skip these sections and start directly with Section 5.

4.1. Innovation Only

Assume that all firms do in-house R&D, or equivalently that firms have no absorptive capacity for imitation ($q = 0$). Innovation is assumed to yield a stochastic return and to have an incremental step-by-step nature. Namely, a firm engaging in R&D either moves one step upwards in the productivity ladder or experiences no productivity change. The probability of success is given by $p > 0$, assumed to be independent of the firm’s initial productivity. More formally, we can write the transition matrix due to in-house R&D as:

$$
T_{\text{in}} = \begin{pmatrix}
1 - p & p & 0 & \ldots & 0 & \ldots \\
0 & 1 - p & p & \ldots & 0 & \ldots \\
0 & 0 & 1 - p & p & \ldots \\
& & & \ddots & \ddots & \ddots \\
& & & & \ddots & \ddots \\
& & & & & \ddots & \ddots \\
\end{pmatrix}.
$$

From Proposition 1 it follows that, as $N \to \infty$, the evolution of the log-productivity distribution in Equation (8) follows the ODE $\frac{\partial P(t)}{\partial t} = P(t)(T_{\text{in}} - I)$. This is a diffusion equation with a positive drift. The central limit theorem implies then that the log-productivity approaches a Gaussian shape as t grows. Both the mean and the variance rise linearly with t, as stated more formally by the following proposition.

Proposition 2. Assume $q = 0$ and $p > 0$. Then, for large N, the log-productivity distribution approaches a normal distribution $\mathcal{N}(tp, tp(1 - p))$, for large t. The productivity distribution converges to a log-normal distribution with mean $\mu_A = e^{tp(1 + \frac{t}{2}(1 - p))}$ and variance $\sigma_A^2 = \left(e^{tp(1 - p)} - 1\right)e^{2tp + tp(1 - p)}$.

11The assumption of step-by-step innovation is for simplicity. In the working paper version [König et al., 2012], we consider a more general formulation where firms doing R&D face a positive probability of making $0, 1, 2, \ldots, m$ steps forward, where $m < \infty$.

4.2. Imitation Only

Next, we consider the polar opposite case in which firms have no capacity to innovate through in-house R&D, and can progress only by imitating other firms’ technologies. More formally, we assume \(q > 0 \) and \(p = 0 \). The long-run outcome is easy to guess: all firms will converge to the same productivity level, equal to the largest productivity in the initial distribution. In spite of this counterfactual implication, this is an instructive warm-up case, as it provides key insights for our main result.

The probability that a firm with log-productivity \(a \) attains through imitation a log-productivity \(b > a \) is given by

\[
T_{im}^{ab}(P) = q^{b-a} P_b + q^{b-a} (1-q) P_{b+1} + q^{b-a} (1-q) P_{b+2} + \ldots
\]

\[
= q^{b-a} \left(P_b + (1-q) \sum_{k=1}^{\infty} P_{b+k} \right)
\]

\[
= q^{b-a} \left(P_b + (1-q)(1-F_b) \right), \quad (9)
\]

where \(F \) is the cumulative distribution of \(P \), \(F_b = \sum_{c=1}^{b} P_c \). The first term in the sum corresponds to a firm with log-productivity \(a \) being matched with a firm with log-productivity \(b > a \) and climbing up successfully all the \(b-a \) rungs. This happens with probability \(q^{b-a} \). The second term describes the case in which the firm is matched with a firm with log-productivity \(b+1 \), but climbs only \(b-a \) rungs, failing to climb the last rung. And so on. See also Figure 3. If \(b < a \), the firm has nothing to imitate, thus \(T_{im}^{ab}(P) = 0 \). The probability for the firm not to make any improvement is, therefore, \(T_{aa}^{im}(P) = 1 - \sum_{b > a} T_{im}^{ab}(P) \).

The transition matrix \(T^{im} \) with elements given by Equation (9) is “interactive” and is given by:

\[
T^{im}(P) = \begin{pmatrix}
S_1(P) & q(P_2 + (1-q)(1-F_2)) & q^2(P_3 + (1-q)(1-F_3)) & \ldots \\
0 & S_2(P) & q(P_3 + (1-q)(1-F_3)) & \ldots \\
0 & 0 & S_3(P) & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{pmatrix},
\]

where \(S_a(P) \equiv 1 - \sum_{b=a+1}^{\infty} T^{ab}(P) = 1 - \sum_{b=a+1}^{\infty} q^{b-a} (P_b + (1-q)(1-F_b)) \). In the case of \(q = 1 \), which will be the benchmark of our analysis below, this simplifies to \(S_a(P) = F_a \). In accordance with Proposition 1, for large \(N \), the evolution of the log-productivity

\footnote{A Markov chain is interactive if the transition probabilities depend on the current distribution [Conlisk, 1976].}
distribution is given by
\[\frac{\partial P(t)}{\partial t} = P(t)(T^\text{im}(P(t)) - I). \] (10)

From Equation (10) we can derive a system of differential equations governing the evolution of the cumulative log-productivity distribution.

Proposition 3. Assume \(q > 0 \) and \(p = 0 \). Then, for large \(N \), the evolution of the cumulative log-productivity distribution \(F(t) \) is given by
\[\frac{\partial F_a(t)}{\partial t} = F_a(t)^2 - F_a(t) + (1 - q)(1 - F_a(t)) \sum_{b=0}^{a-1} q^b F_{a-b}(t), \quad a \in S, \] (11)
for some initial distribution \(F(0) : S \to [0, 1] \) with finite support. Then there exists a maximal initial log-productivity \(a_m \) such that \(F_a(0) = 1 \) for all \(a \geq a_m \), and as \(t \to \infty \), the distribution converges to:
\[\lim_{t \to \infty} F_a(t) = \begin{cases} 0, & \text{if } a < a_m, \\ 1, & \text{if } a \geq a_m. \end{cases} \] (12)
i.e., \(\lim_{t \to \infty} P_{a_m}(t) = 1 \)

In the special case of \(q = 1 \), we recover the knowledge growth dynamics analyzed by Lucas [2008].

4.3. Innovation and Imitation

Consider, next, the evolution of the productivity distribution in a world where innovation strategies are exogenous, i.e., \(N_1 \) firms do in-house R\&D while \(N_2 = N - N_1 \) firms imitate, where \(N_1 \in \{0, 1, \ldots, N\} \). In this case, the dynamics of the productivity frontier is governed by the firms engaged in in-house R\&D. The resulting evolution of the productivity distribution is as analyzed in Section 4.1.\(^\text{13}\) There we show that the productivity distribution of firms doing R\&D converges to a log-normal distribution with an ever increasing variance (see Proposition 2). Since the proportion of innovators and imitators is fixed, this implies that also the variance of the distribution of the total population of firms must diverge.\(^\text{14}\) Since the empirical evidence discussed in the introduction (cf. Figure 1) suggests that there is no such increase in the variance of the distribution, a model with an exogenous proportion of innovators and imitators yields counterfactual predictions.

\(^{13}\)A more formal analysis of the case in which there are both innovators and imitators is provided in Appendix A.1.

\(^{14}\)In particular, there is divergence in the sub-population of firms carrying out R\&D, as these do not benefit from the spillover associated with the progress in the frontier technology. It is possible to characterize the dynamics of the cumulative log-productivity distribution in terms of a differential equation, although this admits no closed-form solution. The analysis is deferred to Appendix A.1.
5. Endogenous Choice of the Innovation Strategy

This section contains the main result of the paper. We assume that firms choose whether to innovate through in-house R&D or to imitate other firms based on a standard value-maximization objective. In our environment, this is equivalent to maximizing the expected profit in every period. In turn, Equation (1) shows that the profit is linearly increasing in the technology level. Thus, profit-maximizing firms endeavor simply to maximize the expected level of technology every period.15 The intuitive reason for this equivalence is that there are no sunk costs: The opportunity cost of innovation is the return from imitation, and vice versa, and firms can switch back-and-forth between innovation and imitation with no adjustment cost. Hence, forward-looking firms simply choose the strategy (either in-house R&D or innovation) so as to maximize the expected number of improvements along the quality ladder.

Let $E_{in}^i[A_i(t + \Delta t)|A_i(t)]$ and $E_{im}^i[A_i(t + \Delta t)|A_i(t), P(t)]$ denote the expected productivity for a firm whose current productivity is $A_i(t)$, conditional on choosing in-house R&D and imitation, respectively. Recall that expected profits are proportional to expected productivities (see Equation (1) in Section 2.1). Thus, the profit-maximizing firm i chooses in-house R&D whenever

$$E_{in}^i[A_i(t + \Delta t)|A_i(t)] > E_{im}^i[A_i(t + \Delta t)|A_i(t), P(t)],$$

where the expected productivity from innovation is given by

$$E_{in}^i[A_i(t + \Delta t)|A_i(t)] = A_i(t)((1 - p) + p\bar{A}),$$

while the expected productivity from imitation is

$$E_{im}^i[A_i(t + \Delta t)|A_i(t), P(t)] = A_i(t)\left(\sum_{b=a_i(t)+1}^{\infty} \bar{A}^{b-a_i(t)}q^{b-a_i(t)}(P_b(t) + (1-q)(1-F_b(t)))\right),$$

and $S_a(P) = 1 - \sum_{b=a+1}^{\infty} T_{ab}^im(P)$, as defined in Section 4.2. The decision rule in Equation (13) can alternatively be captured by the following indicator function:

$$\chi_{im}(a_i(t), P(t)) = \begin{cases} 1 & \text{if } a_{im}^i(a_i(t), P(t)) \geq a_{in}^i(a_i(t)), \\ 0 & \text{otherwise}, \end{cases}$$

15For a formal proof, see Proposition 8 in Appendix A.2, showing that the firm’s value function is increasing in its technology level.
where $a_i^\text{im}(a_i(t)) \equiv \log \mathbb{E}_t^\text{im} [A_i(t+\Delta t) | A_i(t)]$, and $a_i^\text{im}(a_i(t), P(t)) \equiv \log A_i^\text{im}(A_i(t), P(t))$. In words, $\chi^\text{im}(a_i(t), P(t)) \in \{0, 1\}$ is the indicator variable being one if firm i pursues imitation, and zero if the firm pursues in-house R&D. Similarly, we define $\chi^\text{in}(a_i(t), P(t)) \equiv 1 - \chi^\text{im}(a_i(t), P(t))$.

To achieve a complete analytical characterization, in the rest of this section we restrict our attention to economies in which firms have no absorptive capacity limits, $q = 1$. We shall return to the more general case in Section 6.

Proposition 4. Assume that $q = 1$. Then for any P there exists a unique threshold log-productivity $a^\ast(P) \in S$ such that: (i) $\chi^\text{im}(a, P) = 1$ (and $\chi^\text{in}(a, P) = 0$) for $a \leq a^\ast(P)$ and (ii) $\chi^\text{im}(a, P) = 0$ (and $\chi^\text{in}(a, P) = 1$) for $a > a^\ast(P)$.

Proposition 4 establishes that the decision about the innovation strategy has a threshold property: relatively backward firms (i.e., those weakly below the threshold $a^\ast(P)$) optimally choose to imitate, while more advanced firms (i.e., those above the threshold $a^\ast(P)$) choose to innovate.

We now turn to the equilibrium dynamics. The transition matrix $T(P)$ is the sum of the transition matrices for innovation and imitation given in Sections 4.1 and 4.2, respectively, each weighted by the respective indicator function from Equation (14). The equilibrium dynamics of the log-productivity distribution can be represented by the differential inclusion in Equation (7) in Proposition 1. However, it is not possible to express the equilibrium dynamics in terms of the ODE (8). The reason is that whenever $a_i^\text{im}(a^\ast(P)) = a_i^\text{im}(a^\ast(P), P)$, i.e., firms at the productivity level a^\ast are indifferent between in-house R&D and imitation, the indicator function $\chi^\text{im}(a^\ast(P), P)$ is discontinuous in P. This violates the standard continuity condition under which we can represent the dynamics as an ODE. Since proving our main result using the theory of differential inclusions would be more involved, we roundabout this technical complication by replacing the discontinuous indicator function by a continuous approximation. This allows us to express the equilibrium dynamics in terms of an ODE (see Equation (16) below). More formally, we define the continuous logistic function,

$$\chi^\text{im}_\beta(a_i(t), P(t)) = \frac{1}{1 + e^{-\beta(a_i^\text{im}(a_i(t), P(t)) - a_i^\text{in}(a_i(t)))}},$$

(15)

with the property that $\lim_{\beta \to \infty} \chi^\text{im}_\beta(a_i(t), P(t)) = \chi^\text{im}(a_i(t), P(t))$. For large β, we then have that $\chi^\text{im}_\beta(a_i(t), P(t)) \approx \chi^\text{im}(a_i(t), P(t))$. In the working paper version [König et al., 2012], we propose an explicit micro-foundation for such a formulation, whereby firms are subject to stochastic shocks affecting their productivity in performing in-house R&D, and these shocks then create a time-varying comparative advantage for different firms.

Replacing χ^im by χ^im_β, and assuming a large population of firms ($N \to \infty$) allows us
write the evolution of the log-productivity distribution as follows:
\[
\frac{\partial P(t)}{\partial t} = P(t) (T(P) - I) = P(t) \left((I - D(P)) T^{im} + D(P) T^{im}(P) - I \right),
\]
for some initial distribution \(P(0) : S \rightarrow [0,1]\), where \(D(P)\) denotes the diagonal matrix with diagonal elements given by \(\chi^i_{\beta}(a,P)\) for all \(a \in S\). Making explicit the individual equation for each relative frequency, \(P_a\), yields:
\[
\frac{\partial P_a(t)}{\partial t} = P_a(t) \left(\sum_{b=1}^{a-1} \chi^i_{\beta}(b,P)P_b(t) + \chi^i_{\beta}(a,P)S_a(P) \right) + (1-p)P_a(t) \left(1 - \chi^i_{\beta}(a,P) \right) + pP_{a-1}(t) \left(1 - \chi^i_{\beta}(a-1,P) \right) - P_a(t), \quad a \in S.
\]

The system of ODEs in (17), expressed in terms of \(P_a\), can be turned into a system of ODEs in terms of the complementary cumulative productivity distribution, \(G_a(t) = 1 - F_a(t)\), as indicated in the following proposition:

Proposition 5. Assume a large population of firms with unlimited absorptive capacity limits \((q = 1)\). Let the decision rule \(\chi^i_{\beta}(a_1(t),P(t))\) be approximated by the continuous (logistic) function \(\chi^i_{\beta}(a_1(t),P(t))\) given by Equation (15). Then, in the limit of \(\beta \rightarrow \infty\), for all \(a \in S\), the dynamics of the cumulative log-productivity distribution is
\[
\frac{\partial G_a(t)}{\partial t} = \begin{cases}
G_a(t) - G_a(t)^2, & \text{if } a \leq a^*(P), \\
(1 - G_{[a^*(P)]}(t))G_a(t) - p(G_a(t) - G_{a-1}(t)), & \text{if } a > a^*(P).
\end{cases}
\]

The system of ODEs (18) can be solved numerically subject to the boundary conditions \(\lim_{a \rightarrow \infty} G_a(t) = 0\) and \(\lim_{a \rightarrow 1} G_a(t) = 1\). More interestingly, it is possible to characterize analytically a steady-state distribution consistent with Equation (18). Contrary to the case in which firms are assigned exogenously to in-house R&D and innovation, and consistently with the empirical evidence, this distribution has a constant variance. Moreover, contrary to the case of pure imitation this productivity distribution grows over time at a constant rate. Next, we provide a formal definition of a traveling wave:

Definition 1. The log-productivity distribution \(G_a(t)\) is a traveling wave, if it is of the form \(G_a(t) = g(a - vt)\) for some non-increasing function \(g : \mathbb{R} \rightarrow [0,1]\), where \(v \geq 0\) is the traveling wave velocity.

Note that Definition 1 implies that a traveling wave has the property that \(G_a(t) = G_{a+vs}(t+s)\) for any \(s \geq 0\). The following proposition shows that a traveling wave

16Note that this representation is legitimate for an \(\beta < \infty\), although later we will focus on the limit in which \(\beta \rightarrow \infty\), which is the economically interesting case. See also Section 7 for further discussion.

17By a steady-state distribution, we mean a distribution whose shape is preserved over time, up to changes in its mean. See the more formal definition of a traveling wave in Definition 1.
with two exponential tails is a solution for the log-productivity distribution satisfying Equation (18).

Proposition 6. A function \(g : \mathbb{R} \to [0, 1] \) and a traveling wave velocity \(v \geq 0 \) exist such that a traveling wave \(G_a(t) = g(a - vt) \) is a steady-state solution of Equation (18), with a threshold given by \(a^*(t) = a_0^* + vt \), for a constant \(a_0^* \) determined by the initial condition, \(a_0^* = a^*(0) \). The shape of the traveling wave for \(a \leq a^*(t) \) is

\[
G_a(t) = \frac{1}{1 + \left(\frac{1}{g_0} - 1 \right) e^{\frac{a - a_0^* - vt}{v}}},
\]

with \(g_0 = g(0) \). For \(a > a^*(t) \) there exists a \(p^* > 0 \) such that for all \(0 < p < p^* \) the two inequalities

\[
\sum_{k=-\infty}^{\infty} \xi_k e^{-\lambda_k(a-vt)} \leq G_a(t) \leq \sum_{k=-\infty}^{\infty} \tau_k e^{-\lambda_k(a-vt)},
\]

hold with appropriate constants \(\xi_k, \tau_k \), and exponents \(\lambda_k, \tau_k \) having strictly positive real parts. Consequently, the following asymptotic results hold for the associated probability mass function \(P_a(t) = G_{a-1}(t) - G_a(t) \).

\[
P_a(t) = \begin{cases}
 e^{\frac{a-vt}{v}} + o(1), & \text{if } a \ll a^*(t), \\
 O\left(e^{-\lambda_0(a-vt)}\right), & \text{if } a \gg a^*(t).
\end{cases}
\]

The first part of the proposition establishes that, if the log-productivity distribution follows the equilibrium law of motion dictated by Equation (17) (or, identically, by Equation (18)), then in the stationary state, the distribution reproduces itself over time, up to a trend in \(a^*(t) \) whose growth is pinned down by \(v \). The distribution is a traveling wave with velocity \(v \), i.e., a distribution whose second and higher moments remain constant over time.

Observe that the second part of Proposition 6 requires that the in-house R&D success probability \(p \) is bounded from above. While this assumption is necessary for the proof of this part of the proposition, in all the numerical simulations shown in the following sections we did not find a departure of the exponential decay of the right tail of the distribution.

For \(a \leq a^*(t) \) in Equation (19) we can provide an exact characterization of the solution of Equation (18), while above the threshold in Equation (20) we can only provide

\[\text{[Notes: 18, 19]}\]
a lower and an upper bound to the exact solution. This is because the second part of Equation (18) (for $a > a^*(t)$) is more complicated to analyze. To see this, note that the mass of firms with log-productivity a below the threshold $a^*(t)$ can only change through imitation of firms with higher log-productivities, where the mass of such firms is given by $G_a(t)$. In contrast, the change in the mass of firms above the threshold has two different components: First, it can change due to productivity gains from innovation, which are determined by the innovation success probability p. Second, there is an influx of imitating firms which become innovating firms in the next period, and in every period the mass of these imitating firms is given by $F_{\lfloor a^*(t) \rfloor}(t) = 1 - G_{\lfloor a^*(t) \rfloor}(t)$. This is why $G_{\lfloor a^*(t) \rfloor}(t)$ appears only in the second part of Equation (18), and because of these two components and the term proportional to $G_{\lfloor a^*(t) \rfloor}(t)$ this part of Equation (18) is more difficult to analyze.

The bounds in Equation (20) for values of the log-productivity above the threshold $a^*(t)$ exploit recent results in the mathematics literature for the analysis of so called Delay Differential Equations (DDE) [cf. Bellman and Cooke, 1963; Driver, 1977; Smith, 2010], showing that the solutions to such DDE can be written as a linear combination of exponential functions [cf. Asl and Ulsoy, 2003; Yi and Ulsoy, 2006]. More precisely, one can show that due to the appearance of the term $G_{\lfloor a^*(t) \rfloor}(t)$ in the second part of Equation (18) we need to solve a linear DDE with non-constant coefficients. We can, however, establish upper and lower bounds to the solution to this equation which are themselves solutions to linear DDEs with constant coefficients. Asl and Ulsoy [2003] have shown that the latter can be expressed as sums of exponential functions with well defined exponents. For log-productivities far above the threshold only the dominating exponential terms in these sums remain, and so they provide exponential upper and lower bounds for the tail of the distribution. The details (including a more explicit characterization of the constants $c_k, \bar{c_k}$, and exponents $\lambda_k, \bar{\lambda}_k$) can be found in the proof of Proposition 6 in Appendix A.3.

The productivity distribution characterized by Equations (19) and (20) features both a right-hand and a left-hand power-law tail, similar to what we observe in the data (see Figure 1).\footnote{Note that $P_a(t) \propto e^{-\lambda a} = e^{-\lambda \log A} = A^{-\lambda}$.} More precisely, the lower tail of the distribution follows immediately from the logistic expression in Equation (19); the upper tail of the distribution corresponds to the approximation of the sum $\sum_{k=\infty}^{-\infty} c_k e^{-\lambda_k (a-\nu t)}$ in the lower bound of Equation (20) where only the term for $k = 0$ is retained, whereas all other terms of the sequence become negligible when a is far above the threshold $a^*(t)$, and the upper and lower bounds in Equation (20) get arbitrarily close to each other. A numerical analysis of the solution shows that only a few terms in the sum are sufficient to obtain a good approx-
imation of the whole stationary distribution. Moreover, even considering only the dominant exponent (i.e., λ_0) in the lower bound in Equation (20) yields a fairly accurate approximation. In this case, the solution becomes very simple: λ_0 turns out to be the unique root of the following transcendental equation:

$$(e - 1)e^{\lambda_0}(\lambda_0 - 1) - (\bar{A} - 1)e^{1-\lambda_0}(1 + \lambda_0) + \bar{A} + e - 2 - \frac{e - 1}{p} = 0, \quad (22)$$

while the traveling wave velocity ν is given by

$$\nu = \frac{1}{\lambda_0} \left(1 + p(e^{\lambda_0} - 1) - \frac{p(\bar{A} - 1)(1 - e^{1-\lambda_0})}{e - 1} \right). \quad (23)$$

Proposition 6 yields an existence result: a traveling wave with an associated particular probability mass function is a steady-state solution for the log-productivity distribution. For other initial distributions different from the steady-state distribution there will be transitional dynamics. We are unable to establish formal conditions that guarantee that the distribution converges to the traveling wave in Proposition 6. However, we have obtained convergence in numerically computed solutions of the system of ODEs in Equation (18) with a variety of initial distributions. Figure 4 shows three such cases. The top left panel shows, for reference, a simulation in which the initial condition is consistent with the steady-state distribution – no transitional dynamics.

The top-right panel considers an initial exponential distribution with a steeper tail than in Equations (19) and (20). As the figure shows, the tail of the distribution increases during the transition. The bottom left panel shows the case of a uniform initial distribution. Finally, the bottom right panel shows a simulation starting from a Poisson distribution. In all cases, the distributions converge to the stationary distribution shown.

21Figure A.3 in Appendix A.3 compares the solution obtained from a direct numerical integration of Equation (18) with that obtained from the analytical solution of Equations (19) and (20), after truncating the sequence of exponents λ_k to $k \in \{0, -1\}$. The numerical solution is very well approximated over the entire support, nor would additional terms alter the distribution in any visible way.

22The Lambert function has always at most two real roots, corresponding in our notation to $k = 0$ (the “dominant root”) and $k = -1$. See e.g. Asl and Ulsoy [2003]; Corless et al. [1996].

23The details of this derivation can be found in Remark 3 in Appendix A.3.

24However, we are unable to make any claim about the uniqueness of the steady-state distribution. Luttmer [2012] proves uniqueness in a related setup. However, the model is different, and it is not clear whether similar techniques can be extended to our framework.

25Note that the imitation-innovation threshold lies to the right of the maximum of the distribution. In the region around the maximum firms imitate and the distribution is characterized by the logistic expression $\left(1 + \left(\frac{1}{g_0} - 1 \right) e^{\frac{g - g_0 - vt}{\nu}} \right)^{-1}$. In the region where firms innovate, the log-productivity is well approximated by an exponentially decaying function.
in the top left panel.26

6. Limited Absorptive Capacity

In this section we consider the more general model in which firms have a limited ability to absorb other firms’ technologies. We are motivated by the observation that the steady-state distribution characterized in Proposition 6 fits the data well in a qualitative but not in a quantitative sense. Intuitively, if one calibrates the key parameter of the model, p, to fit the tails of the empirical distribution in Figure 1 (and, in particular, to fit the variance of the distribution), the model overpredicts the growth rate. The intuitive reason is that the convergence rate of imitating firms is too high. Then, in order to fit the spread of the distribution one must increase the rate of success of innovation, inducing fast growth. Alternatively, if one targets the growth rate by setting a lower value of p, the model yields too low a variance.27

To address this quantitative failure, we extend the model to allow for $q \leq 1$. The

26The code can be obtained upon request from the authors.

27Recall from our discussion in Section 4.2 that in the extreme case of $p \to 0$ the distribution shrinks to a degenerate distribution with mass one localized at the highest initial productivity value.
Figure 5: Examples of numerical solutions of the system of ODEs in Equation (16) with different values of q. In all cases we set $\log \bar{A} = 1$ and $p = 0.1$. The top left panel shows an economy where growth is driven by innovation only ($q = 0$). The top right panel shows the case in which $p = q = 0.1$. The bottom panels show, respectively, the case of $q = 0.2$ and $q = 0.5$.

analysis of the case in which $q < 1$ can only be done with the aid of numerical methods (i.e., by numerical integration of Equation (17)). Figure 5 shows numerically computed solutions of the system of ODEs in Equation (17) for a probability of success of innovation $p = 0.1$. The figure shows four cases corresponding to different values of q.\footnote{All computations started with the initial distribution $P(0) = (1, 0, \ldots, 0)$ and levels of log-productivity ranging over $a = 1, \ldots, 50$. Twenty time steps are shown ($t = 55, 55 + 5, \ldots, 150$ in colors from blue to red in Figure 5).} As shown more formally in the analysis of Section 4, the solution in the case without imitation, $q = 0$, features a log-normal shape (i.e., a parabola in the semi-log plot) with a growing variance over time (see top left panel). The same qualitative property extends to the case of $q = p$, i.e., when a step of imitation is as likely as a step of innovation $(q = p)$. However, for q sufficiently large the distribution converges to a traveling wave with stable exponential tails. This is clearly visible in the bottom right panel, where the exponential tails are straight lines in the logarithmic scale of the plot.\footnote{Additional numerical analysis suggests that such traveling waves with exponential tails also emerge for lower innovation probabilities whenever $q \geq 5p$.} Hence, our analysis suggests that a value of q considerably larger than p is necessary to match the data in Figure 1.

Next, we calibrate the parameters of our model to match the empirical productivity distribution. The details of our calibration procedure are in Appendix B.3. The best match is obtained by setting $p = 0.0049$ and $q = 0.106$. Figure 6 displays a comparison of the empirical distributions with the calibrated model for the years 1995, 1999 and 2003.
is displayed in . The comparison between the simulated and the empirical distributions show that the model can reproduce the observed pattern well.

7. Noisy Choice of Innovation and Imitation

In this section, we generalize the results of Section 5 to the case in which the noise in the firm’s choice of innovation strategy is non-infinitesimal (cf. Equation (15)). The main goal of this extension is to provide a robust intuition for the driving force behind the emergence of a traveling wave. We show, in particular, that the optimal choice of innovation and imitation, is not essential. Rather, the traveling wave emerges whenever the model features a stochastic switching of firms between innovation and imitation strategies.\footnote{We would like to thank the Editor for pointing this out.}

We assume that the probability that a firm with log-productivity $a_i(t)$ pursues imitation is given by Equation (15). The decision rule in Equation (15) can be motivated by assuming that firms’ profits from in-house R&D are exposed to stochastic shocks (see the accompanying working paper, König et al. [2012], for further details), while the limiting case in which $\beta \to \infty$ is analyzed in Section 5. Allowing for non-negligible noise has no major qualitative implications. Since the innovation strategy is chosen less and less efficiently as we decrease β, the model predicts a lower productivity growth rate. While the general case can only be analyzed numerically, analytical results can be ob-
tained for the polar case in which we let $\beta \to 0$. This yields $\chi^{im}_\beta(a, P) \to 0.5$, namely, every firm chooses randomly between imitation and in-house R&D, irrespective of a and P.\footnote{This model is similar to the one analyzed in Majumdar and Krapivsky [2001].}

Setting $\chi^{im}_\beta(b, P) = 0.5$ in Equation (17) and summing over a yields the equilibrium dynamics governed by the following system of ODEs:

$$\frac{\partial F_a(t)}{\partial t} = \frac{1}{2}(F_a(t)^2 - F_a(t)) - \frac{p}{2}(F_a(t) - F_{a-1}(t)),$$

for all $a \in S$. The next proposition establishes that there exists a traveling wave solution to Equation (24).

Proposition 7. Let $F_a(t)$ be a solution of Equation (24) with a Heaviside initial distribution $F_a(0) = \Theta(a - a_m)$ for some $a_m \geq 1$ and define $m_e(t) = \inf\{a : F_a(t) > \epsilon\}$. Then

$$\lim_{t \to \infty} \frac{m_e(t)}{t} = \nu,$$

for some constant $\nu \geq 0$, and $F_a(t)$ is a traveling wave of the form $F_a(t) = f(a - \nu t)$ for some non-decreasing function $f : \mathbb{R}^+ \to [0, 1]$.

In addition, one can show that the limiting log-productivity distribution decays exponentially in the tails, similar to what we have found in Proposition 6.\footnote{The proof is available upon request.} Figure 7 illustrates examples of numerically computed solutions of the system of ODEs in Equation (24) for $p = 0.1$, $q = 1$ and log $\bar{A} = 1$, showing the transition from the same initial conditions as in Figure 5 to a traveling wave with stable shape. We observe that the distribution moves more slowly to the right than in Figure 5 due to the suboptimal random mixing between in-house R&D and imitation.

While we do not view a model in which firms choose their innovation strategy randomly as particularly appealing, its analysis yields interesting insights about the formal properties of the model. In particular, the existence of a traveling wave contrasts sharply with the result of the model in Section 4 where a fixed number of firms imitate and the rest do in-house R&D. In that model, the variance of productivity grows over time, whereas in the model of this section the variance does not blow up – despite the fact that in both cases the proportion of innovators and imitators is assumed to be constant. The key difference is that in the case of deterministic innovation strategies the variance increases over time within the population of in-house innovators which are permanently barred from the spillovers. In this sections’s model, in contrast, even firms failing repeatedly to innovate through in-house R&D are assigned, sooner or later, to imitation. When this happens, they can benefit from the productivity spillovers generated by successful firms. The fact that laggard innovators switch with positive probability into imitation, prevents the emergence of an ever growing tail of the distribution.
In conclusion, it is not per se the optimal choice of innovation vs. imitation that yields a stable distribution. What matters is productivity spillovers coupled with the assumption that all firms can benefit from them with a positive probability. The profit-maximizing behavior of firms is a particular case of this model featuring an efficient sorting of firms into the two strategies.

8. Conclusion

In this paper we have introduced a model of endogenous technological change, productivity growth, and technology spillovers that is consistent with empirically observed productivity distributions. The innovation process is governed by a combined process of firms’ in-house R&D activities and adoption of other firms’ existing technologies. The emerging productivity distributions can be described as traveling waves with a constant shape and power-law tails, matching the empirically observed distributions.

The current model can be extended in a number of directions. We sketch three extensions in the online Appendix B.1. First, we outline a model of productivity growth and technology adoption which includes the possibility that a firm’s productivity may also be reduced due to exogenous events such as the expiration of a patent. Second, we allow for entry and exit. Third, we consider an alternative model of capacity constraints in the ability of firms to adopt and imitate external knowledge, whereby below a relative productivity threshold firms become unable to imitate. In this case, the model can generate “convergence clubs” such as those documented in empirical studies of cross-
country income differences [e.g. Durlauf and Johnson, 1995; Feyrer, 2008; Quah, 1997].

Finally, one could extend our framework by introducing heterogeneous interactions in the form of a network in the imitation process and analyze the emerging productivity distributions, such as in Di Matteo et al. [2005]; Ehrhardt et al. [2006]; Kelly [2001]; König [2011]. We leave this avenue for future research.

References

Appendix

A. Additional Results

A.1. Analysis of Section 4.3: Exogenous Innovation Strategies

In Section 4.3 we consider a model in which the innovation strategy (either in-house R&D or imitation) is a fixed characteristic of firms. We state that in this case the productivity distribution has an ever increasing variance. In this appendix we provide the details of the analysis. In particular, in Equation (26) below we provide a differential equation completely characterizing the dynamics of the log-productivity distribution.

Denote by \(P_a^{(1)}(t) \) the fraction of innovators (with a total of \(N_1 \) innovators) with log-productivity \(a \) at time \(t \) and similarly denote by \(P_a^{(2)}(t) \) the fraction of imitators (with a total of \(N_2 \) imitators) with log-productivity \(a \) at time \(t \). The total fraction of firms with log-productivity \(a \) at time \(t \) can then be written as

\[
P_a(t) = \frac{N_1 P_a^{(1)}(t) + N_2 P_a^{(2)}(t)}{N_1 + N_2} = n_1 P_a^{(1)}(t) + n_2 P_a^{(2)}(t),
\]

where we have introduced the population shares of innovators \(n_1 = N_1 / N \) and imitators \(n_2 = N_2 / N \) with \(N = N_1 + N_2 \). The evolution of the log-productivity distribution \(p^{(1)}(t) \) of innovating firms is independent of the imitating firms and, by virtue of Proposition 1, it is given by (see also Section 4.1)

\[
\frac{dp^{(1)}(t)}{dt} = (T^{\text{in}} - I).
\]

Thus, the variance of the distribution increases over time.

For completeness, we also characterize the evolution of the log-productivity distribution \(P_a^{(2)}(t) \) of imitating firms. This is given by (see also Section 4.2)

\[
\frac{dP_a^{(2)}(t)}{dt} = P_a(t) \sum_{b=1}^{a} P_b^{(2)}(t) - P_a^{(2)}(t) \left(1 - \sum_{b=1}^{a-1} P_b(t)\right).
\] (25)

The first term in the above equation takes into account the fraction of imitating firms with log-productivities smaller or equal to \(a \) that imitate a firm with log-productivity \(a \). The second term considers the imitating firms with log-productivity \(a \) that imitate a firm with log-productivity larger than \(a \). This is equivalent to the residual firms that fail to imitate a firm with log-productivity larger than \(a \).

Summing over \(a \), and rearranging terms, one can then derive from Equation (25) the dynamics of the cumulative log-productivity distribution \(F_a(t) \), which is given by

\[
\frac{dF_a(t)}{dt} = F_a(t)^2 - F_a(t) - n_1 F_a^{(1)}(t) F_a(t) + n_1 F_a^{(1)}(t) - n_1 p P_a^{(1)}(t).
\] (26)

Given the solution for \(P_a^{(1)}(t) \) (and \(F_a^{(1)}(t) \), respectively) and a fixed value of \(a \), Equa-
A.2. Analysis of Section 5: The Dynamic Problem of the Firm

In the text we state that when a firm maximizes its expected productivity increase, it also maximizes its present value. Thus, the static optimization studied in the text is equivalent to a dynamic value maximization problem. We consider for simplicity time increments of $\Delta t = 1$. The dynamic problem of the firm is then given by

$$V_0(A_i(0), P(0)) = \max_{(s_i(t) \in \{im, in\})_{t=0}^{T-1}} \mathbb{E} \left[\sum_{t=0}^{T-1} \delta^t \pi^s_i(t) \right] A_i(0), P(0),$$

where $\pi^s_i(t) = \psi A_i(t) \bar{A}^{\theta s_i(t)}$ is the per period profit of firm i choosing the R&D strategy $s_i(t) \in \{im, in\}$, $\theta s_i(t)$ are the random increments along the quality ladder under strategy $s_i(t)$ and δ is a discount factor. The corresponding Bellman equation is given by

$$V_i(A_i(t), P(t)) = \max_{s_i \in \{im, in\}} \left\{ \psi A_i(t) \mathbb{E} \left[\bar{A}^{\theta s_i} \right] A_i(t), P(t) \right\} + \delta \mathbb{E} \left[V_{i+1}(A_i(t) \bar{A}^{\theta s_i}, P(t+1)) \right] A_i(t), P(t) \right\}.$$

This can be written as follows

$$V_i(A_i(t), P(t)) = \max \left\{ \int dF_{im}(\theta) \left(\psi A_i(t) \bar{A}^{\theta} + \delta V_{i+1}(A_i(t) \bar{A}^{\theta}, P(t+1)) \right), \int dF_{im}(\theta | A_i(t), P(t)) \left(\psi A_i(t) \bar{A}^{\theta} + \delta V_{i+1}(A_i(t) \bar{A}^{\theta}, P(t+1)) \right) \right\}. \quad (27)$$

Similar to Theorem 1 in Lippman and McCall [1976], we can state the following lemma:

Lemma 1. The value function $V_i(A_i(t), P(t))$ of Equation (27) is increasing in the productivity of firm i, $A_i(t)$, for all $i = 1, \ldots, n$ and $t \geq 0$.

With the above lemma we are now able to state the following proposition.

Proposition 8. Consider the value function of Equation (27). Then for each period t it is optimal for firm i to choose the strategy $s_i(t) \in \{im, in\}$ which gives it the highest expected productivity in that period.

33For a fixed log-productivity a, denote by $y(t) = F_a(t)$. Then one can write from Equation (26) the following differential equation $\frac{dy(t)}{dt} + ay(t)^2 + b(t)y(t) = c(t)$, where $a = -1$, $b(t) = 1 + n_1 F_a^{(1)}(t)$ and $c(t) = n_1 (F_a^{(1)}(t) - P_a^{(1)}(t))$.

31
A.3. Proofs of Propositions and Lemmas

In this section, we provide a formal proof of the Propositions and Lemmas in the text. It is convenient to introduce the random variable \(\xi_P^N \) whose distribution describes the stochastic increments of \((P_N(t))_{t \in T} \) from the state \(P \in P_N \)

\[
P \left(\xi_P^N = z \right) = P \left(P_N(t + \Delta t) = P + z \mid P_N(t) = P \right).
\]

Moreover, following the notation in Sandholm [2010, Chap.10.2] we introduce the functions \(V^N, A^N, A^N_{\delta} \) by

\[
V^N(P) \equiv N \mathbb{E}\left[\xi_P^N \right],
A^N(P) \equiv N \mathbb{E}\left[|\xi_P^N| \right],
A^N_{\delta}(P) \equiv N \mathbb{E}\left[|\xi_P^N I_{\{ |\xi_P^N| > \delta \}}| \right].
\]

We then can state the following lemma:

Lemma 2. Consider some sequence \((\delta^N)_{N=N_0}^\infty \) with \(\lim_{N \to \infty} \delta^N = 0 \), then we have that

(i) \(\lim_{N \to \infty} \sup_{P \in P^N} \left| V^N(P) - V(P) \right| = 0 \),

(ii) \(\sup_{N} \sup_{P \in P^N} A^N(P) < \infty \), and

(iii) \(\lim_{N \to \infty} \sup_{P \in P^N} A^N_{\delta}(P) = 0 \).

Proof of Lemma 2. In the following we prove that the conditions (i) to (iii). First, observe that

\[
V^N(P) = N \mathbb{E}\left[\xi_P^N \right]
\]

\[
= N \sum_{a,b \geq 1} \frac{1}{N}(e_b - e_a)P\left(\xi_P^N = \frac{1}{N}(e_b - e_a) \right)
\]

\[
= N \sum_{a,b \geq 1} \frac{1}{N}(e_b - e_a)P_aT_{ab}(P)
\]

\[
= \sum_{a \geq 1} e_a \left(\sum_{b \geq 1} P_bT_{ba}(P) - P_a \sum_{b \geq 1} T_{ab}(P) \right)
\]

\[
= \sum_{a \geq 1} e_a V_a(P) = V(P)
\]

which is independent of \(N \). This implies that condition (i) is satisfied. Further, observe that since \(|e_a - e_b| = \sqrt{2} \) for \(a \neq b \) and 0 otherwise, \((P_N(t))_{t \in T} \) has jumps of at most \(\sqrt{2}/N \). Hence, for \(\delta^N = \sqrt{2}/N \)

\[
A^N_{\delta}(P) = N \mathbb{E}\left[|\xi_P^N I_{\{ |\xi_P^N| > \sqrt{2}/N \}}| \right] = 0,
\]
and condition (iii) holds. Finally, we find that
\[A^N(P) = N \mathbb{E}[|\xi^N_P|] \leq N \frac{\sqrt{2}}{N} = \sqrt{2} < \infty, \]
and also condition (ii) is satisfied. \(\square \)

We now can give the proof of Proposition 1.

Proof of Proposition 1. Note that the indicator function for imitation \(\chi_{\text{im}}(a, P) \) of Equation (14) has a point of discontinuity at the threshold log-productivity \(a^* \), and so does \(V(P) = T(P) - I \). Let \(\|P\| \) denote the \(L^2 \) norm in \(\mathbb{R}^{|S|}_+ \). Define
\[\bar{V}(P) = \bigcap_{\varepsilon > 0} \text{cl} \left(\text{conv} \left(V \left(\{P' \in \mathbb{R}^{|S|}_+ : \|P - P'\| \leq \varepsilon \} \right) \right) \right) \]
(28)
as the closed convex hull of all values of \(V \) that obtain vectors \(P' \) arbitrarily close to \(P \). We then can state the following theorem [Gast and Gaujal, 2010]:

Theorem 1. Let \(\bar{V}(P) \) be upper semi-continuous and assume that there exists an \(c > 0 \) such that \(\|\bar{V}(P)\| \leq c \). Then for all \(T > 0 \)
\[\inf_{P \in D_T(P(0))} \sup_{0 \leq t \leq T} \|P^N(t) - P(t)\| \xrightarrow{P} 0, \]
where \(P(t) \) is a solution of the differential inclusion
\[\frac{\partial P}{\partial t} \in \bar{V}(P) \]
(29)
with initial conditions \(P(0) \) for any \(t \in [0, T] \), \(T \in \mathbb{R}_+ \), and \(D_T(P(0)) \) denotes the set of all solutions of Equation (29) starting from \(P(0) \).

For any \(P \) where \(V(P) \) is continuous, also \(\bar{V}(P) = \{V(P)\} \), while if \(V(P) \) discontinuous, \(\bar{V}(P) \) is the set-valued function defined in Equation (28). By Lemma 2 \(V(P) \) is bounded, and so we have that \(\bar{V}(P) \) is bounded and upper semi-continuous. Hence, the requirements of Theorem 1 are satisfied and Equation (29) describes the dynamics of the log-productivity distribution in the limit of \(N \) being large for any \(t \in [0, T] \). \(\square \)

Proof of Proposition 2. Observe that in the case of pure innovation the log-productivity \(a_i(t) = \log A_i(t) \) of firm \(i \) grows according to Equation (2), from which we get
\[a_i(t) = a_i(0) + \sum_{j=1}^{t} \theta(t_j), \]
where \(t_j \geq 0 \) denotes the time at which the \(j \)-th innovation arrives. Assuming that the random variables \(\theta(t) \) are independent and identically distributed with finite mean \(\mu_\theta < \infty \) and variance \(\sigma_\theta^2 < \infty \), then by virtue of the central limit theorem, \(\sum_{j=1}^{t} \theta(t_j) \) converges to a normal distribution \(\mathcal{N}(\mu_\theta t, \sigma_\theta^2 t) \). Consequently, \(A_i(t) \)

\(^{34}\)See also Roth and Sandholm [2013].

\(^{35}\)The set \(\bar{V}(P) \) is upper semi-continuous if for any \(P \in \mathbb{R}^{|S|} \) and any open set \(O \) containing \(\bar{V}(P) \), there exists a neighborhood \(N \) of \(P \) such that \(\bar{V}(N) \in O \).
In contrast, for all

converges to a log-normal distribution with mean \(\mu_A = e^{\mu_\theta + \frac{1}{2} \sigma_\theta^2} \) and variance \(\sigma_A^2 = (e^{\sigma_\theta^2} - 1) e^{2\mu_\theta + \sigma_\theta^2} \). Setting \(\eta_0 = 1 - p, \eta_1 = p, \eta_b = 0 \) for \(b = 2, 3, \ldots \) and noting that \(\mu_\theta = p \) and \(\sigma_\theta^2 = p(1 - p) \) yields the desired proposition.

Proof of Proposition 3. Inserting Equation (9) into the differential Equation (10), and summation over \(a \) yields the evolution of the cumulative log-productivity distribution \(F(t) \) in the general case of \(q \in [0, 1] \) as given by

\[
\frac{\partial F_a(t)}{\partial t} = P_a(1-q)(1-F_a) + P_a F_a \\
+ P_{a-1} q (1-q)(1-F_a) + P_{a-1} (1-q)(1-F_a) + P_{a-1} F_a \\
+ P_{a-2} q^2 (1-q)(1-F_a) + P_{a-2} q(1-q)(1-F_a) + P_{a-2} (1-q)(1-F_a) + P_{a-2} F_a \\
+ \ldots \\
- F_a.
\]

This can be written as

\[
\frac{\partial F_a(t)}{\partial t} = F_a(t)^2 + (1-q)(1-F_a(t)) \sum_{b=0}^{a-1} q^b F_{a-b}(t) - F_a(t),
\]

and the first part of the proposition follows.

Next, consider an initial distribution \(F_a(0) \) with finite support. Then there exists a maximal initial log-productivity \(a_m \) such that \(F_a(0) = 1 \) for all \(a \geq a_m \). From Equation (11) we see that for all \(a \geq a_m \) it must hold that \(\frac{\partial F_a(t)}{\partial t} = 0 \) and so \(F_a(t) = 1 \) for all \(t \geq 0 \). In contrast, for all \(a < a_m \) and \(q > 0 \) there exists a positive probability that a firm with log-productivity \(b > a \) is imitated, leading to a decrease in \(F_a(t) \). Eventually, we then have that

\[
\lim_{t \to \infty} F_a(t) = \begin{cases}
0, & \text{if } a < a_m, \\
1, & \text{if } a \geq a_m.
\end{cases}
\]

This concludes the proof of the proposition.

Proof of Proposition 4. We see from the definition of the imitation indicator function in Equation (14) that \(\chi^{im}(a, P(t)) = 1 \) is equivalent to \(a_{im}(a, P) > a_{in}(a) \). This can be written as

\[
a + \log(1 - p + \bar{A} p) \leq a + \log \left(F_a(t) + \sum_{b=a+1}^{\infty} e^{b-a} P_b(t) \right).
\]

Rearranging terms yields

\[
1 - p + \bar{A} p \leq F_a(t) + \sum_{b=1}^{\infty} e^b P_{b-a}(t),
\]

34
or equivalently

\[1 - p + \bar{A} p \leq 1 - G_a(t) + \sum_{b=1}^{\infty} e^{b} P_{b+a}(t) = 1 + \sum_{b=1}^{\infty} (e^{b} - 1) P_{b+a}(t). \]

That is

\[p(\bar{A} - 1) \leq \sum_{b=1}^{\infty} (e^{b} - 1) P_{b+a}(t). \]

The existence of a threshold \(a^* \) such that \(\chi^{\text{im}}(a, P(t)) = 1 \) for all \(a \leq a^* \) and \(\chi^{\text{im}}(a, P(t)) = 0 \) for all \(a > a^* \) can then be written as follows

\[\sum_{b=1}^{\infty} (e^{b-a} - 1) P_b(t) \begin{cases} \geq p(\bar{A} - 1) & \text{if } a \leq a^*, \\ < p(\bar{A} - 1) & \text{if } a > a^*. \end{cases} \quad (30) \]

The validity of this inequality, as well as the uniqueness and existence of \(a^* \) is equivalent to the strict monotonicity of the function \(f(a, t) \) defined by

\[f(a, t) \equiv \sum_{b=a+1}^{\infty} (e^{b-a} - 1) P_b(t). \quad (31) \]

\(f(a, t) \) is strictly monotonous decreasing if \(f(a - 1, t) - f(a, t) = (e - 1) P_a(t) > 0 \). This holds for all \(a \) in the support \(S \) of \(P_a(t) \) where \(P_a(t) > 0 \). Hence, if at time \(t \) for all \(a \in S \) we have that \(P_a(t) > 0 \) then there exists a unique threshold log-productivity \(a^* \) satisfying the above condition.

Consider a small time interval \(\Delta t > 0 \). We show that if \(P_b(t) \) satisfies the above condition, then it also must hold that \(f(a - 1, t + \Delta t) - f(a, t + \Delta t) > 0 \). First, consider \(a \leq a^* \). Then for \(q = 1, P_a(t) > 0 \) and \(F_a(t) > F_{a-1}(t) \) we get

\[
\begin{align*}
 f(a - 1, t + \Delta t) - f(a, t + \Delta t) &= (e - 1) P_a(t + \Delta t) \\
 &= (e - 1) (F_a(t + \Delta t) - F_{a-1}(t + \Delta t)) \\
 &= (e - 1)(F_a(t)^2 - F_{a-1}(t)^2) \\
 &> 0.
\end{align*}
\]

On the other hand, we can write for \(a > a^* \), \(P_a(t + \Delta t) = (1 - p) P_a(t) + p P_{a-1}(t) \), which is positive given that \(P_a(t) > 0 \) and \(p \in [0, 1] \) and so \(f(a, t + \Delta t) \) is monotonic decreasing.

For \(\Delta t \to 0 \) we then obtain the corresponding result in continuous time.

Remark 1. Assume that we can extend \(P_a(t) \) to real valued \(a \), which is identical to \(P_a(t) \) at the discrete \(a \in S \), but allows \(P_a(t) \) to be evaluated at \(a \in \mathbb{R} \), using the same functional form of \(P_a(t) \) also for real values of \(a \). Then at all points of continuity of \(f(a, t) \equiv \sum_{b=a+1}^{\infty}(e^{b-a} - 1)P_b(t) \) we can identify a threshold log-productivity \(a^*(t) \) \(\in \mathbb{R} \) satisfying

\[f(a^*(t), t) = \sum_{b=a^*(t)+1}^{\infty}(e^{b-a^*(t)} - 1)P_b(t) = p(\bar{A} - 1), \quad (32) \]

that is, evaluated at \(a = a^*(t) \), the inequality in (30) becomes an equality (see also Figure A.1). At the points of discontinuity of \(f(a, t) = \sum_{b=a+1}^{\infty}(e^{b-a} - 1)P_b(t) \), the threshold condition
Figure A.1: The figure shows an illustration of the monotonic decreasing function \(f(a, t) \equiv \sum_{b=a^*(t)+1}^{\infty} (e^{b-a^*(t)} - 1) P_b(t) \) of Equation (31) in the proof of Proposition 4, where its continuous extension is shown with a dashed line while the function values at the discrete values \(a \in S \) are indicated with vertical lines.

becomes

\[
a^*(t) = \max \left\{ a \in \mathbb{R}_{\geq 1} : \sum_{b=a+1}^{\infty} (e^{b-a} - 1) P_b(t) \geq p(\bar{A} - 1) \right\}.
\]

(33)

Because \(f(a, t) \) is monotonic decreasing, and the original function and its extension on continuous \(a \) evaluated at the discrete values of \(a \) are always identical, it must hold that the largest discrete value of \(a \) such that \(f(a, t) \geq p(\bar{A} - 1) \) from Equation (30) must be equivalent to \(\lfloor a^*(t) \rfloor \), where \(a^*(t) \) is obtained from Equation (32) for all continuity points of \(f(a, t) \) and from Equation (33) for all discontinuity points of \(f(a, t) \). This observation will be useful for the proof of Proposition 6.

PROOF OF PROPOSITION 5. From Equation (17) we find that in the limit of \(\beta \to \infty \) the evolution of the log-productivity distribution can be written as

\[
\frac{\partial P_a(t)}{\partial t} = \begin{cases}
 P_a(t)(F_{a-1}(t) + F_a(t)) - P_a(t), & \text{if } a \leq a^*, \\
 P_a(t)F_{a^*}(t) + (1 - p)P_a(t) - P_a(t), & \text{if } a = a^* + 1, \\
 P_a(t)F_{a^*}(t) + (1 - p)P_a(t) + pP_{a-1}(t) - P_a(t), & \text{if } a > a^* + 1,
\end{cases}
\]

where we have omitted the dependency on \(P \) in \(a^*(P) \) to simplify the notation. For the dynamics of the cumulative log-productivity distribution \(F_a(t) = \sum_{b=1}^{a} P_a(t) \) we then get for \(a \leq a^* \)

\[
\frac{\partial F_a(t)}{\partial t} = \sum_{b=1}^{a} \frac{\partial P_b(t)}{\partial t} = \sum_{b=1}^{a} (P_b(t)(F_{b-1}(t) - F_b(t)) - P_b(t)) = F_a(t)^2 - F_a(t),
\]

where in the last line from above we have used the results obtained in Proposition 3.
Next, for $a = a^* + 1$ we get

\[
\frac{\partial F_{a^*+1}(t)}{\partial t} = \sum_{b=1}^{a^*} \frac{\partial P_b(t)}{\partial t} + \frac{\partial P_{a^*+1}(t)}{\partial t}
\]

\[
= F_{a+1}(t)^2 - F_{a^*+1}(t) + P_{a^*+1}(t)F_{a^*}(t) - pP_{a^*+1}(t).
\]

\[
= F_{a^*}(t)^2 - F_{a^*}(t) - (F_{a^*+1}(t) - F_{a^*}(t))(p - F_{a^*}(t))
\]

\[
= -(1 - F_{a^*+1}(t))F_{a^*}(t) - p(F_{a^*+1}(t) - F_{a^*}(t)).
\]

Similarly, for $a > a^* + 1$ we get

\[
\frac{\partial F_a(t)}{\partial t} = \sum_{b=1}^{a^*} \frac{\partial P_b(t)}{\partial t} + \frac{\partial P_{a^*+1}(t)}{\partial t} + \sum_{b=a^*+2}^{a} \frac{\partial P_b(t)}{\partial t}
\]

\[
= F_{a^*}(t)^2 - F_{a^*}(t) + P_{a^*+1}(t)F_{a^*}(t) - pP_{a^*+1}(t)
+ \sum_{b=a^*+2}^{a} (F_{a^*}(t)P_b(t) - p(P_b(t) - P_{b-1}(t)))
\]

\[
= -(1 - F_a(t))F_{a^*}(t) - p(F_a(t) - F_{a-1}(t)).
\]

Putting the above results together we can write

\[
\frac{\partial F_a(t)}{\partial t} = \begin{cases}
F_a(t)^2 - F_a(t), & \text{if } a \leq a^*, \\
(F_a(t) - 1)F_{a^*}(t) - p(F_a(t) - F_{a-1}(t)), & \text{if } a > a^*.
\end{cases}
\]

Note that for all $a \geq 1$ and $t \geq 0$ we have that $\frac{\partial F_a(t)}{\partial t} \leq 0$. Finally, note that from the above equation it follows that the dynamics of the complementary cdf, $G_a(t) = 1 - F_a(t)$, is given by

\[
\frac{\partial G_a(t)}{\partial t} = \begin{cases}
-(G_a(t)^2 - G_a(t)), & \text{if } a \leq a^*, \\
(1 - G_{a^*}(t))G_a(t) - p(G_a(t) - G_{a-1}(t)), & \text{if } a > a^*.
\end{cases}
\]

Before proceeding with the proof of Proposition 6 the following lemma will be useful.\(^{36}\)

Lemma 3. Consider the delay differential equations, $g'(x) = G(x, g(x), g(x-1))$ and $f'(x) = F(x, f(x), f(x-1))$, for $x > -1$ with identical preshape functions $g(x) = f(x) = \phi(x)$ for $x \in [-1, 0]$ and F being a continuous function satisfying a Lipschitz condition with respect to f. If $G \leq F$ then $g(x) \leq f(x)$. Analogously, if $G \geq F$ then $g(x) \geq f(x)$.

Proof of Lemma 3. We proceed by the “method of steps” [Smith, 2010, Sec. 3]. For $x \in [0, 1)$, both $g(x)$ and $f(x)$ must satisfy the ODEs

\[
g'(x) = G(x, g(x), \phi(x-1)),
\]

\[
f'(x) = F(x, f(x), \phi(x-1)).
\]

\(^{36}\)A similar result can be found in Theorem 3.6 in Smith [2010].
and
\[f'(x) = F(x, f(x), \phi(x-1)). \] (35)

By the “comparison lemma” (see Theorem 3.2 in Waltman [2004] or Lemma 3.4 in Khalil [2002]) for ordinary differential equations (ODEs) it follows from the fact that \(G \leq F \) and that by assumption \(F \) being a continuous function satisfying a Lipschitz condition with respect to \(f \), that on the interval \([0, 1]\) we must have that \(f(x) \geq g(x) \). We may repeat the above argument to extend the inequality still further to the right. Indeed, for \(1 \leq x < 2 \), \(g(x) \) must satisfy the ODE
\[g'(x) = G(x, g(x), g(x-1)), \]
where \(g(x-1) \) in the interval \([1, 2]\) is the predetermined solution of the ODE (34), and \(f(x) \) must satisfy the ODE
\[f'(x) = F(x, g(x), g(x-1)), \]
where \(f(x-1) \) in the interval \([1, 2]\) is the predetermined solution of the ODE (35). Similarly, by the comparison lemma for ODEs we then must have that \(f(x) \geq g(x) \) for \(x \in [1, 2] \). We then can repeat this argument to establish the inequality \(f(x) \geq g(x) \) for all \(x > -1 \). A similar reasoning can be applied to the case of \(F \leq G \) showing that \(f(x) \leq g(x) \) for all \(x > -1 \). \(\blacksquare \)

We are now able to prove Proposition 6.

Proof of Proposition 6. In the following we show that the stationary log-productivity distribution \(F_\nu(t) \) is a traveling wave, \(f(a - a^*(t)) \) with \(a^*(t) = a_0^* - vt \), consistent with Definition 1.\(^{37}\) Note that his equivalent to assuming that the complementary distribution, \(G_\nu(t) = 1 - F_\nu(t) \), has a traveling wave form \(g(a - a^*(t)) = g(a - a_0^* - vt) = 1 - f(a - a_0^* - vt) \). We then proceed by showing that there exists a \(p^* > 0 \) such that for \(p < p^* \) the distribution has asymptotic exponential tails. Note that as the function \(f(\cdot) \) takes real valued arguments, it can be thought of an underlying continuous distribution such that at each date \(t \) and for each \(a \in \mathcal{S} \), the fraction of firms with probability less than or equal to \(a \) at date \(t \), denoted \(F_\nu(t) \), is equal to \(f(a - a_0^* - vt) \) for some constant \(\nu \).\(^{38}\)

We first check that a traveling wave satisfies the threshold condition of Proposition 4. By definition, for the threshold log-productivity \(a^*(t) \) (possibly real valued) it must hold that the expected productivity gains from innovation are equal to the expected productivity gains from imitation at all continuity points of the distribution, which is equivalent to (see Equation (32) in Remark 1)
\[F_{a^*(t)}(t) + \sum_{b=a^*(t)+1}^{\infty} e^{b-a^*(t)} P_b(t) = 1 + p(\bar{A} - 1). \] (36)

We now show that if the cdf \(F_\nu(t) \) has a traveling wave form \(f(a - a^*(t)) \) and the thresh-

\(^{37}\)The constant \(a_0^* \) in the argument of \(f(a - a_0^* - vt) \) does not change its dependency on \(a - vt \) characterizing a traveling wave.

\(^{38}\)We would like to thank the editor for pointing this out.
old log-productivity $a^*(t)$ grows linearly with t, i.e. $a^*(t) = a_0^* + vt$, for an appropriate traveling wave velocity v, then the threshold condition in Equation (36) is always satisfied. Time invariance of the LHS of Equation (36) requires that\(^{39}\)

$$F_{a^*}(t+1)(t+1) + \sum_{b=a^*(t+1)+1}^{\infty} e^{b-a^*(t+1)} P_b(t+1) = F_{a^*}(t) + \sum_{b=a^*(t)+1}^{\infty} e^{b-a^*(t)} P_b(t).$$

With our guess for the traveling wave we have that $F_{a^*}(t) = f(0) = F_{a^*}(t+1)(t+1)$. Hence, what remains to be shown is that

$$e^{-a^*(t+1)} \sum_{b=a^*(t+1)+1}^{\infty} e^{b} P_b(t+1) = e^{-a^*(t)} \sum_{b=a^*(t)+1}^{\infty} e^{b} P_b(t).$$

We then have that

$$e^{-a^*(t+1)} \sum_{b=a^*(t+1)+1}^{\infty} e^{b} P_b(t+1) = e^{-a^*(t)-v} \sum_{b=a^*(t)+v+1}^{\infty} e^{b} (f(b-a^*(t)) - f(b-1 - a^*(t) - v))$$

$$= e^{-a^*(t)-v} \sum_{b=a^*(t)+1}^{\infty} e^{b} (f(b-a^*(t)) - f(b-a^*(t)-1))$$

$$= e^{-a^*(t)-v} \sum_{b=a^*(t)+1}^{\infty} e^{b} P_b(t)$$

and the equality follows. Hence, we have shown that a threshold $a^*(t)$ that grows linearly with t as $a^*(t) = a_0^* + vt$ and the assumption of a traveling wave is consistent with the threshold condition.

In the following we show that there exists a solution of the traveling wave form $g(a-a^*(t))$ to Equations (18) and (36) (or equivalently, Equation (30)) with $a^*(t) = a^*(0) + vt$ by analyzing the solution of Equation (18) for both cases of the log-productivity a above and below the threshold $a^*(t)$. We then proceed by showing that the stationary distribution has exponential tails.

Case: $a \leq a^*(t)$. We assume that the log-productivity distribution for values of a below the threshold $a^*(t)$ has a traveling wave form. Inserting $g(a-a^*(t)) = G_a(t)$ into Equation (18), where $a^*(t) = vt + a_0^*$ and denoting by $x = a-a^*(t) = a-a_0^* - vt$, then gives for $x \leq 0$ (corresponding to $a \leq a^*(t)$) that

$$-vg'(x) = g(x) - g(x)^2,$$

\(^{39}\)W.l.o.g. we consider a time increment $\Delta t = 1$.

39
or equivalently, the logistic differential equation

$$g'(x) = -\frac{1}{\nu}(g(x) - g(x)^2). \quad (37)$$

The standard solution of this logistic differential equation is given by

$$g(x) = \frac{1}{1 + \left(\frac{1}{g_0} - 1\right)e^{\frac{x}{\nu}}}.$$ \quad (38)

with the boundary condition $g_0 = g(0)$. Thus, we have that $\lim_{x \to -\infty} g(x) = 1$. In particular, for $x \to -\infty$ we have that $g(x) \sim e^{-\frac{x}{\nu}}$ and the solution decays exponentially.

Now, Equation (38) establishes Equation (19) as

$$G_a(t) = g(a - a^*(t)) = \frac{1}{1 + \left(\frac{1}{g_0} - 1\right)e^{\frac{a - a^*}{\nu}t}}.$$\quad

We then have that $P_a(t) = G_{a-1}(t) - G_a(t) \sim e^{\frac{a}{\nu}t}$, which is equivalent to writing $P_a(t) = e^{\frac{a}{\nu}t} + o(1)$ for a much smaller than $a^*(t) = vt + a_0^*$, and we have shown the first part of Equation (21).

Case: $a > a^*(t)$. In the following we focus on the case of $a > a^*(t)$ and assume that the threshold $a^*(t)$ grows linearly with t, that is, $a^*(t) = a_0^* + vt$. Moreover, we assume that $G_a(t) = g(a - a^*(t))$. Substituting $x \equiv a - a^*(t) = a - a_0^* - vt$ in Equation (18) for $a > a^*(t)$ and noting that \(^40\)

$$G_{[a^*(t)]}(t) = g([a^*(t)] - a^*(t))$$

$$= g([a_0^* + vt] - (a_0^* + vt))$$

$$= g([a - x] - (a - x))$$

$$= g(x + [-x]),$$

for any integer a, we then get by introducing g_0 from above as a constant

$$-\nu g'(x) = (1 - g(x + [-x]))g(x) - p(g(x) - g(x - 1))$$

$$= (1 - g_0)g(x) - p(g(x) - g(x - 1)) - (g(x + [-x]) - g_0)g(x)$$

$$= (1 - g_0)g(x) - p(g(x) - g(x - 1)) - \epsilon(x)g(x), \quad (39)$$

for $x > 0$, $x + [-x] \in [-1, 0]$, where we have used the fact that $\frac{dG_a(t)}{dt} = -\nu g'(x)$, and we have denoted by

$$\epsilon(x) \equiv g(x + [-x]) - g_0. \quad (40)$$

Next, note that due to the monotonicity of $g(x)$ we have that $\epsilon(x) \geq 0$. Further, note that the DDE (39) depends on values of the function $g(x)$ in the interval $x \in [-1, 0]$, which is given by Equation (38) and is thus predetermined for computing the solution.

\(^40\) We would like to thank an anonymous referee for pointing this out.
of Equation (39). Rearranging terms, we can write Equation (39) in the following form

\[
g'(x) + \frac{1 - g_0 - p}{v} g(x) + \frac{p}{v} \epsilon(x - 1) = \frac{\epsilon(x)}{v} g(x). \tag{41}
\]

Denoting by \(a \equiv \frac{1 - g_0 - p}{v} \) and \(b \equiv \frac{p}{v} \), the solution of Equation (41) can be written as the solution of the following integral equation [cf. Bellman and Cooke, 1963, Eq. (9.3.2), p. 267]

\[
g(x) = g_0 h(x) - b \int_{-1}^{0} h(x - y - 1) \phi(y) dy + \frac{1}{v} \int_{0}^{x} h(x - y) \epsilon(y) g(y) dy, \tag{42}
\]

for \(x > 0 \) and \(h(x) \) being the solution to the homogeneous part of the DDE (41), i.e. where the RHS is set to zero,\(^{41}\) and \(\phi(x) \) is the predetermined solution for \(g(x) \) in the interval \(x \in [-1,0] \) from Equation (38). For any \(x > 0 \), \(g(x) \) in the LHS of Equation (42) is determined by \(g(y) \) for values of \(y < x \). So recursively, Equation (42) completely specifies \(g \) at any point \(x \) as a function of \(g \) evaluated at points \(y \) smaller than \(x \). This shows existence of the solution. A more detailed discussion can be found in Section 9 in Bellman and Cooke [1963] and the “method of steps” introduced in Section 3 in Smith [2010], where the existence of solutions to DDEs is proven in a recursive manner. The existence of such a solution to the DDE (41) thus justifies our assumption of a traveling wave.

Hence, we have shown that there exists a solution to Equations (18) and (36) (or equivalently, Equation (30)) with \(a^*(t) = a^*(0) + vt \) for some constant \(v \), where we set \(G_a(t) \) equal to \(g(a - a^*(t)) = g(a - a^*_t - vt) \) for any \(a \in S \). This justifies our assumption of a traveling wave.\(^{42}\)

In what follows we derive upper and lower bounds for the solution of Equation (39), and from these bounds analyze its asymptotic behavior in the limit of large \(x \). In particular we will show that there exists a \(p^* > 0 \) such that for all \(p < p^* \) the tail of \(g(x) \) can be bounded from above and from below by exponentially decaying functions.\(^{43}\)

Let us denote by

\[
\epsilon \equiv \sup_{x \geq 0} \epsilon(x) = \sup_{x \geq 0} \{ g(x + |x|) - g_0 \} = \sup_{y \in [-1,0]} \{ g(y) - g_0 \} = g(-1) - g_0, \tag{43}
\]

and define \(\overline{g}(x) \) as the solution to the delay differential equation

\[
\overline{g}'(x) + \frac{1 - g_0 - p}{v} \overline{g}(x) + \frac{p}{v} \overline{g}(x - 1) = \frac{\epsilon}{v} \overline{g}(x). \tag{44}
\]

By virtue of Lemma 3, the solution \(\overline{g}(x) \) of Equation (44) then is an upper bound to the

\(^{41}\)This solution is analyzed in Equation (45) below.

\(^{42}\)Observe that while \(\epsilon(x) \) is only piecewise continuous, \(g(x) \) in Equation (42) is continuous in \(x \) as the last term in Equation (42) is an integral over a piecewise continuous function, which is continuous [cf. e.g. Shilov, 1996, 9.39]. As also the logistic function in Equation (38) is continuous, we obtain that \(g(x) \) is continuous for all \(x \). Consequently, \(P_b(t) = G_{b-1}(t) - G_b(t) \) is continuous, and \(f(a, t) = \sum_{b=a+1}^{\infty} (e^{b-a} - 1) P_b(t) \) in Remark 1 is continuous in \(a \), as it is the composition of continuous functions.

\(^{43}\)Observe that this rules out, for example, any polynomially decaying functions.
solution \(g(x) \) of Equation (41). Next, Lemma 3 implies that \(\underline{g}(x) \leq g(x) \), where \(\underline{g}(x) \) solves the following delay differential equation

\[
\underline{g}'(x) + \frac{1 - \underline{g}_0 - p}{\nu} \underline{g}(x) + \frac{p}{\nu} \underline{g}(x - 1) = 0.
\] (45)

Note that both Equations (44) and (45) are instances of a first order linear homogenous delay differential equation (DDE) with constant coefficients [cf. Bellman and Cooke, 1963; Driver, 1977; Smith, 2010]. In the following we first solve Equation (44), while Equation (45) can be solved in an analogous way.

Recall that the DDE (44) depends on values of the function \(g(x) \) in the interval \(x \in [-1, 0] \), which is given by Equation (38) and thus predetermined. Asl and Ulsoy [2003] call this the preshape function, which we have denoted by \(\phi(x) \). Inserting the definition of \(\epsilon \) from Equation (43) into Equation (44) we then have to solve the following DDE

\[
\underline{g}'(x) + \frac{1 - p - g(-1)}{\nu} \underline{g}(x) + \frac{p}{\nu} \underline{g}(x - 1) = 0, \quad x \in (0, \infty),
\] (46)

\[
\underline{g}(x) = \phi(x) = \frac{1}{1 + \bigg(\frac{1}{\underline{g}_0} - 1\bigg) e^{p}}, \quad x \in [-1, 0],
\] (47)

Asl and Ulsoy [2003] have shown that such a DDE admits a solution of the following form\(^{45}\)

\[
\underline{g}(x) = \sum_{k=\infty}^{\infty} \overline{c}_k e^{-\overline{\lambda}_k x},
\] (48)

with appropriate constants \(\overline{c}_k \). That is, the solution to the DDE in (47) is a linear combination of exponential functions. We have that \(\underline{g}'(x) = -\sum_{k=\infty}^{\infty} \overline{c}_k \lambda_k e^{-\overline{\lambda}_k x} \), and inserting into the DDE (47) yields

\[
\nu \sum_{k=-\infty}^{\infty} \overline{c}_k \lambda_k e^{-\overline{\lambda}_k x} = (1 - g(-1) - p) \sum_{k=-\infty}^{\infty} \overline{c}_k e^{-\overline{\lambda}_k x} + p \sum_{k=-\infty}^{\infty} \overline{c}_k e^{-\overline{\lambda}_k (x-1)}.
\]

This can be written as

\[
\sum_{k=-\infty}^{\infty} \overline{c}_k e^{-\overline{\lambda}_k x} \left(\overline{\lambda}_k \nu - (1 - g(-1) - p) - pe^{\overline{\lambda}_k} \right) = 0.
\] (49)

The coefficients \(\overline{\lambda}_k \) in Equation (49) are the roots of the characteristic equation [cf. Asl and Ulsoy, 2003]

\[
\overline{\lambda}_k \nu = 1 - g(-1) - p(1 - e^{\overline{\lambda}_k}).
\] (50)

\(^{44}\)In particular, we can write \(G(x, \overline{g}(x), \underline{g}(x - 1)) \equiv \overline{g}'(x) = -\frac{1 - \overline{g}_0 - \overline{g}(x)}{\nu} \overline{g}(x) - \frac{p}{\nu} \overline{g}(x - 1) + \frac{pe^{\overline{\lambda}_k}}{\nu} \overline{g}(x) \) and \(G(x, \underline{g}(x), \underline{g}(x - 1)) \equiv \underline{g}'(x) = -\frac{1 - \underline{g}_0 - \underline{g}(x)}{\nu} \underline{g}(x) - \frac{p}{\nu} \underline{g}(x - 1) + \frac{pe^{\underline{\lambda}_k}}{\nu} \underline{g}(x) \). Because \(\epsilon \geq \epsilon(x) \) we must have that \(\overline{G} \geq G \). Moreover, we have that \(\overline{G} \) is continuous and linear in \(\overline{g} \), and hence Lipschitz in \(\overline{g} \). It follows that Lemma 3 applies.

\(^{45}\)See in particular Equations (3) and (15) in Asl and Ulsoy [2003].
The roots of Equation (50) can be written in closed form as

\[\lambda_k = g(-1) + \frac{p - 1}{\nu} + W_k \left(-\frac{p}{\nu}e^{\frac{g(-1) + p - 1}{\nu}} \right), \quad (51) \]

where \(W_k(z) \) is the \(k \)-th branch of the Lambert W function satisfying \(W_k(z)e^{W_k(z)} = z \) for \(k = 0, \pm 1, \pm 2, \ldots \) [cf. Corless et al., 1996]. Note that there can be at most two real roots \(W_0(z) \) and \(W_{-1}(z) \). An illustration is given in Figure A.2 (left panel).\(^{46}\) The real parts of the higher order roots are dominated by the ones of \(W_0(z) \) and \(W_{-1}(z) \) [Asl and Ulsoy, 2003]. As \(\frac{p}{\nu}e^{\frac{g(-1) + p - 1}{\nu}} \geq 0 \), there exist either two real roots or we have the case that both coincide, namely when the argument \(-\frac{p}{\nu}e^{\frac{g(-1) + p - 1}{\nu}}\) of the Lambert function in Eq. (51) equals \(-\frac{1}{e}\), and \(\lambda_0 = \lambda_{-1} = \frac{g(-1) + p - 1 - \nu}{1 - \nu} \). The two roots are the further separated from each other, the closer the argument \(-\frac{p}{\nu}e^{\frac{g(-1) + p - 1}{\nu}}\) of the Lambert function is to zero (see Figure A.2, left panel), which is the case for example when the innovation success probability \(p \) is small. Moreover, the existence of real roots requires that \(\frac{p}{\nu}e^{\frac{g(-1) + p - 1}{\nu}} \leq \frac{1}{e}, \) or equivalently, \(\frac{p}{\nu} \leq e^{1-g(1)}e^{g(1)-1} \). An illustration for the two real roots \(\lambda_0 \) and \(\lambda_{-1} \) solving Equation (50) is shown in Figure A.2 (right panel).

We next show that all the roots of the characteristic Equation (50) have positive real parts. Corollary 4.10 in Smith [2010, page 56]\(^{47}\) shows that a sufficient condition for all roots \(x \) of the equation \(x - b - ce^x = 0 \) to have a positive real part is \(b > 0 \) and \(|b| > |c| \). We can write Equation (50) as \(\lambda_k - \frac{1-p-g(-1)}{\nu} - \frac{p}{\nu}e^{\lambda_k} = 0 \), so that the corresponding coefficients are \(b = \frac{1-p-g(-1)}{\nu} \) and \(c = \frac{p}{\nu} \). The sufficient condition then becomes \(1 -

\(^{46}\)Note further that \(|W_0(z)| \leq |W_{-1}(z)| \) while the following bounds hold: \(\ln z - \ln \ln z \leq W_0(z) \leq \ln z - \frac{1}{2} \ln \ln z \) for every \(z \geq e \), and \(1 < -W_{-1}(z) \leq -\frac{1}{2} \) for every \(z \in \left(-\frac{1}{3}, 0\right) \).

\(^{47}\)In particular, part (i) of Corollary 4.10 in Smith [2010] considers the equation \(y + b + ce^{-ry} = 0 \), with \(b, c \) being real coefficients and \(r > 0 \). Then, if \(b > 0 \) and \(|b| < |c| \) all the roots have negative real parts for all \(r \geq 0 \). Substituting \(x = -y \) and setting \(r = 1 \) gives \(x - b - ce^x = 0 \), which is the equation that we consider. Finally, note that if all the roots \(y \) have negative real parts, then all the roots \(x = -y \) must have positive real parts.
Asl and Ulsoy
2003

In order to compute the Lambert coefficients, \(\varphi \), consider a \(2K + 1 \) discretization of the interval \([-1, 0]\). Taking into account only \(2K + 1 \) Lambert coefficients in Equation (52), such that

\[
\phi(x) \approx \sum_{k=-K}^{K} \varphi_k e^{-\lambda_k x}, \quad x \in [-1, 0],
\]

we get

\[
\begin{pmatrix}
\phi(0) \\
\phi(-1)
\end{pmatrix} \approx \begin{pmatrix}
e^{-\lambda_{-K} - 0} & \ldots & e^{-\lambda_{-K} - 0} \\
e^{-\lambda_{-K - 1}/2} & \ldots & e^{-\lambda_{-K - 1}/2} \\
\vdots & \ddots & \vdots \\
e^{-\lambda_{-K - 2}/2} & \ldots & e^{-\lambda_{-K - 2}/2} \\
e^{-\lambda_{-K - 1}} & \ldots & e^{-\lambda_{-K - 1}}
\end{pmatrix} \begin{pmatrix}
\varphi_{-K} \\
\varphi_{-K + 1} \\
\vdots \\
\varphi_{-K + 2} \\
\varphi_{K}
\end{pmatrix} = \Omega_K^{-1} \varphi.
\]

We then have that \(\varphi \approx \Omega_K^{-1} \varphi \), which becomes exact in the limit of \(K \to \infty \), and the

\[p - g(-1) > p \), or equivalently, \(\frac{1}{2}(1 - g(-1)) > p \). First, assume that \(g_0 < 1 \). Because \(g(-1) \) is determined by the logistic function in Equation (38), which is strictly smaller than one if \(g_0 < 1 \), we have that \(\frac{1}{2}(1 - g(-1)) > 0 \). Let \(p^* > 0 \) be the smallest possible value of \(\frac{1}{2}(1 - g(-1)) \). We then can always find a (real valued) \(p \) between \(p^* \) and \(0 \) such that the inequality holds for all \(p < p^* \). Next, assume that \(g_0 = 1 \). From the logistic function in Equation (38) we know that \(g_0 = 1 \) implies that also \(g(-1) = 1 \). Moreover, from Equation (43) we can conclude that \(\varepsilon = 0 \). In this case the solutions to the upper and lower bounds in Equations (44) and (45) coincide, and must be equivalent to the solution to the original Equation (39), which is uniformly bounded by one as it is a complementary cumulative distribution function. Thus there cannot be any positive real parts in the characteristic roots. This shows that all the roots \(\lambda_k \) of the characteristic Equation (50) have positive real parts for \(p \) small enough.\(^{48}\)

The coefficients \(\varphi_k \) in Equation (48) follow from the preshape function, which can be written as (see Eq. (77) in Asl and Ulsoy [2003])\(^{49}\)

\[
\phi(x) \equiv \frac{1}{1 + \left(\frac{1}{g_0} - 1 \right) e^{\frac{x}{2}}} = \sum_{k=-\infty}^{\infty} \varphi_k e^{-\lambda_k x}, \quad x \in [-1, 0].
\]

\(^{48}\)In our numerical simulations we find that this condition actually holds for any value of \(p \) that we have considered.

\(^{49}\)Any continuous function \(\phi(x) \) can be represented as an infinite series using the Lambert coefficients, \(\varphi_k \), and the Lambert modes, \(e^{-\lambda_k x} \) [Asl and Ulsoy, 2003].
Lambert coefficients \bar{c}_k are given by
\[
\bar{c}_k = \lim_{K \to \infty} \left(\Omega^{-1}_K \phi \right)_k. \tag{54}
\]
Note that for large x the dominant term in Equation (48) is the one with the smallest exponent, so that asymptotically it holds that50
\[
\bar{g}(x) \sim e^{-\lambda_0 x}, \quad x \to \infty, \tag{55}
\]
where λ_0 is the smallest root of the characteristic Equation (50).

Similarly, the lower bound from the solution of the DDE (44) is given by
\[
\underline{g}(x) = \sum_{k=-\infty}^{\infty} \zeta_k e^{-\lambda_k x}, \tag{56}
\]
with appropriate constants ζ_k, where the exponents λ_k solve the characteristic equation
\[
\lambda_k = \frac{g_0 + p - 1}{v} + W_k \left(-\frac{p}{v} e^{-\frac{g_0 + p - 1}{v}} \right). \tag{57}
\]
Hence, we have that $\underline{g}(x) \leq g(x) \leq \bar{g}(x)$, and we have shown Equation (20). Observe further that $g(x) - \underline{g}(x) \sim e^{-\lambda_0 x} - e^{-\lambda_0^* x} \sim e^{-\lambda_0 x} \to 0$, for large x when $\lambda_0 > \lambda_0^*$. Moreover, we have that $g(x) = O \left(e^{-\lambda_0 x} \right)$ for large x, so that we can write $G_a(t) = O \left(e^{-\lambda_0 (a - vt)} \right)$ as a becomes much larger than $a^* (t)$. As $p_a(t) = G_{a-1}(t) - G_a(t)$, the same asymptotic behavior holds for $p_a(t)$. This proves the second part of Equation (21).

Remark 2. In our numerical simulations we find that the perturbation $\epsilon(x)$ in Equation (40) is typically small and can be neglected to obtain a fairly good approximation. A comparison of the numerical solution of Equation (18) with the analytical predictions from Equation (38) below the threshold, and the solution of the DDE (45) above the threshold, together with the solution of Equation (56) with exponents from Equation (57) for $K = 3$ Lambert modes, and the exponent λ_0 obtained from Equation (22), are shown in Figure A.3. The figure shows a fairly good agreement between the theoretical predictions and a direct numerical integration of Equation (18).

Remark 3. In the following we show how Equations (22) and (23) are computed. Motivated by Remark 2, we assume that the perturbation $\epsilon(x)$ can be neglected, so that the solution to the original DDE (41) is sufficiently well approximated by the solution to the DDE (45). Observe that the exponents λ_k in Equation (57) depend on the endogenous variables v and g_0, and so Equation (57) cannot be used to compute λ_k directly. In the following we avoid this problem by assuming that the solution to the DDE (45), given

50Recall that we have shown above that all λ_k have positive real parts.

51Because $g(x) \leq \bar{g}(x)$ we must have that $e^{-\lambda_0 x} \leq e^{-\lambda_0^* x}$ for large x, implying that $\lambda_0 > \lambda_0^*$.

52This is because $\lim_{x \to \infty} g(x) / \bar{g}(x) \leq 1$. See also the definition in Footnote 18.
Figure A.3: The stable shape of the complementary cumulative distribution function $G_a(t)$ for $p = 0.1$ (left panel) and the corresponding probability mass function $P_a(t)$ (right panel). The traveling wave has been detrended such that $|a^*(t)|$ coincides with the origin. The vertical red line indicates the threshold $|a^*(t)|$. The blue stars indicate the numerical solution of Equation (18). The black line for values below the threshold is computed with the analytical solution from Equation (38) where $G_{|a^*(t)|}$ is taken from the numerical solution of Equation (18). The black line for values above the threshold is obtained from a numerical integration of the DDE (45) (using Matlab’s dde23 solver) with the preshape function from Equation (38). The magenta line indicates the solution for values above the threshold obtained from Equation (56) with exponents from Equation (57) and $K = 3$ Lambert modes. The green line indicates the exponent λ_0 obtained from Equation (22).

in Equation (56), is dominated by the smallest exponent λ_0 (corresponding to the term with the smallest decay as x increases), and then proceed by computing this exponent.

First, note that from the threshold condition in Equation (36) we obtain

$$\sum_{b=1}^{\infty} (e^b - 1)P_{b+a^*(t)}(t) = p(\bar{A} - 1).$$

Using Equation (56) we have that $G_a(t) = \sum_{k=-\infty}^{\infty} \tilde{c}_k e^{-\Delta_k (a-\nu t)}$, and we can write

$$P_a(t) = G_{a-1}(t) - G_a(t)$$

$$= \sum_{k=-\infty}^{\infty} \tilde{c}_k (e^{\Delta_k} - 1) e^{-\Delta_k (a-\nu t)}$$

$$= \sum_{k=-\infty}^{\infty} \tilde{c}_k e^{-\Delta_n (a-\nu t)},$$
where we have denoted by $\bar{c}_k \equiv c_k(e^{\lambda_k} - 1)$. It then follows that

$$p(\bar{A} - 1) = \sum_{b=1}^{\infty} (e^b - 1) \sum_{k=-\infty}^{\infty} \bar{c}_k e^{-\Delta_k(b+a^*(t) - vt)}$$

$$= \sum_{b=1}^{\infty} (e^b - 1) \sum_{k=-\infty}^{\infty} \bar{c}_k e^{-\Delta_k(b+a^*_0)}$$

$$= \sum_{k=-\infty}^{\infty} \bar{c}_k e^{-\Delta_k a^*_0} \sum_{b=1}^{\infty} (e^b - 1) e^{-\Delta_k b}$$

$$= \sum_{k=-\infty}^{\infty} \bar{c}_k e^{-\Delta_k a^*_0} \left(\frac{1}{e^{\Delta_k} - 1} + \frac{1}{1 - e^{\Delta_k}} \right).$$

(58)

As discussed in the proof of Proposition 6, the principal root Δ_0 is well separated from the other roots, the closer the argument $-p e^{-\Delta_0 a^*_0}$ of the Lambert W function in Equation (57) is to zero. Then only the principal Lambert mode dominates in Equation (58), and we can write

$$p(\bar{A} - 1) = \bar{c}_0 e^{-\Delta_0 a^*_0} \left(\frac{1}{e^{\Delta_0} - 1} + \frac{1}{1 - e^{\Delta_0}} \right) + o(1).$$

(59)

The ccdf evaluated at the threshold can be written as

$$g_0 = \bar{G}_{a^*(t)}(t) = \sum_{k=0}^{\infty} c_k e^{-\Delta_k a^*_0} = \sum_{k=-\infty}^{\infty} \bar{c}_k e^{-\Delta_k a^*_0}.$$

Similarly, when the principal Lambert mode dominates in the above equation we obtain

$$g_0 = \frac{\bar{c}_0}{e^{\Delta_0} - 1} e^{-\Delta_0 a^*_0} + o(1),$$

so that Equation (50) can be written as

$$\Delta_0 \nu = 1 - \frac{\bar{c}_0}{e^{\Delta_0} - 1} e^{-\Delta_0 a^*_0} - p(1 - e^{\Delta_0}) + o(1).$$

(60)

Inserting $\bar{c}_0 e^{-\Delta_0 a^*_0}$ from Equation (59) into Equation (60) (and dropping terms of the order $o(1)$) then gives

$$\Delta_0 \nu = 1 - \frac{p(\bar{A} - 1)}{e^{\Delta_0} - 1} \left(\frac{1}{e^{\Delta_0} - 1} + \frac{1}{1 - e^{\Delta_0}} \right)^{-1} - p(1 - e^{\Delta_0}).$$

Hence, simplifying this expression we obtain the traveling wave velocity ν as a function of the principal exponent Δ_0 given by

$$\nu = \frac{1}{\Delta_0} \left(1 + p(e^{\Delta_0} - 1) - \frac{p(\bar{A} - 1)(1 - e^{1-\Delta_0})}{e - 1} \right).$$

(61)

The traveling wave velocity ν as a function of Δ_0 for different values of p can be seen in
Figure A.4 (left panel). Of particular interest will be the smallest admissible value of \(v \).\(^{53}\) Note that the RHS of Equation (61) is a convex function of \(\lambda_0 \) which is characterized by a unique global minimum (see also the left panel in Figure A.4). The corresponding value of \(\lambda_0 \) minimizing \(v \) can be found from the corresponding first-order condition (FOC) given by

\[
\frac{dv}{d\lambda_0} = \frac{1 - e + p(\bar{A} + e - 2) + (e - 1)e^{\lambda_0}p(\lambda_0 - 1) - (\bar{A} - 1)e^{1-\lambda_0}p(1+\lambda_0)}{(e-1)\lambda_0^2} = 0.
\]

The FOC from above is equivalent to

\[
\frac{e - 1}{\bar{A} + e - 2 + (e - 1)e^{\lambda_0}(\lambda_0 - 1) - (\bar{A} - 1)e^{1-\lambda_0}(1 + \lambda_0)} = p,
\]

which is illustrated in Figure A.4 (right panel). This equation can be further simplified to

\[
e^{\lambda_0}(\lambda_0 - 1) - \frac{\bar{A} - 1}{e - 1}e^{1-\lambda_0}(1 + \lambda_0) + \frac{\bar{A} + e - 2}{e - 1} = \frac{1}{p}.
\]

A comparison of the exponentially decaying solution with \(\lambda_0 \) obtained from Equation (63) and the numerical solution of Equation (18) is shown in Figure A.3.

\(^{53}\)A generic selection principle applies, where an extremal value for \(v \) is realized from sufficiently steep initial conditions [cf. Bramson, 1983; van Saarloos, 2003].
PROOF OF LEMMA 1. Let T be the terminal period. Then we have that

$$V_{T-1}(A_i(T-1), P(T-1))$$

$$= \max \left\{ \int dF^{\text{in}}(\theta) \psi A_i(T-1) \bar{A}^\theta, \int dF^{\text{im}}(\theta|A_i(T-1), P(T-1)) \psi A_i(T-1) \bar{A}^\theta \right\}$$

$$= \psi A_i(T-1) \max \left\{ \int dF^{\text{in}}(\theta) \bar{A}^\theta, \int dF^{\text{im}}(\theta|A_i(T-1), P(T-1)) \bar{A}^\theta \right\}.$$

Observe that the expected productivity gain from imitation, $\int dF^{\text{im}}(\theta|A_i(T-1), P(T-1)) \bar{A}^\theta$, is increasing in $A_i(T-1)$, and the expected productivity gain from innovation, $\int dF^{\text{in}}(\theta) \bar{A}^\theta$, is non-decreasing in $A_i(T-1)$. Hence, $V_{T-1}(A_i(T-1), P(T-1))$ is increasing in $A_i(T-1)$. Next, as the induction hypothesis, assume that $V_{T-t}(A_i(T-t), P(T-t))$ is increasing in $A_i(T-t)$. Then we have that

$$V_{T-t-1}(A_i(T-t-1), P(T-t-1))$$

$$= \max \left\{ \int dF^{\text{in}}(\theta) \psi A_i(T-t-1) \bar{A}^\theta + \delta V_{T-t}(A_i(T-t-1) \bar{A}^\theta, P(T-t)), \int dF^{\text{im}}(\theta|A_i(T-t-1), P(T-t)) \psi A_i(T-t-1) \bar{A}^\theta + \delta V_{T-t}(A_i(T-t-1) \bar{A}^\theta, P(T-t)) \right\}.$$

As both, $V_{T-t}(\cdot, \cdot)$ and the per period profit $\int dF^{s_t(\cdot)}(\theta|\cdot) \psi A_i(\cdot) \bar{A}^\theta$ are increasing in the productivity $A_i(\cdot)$ (for both strategies, innovation, $s_t(t) = \text{in}$, and imitation, $s_t(t) = \text{im}$), it follows that also $V_{T-t-1}(\cdot, \cdot)$ is increasing in the productivity. This proves the induction step. □

PROOF OF PROPOSITION 8. Assume for a contradiction that the value function is increasing in the productivity $A_i(t)$, but that the optimal strategy is not to maximize the expected productivity gain in that period. Then not only the current expected per-period profit is smaller, but, because of the monotonicity of the value function, also the expected value function in the next period is lower. However, this contradicts the assumption that the strategy is optimal, and thus cannot be the solution to the Bellman Equation (27). □

In the following we derive a lemma and a corollary which will help us to show that Equation (24) admits a traveling wave solution with a stable shape.\(^{54}\) First, from Equation (24) we can derive the following lemma:

Lemma 4. Let $F^{(1)}_a(t)$ and $F^{(2)}_a(t)$ be solutions of Equation (24) with initial data chosen such that $F^{(1)}_a(0) \geq F^{(2)}_a(0)$. Then for all $t > 0$ we have that $F^{(1)}_a(t) \geq F^{(2)}_a(t)$.

Proof of Lemma 4. We introduce the difference

$$V_a(t) = F^{(2)}_a(t) - F^{(1)}_a(t).$$

\(^{54}\)Our results follow Bramson [1983], who analyzed the traveling wave solution $u(x,t) = w(x - vt)$ of the Kolmogorov equation $\frac{\partial u}{\partial t} = f(u) + \frac{\partial^2 u}{\partial x^2}$. 49
In the following we show that if \(V_a(0) \leq 0 \) then \(V_a(t) \leq 0 \) for all \(t > 0 \). We can write Equation (24) as follows

\[
\frac{\partial F_a(t)}{\partial t} + F_a(t) = \frac{2q - 1}{2} F_a(t)^2 + \frac{3 - 2q - p}{2} F_a(t) + \frac{p}{2} F_{a-1}(t).
\]

We then get for \(V_a(t) \)

\[
\frac{\partial V_a(t)}{\partial t} + V_a(t) = \frac{2q - 1}{2} (F_a^{(2)}(t) - F_a^{(1)}(t))^2 + \frac{3 - 2q - p}{2} V_a(t) + \frac{p}{2} V_{a-1}(t).
\]

Hence, we find that if \(V_a(t) \leq 0 \) for all \(a \geq 0 \) then also \(\partial V_a(t)/\partial t + V_a(t) \leq 0 \).

Next, we show that if \(V_a(t) \leq 0 \) and \(\partial V_a(t)/\partial t + V_a(t) \leq 0 \) then also \(V_a(t+s) \leq 0 \) for all \(s > 0 \). For this purpose, let \(\varepsilon = s/n \) with \(n \in \mathbb{N} \). For \(n \) being sufficiently large (and \(\varepsilon \) sufficiently small) we can use a first-order Taylor approximation to write

\[
V_a(t + \varepsilon) = V_a(t) + \frac{\partial V_a(t)}{\partial t} \varepsilon.
\]

\[
V_a(t + 2\varepsilon) = V_a(t + \varepsilon) + \frac{\partial V_a(t + \varepsilon)}{\partial t} \varepsilon.
\]

\[
\vdots
\]

\[
V_a(t + n\varepsilon) = V_a(t + (n-1)\varepsilon) + \frac{\partial V_a(t + (n-1)\varepsilon)}{\partial t} \varepsilon.
\]

We can assume that \(V_a(t) \leq 0 \). If \(\partial V_a(t)/\partial t \leq 0 \) then we also have that \(V_a(t + \varepsilon) \leq 0 \). Otherwise, we observe that

\[
V_a(t + \varepsilon) = V_a(t) + \frac{\partial V_a(t)}{\partial t} \varepsilon \leq V_a(t) + \frac{\partial V_a(t)}{\partial t} \leq 0,
\]

so that also in this case \(V_a(t + \varepsilon) \leq 0 \). We can repeat this argument for all \(\varepsilon, 2\varepsilon, \ldots, n\varepsilon = s \) and show that \(V_a(t+s) \leq 0 \).

A direct consequence of Lemma 4 is the following corollary.

Corollary 1. Let \(F_a(t) \) be a solution of Equation (24) with Heaviside initial data, that is

\[
F_a(0) = \Theta(a - a_m) = \begin{cases}
0, & \text{if } a < a_m, \\
1, & \text{if } a \geq a_m.
\end{cases}
\]

Further, define \(m_{\varepsilon}(t) = \inf\{a : F_a(t) \geq \varepsilon\} \) for any \(\varepsilon \in [0,1] \). Then we have that \(F_{a-m_{\varepsilon}(t)}(t) \) converges to some function \(f_{\varepsilon}(a) \) as \(t \to \infty \).
Figure A.5: Illustration of distributions $F_a(t)$ and $F_a(t+s)$ at times t and $t+s$ for $s > 0$.

PROOF OF COROLLARY 1. For $t_0, b \in \mathbb{R}_+$ we set for any $a \geq 0$

$$F_a^{(1)}(t) = F_{a-m_c(t_0)}(t)$$

$$F_a^{(2)}(t) = F_{a-m_c(t_0+b)}(t+b).$$

If we start from Heaviside initial data we have that $F_a^{(1)}(0) \geq F_a^{(2)}(0)$ and Lemma 4 applies.\(^{55}\) It follows that $F_a^{(1)}(t) \geq F_a^{(2)}(t)$ for all $t > 0$. We then can write

$$0 \leq F_{a-m_c(t_0+b)}(t_0+b) \leq F_{a-m_c(t_0)}(t_0) \leq 1.$$

For each value of b this is a decreasing sequence of real numbers which is bounded from below and thus its infimum is the limit. In particular, since t_0, b and ε were chosen arbitrarily, we obtain that $F_{a-m_c(t_0)}(t)$ converges to some $f(a) \geq 0$ from above as $t \to \infty$. An illustration can be seen in Figure A.5. \(\blacksquare\)

We are now in place to give a proof of Proposition 7.

PROOF OF PROPOSITION 7. Let $\varepsilon > 0$, then by Corollary 1 it holds

$$\lim_{t \to \infty} F_{a-m_c(t)}(t) = f_\varepsilon(a).$$

Because of convergence it holds for the total derivative

$$\lim_{t \to \infty} \frac{dF_{a-m_c(t)}(t)}{dt} = 0,$$

\(^{55}\)To see this, note that $m_c(t)$ is increasing in t as $F_a(t)$ is decreasing in t because the RHS of (24) always less than zero. Consequently, it holds $F_a^{(1)}(0) = F_{a-m_c(t_0)}(0) = \Theta(a - (a_m + m_c(t_0))) \geq \Theta(a - (a_m + m_c(t_0+b))) = F_{a-m_c(t_0+b)}(0)$. The latter is by definition of the Heavyside-Function an upper bound for any probability distribution function with support restricted to the interval $[a_m + m_c(t_0+b), \infty)$. This applies in particular to $F_a^{(2)}(0) = F_{a-m_c(t_0+b)}(b)$ for any $b \in \mathbb{R}_+$, so that we have that $F_a^{(1)}(0) \geq F_a^{(2)}(0)$. Hence, we can make use of Lemma 4.
or equivalently
\[
\frac{\partial F_{a-mc}(t)}{\partial t} + \frac{\partial F_{a-mc}(t)}{\partial a} \frac{dm_c(t)}{dt} = o(1).
\]
Using Equation (24), the above equation can be written as follows
\[
o(1) = \frac{2q - 1}{2} F_{a-mc}(t) + \frac{1 - 2q - p}{2} F_{a-mc}(t) + \frac{p}{2} F_{a-mc}(t-1) + \frac{\partial F_{a-mc}(t)}{\partial a} \frac{dm_c(t)}{dt}.
\]
Integrating over \([0,a]\) we obtain
\[
o(1) = \int_0^a \left(\frac{2q - 1}{2} F_{a-mc}(t) \right)^2 + \frac{1 - 2q - p}{2} F_{a-mc}(t) + \frac{p}{2} F_{a-mc}(t-1) + \frac{\partial F_{a-mc}(t)}{\partial a} \frac{dm_c(t)}{dt} da
\]
Looking at the limit over time (\(\lim_{t\to\infty}\)) on both sides we obtain
\[
o(1) = \int_0^a \left(\frac{2q - 1}{2} f_\epsilon(a) \right)^2 + \frac{1 - 2q - p}{2} f_\epsilon(a) + \frac{p}{2} f_\epsilon(a-1) + \frac{(F_{a-mc}(t) - F_{0-mc}(t)) \frac{dm_c(t)}{dt}}{dt}.
\]
As everything except \(\lim_{t\to\infty} \frac{dm_c(t)}{dt}\) does not depend on \(t\) we can conclude that there is a constant \(\nu\) such that \(\lim_{t\to\infty} \frac{dm_c(t)}{dt} = \nu\).

Further, we must have that \(F_{m_c}(t) = F_{m_c}(t+s)\), or equivalently, \(F_{vt}(t) = F_{vt(t+s)}(t+s)\), and this is satisfied for \(F_{a}(t) = f(a-\nu t)\). It follows that the solution of Equation (24) must be a traveling wave. Note that due to the stable shape of the traveling wave, the above result holds for any value of \(\epsilon\).
B. Online Technical Appendix

B.1. Model Extensions

In this appendix we sketch three possible extensions of our model. First, in Appendix B.1.1 we allow for productivity shocks that can also lead to a decline in the productivity of a firm [cf. Klette and Kortum, 2004]. Next, in Appendix B.1.2 we provide a basic mechanism for firm entry and exit. Finally, Appendix B.1.3 introduces an absorptive capacity limit with an upper cutoff which bounds the relative productivity a firm can imitate from above.

B.1.1. Evolution of the Productivity Distribution with Decay

In this section we extend the model in the sense that firms not only exhibit productivity increases due to their innovation and imitation strategies but they are also exposed to possible productivity shocks, if e.g. a skilled worker leaves the company or one of their patents expires, leading to a decline in productivity. Specifically, we assume that in each period \(t \) a firm exhibits a productivity shock with probability \(r \in [0, 1] \) and this leads to a productivity decay of \(\delta \) [cf. Klette and Kortum, 2004]. Otherwise, the firm tries to increase its productivity through innovation or imitation as discussed in the previous sections. If firm \(i \) with log-productivity \(a_i(t) \) experiences a productivity decay in a small interval \(\delta t = 1/N \) then her log-productivity at time \(t + \Delta t \) is given by

\[
a_i(t + \Delta t) = a_i(t) - \delta, \quad \delta \geq 0
\]

where \(\delta \) is a non-negative discrete random variable. Denoting by \(P(\delta = 1) = \delta_1, P(\delta = 2) = \delta_2, \ldots \), we can introduce the matrix

\[
T_{\text{dec}} = \begin{pmatrix}
0 & 0 & \cdots & \cdots & \cdots \\
\delta_1 & -\delta_1 & 0 & \cdots & \cdots \\
\delta_2 & \delta_1 & -\delta_1 - \delta_2 & 0 & \cdots \\
 \vdots & \vdots & \ddots & \ddots & \ddots \\
\end{pmatrix}
\]

The evolution of the log-productivity distribution in the limit of large \(N \) is then given by

\[
\frac{\partial P(t)}{\partial t} = P(t) \left((1 - r) \left((I - D)T_{\text{in}} + DT_{\text{im}}(P(t)) \right) + rT_{\text{dec}} - I \right). \tag{65}
\]

B.1.2. Firm Entry and Exit

We assume that at a given rate \(\gamma \geq 0 \), new firms enter the economy with an initial productivity \(A_0(t) = A_0 e^{\theta t}, A_0, \theta > 0 \). The productivity \(A_0(t) \) corresponds to the knowledge that is in the public domain and is freely accessible.\(^{56}\) A higher value of \(\theta \) corresponds to a weaker intellectual property right protection. \(A_0(t) \) can also represent the technological level achieved through public R&D. New firms can start with this level of productivity when entering. Moreover, we assume that incumbent firms cannot have a productivity level below \(A_0(t) \). Finally, we assume that incumbent firms exit the

\(^{56}\)In contrast, any technology corresponding to a productivity level above \(A_0(t) \) embodied in a firm is protected through a patent and is not accessible by any other firm. Firms can imitate other technologies, but only if they are within their absorptive capacity limits.
market at the same rate \(\gamma \) as new firms enter, keeping a balanced in- and outflow of firms. This means that a monopolist in sector \(i \) at time \(t \) is replaced with a new firm in that sector that starts with productivity \(A_0(t) \).\(^{57}\)

We assume that in each period, first, a randomly selected firm either decides to conduct in-house R&D or imitate other firms’ technologies and, second, entry and exit takes place. Both events happen within a small time interval \([t, t + \Delta t] \). We then have to modify Equation (8) accordingly. In the case of \(A_0 = 1 \) we can write in the limit of large \(N \)

\[
\frac{\partial P(t)}{\partial t} = (1 - \gamma - \theta t)P(t) \left((I - D)T^{\text{im}} + DT^{\text{im}}(P(t)) - I \right) + (\gamma - \theta t - 1)Q,
\]

where \(Q = (1 \ 0 \ 0 \ \ldots) \).

B.1.3. Absorptive Capacity Limits with Cutoff

We assume that imitation is imperfect and a firm \(i \) is only able to imitate a fraction \(D \in (0, 1) \) of the productivity of firm \(j \).

\[
A_i(t + \Delta t) = \begin{cases} A_j(t) & \text{if } A_j / A_i \in]1, 1 + D], \\ A_i(t) & \text{otherwise.} \end{cases}
\] (66)

Thus, the productivity of \(j \) is copied only if it is better than the current productivity \(A_i \) of firm \(i \), but not better than \((1 + D)A_i \). We call the variable \(D \) the *relative absorptive capacity limit*. Taking logs of Equation (66) governing the imitation process reads as

\[
a_i(t + \Delta t) = \begin{cases} a_j(t) & \text{if } a_j - a_i \in]0, d], \\ a_i(t) & \text{otherwise.} \end{cases}
\] (67)

We have introduced the variables \(d = \log(1 + D) \). For small \(D \) it holds that \(d \approx D \). The variable \(d \) is called the *absorptive capacity limit*.

We now consider the potential increase in productivity due to imitation and the associated transition matrix \(T^{\text{im}} \). Following equation (66) we assume that a firm with a log-productivity of \(a(t) \) can only imitate those other firms with log-productivities in the interval \([a(t), a(t) + d] \). In this case \(T^{\text{im}} \) depends only on the current distribution of log-productivity \(P(t) \) and simplifies to

\[
T^{\text{im}} = \begin{pmatrix} S_1(P) & P_2 & \ldots & P_{1+d} & 0 & \ldots \\ 0 & S_2(P) & P_3 & \ldots & P_{2+d} & 0 & \ldots \\ 0 & 0 & S_3(P) & P_4 & \ldots & P_{3+d} & \ldots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ \end{pmatrix},
\]

with \(P_b = P(b, t) \) and \(S_b(P) = -P_{b+1} - \ldots - P_{b+d} \). For the initial distribution of log-

\(^{57}\)Similarly, Melitz [2003] assumes that firms can be hit with a bad productivity shock at random and then are forced to leave the market.
productivity $P(0)$, the evolution of the distribution is governed by

\[
\frac{\partial P(t)}{\partial t} = P(t) \left((I - D)T^{\text{in}} + DT^{\text{im}}(P(t)) - I \right),
\]

where similar to the previous sections we have assumed that $\Delta t = 1/N$ and taken the limit $N \to \infty$.

B.2. Empirical Productivity Distributions

In this section, we present some empirical results about the productivity distribution across firms. We emphasize three features that are consistent with our theory. First, the distribution of high-productivity firms is well described by a power-law. Second, the distribution of low-productivity firms is also well approximated by a power-law, although this approximation is less accurate, arguably due to noisy data at low productivity levels. Third, the distribution is characterized by a constant growth rate over time, where both the right and the left power-law tails are fairly stable. This implies that the evolution over time of the productivity distribution can be described as a “traveling wave” (cf. Definition 1). While the first property is well known [see e.g. Corcos et al., 2007], the second and the third have not been emphasized in the literature.

We computed the empirical productivity levels of firms using the Amadeus database provided by Bureau van Dijk. We extracted a data set which contains a total of 5,216,989 entries from European firms in the years from 1992 to 2005. These were the firms for which data was available for all the variables from the following list: value added, operating revenue, fixed assets, number of employees, cost of materials and cost of employees. These were data points from 1,413,487 firms. As the model does not include entry and exit of firms we used a balanced subsample of all firms for which data exists in the years 1995 to 2003. We chose the time span 1995 to 2003, because these were the years with a substantial number of firms for which data exists in all years. In this balanced panel were 52,837 firms but the coverage of firms across countries is quite heterogeneous, therefore we refrained our analysis to France where the coverage was is sufficiently adequate (with a total of 17,404 French firms).

The productivity A_{it} for each firm i was estimated following the method introduced by Levinsohn and Petrin [2003]. We use the STATA implementation levpet explained in Petrin et al. [2004] to predict productivity values. The variables for this estimate from the Amadeus database were value added, fixed assets, number of employees and costs of materials. The variables operating revenue and cost of employees were used for robustness checks only. We follow Petrin et al. [2004] (the “value-added case”; see Section 2.1 in Petrin et al. [2004]) and Corcos et al. [2007] in our selection of these quantities for the estimation procedure. The production function underlying the method of Levinsohn and Petrin [2003] is more general than the one in our simple model introduced in Section 2. We decided to use this simple model to keep our theoretical analysis tractable, and to focus on the main driving forces underlying the innovation and imitation process. In this empirical section we consider a more general production function in order to make full use of the available data and to obtain unbiased estimates for productivity from this data. From our balanced sample of 17,404 French firms we obtained an average productivity of 53.82 in the year 1995 to an average productivity of 65.30 in the year 2003 (see also Figure 1, right panel). Further, we find that the standard deviation of
Table 1: The estimated power-law exponents for the right and left tail of the probability density function λ and ρ. The percentage of firms on which the regression is computed is shown as well as the corresponding coefficient of determination R^2.

<table>
<thead>
<tr>
<th>Year</th>
<th>λ</th>
<th>Mean(A)</th>
<th>$R^2(\lambda)$</th>
<th>ρ</th>
<th>Mean(A)</th>
<th>$R^2(\rho)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>3.80</td>
<td>35.2%</td>
<td>0.99</td>
<td>2.13</td>
<td>51.7%</td>
<td>0.97</td>
</tr>
<tr>
<td>1996</td>
<td>3.85</td>
<td>35.0%</td>
<td>0.99</td>
<td>2.50</td>
<td>51.8%</td>
<td>0.99</td>
</tr>
<tr>
<td>1997</td>
<td>3.77</td>
<td>34.6%</td>
<td>1.00</td>
<td>2.52</td>
<td>52.4%</td>
<td>0.98</td>
</tr>
<tr>
<td>1998</td>
<td>3.79</td>
<td>35.0%</td>
<td>0.99</td>
<td>2.54</td>
<td>52.3%</td>
<td>0.98</td>
</tr>
<tr>
<td>1999</td>
<td>3.77</td>
<td>34.7%</td>
<td>0.99</td>
<td>2.55</td>
<td>52.4%</td>
<td>0.99</td>
</tr>
<tr>
<td>2000</td>
<td>3.72</td>
<td>34.0%</td>
<td>0.99</td>
<td>2.31</td>
<td>52.9%</td>
<td>0.97</td>
</tr>
<tr>
<td>2001</td>
<td>3.71</td>
<td>34.2%</td>
<td>1.00</td>
<td>2.43</td>
<td>52.4%</td>
<td>0.98</td>
</tr>
<tr>
<td>2002</td>
<td>3.67</td>
<td>33.5%</td>
<td>0.99</td>
<td>2.26</td>
<td>52.3%</td>
<td>0.97</td>
</tr>
<tr>
<td>2003</td>
<td>3.53</td>
<td>33.0%</td>
<td>0.99</td>
<td>1.99</td>
<td>52.1%</td>
<td>0.96</td>
</tr>
</tbody>
</table>

average 3.73 2.36

log-productivity is quite stable, ranging from 1.61 to 1.67. Moreover, as Figure 1 illustrates, we observe that the left and right tails of the distributions are well approximated by power-laws, $P(A) \propto e^{\rho A}$ for small A and $P(A) \propto e^{-\lambda A}$ for large A. Table 1 shows the estimated values for ρ and λ. We observe that the exponents remain relatively stable over the years of observation. The estimated right tail exponent is around $\lambda = 3.73$ while the left tail exponent is around $\rho = 2.36$.

Moreover, the rightward shift in empirical distributions over the years of observation show a yearly increase in the average productivity (cf. Figure 1). We find that average productivity grows exponentially with time at a rate ν. We then compute the growth rate of average productivity ν from the data by estimating the parameters of an exponential growth function of the mean of productivity. Exponential growth of productivity corresponds to linear growth of log-productivity, that is, mean($\log(A)$)$(t) = \nu t + \text{const.}$. From our sample we estimate $\nu = 0.0271$, by linear regression on the logarithms of the values of the right panel in Figure 1.

B.3. Calibration of the Model’s Parameters

The goal of this section is to calibrate the model’s parameters given by the innovation success probability p and the imitation success probability q, such that the empirically observed right tail exponent λ and the growth rate of the traveling wave ν can be reproduced.

Our theoretical results on the computation of λ, ν and ρ cover only parts of the (p, q)-parameter space. Further on, the interdependence we know is quite complex and nonlinear. Thus, a simple regression estimation procedure is ruled out.

We developed a hands on method to estimate λ, ρ and ν for computed trajectories of Equation (17) with parameters p and q, based on some heuristics which we derived from thorough observations. The method works as follows: Start with initial distribution $P_0 = (1, 0, \ldots)$ on a long enough vector (we used length 30). All distributions
mentioned here are handled as pdf’s. Decide on an appropriate T_{max} and compute the distributions numerically (with Mat\texttt{lab}'s ODE solver \texttt{ode45}) along the trajectory at time steps $t = 0, 1, 2, \ldots, T_{\text{max}}$. Heuristics for the choice of T_{max} where experimentally quantified such that the peak of the distribution at T_{max} lies well in the center of the support of P_0.

We then compute the arithmetic mean of productivity and the geometric mean of productivity for the distribution in each time step t. The arithmetic means build the lower bounds for the support of the distribution where λ is fitted by linear regression on the logarithm of productivity and the logarithm of the distribution function. The geometric means build the upper bounds for the support of the distribution where ρ is fitted by linear regression on the logarithm of productivity and the logarithm of the distribution function. Support for fitting was further restricted to the region where the distribution function was larger than a certain accuracy to avoid distortion from border effects which appear when floating point precision achieves its limits. Based on this we are able to fit λ and ρ for each time step t. We compute an estimate for ν for each time step t by looking at the differences in average log-productivity for time step t and $t-1$.

We observed that for large enough T_{max} the fitted values stabilize, but some regular fluctuations remained due to the discreteness of the support of the distribution. To minimize the effect we averaged several values of λ and ρ along an interval of values of t of a certain length until T_{max}. We found reasonable heuristics for assigning such a “wavelength” that the slight fluctuations could be averaged out well.

Based on this calibration method we computed values of λ, ρ and ν for the theoretical distributions of the ODE as a function of p and q on the grid $p = 0.001, +0.0002, 0.014$ and $q = 0.04, +0.002, 0.16$. After computation of the field we improved accuracy of the grid (using Mat\texttt{lab}'s function \texttt{interp2}). We improved the accuracy of p to steps of length 0.000025 and the accuracy of q to steps of length 0.00025. Within this grid we computed the values of p and q which minimized the quadratic difference of empirical and theoretical λ plus the quadratic difference of the empirical and theoretical ν. This procedure yields the calibrated values for (p, q) of $(0.0049, 0.106)$.

B.4. Growth, Inequality and Policy Implications

Our model is parsimoniously parameterized by the in-house innovation probability $p \in [0, 1]$ and the parameter $q \in [0, 1]$ measuring the absorptive capacity of the firms in the economy. In this section we study the effects of each of the three parameters (p, q) on (i) the speed of growth and (ii) the inequality implied by the productivity distribution. This will allow us to analyze the effects of R&D policies that impact the innovation success probability p and the imitation success probability q. Examples for the first are R&D subsidy programs that foster the development of in-house innovations while policies that weaken the intellectual property protection regime (and hence make it easier to imitate others’ technologies) are examples for the latter.

We first turn to the analysis of industry performance and efficiency. An industry has a higher performance, measured in aggregate intermediate goods and final good production, if it has a higher average log-productivity.\footnote{We will consider the average productivity measured by the geometric mean $\mu = \sqrt[n]{A_1 A_2 \cdots A_n}$ =} Equivalently, this corresponds
Figure B.1: Plots of λ, ρ and ν for p (resp. q) when q (resp. p) is fixed to the value from the calibrated parameters for France illustrated in Figure B.2.

to a higher average log-productivity per unit of time, as measured by the growth rate ν. We do this for two possible cases: (a) we keep the value of the absorptive capacity parameter q at its calibrated value of 0.106 and analyze the impact of changes in the innovation success probability p, or (b) we set p to its calibrated value of 0.0049 and study the effects of a change in q (see also Appendix B.3 for the calibration of these parameters). The results are shown in Figure B.1. In case (a) in Figure B.1 (left panels) we find that an increase in the innovation success probability p increases ν and hence accelerates growth. Thus, an R&D subsidy program which increases firms’ in-house R&D success probability p leads to a higher growth rate of the economy. A similar analysis, but with varying values of the absorptive capacity (i.e. the imitation success probability q) in case (b) is shown in Figure B.1 (right panels). The figure reveals that an increase in the absorptive capacity q always increases the growth rate ν. Thus, an implication of our model is that policies which positively affect the absorptive capacity q, for example by weakening the intellectual patent protection of incumbent technologies in an industry, can have a positive effect on the growth rate ν of the economy.

A complete numerical analysis of the growth rate ν for general values of q is shown in Figure B.2 (middle panel). We observe that an increase in p or q leads to a higher growth rate ν.

Further, we can investigate the degree of inequality in the economy. As our measure of inequality we take the exponent λ of the right power-law tail of the distribution. A smaller value of λ corresponds to a more dispersed distribution with a higher degree of inequality. For both cases (a) and (b) we provide a numerical analysis in Figure B.1 (left panel). In case (a) we see that the exponent λ is always higher in the limit of strong productivity shocks and the difference increases with increasing innovation success probability p. However, in case (b) the reverse relationship holds: an increase in the absorptive capacity q yields a higher value of λ and thus reduces inequality.

We can draw the following conclusions from our counterfactual analysis of the ef-

$$
(\prod_{i=1}^{n} A_i)^{1/n},
$$

which is related to the arithmetic average of the log-productivity values via $\frac{1}{n} \sum_{i=1}^{n} a_i = \frac{1}{n} \sum_{i=1}^{n} \log A_i = \log \mu$. However, our results also hold for the arithmetic average of the productivity values.

58
Figure B.2: Exploration of impact of innovation probability p, imitation probability q, on the dependent power-law parameters λ, and ρ, and on the productivity growth rate ν. The contour plots are based on numerical computation of solutions of the system of ODEs in Eq. (16). The black dots mark the calibrated (p, q)-points.

Effects of each of the three parameters (p, q). First, we find that both types of policies, those that enhance the in-house innovation success probability p as well as those that facilitate the imitation and diffusion of existing technologies (increasing the value of q) increase the growth rate ν of the economy (cf. Figure B.1). However, while the first leads to an increase in inequality (smaller values of λ), the latter has the opposite effect of decreasing inequality (higher values of λ). It must be noted, however, that an economy in which technologies can easily be imitated (high q) but there is no in-house R&D ($p \to 0$) does not generate growth. Thus, a balanced approach is required, fostering both, the capacities of firms to generate innovations in-house and an environment in which these innovations can diffuse throughout the economy.