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1. Introduction

The recent endogenous-growth literature—beginning with Romer (1990), Segerstrom et
al. (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992)—has
emphasized the role of industrial R&D for economic growth. In a general-equilibrium
framework, growth is driven by technological progress achieved in private firms, and the
literature asks what factors stimulate or retard growth. While the literature recognizes the
need for patent protection to stimulate industrial R&D, there has been surprisingly little
attention paid to the impact of patent policy on growth.'

The patent-design literature, on the other hand, addresses exactly the question of how
does patent policy affect incentives for industrial R&D.> However, the patent-design
literature has, for the most part, confined itself to partial-equilibrium analysis. This

1 For exceptions, see Segerstrom (1992), Davidson and Segerstrom (1993), Helpman (1993), Chou and Shy
(1993), Cheng and Tao (1999), and Li (2001), although these papers examine protection against potential
imitators and our focus shall be protection against future innovators.

2 There is a long line of research following Nordhaus (1969) examining patent design for isolated
innovations. More recently, the literature has addressed patent design for cumulative innovation. For two-
stage models, see Scotchmer (1991, 1996a,b), Green and Scotchmer (1995), Scotchmer and Green
(1990), Chang (1995), Matutes et al. (1996), and Van Dijk (1996). For models of sequential innovation,
see O’Donoghue et al. (1998), O’Donoghue (1998), and Hunt (1999).
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deficiency seems particularly important: Since a single patent policy applies to multiple
industries, an analysis of how policy affects a single industry seems incomplete.

In this paper, we attempt to merge these two literatures. The aim of the paper is twofold.
First, we examine the role of patent policy in the context of endogenous growth. Second,
we explore how the general-equilibrium framework contributes to the results of the patent-
design literature.

The patent-design literature examines (at least) four tools of patent policy. Patent life is
the length of time for which a patent is valid. A patentability requirement is a minimum
innovation size required to receive a patent. A patent’s breadth puts restrictions on the
products other firms can produce without a license. Lagging breadth limits imitation by
specifying inferior products that other firms cannot produce. Leading breadth limits future
innovators by specifying superior products that other firms cannot produce. Notice that
lagging breadth represents protection against imitation, whereas leading breadth and a
patentability requirement represent protection against future innovators. See O’Donoghue
(1998) for a more detailed discussion of how these policy instruments have been used in
the literature as well as how these policy instruments relate to the existing patent law.

The endogenous-growth literature has recognized the need for patent protection to
stimulate growth. For the most part, however, attention has been limited to one simple
policy—often referred to as ‘‘infinitely-lived patents’’. More accurately, we interpret the
endogenous-growth patent policy as infinitely-lived patents that prevent all imitation (i.e.,
there is complete lagging breadth), but allow any superior product to displace the
innovator (i.e., there is no leading breadth and no patentability requirement).

In Section 2, we outline a simple model of endogenous growth along the lines of
Grossman and Helpman (1991) and Aghion and Howitt (1992). Within this framework, we
embed a model of patent policy, which includes the standard endogenous-growth patent
policy but also allows for policies with protection against future innovators. In Section 3,
we address our first question: What is the role of patents for endogenous growth? We take
the endogenous-growth policy as a benchmark, and then show how protection against
future innovators can stimulate R&D investment. Specifically, if there is underinvestment
under the benchmark policy, then policy can stimulate R&D with either a patentability
requirement (as suggested by O’Donoghue, 1998 and Hunt, 1999), or leading breadth (as
suggested by O’Donoghue, 1998).

While our main analysis focusses for simplicity on a first-generation growth model,
Jones (1995) rejects such models because they exhibit counterfactual ‘‘scale effects’’. In
Section 4, we address whether our main conclusions would survive in the more elaborate
second- and third-generation growth models that do not exhibit scale effects. In short, the
answer is that, in principle, our policies can be effective in such models. However, they are
not effective in many existing models due to the fact that these models eliminate the
combination of R&D within product lines and leapfrogging on which our results depend.
To the extent that this combination was eliminated for tractability, and not because it is
viewed as unrealistic, our main conclusions are relevant for the endogenous-growth
literature. Indeed, in Appendix C we present a third-generation growth model (based on
Howitt, 1999 and Aghion and Howitt, 1998, chapter 12) in which our main conclusions
hold.

In Section 5, we address our second question: What is the patent-design literature
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missing by using partial-equilibrium analysis? A partial-equilibrium analysis of patent
policy ignores the fact that policy changes affect multiple industries. A general-
equilibrium analysis enables us to incorporate this feature of patent policy. In doing so, we
find two important factors missing from partial-equilibrium analyses. First, there is a
general-equilibrium effect from policy changes. In a partial-equilibrium framework,
stronger patents imply increased profits for successful firms. In a general-equilibrium
framework, however, these increased profits imply a reduction of the real wage and hence
in the real cost of R&D, which reinforces the effectiveness of patents. Moreover, because
this effect is stronger the larger is the innovative sector, patent policies are more effective
as more industries innovate. The second factor missing from most partial-equilibrium
analyses is a formal model of the static inefficiency (or output distortions) associated with
patents. The fact that multiple industries use patents can imply that the output distortions
created by patents are small—indeed there may be essentially no output distortions in the
extreme cases where almost all industries use patents or very few industries use patents.
Hence, partial-equilibrium analyses may be overemphasizing the importance of monopoly
distortions created by patents.

In Section 6, we extend our model to explore an issue largely ignored by both the
endogenous-growth literature and the patent-design literature: What are the implications
of there being asymmetric R&D capabilities across industries? The empirical R&D
literature suggests there are significant cross-industry differences in R&D productivity
(see the survey by Cohen and Levin, 1989). If there are asymmetric R&D capabilities
across industries, then in addition to the aggregate level of R&D, policy must also concern
itself with the allocation of R&D resources across industries. We find that the private
equilibrium tends to distort R&D resources away from those industries where these
resources are more productive. Furthermore, stronger patent protection can exacerbate
these distortions. These results are driven by a higher rate of creative destruction in the
more productive industries, which induces firms to invest less than desired in those
industries.

We conclude in Section 7 by discussing some limitations of our model and also some
general lessons to take away from our analysis.

2. A Model of Endogenous Growth

In this section, we lay out a model of endogenous growth that is similar to those in
Grossman and Helpman (1991) and Aghion and Howitt (1992). Within this model we
embed a model of patent policy that includes the standard endogenous-growth patent
policy as a special case but also allows for protection against future innovators. We
consider a simple economy where there are two types of industries. First, there is a high-
technology sector—a set of industries that conduct R&D to improve product quality.
Second, there is a noninnovative sector—a set of industries where quality improvements
are not possible. For simplicity we assume that labor is the only productive input in all
sectors and that there is a fixed set of (labor) resources. Within this setting there are two
allocative questions: (i) how to allocate labor between production (for consumption) and
R&D; and (ii) how to allocate production labor between the high-technology sector and
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the noninnovative sector. In addition, there is a third question that will affect the
performance of this economy: (iii) How ambitious should the R&D projects be in the high-
technology sector (i.e., should firms pursue small or large quality improvements)?

2.1. The Underlying Model

The underlying model has three components: the R&D process, intertemporal preferences,
and the resource constraint.

Economic growth is driven by endogenous product improvements. There is a continuum
of goods indexed by w €0, 1], each produced within its own industry. Individual goods
may be available in multiple qualities. For good w, let ¢, (f) be the maximum
technologically feasible quality at time ¢. At time ¢, all firms are capable of producing any
quality g < ¢,,(¢) (i.e., imitation is costless), and no firm is capable of producing any
quality ¢ > ¢,,(1).>

The evolution of ¢, (f) for each ® is determined by R&D behavior. Quality
improvements occur in only a fraction of industries. Specifically, there is an @€ [0, 1]
such that in industries with w € (@, 1], ¢,,(¢) = 1 for all . We refer to these industries as the
noninnovative sector. The industries with o € [0, @] constitute the high-technology
sector.* In each high-technology industry, firms conduct R&D to repeatedly increase the
maximum feasible quality in that industry. For simplicity, we assume ¢, (0) = 1 for each
wel0, @], and that the i-th innovation in industry @ increases the maximum feasible
quality by factor y,, > 1. Hence, if there have been exactly [ innovations in industry w
before date #, then g,,(f) = II:_,y,,. The innovation size 7, is endogenous, as described
below.

Innovations occur according to a Poisson process. If a firm has arrival rate of
innovations ¢, then the date of success 7 has cumulative distribution F(t) = 1 —e~?".
Each firm’s arrival rate depends on the number of research workers it hires and on the
innovation size it pursues. If a firm hires n research workers and pursues innovation size y,
it will have Poisson arrival rate ¢ = A(y)n, where di/dy < 0 and d*>A/dy* < 0. There are
constant returns to scale for R&D labor, and the Poisson arrival rate is decreasing in the
innovation size—that is, larger innovations are more difficult to achieve. We assume that
the research technology is identical in all industries and at all times. Furthermore, we
assume that firms’ R&D processes are independent, so the arrival rate of innovations in
industry , denoted ¢,,, is the sum of the individual firms’ arrival rates.

Product quality matters because consumers prefer to consume higher-quality goods.
There are L consumers with identical intertemporal preferences that can be represented by
the intertemporal utility function

3 We consider a model along the lines of Grossman and Helpman (1991) where product improvements
occur in consumption goods. Everything is essentially the same in a model where product improvements
occur in intermediate goods, as in Aghion and Howitt (1992).

4 In their basic model, Grossman and Helpman (1991) consider the case where all industries are
innovative, or @ = 1.
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U:E/ e In u(r) d, (1)
0

where ¢ is an index of continuous time, p is the rate of time preference, and In u(z) is
instantaneous utility at time ¢. The instantaneous utility function is

In u(r) = / Infg, (1) 2, (1) do, 2)

where x,,(¢) is the quantity consumed of quality ¢, () of good w at date ¢. This formulation
assumes that a person consumes only the maximum feasible quality from each industry.
Even so, we require that the maximum feasible quality ¢, () have the lowest quality-
adjusted price in industry o (because otherwise consumers would purchase an inferior
quality). In other words, if good w is also available in quality ¢’ at price p’, then the price of
quality g,,(¢), denoted p,,(¢), must satisfy p,,(1)/q,(t) <p'/q.>

The final component of the underlying model is the resource constraint. Each person
supplies one unit of labor, so the total labor supply is L. There are constant returns to scale
in output production, and in each industry labor is the only input with a unit labor
requirement a for all qualities.® If each consumer consumes x,,(7) from industry @, total
consumption from industry w is Lx,(¢), and the total labor requirement is Lax,,(t).
Economy-wide employment in production is therefore fol Lax,,(t) do. Let N(t) be the total
number of research workers economy-wide, and n,,() be the number of research workers
in industry e, which implies N(r) = [i n,, () do. Then for all ¢ the resource constraint is

1 0] 1

L= La/ X, () do + / n,(Hdw = La/ Xp(1)do + N(1). (3)
0 0 0

We can summarize the underlying model as follows. The exogenous parameters are the

number of consumers L, the intertemporal time preference p, the labor requirement for

production a, and the fraction of industries that are innovative . The endogenous

variables are the labor allocations x,, () and n, (), and the innovation sizes y;,.

2.2. The Social Optimum

A social planner will choose the endogenous variables to maximize intertemporal utility
(equations (1) and (2)) subject to the resource constraint (equation (3)). Given the
stationary nature of the model, the socially optimal labor allocations will be stationary—

5 The instantaneous utility function and the assumption about when consumers purchase the maximum
feasible quality represent a reduced form of underlying instantaneous utility function

Inu(t) = fo] ln[ g“’([) G Xy (1) dq] dw

where x,,,(f) is the quantity consumed of quality ¢ of good w at date .
6 We could allow for a different labor requirement in the noninnovative sector than in the high-technology
sector. Such an assumption would not change the qualitative nature of our results.
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that is, for all w we have x,,(¢) = x,, and n,(f) = n,, for all ¢. Furthermore, the socially
optimal innovation size will be constant O Yiey = 7 for all l and w.

Equation (2) can be written as In u(t fo In x, do + fo In g, () dw, and we can then
write intertemporal utility as

1 ,
1 d 1 0
U= fonxwarE/ [/ e "In g, (1) dt} do.
p 0 0

Since for any noninnovative industry we(®d, 1], ¢,() =1 for all ¢
fow e "'In q,(t)dt = 0. For any high-technology industry w € [0, @], if the stationary
Poisson arrival rate of innovations is 4(y)n,,, then we have’

Ing,(0) A(y)n, \ In[yq,(0)]
PRSI <p n z(v)nw) P+ A0,
(

A(p)n,, n[y*q,,(0)]
+<p+ﬂ<>w> P+ A,

_ng,(0) , Inyiy)n,
p p P

o0
E/ e ln q,(t)dt =
0

Since for each w e [0, @] ¢, (0) = 1, we have

1
pU:/
0

If the social planner allocates labor aX to production, each consumer receives total
consumption fo x,dw = X/L. Given this constraint, and the identical production
technology in all industries, ﬁ) Inx,dw is maximized by consuming equal quantities
from all industries. Hence, for any X, a social planner will choose x,, = X/L for all . The
resource constraint then implies X = (L — N)/a, and the social planner’s problem becomes
choosing y and N to maximize

L—N Invy,
U=1 )N,
o ( - )+ 1400

® 1
|
/u(')))/ nwdw:/ lnxwdco+ﬂ/l(y)N.
0 0 p

If we let y* denote the socially optimal innovation size, and N* denote the socially optimal
level of aggregate R&D, then y* and N* satisfy

7 This equation uses the following calculations:
(a) If the flow profit 7 is received until uncertain time # that has Poisson arrival rate ¢, then it has expected
value

00 Pl q
Iy (m =) e v = 525

(b) If the payoff v is received at uncertain time 7 that has Poisson arrival rate ¢, then it has expected value

Jo" (ve =) e dr =

¢
FErAS
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A(7%)
_— = *] '7* 4
—aijay ™ (4)
and
1 p
*:L———‘ 5
Iny* A(y*) )

y* and N* are both independent of @, the fraction of industries that conduct R&D.
Furthermore, the social planner cares only about aggregate R&D N* and not how R&D
labor is allocated across industries (i.e., any set of n,, such that fow n,dow = N* will do).
These results follow from the separability of quality and quantity in the instantaneous
utility function, and the constant returns to scale in R&D. Separability implies consumers
are indifferent to where quality improvements occur, and constant returns imply R&D is
equally good in all industries.

2.3. Patent Policy

We analyze the performance of this economy relative to the social optimum when
policymakers are constrained to create incentives for R&D with patents. Following
O’Donoghue et al. (1998) and O’Donoghue (1998), when innovation improves products
along a unidimensional quality measure, we can identify four distinct tools of patent
design: Patent life, a patentability requirement, lagging breadth, and leading breadth.
Patent life is the length of time for which a patent is valid. A patentability requirement
specifies a minimum innovation size required to patent a new product. A patent’s breadth
specifies products that would infringe upon the patent, which means that these products
cannot be produced without the patentholder’s permission (in the form of a license).
Lagging breadth specifies inferior products that infringe, and leading breadth specifies
superior products that infringe. The patentability requirement and patent breadth reflect
the two main tasks that confront the patent authorities. First, they must assess whether a
new technology merits a patent—whether the invention satisfies the statutory
requirements of novelty, nonobviousness, and utility. Second, they must decide which
alternative technologies infringe on the patent—which means that the patentholder has the
right to exclude other firms from using those technologies (and can sue them for damages
if they do).®

Our main focus is whether protection against future innovators can stimulate R&D
relative to patents without such protection. Except for occasional discussions, we simplify
the analysis by fixing patent life and lagging breadth, so that the policy tools of interest are
a patentability requirement and leading breadth. Specifically, we focus on patent policies

8 By ‘‘patent authorities’’, we mean the combination of the patent office and the patent courts. The patent
office makes initial decisions on both dimensions, but these decisions are often modified by the patent
courts during infringement suits. The courts sometimes rule that a patent should not have been granted—
indeed, this is a common defense in infringement suits. In addition, the courts sometimes contract and
sometimes expand the set of alternative technologies that are covered by a patent.
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where patent life is infinite and there is ‘‘complete lagging breadth’’. In our model, patents
are effectively terminated by future innovations, not by when the patent expires
(O’Donoghue et al., 1998 define this as ‘‘effective patent life’”). Hence, infinite patent life
is meant to be a proxy representing that there is a very small probability of a patent having
value when it expires. ‘‘Complete lagging breadth’’ means that all qualities made feasible
by an innovator are protected. In other words, if a firm has a patent on quality g, and its
innovation size was y, then no other firm can produce any quality g€ (g, /7, ¢,] during the
life of the patent without a license. An implication of infinite patent life and complete
lagging breadth is that at all times the most recent innovator will produce the maximum
feasible quality ¢,, (), and the nearest rival will be the previous innovator in that industry.

We denote a patentability requirement by P € [1, c0), where a firm can receive a patent
only if it has innovation size y > P. A patentability requirement represents a lower bound
on innovation size (as long as firms are interested in receiving a patent—see our discussion
of trade secrets in Section 3). We denote leading breadth by K € [1, c0) such that the patent
on quality ¢, prevents other firms from producing any quality ¢ € [q,, Kq,) during the life
of the patent without a license from the patentholder. We reiterate the distinction between
a patentability requirement and leading breadth. Both put restrictions on future innovators,
but a patentability requirement restricts what future innovators can patent, whereas leading
breadth restricts what they can produce without infringing. Hence, for example, even if an
innovator can get a patent on his new product, he may have to pay licensing fees to some
previous innovators in order to produce (as we discuss in more detail in Section 3).

We denote a specific patent policy by Y = (P, K). Under policy , all patents have
infinite patent life, complete lagging breadth, leading breadth K, and the patentability
requirement for each generation is P. Different patent policies will induce different
outcomes.

The endogenous-growth models of Grossman and Helpman (1991) and Aghion and
Howitt (1992) assume a very simple patent policy: Each successful firm receives an
infinitely-lived patent that prevents other firms from producing its quality. There is no
explicit patent breadth, but these models effectively assume complete lagging breadth
since product quality is discrete—discrete product quality implies that the nearest feasible
competing product is the previous state-of-the-art product. Importantly, however, there is
no patentability requirement and no leading breadth (i.e., there is no protection against
future innovators). Hence, we interpret the endogenous-growth patent policy as the policy
P=1,K=1)=y,°

9 A few papers consider weaker patent policy. For example, Segerstrom (1992), Davidson and Segerstrom
(1993), and more recently Aghion et al. (2001) explore patent protection where they assume stronger
patent protection implies a decreased probability of imitation, and Helpman (1993) explores property
rights where he assumes that tighter property rights imply imitation is more costly. With our terminology,
these papers explore lagging breadth, and assume no leading breadth.
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2.4. The Private Equilibrium under Policy v,

We now examine how the endogenous variables—x,, (¢) and n,,(¢) for each @ and ¢, and y,,,
for each i and w—are determined in private markets under patent policy . We will use
this outcome as a benchmark against which to compare policies with protection against
future innovators in Section 3. To solve the model, we examine output markets (from
which all profits are derived) and R&D markets (where firms innovate in order to gain an
advantageous output-market position).

We begin with the demand functions for consumption goods. Consumers maximize
utility (equations (1) and (2)) subject to their budget constraint. We suppose all consumers
have identical wealth A(0) (e.g., all consumers own equal shares of all firms). In addition,
each consumer supplies one unit of labor at all times that earns wage w. Throughout, we
take the wage w to be the numeraire, although for expositional clarity we often include w
in equations. At time ¢, for each industry w each consumer purchases quantity x,,(¢) of
quality ¢,,(¢) at price p,,(t). Letting r denote the rate of interest, each consumer’s budget
constraint is

/000 e " {/01 Do () x,,(2) da)] dr < A(0) +/OOO e~ "wdt.

Wealth evolves according to A(r) = [rA(r) + w] — [ fol Po (1) X, (2) da)] Restricting
attention to balanced growth steady states where A(¢) = O for all ¢, we have r=p, and
for all ¢ instantaneous income is w + pA(0) = Y. Each consumer spends exactly Y at any
date #, and chooses consumption bundle {x,,(#)},[o ) to maximize instantaneous utility.
Given symmetric Cobb—Douglas utility, consumers allocate income Y to each industry w,
which means that for each industry w each consumer demands quantity ¥ /p,,(¢). Since
there are L consumers, the demand function for each consumption industry is LY /p,,(¢).

Next, we examine the optimal behavior of firms in output markets. We assume each
noninnovative industry w € (@, 1] is competitive. Firms price at marginal cost, so given
labor requirement a and wage w, p,,(t) = wa for all 7. Hence, at all times each consumer
purchases x,,(t) = Y/(wa) for each we (@, 1].

In each high-technology industry wel0, @], patent protection creates imperfect
competition. At time ¢, the most recent innovator produces quality ¢, (¢), and patent
protection will determine the largest quality ¢’ < g,,(¢) that a rival can produce without a
license. We shall refer to the most recent innovator as the market leader. The market leader
will serve the entire market, but the price p,,(¢) is constrained in that it must be the lowest
quality-adjusted price in industry . Since rivals are willing to price at marginal cost wa,
the market leader’s price will be p,, () = uwa where the markup u = ¢,,(¢)/¢’. As we shall
see, the markup u will be the same in all high-technology industries and at all times. Given
demand function LY /p,,(¢), at all times the market leader in each industry w € [0, @] earns
profit 7 =LY ((i—1)/1).

We next examine behavior in R&D markets. We assume perfect competition in the
market for R&D. As a result, it will turn out that the market leader in industry o will not
conduct R&D in industry w. As in Grossman and Helpman (1991) and Aghion and Howitt
(1992), it is more profitable to gain a one-step advantage than to extend a one-step
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advantage to a two-step advantage. Consider the payoff to an R&D firm that chooses
innovation size y and hires R&D labor n. The firm’s instantaneous wage cost is wn. The
firm has success with Poisson arrival rate A(y)n. If we let V represent the reward to success,
then the firm’s expected instantaneous payoff is — wn + A(y)nV.

What is the reward to success V? When market leaders do not conduct R&D, at all times
every market leader has a one-step advantage. This means that if a firm has an innovation
of size y, the firm is able to charge markup 1 =y (given complete lagging breadth). Hence,
an R&D firm will earn a profit flow 7 =LY((y — 1)/y) following a success. Since market
leaders do not conduct R&D, the reward to success consists of earning flow profit 7 until
the first subsequent success in the industry. If ¢ is the equilibrium Poisson arrival rate in
the industry, then this flow of profit has discounted expected value 7/(p + ¢) (see the
calculation in footnote 7). In other words, the reward to success V=mu/(p + ¢).

We can now rewrite an R&D firm’s instantaneous payoff as

T y—1 1
—wn+ Ay)n = —wn + A(y)nLY (—) _—
p+ ? Jpté
where the R&D firm takes L, Y, w, p, and ¢ as given and chooses y and n. Since all R&D
firms in all industries will choose 7 to maximize A(y)((y —1)/7), at all times all firms
conducting R&D will choose innovation size 7, defined by

= (10— ) (©

Since there are constant returns to scale in the number of research workers n, the individual
research venture is of indeterminate size. Even so, free entry requires that if n > 0 then

(7)

T
o
p+o

We shall denote the private equilibrium level of R&D labor by N, = @n,,, where n,, is the
number of R&D workers hired in each high-technology industry and N, is the number of
R&D workers hired economy-wide.

At this point, it is convenient to combine the demand functions for consumption goods,
optimal firm behavior in output markets, and the resource constraint (equation (3)) into a
single equation that expresses market profits © as a function of the markup u, aggregate
R&D N, and exogenous parameters. As described above, for all 7, x,,(¢) = Y/(uwa) for
wel0, ®] and x,, (1) = Y/(wa) for w € (®, 1]. Plugging these equations into equation (3),
taking the wage w to be the numeraire, and solving for instantaneous income Y, we obtain
Y=(L-N)/L)(/(1 —d)pu+ ®)). Since © = LY ((u — 1)/u), we can conclude that

n:(L—NX#—D. (8)

(1—o)u+o

A(7,)

Note that equation (8) is a condition that must hold in equilibrium, but does not represent
market profits as perceived by individual firms. Substituting = from equation (8) into the
no-profit condition (equation (7)), we derive the following expression for N, in terms of
exogenous parameters:
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- ) [QL — w)(ﬂ )} if > 1=0to p
= on. = Yo 0 Yo Yo Yo (9)
0

We summarize this outcome in Lemma 1.
Lemma 1 Under policy y,:
i.  The market leader in industry w € [0, @] does not conduct R&D.
ii.  Firms choose innovation size y, defined by equation (6).
iii. The markup in industry w € [0, @] is u = 7y,.
iv.  The equilibrium level of R&D N, is given by equation (9).

Consider how the outcome under policy i, compares to the socially optimal outcome. A
comparison of equation (6) to equation (4) reveals that 7, <7y*. And a comparison of
equations (5) and (9) reveals that for any @ the private market outcome can involve too
little or too much R&D. These results are identical to those in Grossman and Helpman
(1991) and Aghion and Howitt (1992), and the intuition is as described there.

2.5. Constrained Social Welfare

Patents create markups in the high-technology sector, whereas price equals marginal cost
in the noninnovative sector. These markups distort consumption towards the
noninnovative sector. We close this section by deriving a constrained social welfare
function that takes these markups into account. Suppose a patent policy induces economy-
wide R&D N, but creates markup p in each high-technology industry. Then consumption
from each noninnovative industry is x, = Y/(wa), and consumption from each high-
technology industry is x; = Y/(uwa). Plugging xy = pixy into the resource constraint
(equation (3)) yields xy = (1/((1 — @)+ ®))(L—N)/(La). We can then write
intertemporal utility as

L—-N 1 L—-N 1
pUz(l—&))ln( L >—|—(Z)ln< LI >+M/1N,
(1—@)u+@& La (1—@)u+od La P

(10)

or

(1-o) L—N\ 1
pU=In(————) +m +—LiN.
(1—o)u+o La P

In other words, pU =Q — D where
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Eln((lu(lw)) >0 (11)

and

Qzln<L_N)+1“UN. (12)

D represents the static inefficiency associated with markup u in the high-technology
sector. With Cobb-Douglas utility, the static inefficiency is independent of the level of
consumption. Q represents dynamic social welfare resulting from the allocation of labor
between R&D and consumption. Notice that Q is maximized at N*. Writing constrained
welfare in this way makes clear the trade-off between dynamic and static efficiency.
Patents stimulate R&D by allowing successful firms to earn market profits. Stronger patent
protection may imply increased R&D, and therefore increased dynamic social welfare
when N < N*. However, stronger patent protection also implies larger markups, and
therefore increased static inefficiency. In other words, patents can increase growth only at
the cost of higher static inefficiencies. Optimal patent policy must weigh this trade-off.

3. Protection Against Future Innovators

In the previous section, we showed that under the endogenous-growth patent policy v,
firms choose suboptimally small innovation size and might hire too little or too much R&D
labor. In this section, we ask how different patent policies can correct incentives for R&D.
Recall that a specific patent policy is = (P, K), where P is the patentability requirement
and K is leading breadth. We now define some notation to denote the equilibrium outcome
as a function of patent policy. Let (1) be the equilibrium innovation size under policy v,
N(}) be the equilibrium level of aggregate R&D labor under _policy ¥, 7i(y) be the
equilibrium level of R&D labor per industry under policy v, and ¢ (i) be the equilibrium
industry arrival rate under policy . In the previous section, we examined the endogenous-
growth patent policy ¥, = (P = 1,K = 1). Converting notation, j(},) = 7. N(,) =N,,
(,) = nys and G(1,) = A(r,)n,

Although we found that there can be underinvestment or overinvestment under policy
Y,, our focus will be the case of underinvestment. We do not examine the case of
overinvestment for two reasons. First, there is evidence that suggests there is too little
R&D (see in particular Jones and Williams, 1998, 2000), so the overinvestment case is
perhaps empirically less relevant. Second, if there is overinvestment under , correcting
incentives is somewhat trivial. Clearly, i, is not the weakest patent policy. In particular,
shorter patent life and/or weaker lagging breadth will decrease the reward to success and
therefore reduce the level of R&D. The question arises which technique is better, but this
question has been well-studied by Klemperer (1990) and Gilbert and Shapiro (1990)
(although in the framework of isolated innovation).

Hence, we now suppose there is underinvestment under policy ¥, and ask how
protection against future innovators, in the form of a patentability requirement or leading
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breadth, can stimulate R&D relative to policy .. Before we discuss the use of patent
policy to increase R&D incentives, however, we discuss two caveats to our analysis.

The first caveat revolves around the use of subsidies.'” In the endogenous-growth
literature, the limited attention to how policy can affect the incentive to innovate has
focussed on R&D subsidies (and taxes). For example, Grossman and Helpman (1991) and
Stokey (1995) correctly point out that an R&D subsidy or tax can induce the first-best level
of R&D. If policymakers can use R&D subsidies, however, there is no reason for patents.
In fact, if there is a noninnovative sector so markups create output distortions, optimal
policy would involve essentially no patent protection and a very large R&D subsidy.'! In
more practical terms, R&D subsidies may be inferior to patents due to asymmetric
information between policymakers and firms. Marginal subsidies (or taxes) applied to
R&D costs become problematic if firms have flexibility in what they claim to be an ‘‘R&D
cost’’; patents, in contrast, are granted only if a firm actually achieves an innovation.
Lump-sum subsidies for successful firms (i.e., prizes) become problematic if policymakers
cannot observe the value of each innovation (see Wright, 1983); in such situations, patents
can be useful as a revelation device (see Cornelli and Schankerman, 1999 and Scotchmer,
1999).'% In sum, there can be problems with R&D subsidies that are less prevalent with
patents. Because patents are used extensively and the use of R&D subsidies is limited, we
take the perspective that R&D subsidies are not an effective policy instrument.

The second caveat revolves around trade secrets. In general, patent policy matters only
to the extent that firms prefer to use patents rather than trade secrecy to protect their
intellectual property. In terms of the endogenous-growth literature, if one interprets the
usual assumptions not as firms using patents but rather as firms using trade secrets, then the
patent policies we suggest below are (most likely) irrelevant. But if we interpret the usual
assumptions as firms actually preferring patents to trade secrets—which is certainly
implicit in the language used—then the policies discussed below might be useful. A
closely related question, however, is whether the policies we discuss induce firms to
switch to trade secrets. On one dimension, the answer would appear to be no, because, as
will become clear, the policies we discuss increase the value of patents to firms. But a
second dimension is, when other firms are using patents, would one firm have an incentive
to switch to trade secrecy. While it is hard to answer this question without a formal model
of trade secrets, we note that, from a policy-design perspective, we can make the answer
no by enforcing leading breadth. In other words, if we enforce leading breadth, then while
a firm may be able to use trade secrecy to protect its invention, it would not be able to profit
from its invention. In this paper, we focus on the case where either trade secrecy is
inherently unattractive or patent enforcement is sufficient to make it unattractive.

10 See Aghion and Howitt (1998) for further discussion of policies that subsidize R&D.

11 Segerstrom (1992) discusses such a policy in the context of uncertain innovation size. With certain
innovation size, he shows that if policymakers can also tax the noninnovative sector, they can counteract
the markups created by patents. However, an output tax on the noninnovative sector seems to be out of
the realm of R&D policy.

12 See also Kremer (1998), who proposes a mechanism that combines R&D subsidies and patents with the
goal of letting the marketplace reveal the value of an innovation but then having the government
purchase the patent and make the innovation freely available.
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3.1. A Patentability Requirement

In a partial-equilibrium framework, O’Donoghue (1998) and Hunt (1999) show that a
patentability requirement can stimulate R&D. A patentability requirement induces firms to
pursue larger innovations which take longer to achieve. Hence, a successful firm earns
market profits for a longer period of time. This increases the reward to success and
therefore stimulates R&D. We now demonstrate that this result can hold in the
endogenous-growth model.

When there is a patentability requirement P > y, and no leading breadth, the outcome
of the model is exactly analogous to the outcome under policy ¥/,. The only difference is
that firms will choose innovation size P because P represents a lower bound on the
innovation size that firms will pursue (assuming firms want to obtain a patent). The
following lemma is analogous to Lemma 1:

Lemma 2 For any policy = (P, K) with P >y, and K= 1:
i.  The market leader in industry w € [0, @] does not conduct R&D.
ii.  Firms choose innovation size () = P.
iii. The markup in industry we [0, @] is p = ().
iv. The equilibrium level of R&D is

@[%Lme} if [ >U=2P+o p

N() = odi(y) = P AP) P—T"7(P)
0 if L <U=fte e

Proposition 1 establishes that imposing a patentability requirement can stimulate R&D in
the endogenous-growth framework (all proofs are collected in Appendix B).

Proposition 1 (A patentability requirement can stimulate R&D.) Consider a policy
Y=(P,K)withP>vy,and K=1:

i.  Suppose N, > 0. Then there exists P' > P" >y, such that N() is increasing in P
forall Pely,,P") and ¢(\) is increasing in P for all P€[y,,P").

ii.  Suppose N, = 0. Then either (Aa)l\A](lﬁ)A: d() =0forallP > Vos 0 (b) there exists
P'>P">P>vy,suchthatN(y) = () = Oforall P€[y,, P], N(y) is increasing
in P for Pe[P,P'), and ¢() is increasing in P for P [P,P").

Part (i) of Proposition 1 states that as long as there is investment under policy V/,,, imposing
a patentability requirement can induce firms to hire more R&D labor, and that doing so
can lead to an increased rate of innovation. Part (ii) then states that if there is no investment
under policy V,, imposing a patentability requirement may stimulate investment; however,
it is possible that investment might not occur for any patentability requirement.
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Proposition 1 by itself does not establish whether a patentability requirement is welfare
enhancing. Imposing a patentability requirement P >y, has three effects on social
welfare. First, a patentability requirement induces firms to pursue larger innovations.
Second, a patentability requirement induces firms to hire more R&D labor (at least in the
relevant range). Since under 1/, firms pursue suboptimally small innovations, in the case
where there is underinvestment under \, these two effects will both lead to increased
dynamic social welfare. However, the third effect is that a patentability requirement
creates increased industry markups, and therefore decreased static efficiency. The optimal
patentability requirement must weigh the trade-off between dynamic and static efficiency.

3.2. Leading Breadth

An alternative way to stimulate R&D is proposed by O’Donoghue et al. (1998). Again in a
partial-equilibrium framework, they show that leading breadth can stimulate R&D by
allowing firms to consolidate market power through licensing agreements. To illustrate
this intuition, consider the policy ¥ = (P = y,,K = (7,)*), and assume for the time-being
that all firms choose innovation size y,. Suppose the most-recent innovator has a patent on
quality g,. Quality g, infringes the patent of the second-most-recent innovator (who has a
patent on quality ¢,/7,), but does not infringe the patent of the third-most-recent innovator
(who has a patent on quality ¢,/ (yu)z). Hence, in order for the maximum feasible quality
q, to be produced, the most-recent innovator and the second-most-recent innovator must
enter a licensing agreement (because neither is legally allowed to produce quality g,
without violating the other’s patent). When they do so, their nearest competitor will be the
third-most-recent innovator, and therefore the two firms in the licensing contract can
charge markup (yo)z, compared to markup 7y, under policy ¥,. In other words, leading
breadth facilitates collusion between the most-recent and second-most-recent innovators
by forcing them to negotiate over permission to produce. Of course, the exact reward to
success will depend on how profit is shared in these licensing agreements.

Before proceeding to our formal analysis of such policies, we discuss their real-world
applicability. A first question is whether it is reasonable to expect the patent authorities to
allow firms to patent an invention when that invention infringes on some prior patent. In
fact, such ‘‘blocking’’ patents are very much a part of existing patent law. Blocking
patents arise when an invention represents an improvement over some prior technology
that is judged to satisfy the requirements to receive a patent but not to be extensive enough
to be free from the prior patent. A firm that receives a blocking patent cannot use its new
technology without permission from the prior infringed patentholder; however, the value
of the blocking patent comes from the fact that the prior patentholder also cannot use the
new technology without permission from the holder of the blocking patent.'?

A second question is how do real-world firms react when the frontier technology

13 For more discussion of blocking patents, see Merges and Nelson (1990, 860-862) and Gilbert (2002, 6—
7). The existence of blocking patents illustrates how patents are not a right to use a technology, but
rather are a right to exclude others from using a technology (see footnote 96 in Merges and Nelson).
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infringes on multiple patents. Not surprisingly, the answer differs across industries and
across time. But one particular response is becoming more common: *‘patent pools””.'* A
patent pool is an agreement among multiple patentholders to pool their patents, often by
creating a central administrative entity. The pool specifies licensing rates for access to the
entire pool of patents, and it also specifies a division of proceeds among the pool’s
members. As an example, in 1995 nine patentholders agreed to pool the 27 patents that
were required to use the MPEG-2 video compression technology. The pool was set up with
a mechanism for evaluating whether new technologies should be added to the pool and
whether older technologies should be removed from the pool, and with a mechanism for
recalibrating the division of proceeds when such changes are made.

A third question is what has been the antitrust reaction to patent pools. Historically,
patent pools have existed since the mid-19th century (Merges (1999) notes that the first
patent pool appeared in 1856 in the sewing machine industry). But patent pools became
relatively scarce from the 1940s until the 1990s, in large part due to the negative antitrust
reaction to any industry-wide agreements. A negative antitrust response is justified to
some degree, because patent pools are a natural way to mask cartel agreements—in the
early part of this century, many patent pools were clearly such. In the 1990s, however, the
antitrust authorities recognized that legitimate patent pools may promote social welfare,
both by facilitating the use of frontier technologies, and by increasing incentives to
produce new technologies. As a result, the use of patent pools has grown in recent years.

With this real-world background, we now analyze a stylized model of the effects of
leading breadth—which determines the extent of blocking relationships—when the
antitrust authorities permit licensing agreements to incorporate only the owners of
essential patents (such licensing agreements might take the form of a patent pool). The key
question concerning leading breadth is therefore the number of patents that the maximum
feasible quality infringes. To simplify our analysis, we focus on policies ¥ = (P, K) with
P >y, and K = P* for some € {1,2,...}. As we show below, under such policies, firms
target innovation size P, and therefore the maximum feasible quality infringes o patents
(its own patent and o — 1 previous patents)."”

The reward to success will depend on how profit is shared in licensing agreements.
O’Donoghue et al. (1998) avoid dealing with the division of profit by assuming firms can
bargain over R&D costs. They focus on a model without patent races, however, and with
patent races bargaining over R&D costs seems inappropriate. Indeed, the basic premise of
the patent race model is that there is nothing to bargain over until some firm has a success,

14 This discussion draws heavily from Merges (1999) and Gilbert (2002).

15 Our conclusion that firms target innovation size P is driven by our restriction to policies with K = P*.
For more general policies, firms need not target innovation size P—for example, if P=7" and K=7' +¢
for some small ¢ > 0, firms might target innovation size K so as to avoid the leading breadth. Even so,
from the perspective of optimal policy design, our restriction to policies with K = P* is not restrictive. In
our model, P and K matter only insofar as they influence (1) the innovation size y that firms pursue and
(2) the number of patents o that the maximum feasible quality infringes. For any y and o, the most direct
way to implement that outcome is to set P=y and K = P*. If, for instance, under policy P =7 and
K =7'+¢ firms target innovation size K and therefore o= 1, the same outcome could be implemented by
setting P=7'+¢and K=P.
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but at that point the R&D costs have already been sunk. Even so, we do not wish to explore
here the intricacies of licensing. Hence, we use a vastly simplified model of licensing to
make the analysis tractable and to provide some intuition as to how leading breadth affects
the incentive to innovate.

We simplify our analysis by assuming that firms who participate in the licensing
contract do not conduct R&D.'® Hence, under policy y = (P, K) with K = P*, exactly
o patentholders will participate in the licensing arrangement. These firms will split
market profits according to some bargaining solution. We suppose there is a set of
stationary ~ bargaining solutions (s!,s?,...) where for each ae{l,2,...},
s*=(s?, 5%,...,52) €[0,1]" and Z}_;s* =1. If « patentholders sign the licensing
contract, the most-recent innovator gets share s{, the second-most-recent innovator gets
share 5%, and so on. In addition, we assume for simplicity that the bargaining solution is the
same in all industries.

Although we have not yet defined an equilibrium when there is leading breadth, we can
describe some features that must hold in any outcome with this simplified model of
licensing.

Lemma 3 Suppose the patent policy is iy = (P, K) with P > y, and K = P*. Conditional
on innovation rate ¢, any equilibrium will be characterized by the following features:

i.  Firms in industry w € [0, @] target innovation size y(}y) = P,
ii. The markup in industry we [0, @] is p = P*, and

iii.  The reward to success in industry w e [0, @] is V=m-B(¢, a), where 7 is given by
equation 8 and B(¢, o) = Z¢_ 5% '/ (p + ¢)".

When there is no leading breadth (i.e., « = 1), any patentability requirement P > y, will
be binding. Part (i) of Lemma 3 establishes that even for the case where o > 1, any
patentability requirement P >y, will be binding. Choosing innovation size y > P to
influence marginal profits is unattractive for much the same reason as it is when o« =1. A
second reason to choose y > P here is to avoid the leading breadth of some prior patent,
but our restriction to K = P* makes this prohibitively costly. Part (ii) of Lemma 3 simply
reflects the fact that increased leading breadth creates increased market profits (as shown
by O’Donoghue et al. 1998). Specifically, the markup u is increasing in the amount of
leading breadth (as parametrized by o), and market profits are increasing in the markup u.
Part (iii) of Lemma 3 illustrates that in addition to market profits, the reward to success
depends on the bargaining solution. We have defined B(¢, o) = Z7_,s%¢' ' /(p + $)' to
be the discounted share of market profits that each innovator receives. We often refer to
B(¢, o) as the bargaining discount factor.

The magnitude of B(¢, o) depends on the bargaining solution s*, and in particular on

16 Because there are constant returns to R&D spending, no inefficiencies are created when the market
leader and the other firms in the licensing contract do not conduct R&D.
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whether payoffs tend to be frontloaded vs. backloaded. For any o, B(¢, o) is maximized
under bargaining solution s* = (1,0, ..., 0) when B(¢, a)=1/(p + ¢), and B(¢, o) is
minimized under bargaining solution s* = (0,0, ..., 1) when B(¢, %) = ¢"~ ' /(p + $)™.
Because an innovator’s bargaining position is weakest early in the life of her patent, when
her product infringes previous patents, and strongest late in the life of her patent, when
previous patents have effectively expired and subsequent innovations now infringe her
patent, it seems likely that payoffs would be to some extent backloaded. Of course, the
backloading of payoffs matters only because firms discount the future (i.e., p > 0)—for
any s% lim,_,o B(¢, o) = 1/¢.

In addition to the conditions in Lemma 3, an equilibrium with leading breadth must
satisfy the no-profit condition AV = w, which we can rewrite as AnB(¢, o) = w. When there
is leading breadth and « > 2, however, there can be multiple industry arrival rates ¢ that
satisfy this no-profit condition. See Appendix A for a more complete discussion. We define
the equilibrium to be the largest industry arrival rate that satisfies the no-profit condition.'”
In other words,

W)= { max{¢|AV =w} if the set {¢[4V = w} is non-empty

0 if the set {¢ | AV = w} is empty.

Now consider how introducing leading breadth influences the behavior of R&D firms.
Increased leading breadth has two effects on the reward to success V=n B(¢, o). First,
increased leading breadth leads to a larger markup g and therefore increased market
profits z. This effect will tend to stimulate R&D spending. Increased leading breadth
also changes the bargaining discount factor B(¢, o). If stronger leading breadth
increases B(¢, o), then this second effect will also stimulate R&D spending. But it is
perhaps more likely that stronger leading breadth reduces B(¢, o)—indeed, B(¢, 1) >
B(¢, o) for all ¢ and o > 1. Intuitively, stronger leading breadth can make payoffs
more backloaded, because any given innovation infringes more previous patents and
therefore is in an even weaker bargaining position early in the life of its patent.
Proposition 2 establishes that leading breadth can stimulate R&D as long as increased
leading breadth does not cause the bargaining solution to become excessively
backloaded.

Proposition 2 (Leading breadth can stimulate R&D.) Consider two policies v =(P,K)
and ' = (P,K’) with P > v, and K' > K, and suppose N(r) > 0.

i.  Suppose K=P and K' = P2. If the bargaining solution s> = (s, 1 — s), then there
exists § < P/(P + 1) such that N(y/') > N() as long as s > 5.

o+ 1

ii.  Suppose K = P* and K' = P**'. For any bargaining solutions s* and s there

exists p > 0 such that N(Y') > N(}) as long as p <Pp.

17  We show in Appendix A that this definition is well-defined.
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Part (i) of Proposition 2 establishes that, relative to policy y, increasing leading breadth
so that o =2 will stimulate R&D as long as the first-period share of market profits is big
enough. Part (ii) of Proposition 2 establishes that increased leading breadth can always
stimulate R&D investment as long as people are patient enough. Proposition 2 illustrates
that one of two things must be true for the profit effect of increased leading breadth to
dominate the backloading effect. First, it could be that increased leading breadth does not
significantly increase backloading (as illustrated by part (i)). Second, it could be that
people are patient enough so that backloading is not too costly (as illustrated by part (ii)).'®

It is worth reiterating that the mechanism behind leading breadth stimulating R&D is that
leading breadth facilitates collusion. If leading breadth did not facilitate collusion—for
example, if the antitrust authorities restricted the members of the licensing agreement to
charge a markup no larger than the most-recent innovation—then leading breadth would
retard R&D. Intuitively, in this case, total (undiscounted) market profits are unchanged, but
firms receive these profits with more delay. Hence, the effectiveness of leading breadth de-
pends on some coordination between the patent authorities and the antitrust authorities (and
as alluded to earlier, there has been more and more coordination since the early 19905).19

Just as Proposition 1 does not establish whether a patentability requirement is welfare
enhancing, Proposition 2 does not establish whether leading breadth is welfare enhancing.
Imposing leading breadth has two effects on social welfare. First, leading breadth can
induce firms to hire more R&D labor. In the case where there is underinvestment under ,,
this effect will lead to increased dynamic social welfare. Second, leading breadth allows
firms to consolidate market power and thereby creates increased industry markups. This
effect will lead to decreased static efficiency. Like the optimal patentability requirement,
optimal leading breadth must weigh the trade-off between dynamic and static efficiency.

How does a patentability requirement compare to leading breadth? Since leading breadth
allows firms to consolidate market power and create large market profits, it can be much
more effective than a patentability requirement at stimulating R&D. However, these large
market profits may make leading breadth significantly worse than a patentability
requirement in terms of static efficiency, and in addition the effectiveness of leading
breadth can be undermined by licensing inefficiencies. A careful comparison of the two
types of policy would require much further specification of the model, and is beyond the
scope of this paper. Furthermore, the appropriate question is not whether a patentability
requirement or leading breadth is better, but rather is how to tailor the two instruments
together to improve incentives for R&D. Indeed, Proposition 2 is written in a way that
illustrates how leading breadth can be effective in addition to a patentability requirement.*°

18 It is straightforward to show that there also exists p’ > 0 such that there is underinvestment under policy
Y, for all p<p'. Hence, for p small there is underinvestment under , and leading breadth can stimulate
R&D.

19 A more subtle question is what the effect of leading breadth would be if there were already collusion in
the absence of leading breadth. The answer would depend on the form of collusion in the absence of
leading breadth—what is the markup and what are the relative bargaining positions—and how the
presence of leading breadth influences that collusion. An analysis of this issue is beyond the scope of this
paper; however, it is clearly an important consideration for any real-world application of leading breadth.

20 For more discussion of these issues, see O’Donoghue (1998).
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4. The Role of Scale Effects

Our analysis above demonstrates how protection against future innovators, in the form of a
patentability requirement or leading breadth, might be a useful method to encourage
industrial R&D and economic growth. To lay bare the basic intuitions, however, we have
embedded our analysis within the simple quality-ladder model of Grossman and Helpman
(1991). This model and other first-generation R&D-based growth models (e.g., Romer,
1990; Segerstrom et al. 1990; Aghion and Howitt, 1992) have been criticized on the basis
that they exhibit ‘‘scale effects’’, wherein the economy-wide growth rate of the knowledge
stock is proportional to resources employed in the R&D sector. Jones (1995) rejects these
models on empirical grounds because such scale effects are counterfactual: In almost
all industrial countries, the post-war period was characterized by a rapid increase in
research employment without a corresponding increase in the growth rate of total factor
productivity.

In this section, we address whether our main conclusions would survive in the more
elaborate second- and third-generation growth models that do not exhibit scale effects. We
divide our discussion into two dimensions. First, under various alternative models that
remove the scale effect, are our policies still effective at influencing the allocation of labor
to R&D? Second, when our policies are effective at influencing the allocation of labor to
R&D, what are the implications for economic growth?

We begin with the latter question. Following Jones (1999), growth models that do not
exhibit the scale effect can be divided into second-generation and third-generation models.
Second-generation models remove the scale effect by assuming that innovations become
more difficult to achieve as the technological frontier expands. In Jones’ notation, the
technological frontier (the stock of knowledge) A develops according to A/A = 6L,A? ",
where ¢ < 1 and ¢ are constants, and L is total labor allocated to R&D. If ¢ is sufficiently
small, A /A may stagnate (or decrease) even as the amount of resources in R&D L, is
growing. In such environments, long-run (steady-state) growth rates are independent of
the level of R&D resources, and therefore even if our policies are effective at stimulating
R&D, they cannot affect long-run growth rates. However, they would still increase rate of
convergence, which might be welfare-enhancing.

Third-generation models remove the scale effect by endogenizing the number of
product varieties—so there is horizontal R&D that invents new varieties and vertical R&D
that improves existing varieties—and by assuming that the growth rate depends on
research effort per variety. Because larger populations are associated with more varieties,
there may be more workers doing research without an increase in economic growth as
these R&D workers are spread across more varieties. Such models restore the basic
conclusion from first-generation models that the allocation of labor influences steady-state
growth rates. Hence, in such models, if our policies are effective at stimulating R&D
spending per variety, they may increase steady-state growth rates.

With this background in mind, we now discuss whether our policies can be effective at
influencing the allocation of labor to R&D in various second- and third-generation growth
models. The key question here is whether the structure of the particular model permits us
to introduce our policies in a meaningful way. In particular, the logic behind our results is
that a patentability requirement and leading breadth can be useful when R&D takes place
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within product lines and when there is leapfrogging (market leaders are repeatedly
replaced by innovators), because these policies are designed to protect against the threat of
being displaced as the market leader.

Among second-generation growth models, the seminal paper by Jones (1995) assumes
horizontal product innovations, and existing technologies are never rendered obsolete.
Clearly, our policies would not be useful in such an environment. However, many second-
generation models, including Segerstrom (1998), Kortum (1997), and Li (2000, 2002),
assume that R&D takes place within product lines and that there is leapfrogging. In these
models, the basic logic of our results should hold, and so a patentability requirement and
leading breadth might be useful to increase R&D. Of course, as discussed above, our
policies could have only temporary effects on economic growth (on the speed of
convergence), and would not affect long-run (steady-state) economic growth.

Most third-generation models build environments in which our policies would not be
effective. For instance, Young (1998) assumes that time is discrete and that innovators
survive for exactly one period. For obvious reasons, our policies cannot be useful in such a
context. Similarly, Smulders and van der Klundert (1995), Peretto (1998a,b), Dinopoulos
and Thompson (1998), and Peretto and Smulders (1998) assume that entrants invent new
varieties and that, once successful, the firm conducts R&D to lower its production costs
and/or improve the quality of its products. Importantly for our purposes, however, these
models all assume that the inventor of a specific variety will remain the market leader in
that variety forever after. Hence, there is no leapfrogging—no threat from future
innovators—and so our policies would not be effective.

Howitt (1999), in contrast, builds a third-generation model with leapfrogging within
product lines.>!' In this environment, our policies can be useful for increasing the amount
of labor allocated to vertical R&D and thereby influence long-run economic growth.
Indeed, in Appendix C we present a modified version of Howitt’s model that does not
exhibit the scale effect in which our main conclusions hold. In sum, our policies are not
useful in most third-generation models, but only because these models have eliminated
certain features of market competition—most notably from our perspective, the feature of
leapfrogging. Since we suspect the reason for doing so was tractability, and not a belief
that leapfrogging is unrealistic, and since our policy conclusions survive in a third-
generation model with leapfrogging, we believe our results are quite relevant for the
endogenous-growth literature.

5. Partial Equilibrium vs. General Equilibrium

Our goal in Section 3 was to describe what the endogenous-growth literature can learn from
the patent-design literature. Our goal in this section is to describe what the patent-design
literature can learn from the endogenous-growth literature. By confining itself to partial-
equilibrium analyses, the patent-design literature examines how patents affect a single

21 See also Aghion and Howitt (1998, Ch. 12), who suggest a modification of their basic model that permits
the number of distinct products to be endogenous.
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industry assuming nothing changes elsewhere in the economy. However, patent policy is an
economy-wide phenomenon. Patents are used in many industries, and therefore any policy
change will affect many industries. The general-equilibrium approach of the endogenous-
growth literature therefore permits a more complete analysis of patent design.*

An important general-equilibrium effect that is not revealed in partial-equilibrium
analyses concerns the impact of patent policy on the real wage. Partial-equilibrium
analyses usually take the cost of R&D to be fixed and exogenous, and in particular to be
independent of patent policy. But in a general-equilibrium framework in which patent
policy applies to many industries, patent policy influences the real wage, and therefore
affects the real cost of R&D. Specifically, patent policy operates by increasing profits in
high-technology industries, which implies a redistribution of aggregate income from
wages to profits, and therefore a decline in the real wage. Moreover, the effectiveness of
patent policy depends on by how much high-technology profits increase relative to the
wage, and so this general-equilibrium effect reinforces the effects of patents. Because a
larger high-technology sector increases the impact of patent policy on the real wage, the
effectiveness of patent policy is increasing in the size of the high-technology sector.
Proposition 3 captures this intuition by showing that for any specific patent policy, the
bigger is the high-technology sector the larger is the equilibrium industry arrival rate
induced by that patent policy. Proposition 3 implies that the bigger the high-technology
sector, the weaker is the protection needed to implement any target industry innovation
rate. (A partial-equilibrium analysis is in a sense equivalent to assuming @ close to 0.)

Proposition 3 (Patent policy is more effective as more industries innovate). For any

patent policy y = (P, K) with P >y, and K = P*, ¢() is increasing in @.

The economy-wide effects of patents also has implications for static inefficiency. The
core theme of the patent-design literature is the trade-off between incentives for R&D and
monopoly distortions: Patents create markups that lead to increased incentives to innovate,
but these markups cause static inefficiency. However, there is often no formal model of
static inefficiency—the usual measure is the deadweight loss associated with the assumed
demand curve, but this measure is often invalid in a general-equilibrium framework. The
general-equilibrium framework allows us to formally model the static inefficiency. As is
the explicit or implicit assumption in much of the patent-design literature, static
inefficiency arises in the form of output distortions.”® The markups created by patents
distort consumption away from high-technology industries and towards noninnovative
industries. In our model, the static inefficiency is given by equation (11).

The perhaps surprising result is that the social cost of output distortions may be smaller

22 In fact, our discussion of what the general-equilibrium framework contributes to the patent-design
literature applies equally well to cumulative innovation and isolated innovation. Our discussion revolves
around the cumulative-innovation interpretation only because we focus on a model of endogenous
growth.

23 Some patent-design papers concentrate on other static inefficiencies such as delayed diffusion or high-
cost firms persisting in the market.
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than partial-equilibrium analyses assume. In particular, if @ is close to 0, which means few
industries conduct R&D, or if @ is close to 1, which means most industries conduct R&D,
then output distortions are not very costly. For @ close to 0, patents create markups in only
a few industries, so relative prices are efficient except for the few innovative industries. In
this case, output distortions involve too little consumption in the few innovative industries,
but very little change in the noninnovative industries. Since the innovative industries
produce a small portion of the consumption bundle, these output distortions are not too
costly. For @ close to 1, patents create an identical markup in almost all industries, so
relative prices are efficient except for the few noninnovative industries. Again, the
resultant output distortions are not too costly. Proposition 4 summarizes this discussion.

Proposition 4 (Output distortions are small for few or many innovative industries). For
any policy y = (P, K) with P > y, and K = P?, there exists o' € (0, 1) such that the static
inefficiency D is increasing in @ for all ®<w' and decreasing in @ for all & > o'
Moreover, for @ = 0 and @ = 1 there is no static inefficiency.

We conclude our discussion of partial-equilibrium vs. general-equilibrium with two
general-equilibrium effects that are absent from our model. The first revolves around the
effects of patent policy on labor supply. Our model assumes that the aggregate supply of
labor is exogenously given. If instead we were to assume that labor supply is increasing in
the real wage (i.e., the substitution effect is stronger than the income effect), there would
be a mitigating force that reduces the effectiveness of patents. Specifically, because
stronger patents tend to reduce the real wage, stronger patents would lead to a reduction in
the supply of labor. This reduction in the supply of labor would mitigate the effects of
stronger patent policy. Elastic labor supply would also imply that, in contrast to
Proposition 4, patents might create static inefficiency even when most industries are
innovative, in the form of reduced labor supply.

The second revolves around the effects of patent policy on the allocation of demand
across industries. Our model assumes that consumers have homothetic preferences, and so
changes in the distribution of income do not have feedback effects on the allocation of
demand. If, however, income elasticities were not equal to unity for all products, stronger
patents might lead to a reallocation of demand, which in turn might have feedback effects
on the incentive to conduct R&D.**

6. R&D Distortions

An important issue largely ignored by both the endogenous-growth literature and the
patent-design literature is the allocation of R&D across industries. The endogenous-

24 Of course, models of innovation and growth that feature a balanced-growth path are not easily conducive
to the analysis of non-homothetic preferences. For models where growth is driven by vertical R&D and
where income distribution feeds back to the demand of innovators, see Li (2002), Glass (2001), and
Zweimiiller and Brunner (1998).
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growth assumption of identical R&D capabilities in all innovative industries implies that
the allocation of R&D labor is irrelevant. As a result, the only policy concern in the
previous two sections was the allocation of labor between R&D and production. This
assumption, however, is highly questionable. Empirical evidence suggests there are
significant cross-industry differences in R&D productivity and in R&D behavior (see the
survey by Cohen and Levin, 1989). Klenow (1996) builds an endogenous-growth model in
which he allows industries to vary along several dimensions in order to explore the source
of these cross-industry differences. Comparing the implications of his model to the
empirical evidence, he concludes that industry differences in market size and
technological opportunities best explain industry differences in R&D behavior.

In this section, we posit that there are asymmetric R&D capabilities across industries
(i.e., asymmetric technological opportunities), and ask what are the implications for patent
policy. For simplicity, we shall assume that all industries are innovative (i.e., ® = 1), and
that a uniform patent policy applies for all industries.

We suppose asymmetric R&D capabilities arise from sector-specific capital. (It will
become clear that our basic results would hold for other sources of asymmetric R&D
capabilities.) Suppose capital is used only in R&D. If an R&D firm employs labor n and
capital , it will have arrival rate of innovations ¢ = A(y)h' ~#n®, Be (0, 1). The function 1
is exactly as in the basic model, and in the discussion that follows we often suppress its
argument. There are two types of capital, sector-1 capital and sector-2 capital, where all
industries with w € [0, %] can use only sector-1 capital and industries with w e (%, 1] can use
only sector-2 capital. All results easily generalize to the case where the two sectors are of
unequal sizes, but the notation would be more complicated. The total supply of sector-1
capital is H|, the total supply of sector-2 capital is H,, and all consumers own equal shares
of each type of capital (which is part of their wealth A(7)). The remainder of the model is
unchanged.

With two sectors conducting R&D, we need some new notation. Specifically, we let N,
denote total labor employed in sector-1 R&D, N, denote total labor employed in sector-2
R&D, and N denote the aggregate level of labor employed in R&D, so N = N; + N,.

6.1. The Social Optimum

A social planner now must allocate labor between production, sector-1 R&D, and sector-2
R&D—that is, a social planner must choose x,, for each w € [0, 1], N;, and N,. Since there
are constant returns to scale in R&D, for any N, a social planner will allocate sector-1
R&D resources in the ratio H, /N, (i.e., all sector-1 firms that conduct R&D will receive
capital 4 and labor n such that 2/n = H,/N;). As a result, the total arrival rate of
innovations in sector 1 is AH 11 -k Nlﬂ . Analogously, for any NV, a social planner will allocate
sector-2 R&D resources in the ratio H,/N,, and the total arrival rate of innovations in
sector 2 is /“LHé b Ng . Using a logic similar to that in Section 2, we can derive the following
expression for intertemporal utility:

L—(N,+N,)\  In; . .
pU:1n<—(Ll+ 2)>+%z(y)[ﬂ} NG+ )N (13)
a
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A social planner will choose the endogenous variables N, N,, and y to maximize equation
(13). The socially optimal innovation size is the same y* as in the basic model. The social
planner has two concerns when allocating labor: (1) how much labor to allocate to R&D
(i.e., the choice of N), and (2) how to divide R&D labor between sector-1 industries and
sector-2 industries (i.e., the choice of N|/N,). Our focus in this section is the latter
decision. It is straightforward to show that the optimal distribution of R&D labor is
[N,/N,]" = H,/H,. Moreover, conditional on any N and 7, intertemporal utility is
maximized when N, /N, = [N, /N,]".

6.2. The Private Equilibrium

The only feature of the economy different from the basic model is the R&D production
function. The demand functions for consumption goods, optimal firm behavior in output
markets, and the resource constraint (for labor) are all unchanged. We again incorporate
these features into equation (8), and since @ = 1 we have

n=(L=N)(p-1), (14)

where u is the industry markup determined by patent policy. Since there is a uniform
patent policy economy-wide, the markup p will be the same in all industries, and therefore
market profits will be the same in all industries.

The introduction of sector-specific capital creates important changes in a firms’ R&D
decisions. As in the basic model, there is perfect competition in R&D and the R&D
production function has constant returns to scale. As a result, the individual research
venture is of indeterminate size. However, since all industries within a given sector are
symmetric, the amount of capital and labor employed in R&D at the industry level will be
the same across all industries within a given sector. In other words, there will exist &, n,,
h,, and n, such that every industry in sector 1 will employ capital /; and labor n; and every
industry in sector 2 will employ capital h2 and labor n,. Hence, every industry in sector 1
will have industry arrival rate ¢, = lh n/l] , and every industry in sector 2 will have
industry arrival rate ¢, = }h[ﬂ 4 Also because industries with € [0, ;] are sector 1
industries and industries with we( 0] are sector-2 industries, N; = nl, N, = nz,

H, = Ehl, and H, = ihz-

The introduction of sector-specific capital changes the reward to success only in the
sense that sector-1 industries and sector-2 industries have different arrival rates and
therefore different rewards to success. Specifically, the reward to success for each industry
in sector j is

o ¢—1
V.=m- 15
=7 Z ] (15)

Now consider an individual firm’s decision. Let w; be the rental rate for sector-j capital. If
a firm in sector j employs labor n and capital #, the net payoff to R&D is

29

—nw-—nh wj—|—2 hlfﬂnﬂ\/j.
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The choice of innovation size is identical to that in the basic model—in particular, under
policy ¥, firms choose innovation size y,, and under any policy with patentability
requirement P > y, firms choose innovation size P. In terms of capital and labor, profit
maximization implies that all firms in sector j employ capital /# and labor # in the same
ratio, which must be /1/n = h;/n;. Perfect competition in capital markets implies that the
rental rate for sector-j capital is equal to its marginal product, or w; = (1 — B)ihjf b nf V.
Using i/n = h;/n; and w; = (1 — B)Ah; ﬁanj, we can write the no-profit conditions for
the two sectors as

[M(h—1>lﬁv1 —w (16)

ny

m(@)lﬁvz =w. (17)

ny

Equations (14)—(17) determine the equilibrium allocation of labor. However, as in the
basic model, whereas for any patent policy y with oo =1 there is a unique outcome that
satisfies these no-profit conditions, for any patent policy { with « > 2 there can be multiple
outcomes that satisfy these no-profit conditions. As before, we define the equilibrium
allocation to be that with the largest arrival rates that satisfy the no-profit condition. See
Appendix A for a more complete discussion.

6.3. The Role of Patents

We focus on the following two questions: What R&D distortions are associated with the
use of patents? How do R&D distortions depend on the strength of patent protection?

Given R&D production function ¢ = 1h' ~#nP, R&D labor is more productive in the
sector with more available sector-specific capital per industry. For the remainder of this
section, we assume without loss of generality that h; > h,, so R&D labor is more
productive in sector-1 industries. Appendix A establishes that for any patent policy v,
hy > h, implies ¢, (¥) > ¢, (f)—the sector in which R&D labor is more productive will
always have a larger industry arrival rate.

Consider first policy ¢, = (P = 1,K = 1). It is straightforward to show that under
policy ¥, firms pursue suboptimally small innovations. It is also straightforward to show
that under ¥, there can be too little or too much aggregate labor allocated to R&D. As
emphasized above, however, our focus in this section is the allocation of R&D labor
between sectors 1 and 2. The following proposition establishes that under policy y, the
private equilibrium allocates too little R&D labor to the more productive sector.

Proposition 5 (Patents distort R&D labor away from productive industries.) Suppose
hy > h,y, so R&D labor is more productive in sector-1 industries. Under policy ,,

N, (%)/Nz(l//o) <[N;/N,]".
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Proposition 5 is driven by differential rates of creative destruction in the two sectors.
Since R&D labor is more productive in sector-1 industries, these industries will have a
higher rate of innovation, and therefore a higher rate of creative destruction. Since the
reward to success is decreasing in the rate of creative destruction, the private equilibrium
will distort R&D labor away from the industries where it is more productive and towards
industries where it is less productive.

Now suppose that under policy ¥, the private equilibrium allocates too little labor to
R&D. Protection from future innovators, in the form of a patentability requirement and/or
leading breadth may be able to stimulate R&D investment and the rate of innovation. If
industries differ in their R&D capabilities, however, we must ask how such a policy will
affect R&D distortions. The answer to this question is complicated in that it can depend on
the bargaining solution. To illustrate the forces at work, we first ask what happens under
the extreme bargaining solution where s* = (1, 0, ..., 0) for each o. Since the bargaining
solution for o= 1 is trivially s! = (1), this case includes all policies with a patentability
requirement and no leading breadth. In addition, for policies with leading breadth we can
interpret this assumption as a proxy for the rate of time preference p being very small
relative to the industry arrival rate ¢, in which case backloading becomes irrelevant. The
following proposition shows that in this case stronger patent protection exacerbates R&D
distortions.

Proposition 6 (Stronger patent protection can exacerbate R&D distortions.) Suppose
hy > h,, so R&D labor is more productive in sector-1 industries. Suppose also that the
bargaining solution is s* = (1, 0, ..., 0) for each a.

If either ¢, () > ¢, (W) or ¢,(1h) > qASz(l//’) (i.e., if policy  increases the indus-

try arrival rate in  either  sector relative to  policy '),  then

1\71 (W)/Nz(‘ﬁ) <N1 (‘//,)/Nz(‘//) <[N{/N,]".

Proposition 6 is also driven by the differential rates of creative destruction in the two
sectors. By imposing stronger patent protection in order to induce firms to hire more R&D
labor, policymakers increase the rate of creative destruction in all industries. But R&D labor
is more productive in sector-1 industries, and as a result the increase in the rate of creative
destruction is disproportionately large in sector-1 industries relative to sector-2 industries.
Since the reward to success depends negatively on the rate of creative destruction, the
private equilibrium will allocate the additional R&D labor with a bias towards sector-2
industries. Hence, stronger patent protection exacerbates the R&D distortion.

For policies with a patentability requirement (and no leading breadth), Proposition 6
implies that stimulating R&D investment will exacerbate R&D distortions. For policies
with leading breadth, in contrast, Proposition 6 only tells part of the story, because the
proposition relies on the extreme bargaining solution where the most recent innovator gets
the entire bargaining surplus. The following example illustrates the importance of this
assumption by demonstrating that the result can be overturned if we consider the
alternative extreme:

Example Assume L=2.5 and p=0.10. Suppose that under policy ,, firms choose
innovation size y, = 1.1, and suppose further that A(y,) = 1. Assume R&D production
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function ¢ = A(7)h'/2n'/?, and suppose h, = 2H, = 4 and h, = 2H, = 1. Then we have
¢, = Zn:/2 and ¢, = n2/2, from which we can derive N; = %nl = éqﬁ%, N, = %nz = %4)%,
and N = 1¢7 +143.

Under policy ¥/, the no-profit conditions are

b, 1
L—-N)(y—1 =— and (L—-N)(y—1)——=2¢,.
L-MG-1 =5 ad LMD =20,
These no profit-conditions are satisfied by ¢, = 0.645 and ¢, = 0.300, which yields
$1/$s = 2.15.

Now consider policy ¥'=(P = y,,K = y2), and suppose the bargaining solution is
s> = (0, 1). Then the no-profit conditions are

b, J 2 b,
L-NG-1)—2 =D and (L -N)G? - 1) —2 =2,
(p+¢) 2 (p+¢,)°
These no profit-conditons are satisfied by ¢, = 0.886 and ¢, = 0.393, which yields
¢1/ ¢y =2.25.

In this example, leading breadth stimulates the rate of innovation in both sectors, and
moreover decreases the R&D distortion (a social planner would set ¢,/¢, = 4). Why
does Proposition 6 fail to hold when we relax the assumption of s* = (1, 0,..., 0)? To
answer this question, recall that increased leading breadth has two effects on the reward
to success. On one hand, it increases available market profits. But on the other hand,
increased leading breadth can cause payoffs to become backloaded. The backloading of
payoffs is more costly the smaller is the industry arrival rate. Under the assumption
s*=(1,0,...,0), only the first effect of increased leading breadth is present, whereas
once we relax this assumption, the backloading effect arises. It is the backloading effect
that tends to counteract the result in Proposition 6. Since the industry arrival rate is
larger in sector-1 industries than in sector-2 industries, the backloading of payoffs will
be more costly in sector-2 industries. As a result, increased leading breadth has a bigger
effect on sector-1 industries, which is exactly what is needed to reduce R&D
distortions.

In sum, then, our analysis in this section suggests that when industries have asymmetric
R&D capabilities, patent protection will tend to distort R&D investment away from those
industries where it would be most productive. In addition, if policymakers attempt to
stimulate aggregate R&D investment with protection from future innovators, they will
alter this R&D distortion. A patentability requirement tends to increase R&D distortions.
In contrast, leading breadth may increase or decrease R&D distortions, depending on the
backloading of payoffs.

7. Discussion and Conclusion

In this paper, we have examined patent policy in a model of endogenous growth. For
simplicity, we have couched our analysis within a relatively simple quality-ladder model
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along the lines of Grossman and Helpman (1991) and Aghion and Howitt (1992). Within
this model, we are forced to make a number of simplifying assumptions to keep the
analysis tractable. For instance, we use a very simple model of licensing, we assume there
is no scope to have different patent policies apply to different industries, and we consider a
world where market leaders do not have an incentive to conduct R&D. Moreover, the
simple quality-ladder models of Aghion and Howitt and Grossman and Helpman may not
be the most realistic of endogenous-growth models. Jones (1995) rejects R&D-based
models of endogenous-growth because they exhibit scale effects that are inconsistent with
time-series evidence, and a number of authors have suggested models that are more
consistent with empirical evidence.

Even so, the basic intuitions we identify are not special to our model. In particular, the
logic behind our results prevails as long as R&D takes place within product lines and as
long as there is leapfrogging (market leaders are repeatedly replaced by innovators). While
not all second- and third-generation endogenous-growth models feature these
characteristics, we suspect that the reason for neglecting them is tractability, and not
lack of realism. Because our policy conclusions survive in a third-generation endogenous-
growth model that has these crucial characteristics, we believe our results are quite
relevant for the endogenous-growth literature. We conclude by discussing some general
lessons that the reader should take away from our analysis.

Perhaps the most basic lesson to take away from our analysis is that whenever R&D
firms face a threat from future innovators, there may be a role for patents to provide
protection against future innovators. In R&D-based growth models where successful R&D
firms have their market profits eroded when other firms come along with new inventions,
there can be a role for protection against future innovators in those models.

A second lesson is that, in addition to stimulating R&D investment, patent policy can
also be useful for influencing the direction of firms’ inventive activity. In our model, this
took the form of imposing a patentability requirement to counteract firms’ tendencies to
pursue suboptimally small innovations. In a similar fashion, a patentability requirement
and/or leading breadth could influence the characteristics of new products, or the types of
cost reductions that firms pursue.

A third lesson is that any examination of government policy with regard to R&D must
carefully assess the static efficiency implications of any policy proposal, and to do so one
must consider the economy-wide implications of the policy. Our analysis suggests that any
policy that will affect all industries equally or that will affect only a few industries may
have small static efficiency implications, whereas any policy that has asymmetric effects
across industries can have large static efficiency implications.

A fourth lesson is that the theoretical R&D literature may be missing an important issue
when it assumes symmetric R&D capabilities across industries. Our model shows that
patent policy can cause R&D distortions, and that the magnitude of those distortions
depends on the specific patent policy. However, this lesson does not apply only to analyses
of patent policy. Any analysis of government policy for R&D should ask what are the
implications for R&D distortions.

Perhaps our most important contribution is the merging of the patent-design literature
and the endogenous-growth literature. The patent-design literature focusses on specific
policy instruments, with attention paid to institutional detail. The endogenous-growth
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literature builds careful models of R&D at the economy-wide level, with attention paid to
empirical calibration. By merging these literatures, we hope this paper will help improve
the study of government policy with regard to R&D.

Appendix 1: Equilibrium with Leading Breadth
Equilibrium Conditions in the Basic Model (Section 3)

Combining Lemmas 2 and 3, under any patent policy = (P, K) with P > y, and K = P*,
the markup in high-technology industries will be u = P* and the reward to success will
be V=n-B(p,a) where B(¢p,a) =X s%¢' '/(p+¢) and n= (L —N)(u—1)/
((1 = @)u + ®). Any ¢ that satisfies the no-profit condition AV=w is a candidate for
an ‘‘equilibrium”’. Given N = on = (®w/1)¢, define n(¢p) = (L — (0/2)p)(u—1)/
((1 — @)u + @). We can then write the no-profit condition as

B(d),oc):%.

Closer inspection of this equation reveals that ¢ is the only endogenous variable, as should
be the case. Note that n(¢) is decreasing in ¢, and that lim_, ;5 7(¢) = 0 (where
¢ = (A/ow)L implies N=L). This implies w/(An(¢$)) is increasing in ¢ and
limy_, (/)L w/ (An(¢)) = o0.

What is B(¢p, o)? If o = 1 then B(¢, o) = 1/(p + ¢), which is everywhere decreasing in
¢. As a result, for any policy without leading breadth (i.e., « = 1) there is a unique ¢ that
satisfies the no-profit condition, as illustrated in Figure 1.

If o > 1 then B(¢, ) can sometimes be everywhere decreasing in ¢, in which case a
unique ¢ satisfies the no-profit condition. For example, s* = (1/a, 1/, ..., 1/a) implies
B(, o) =L, (1/a)¢"™" /(p+ ¢)' = (1/(2p))[1 — (¢/(p + ¢))°], which is everywhere
decreasing in ¢. But o > 1 can also yield B(¢, o) not everywhere decreasing in ¢. For
example, if the bargaining solution s? = (0,1) then B(¢,x) = ¢/(p + $)°, which is
initially increasing in ¢ and then decreasing in ¢. In this case, multiple ¢ can satisfy the
no-profit condition, as illustrated in Figure 2. When multiple ¢ satisfy the no-profit
condition, we define the largest such ¢ to be the equilibrium.*

For all o, B(¢, o) is continuous in ¢, and also limy_,; /4, B(¢, ) is finite (to see
the latter note that B(¢, o) <1/(p+ ¢) for any o). Two results follow. First, our
equilibrium definition is well-defined—that is, there must be some ¢ < (i/®@)L such
that B(d,o) =w/(An(¢)) and B(p, o) <w/(in(¢)) for all ¢ >¢ (unless
B(¢, a) <w/(An(¢)) for all ¢ <(A/®)L, in which case there is no steady-state R&D).

25 In Figure 2, (?)1 is unstable in the sense that ¢ slightly larger implies AV > w, which would lead all firms
to increase R&D spending further until (Z)Z is reached. The largest ¢ that satisfies the no-profit condition
is always stable. For oo =2, the largest ¢ that satisfies the no-profit condition is in fact the only stable
solution; for o > 3, there could be additional (intermediate) stable solutions.
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Figure 1. Equilibrium when o = 1.
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Figure 2. Possible equilibria when o > 1.

Second, if B(¢', o) > 1/(An(¢')), then ¢(1)) > ¢'. In words, if for some ¢’ the reward to
success is larger than the wage, then the equilibrium industry arrival rate is larger than ¢'.
This second result will be useful in proving Propositions 2 and 3.

Equilibrium Conditions in the Asymmetric-R&D Model (Section 6)

Under any patent policy ¥ = (P, K) with P > y, and K = P?, all firms target innovation
size P, and the markup in all industries will be u = P*. The reward to success will be
V =n-B(¢,a) where B(¢,a) =% s%¢' " /(p+ ) and 7= (L— N)sﬂ —1). Any
combination (n,,n,) that satisfies the no-profit conditions fAi(h,/n,)' "V, =w and
[M(hz/nz)l_ﬁvz = w is a candidate for an ‘‘equilibrium”’.

It is convenient to reframe the problem as finding a combination (N, ¢, ¢,) that must
satisfy the condition
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Figure 3. Equilibrium in asymmetric-R&D model.
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Define V(¢, o, N)=(L — N)(P* — 1)B(¢, ), and note that this function is the same for
both sectors, so any differences in the reward to success across sectors are driven by
different industry arrival rates. Define C = w[ﬂ)l/ P h; ~PiE ] , and note that i, > h,
implies C1 <C,. We can then rewrite the no-profit conditions as

Vg, 0,N) =C¢\" PP and  V(¢,,a,N) = Copl PP

These no-profit conditions are graphed in Figure 3. As in the basic model, B(¢, o) can be
non-monotonic in ¢ and therefore V((,‘b, o, N) can be non-monotonic in ¢. As a result, for
any fixed NV, multiple ¢ can satisfy the no-profit condition for sector j. We again define the
largest such ¢ to be the equilibrium—that is, for any fixed N,

b= max{¢|V; = éj¢<17ﬁ)/ﬁ} if the set {¢ |V, = éjqﬁ(l*ﬁ)/ﬂ} is non-empty
710 if the set {¢\\/j:éjd)<l_ﬁ)/ﬁ} is empty.

Since 0V /0N <0 and C’l(]ﬁ(l*ﬂ)/ﬁ and (:‘zqs(lfp)/ﬁ are independent of N, the no-profit
conditions imply that (all else equal) ¢, and ¢, are decreasing in N. We can therefore
conclude that for any patent policy ¥ a unique combination (N (), ¢, (W), ¢, () satisfies
the no-profit COIldlthIlS and ec% uation (A.1). Moreover, since C’l <C‘2 implies
V(¢ (l//),O(,N(lﬁ)A) P ¢\( xp))“ “PIE we can conclude that
hy > h, implies (lsl(lp) > ¢z(¢)

Appendix 2: Proofs

Proof of Proposition 1. (i) Define N =a[((P—1)/P)L— (((1—®)P+ @)/P)
(p/2(P))], and then Lemma 2 implies N( ) = max{N,0} and ¢()) = A(P)N(¥) =
max{4(P )N, 0}. In addition, whenever N >0, N(y) is increasing in P if and only if
dN/dP > 0, and $() is increasing in P if and only if d[A(P)N]/dP > 0. Differentiating:
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dN [1 @ p (l—cb)PJrcT)p(—di/dP)}
L A AN,

and

el ()]

N, > Oimplies L > (((1 — @)y, + ®)/(y, — 1))(p/~), and at P = y, we have —di/dP =
2/(7,(y, — 1)). It is then straightforward to show dN/dP| > 0 and d[A(P)N ]/dP\ >0,
from which it follows that there exists P’ >7, and P” >y, such that N (V) is increasing in P
for all Pe[y,,P') and (/)(l//) is increasing in P for all P € [yp,, P”). That P'>P" follows
from d[A(P)N]/dP = AdN |dP + dijdP<0atP =P

(ii) This result follows from dN/ dP|, > 0 and d[A(P)N V]/ dP|, > 0 combined with the
fact that Nis continuous and dlfferentlable because then either N < 0 forall P > y, or there
exists P >y, such that P =P implies N=0 and dN/dP > 0. |

Proof of Lemma 3. Suppose for now that all R&D firms choose innovation size y = P and
therefore there are « firms in each licensing agreement; we will later prove that (i) = P.
If there are o firms in each licensing agreement, 4 = P* in all high-technology industries.
Given the markup u, market profits in all high-technology industries are given by 7 (see
equation (8)). Given s* and =, a successful firm receives flow payoff s{m until the first
subsequent innovation, then flow payoff s57 until the second subsequent innovation, and
so on. Since the reward to success V is the discounted value of this payoff stream, if the
industry arrival rate is ¢ then V =X’ s%¢"'/(p+ ) =n-B(¢p,a) (see the
calculations in footnote 7).

It remains to prove that j(y) = P. While a firm clearly would not choose innovation
size y < P, there are two reasons that a firm might choose innovation size y > P: to affect
marginal profits, and to avoid the leading breadth of some prior patent and thereby change
the number of firms in each licensing agreement. Consider the latter. This incentive is
present only if o > 2, since otherwise innovation size y = P avoids the leading breadth of
all prior patents. Moreover, if all other firms choose y =P, then to avoid the leading
breadth of some prior patent a firm must choose y > P2. But d?//dy*> <0 implies
(A3) = 2(,))/ (3 — 7o) < dA/dy |,— ;,» and substituting equation (6) this inequality
implies A(y2) = 0. Hence, for any P > 7,» innovations of size y > P? have A(y) = 0 (they
are not feasible), and hence a firm would never choose y > P so as to avoid the leading
breadth of some prior patent.

Now consider whether a firm would choose y > P to affect marginal profits. Suppose all
other firms choose innovation size ' > 1. If a firm has an innovation of size y, then the
industry markup while the firm is part of the bargaining group will be u=1I"y, where
I =(y)"" ' > 1. The R&D firm therefore has instantaneous payoff

—wn + A(y)nLY <FVF; 1>B(¢>, %),

where the firm takes L, Y, w, I', and B(¢, o) as given and chooses y and n subject to y > P.
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Since P > y,, A(y)((y — 1)/y) is decreasing at y = P. It is then straightforward to show that
I' > 1 implies A(y)(I'y — 1)/(I"y) is also decreasing at y =P, and hence innovation size
y =P is optimal (given the constraint y > P). The result follows. |

Proof of Proposition 2. Let o and o be such that K = P* and K’ = P*'. Define
n(p,0)=(L— (@/2)¢) (P* —1)/((1 — ®)P* + @) and let ¢ = p(if), which implies
in(¢p.ol)-B(¢p,o/) =w.  Using  the logic from  Appendix A, if
i (o) - B(d,o") > Am(¢p, o) - B(¢p, o) = w, then $()') > ().

i. Ifo’=1and o’ =2, then (') > ¢p(y) if

e PP—1) sp+¢ oy (P—1) 1
(L z¢)<1—@>P2+@<p+¢>22(L A¢)<1—@>P+a)<p+<7>>'

We can rewrite this inequality as s>T —(¢/p)[l =] =35 where
I=(1/(P+1)((1 —®)P*+d)/((1 —®)P+ ®)<1. § is maximized at @ = 0,
where s =P/(P+ 1) — (¢/p)(1/(P +1)) < P/(P +1).

ii.  Suppose o' = o and o” =+ 1. Since & (p+ @) <B(¢p,n) < 1/(p+ ) forall
o and ¢, we must have ¢p(J') > d() if

_@_ (PcH—l_l) &50’ _@_ (Pfx_l) 1
(L z‘p)(l—w)m“w(pwv“z(L z‘f’)u—w)mww@'

We can rewrite this inequality as

p<¢

<(P°‘+1—1) (1—@)P* + @ )1/“_11 _

P —1) 1-0)P '+ -

It is straightforward to show p > 0, and the result follows. |

Proof of Proposition 3. Appendix A shows that the equilibrium industry arrival rate q?)
must satisfy the no-profit condition B(¢,x) = w/(in(¢)), and moreover that if
B(¢',a) > w/(An(¢')) then ¢ > ¢'. Since B(p,o) and A are independent of @, the
result follows if 7(¢) is increasing in @. From Appendix A, n(¢p) = (L — (®/1)¢)
(u—1)/((1 =)+ ®), and differentiating yields 0On(¢p)/0w = (u—1)/[(1 — @)
p+ @ [(u— 1)L — ud /2], so dn(p)/d@ > 0 if and only if ¢ < ((u— 1)/u)AL. Since
B(¢, 2)<1/(p+¢) for all ¢ and o, we must have d<d where ¢ is defined
by 1/(p+¢)=1/(in(¢p)). Solving this latter equation for ¢ yields ¢ = ((u—
/WAL — (((1 — d)p+ @)/w)p < (e — 1)/u)AL, and the result follows. |

Proof of Proposition 4. Under any policy ¥ = (P, K) with P >y, and K = P*, the
markup u = P* regardless of @. That there is no static inefficiency for ® = 0 and @ = 1
follows directly from equation (11). More generally, the static inefficiency is increasing in
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@ if and only if 0D /0w > 0, and the static inefficiency is decreasing in @ if and only if
0D /0@ < 0. Differentiating equation (11) yields

oD _plnp—(u—1)(1+olny)
0w (1—®)u+o '

0D/d@® > 0 if and only if @ < pu/(u—1)—1/Inp, and 0D/0® < 0 if and only if
®>pu/(p—1)—1/Inp. For any p > 1, we have O<p/(u—1) —1/Inpu<1, and the
result follows. |

Proof of Proposition 5. Combining equations (16) and (17), and using N; = n and
H; = —h in the private equilibrium we must have under any policy

1-p 1-p 1/(1-
Vo (NN Ny (v T
VZ Hl N2 NZ H2 V2 '

Under policy ¥, equation (15) implies that V, /V, = (p + ¢,)/(p + ¢,). In Appendix A,
we show that i, > h, implies ¢; > ¢,, and so V/V,<1. Since [N,/N,]" = H, /H,,
V, <V, implies Ny (¥,) /N2 (},) <[N{/N,]". u

Proof of Proposition 6. s* = (1,0,..., 0) implies that V, /V, = (p + (]52)/(,0 +¢y). A

in the proof of Proposnion 5, this implies that Nl( )/N, () < [N, /N,]* for any 2 Also
note that ¢; = )h ﬁnf implies that z(y) = ¢, () /b, () = (H, /Hz)1 RAGAC:
Nz(lﬁ)) > 1 (where the inequality follows from A, >/, implying N, (i) > N,(¥)).

) > ¢, (Y') or &52(1&) > <2>2(1p) The claim is that this

by
Ewm( J/). Suppose otherwise. N ()/N>(#) > Ny (')
Because we can reerte

Now suppose that either
implies Ny (v )/Nz( ) <N,
Ny (y") implies z() > z(/).

EZP+¢2:P+%¢1:P+¢2
Vo p+or p+od ptzdy’

and either ¢, () > ¢, (') or $,() > d,(y') implies V,/V, must be smaller under
policy . But since the proof of Proposition 5 implies that N, /N, is strictly increasing
in V,/V,, this implies N,()/N,(¥) < N,(¥/)/N,(y'), a contradiction. The result
follows. u

2(¥) = =(¥)

Appendix 3: A Non-Scale Growth Model

In this appendix, we sketch an endogenous-growth model without scale effects—similar to
Howitt (1999) and Aghion and Howitt (1998, chapter 12)—in which the patent policies
described in Section 3 can be effective at stimulating R&D.
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Modified Model

Our model here mirrors our basic framework with four modifications. First, to simplify the
analysis, we assume there is no noninnovative sector. Second, we assume that the labor
force is growing at exogenous rate g (L/L = g). Third, and most importantly, we permit
the number of varieties to grow over time. Formally, the set of varieties at time ¢ is [0, B(7)].
Preferences take the same basic form, where the instantaneous utility function is

B(1)
nu(r) = / 100 (1) x, (1) deo.

Fourth, we endogenize the growth rate of new varieties by introducing horizontal R&D.
We assume that, when a new variety is invented, a markup it can be charged until someone
comes along with a new improved version of that variety. The magnitude of /i depends on
the strength of lagging breadth for patents on new varieties. We take [ to be exogenous, or,
more to the point, to be independent of protection against future innovators (which is
consistent with our earlier assumptions). Horizontal R&D is carried out by individual
workers. We follow Howitt (1999) in assuming aggregate diminishing returns to
horizontal R&D due to workers’ unequal abilities. Specifically, each worker is endowed
with a horizontal R&D ability /;, which means that the worker’s horizontal R&D
production function is B; = h,. The cross-sectional distribution of /; is constant over time
with cumulative density F(h); we assume that F' is continuous and increasing on domain
[0, c0), which guarantees an interior solution for horizontal R&D. Workers are identical in
the other tasks, manufacturing and vertical R&D. Hence, if at time ¢ the reward from a
horizontal invention is V,(f) (which, as discussed below, will be endogenously
determined), then at time ¢ type /; will devote his labor supply to horizontal R&D if
and only if 4,V (t) > w (because /;V,,(t) is the expected benefit and w is the opportunity
cost from not entering the normal labor market). It follows that all workers with
h; > h* = w/V,(r) will engage in horizontal R&D, whereas all workers with ; <h* will
work either in manufacturing or in vertical R&D. As a result, the number of horizontal
R&D workers at time ¢ will be N, = L(1 — F(h*)).?’

Vertical R&D invents new improved versions of existing products, and proceeds exactly

26 Under this specification, which is analogous to that in Howitt (1999), both vertical and horizontal
innovations improve utility. Alternatively, we might follow Aghion and Howitt (1998, chapter 12) and
normalize the utility function such that horizontal innovations are neutral—for example, we could
assume that

In u(t) = g o Inlg,, (0)x,, (1)] do.
Any such normalization would not affect the market outcome, but would have implications for any
normative analysis of that market outcome.

27 Our formulation creates income inequality as more productive horizontal R&D workers get a higher
reward. However, this has no implications for the equilibrium because consumers have homothetic
preferences. Only aggregate income, and not its distribution, matter for the demand curve of (horizontal
and vertical) innovators.
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as in our basic model. To clarify notation, we use N, () and n, () to denote economy-wide
vertical R&D and industry-level vertical R&D, respectively (and so N, (1) = B(f)n,(1)).

The Private Equilibrium under Policy ),

We restrict attention to balanced-growth steady states in which B /B = L/LE g. In such
steady states, the amount of manufacturing labor per product n,, and the amount of vertical
R&D per product n, will be constant over time. Economy-wide manufacturing labor
N, (t) = B(t)n,,, economy-wide vertical R&D N,(¢) = B(t)n,, and economy-wide
horizontal R&D N, (#) will all grow at rate g.

The analysis is much as in the basic model. As in the basic model, steady-state per-
person expenditures Y are constant over time. Because each person allocates expenditures
evenly across existing industries, the per-person demand for variety @ is Y/(Bp,,), and
therefore the demand function for variety w is LY /(Bp,,). Since L/B is constant over time,
this demand function is constant over time. If the market leader for industry @ can charge
markup u,,, it will earn profit =, = (LY/B)((¢t,, — 1)/1t,)- The markup may differ for
first-generation products (of that variety) vs. later-generation products. As discussed
above, we assume the markup for first-generation products is p, and so flow profit
following a horizontal innovation is 7, = (LY/B)((t — 1)/f). Under policy v, if vertical
R&D firms choose innovation size y, then profits are ©, = (LY/B)((y — 1)/y).

Let ¢, denote the per-industry arrival rate for vertical innovations (which is constant
over time given n, is constant over time). For each vertical R&D firm, as a function of its
innovation size y and R&D spending n, its instantaneous payoff will be

s E = i) (1) [0+ 40

Each firm will choose innovation size y, exactly as in the basic model, and the free-entry
condition is A(y,)n,/(p + A(y,)n,) = 1 (we again use the wage as the numeraire).

In the steady state, a proportion z of industries will have first-generation products, while
a proportion 1 — z of industries will have later-generation products, where z = g/(g + ¢,).
Each industry with a first-generation product will have markup i, and therefore will hire
manufacturing labor equal to LY /(Bfi). Similarly, each industry with a later-generation
product will have markup 7,, and therefore will hire manufacturing labor equal to
LY/(By,). Hence, economy-wide manufacturing labor will be N,,=LY(z/i+
(1 —2)/v,). For the illustrative purposes of this appendix, we make the simplifying
assumption that the proportion of industries z that currently has a first-generation product
is approximately equal to zero—that is, we analyze a situation where the population
growth rate is small relative to rate of quality improvements.”® When z ~ 0, manu-
facturing labor per product is n,, = LY /(By,), and economy-wide manufacturing labor is

28 In fact, our analysis goes through when we properly account for the endogeneity of z—that is, our
qualitative results below on the effects of a patentability requirement and on the effects of leading
breadth are unchanged. Because policy changes affect z, however, there would be additional feedback
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N,, = Bn,, = LY /y,. Note that in the steady state, n,, will be constant while N,, will grow
at rate g.

The resource constraint requires L = N,, + N, + N, = LY /y, + N, + N, at each date,
orY =v,(L—N, —N,)/L (because L, N,, and N,, all grow at rate g, ¥ is indeed constant).
It follows that, along the balanced-growth path, profits for later-generation products are
given by n, = (L — N, — N,)(y, — 1)/B, which is constant over time. Plugging this into
the free-entry condition and solving for vertical R&D employment per industry yields (for
the interior case)

%—1G—M) L p
n, = - — .
Vo B Vo A(2o)

This is identical to our basic model with @ = 1, except that now N,, and B show up (the
basic model assumed N, = 0 and B =1 at all dates).

As discussed above, the number of horizontal R&D workers at time ¢ will be
N, =L(1 — F(h*)), where h* = w/V,(¢) and V,(¢) is the reward from a horizontal
invention at time 7. Because a horizontal invention enables a firm to earn profit 7, until the
first improvement, which occurs with arrival rate A(y,)n,, the reward to horizontal R&D is
constant and equal to V;, = x,/(p + A(y,)n,). Hence, h* satisfies

LY /B)(r—1)/1)
w=h { p+Ay,)n, }

Recalling that the free-entry condition for vertical R&D is

- (LY/B)((2, — 1)/7,)
w = Ay,) [ FESTCALR ]

it follows that

() /(5)

Finally, we solve for the steady-state value of L /B. The increase in the number of products
isB=L | /f hdF(h). Since in the steady state B must grow at rate g, we have

B L [” L *
g:—:—/ hdF(h) or ——g// hdF(h).
B B, B .

effects that do not show up in our analysis below (while these feedback effects can enhance or mitigate
our conclusions, they do not change the basic qualitative conclusions). We have chosen to abstract away
such effects because the equations and analysis become significantly more cumbersome.
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We can now summarize the steady-state outcome under policy y, (for the case when

I’l‘,>0)i
* 1 yo 1 ta 1
h —_— 1
A(/o)( 7, )/( — )

N,/L =1—F(h*)

v 1 [ F(h)g 1 p
n, = 159) -
Yo \Jy hdF(h))  7,4(2,)

poo L(_FUng ) 1 p
"y, \ S hdF(R) ] v, 4(7,)

The Effects of a Patentability Requirement

Much as in the basic model, the outcome under any policy with P >y, and K =1 is the
same as under policy ¥, except that P replaces y,. Hence, the steady-state outcome under
any such policy will be (for the case when n, > 0):

v /(45

NyJL =1~ F(i)
Cpo1( Fug \ 1 p
Y= TP \ T har(m)) T PAP)

L[ Fug Y 1
" P\ [ hdF(h)) PAP)

It is straightforward to show that imposing a patentability requirement can increase
vertical R&D spending—formally, there exists P’ > 7, such that n, is increasing in P for
all P € [y,, P"). Intuitively, the logic behind Proposition 1 is unchanged, except that there
is one additional effect. An increase in the patentability requirement reduces the reward to
vertical R&D relative to the reward to horizontal R&D, and therefore there is an increase
in horizontal R&D (decrease in ~*). While this increase in horizontal R&D reduces the
impact of a patentability requirement on vertical R&D, this effect is second-order at
P =y, and therefore does not overturn our conclusion.*

29  Formally,

aP — P T oh* dP -
One can show that On, /0P| p—y, > 0 using an identical technique to that in the proof of Proposition 1.
One can also show dh*/0P|p_, = 0, and therefore dn, /dP|p_, > 0.
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The Effects of Leading Breadth

The introduction of leading breadth—policies with P > y, and K = P*—into our modified
model creates significant further complications. First, instead of the markup differing only
for first-generation products vs. later-generation products, here the markups for the first «
generations differ from each other and from that for later generations—for example, when
o =2, the markup for first-generation products is fi, the markup for second-generation
products is fiP, and the markup for all later-generation products is P2. Second, we must
account for how profits for early-generation products are divided among patent holders,
and in particular we cannot merely use bargaining solution s* prior to generation o because
there are fewer than o patentholders. Third, we must recognize that the rate of quality
improvements for the first « generations may differ from that for later generations.

In order to illustrate the basic effects of leading breadth, we consider the simple case
where o =2 and s*> = (0, 1). For this case, we only need to distinguish first-generation and
second-generation products from later-generation products. Moreover, the reward to
vertical R&D is the same for all generations, and so the rate of quality improvements is the
same for all generations. In particular, the reward to vertical R&D is

i (@ ()

and the reward to horizontal R&D is

_ L (LY (E-1 ¢, (LY (P -1
i (a (50) tr (6 (5)

In the steady state, a proportion z; of industries will have first-generation products, a
proportion z, of industries will have second-generation products, and a proportion
1 — z; — z, of industries will have later-generation products, where z; = g/(g + ¢,) and
=28¢,/(p+ d)‘,)Z. As before, we make the simplifying assumptions that z; ~ 0 and
z, & 0, in which case manufacturing labor per product is n,, = LY /(BP?), and economy-
wide manufacturing labor is N,, = Bn,, = LY/PZ.30 The resource constraint then requires
L=LY/P>+N,+N, at each date, or Y =P?*(L—-N,—N,)/L. Recalling that
h* = A(P)V,/V, and that in the steady state (L —N,)/B = F(h*)g/([,. hdF(h)), the
steady-state outcome under any policy with P > 7, and K = P? will be (for the case when
n, > 0):

30 Once again, if we account for the endogeneity of z; and z,, our qualitative conclusions are unchanged,
but there may be additional feedback effects that alter magnitudes.
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ran(2 5 )

N,/L =1—F(h")

) . F(h*
n, such that A(P) 7 fd)\,)z <fhoc Ezdl)j;h) - nv> (PP—1)=1.

Now consider the effects of increasing leading breadth from oo =1 to o =2. In our basic
model, this policy change increases vertical R&D as long as p is small enough. To
illustrate that a similar result holds here, consider the effects of this policy change in the
limit case when p =~ 0. For this case, when « =1 the steady-state outcome involves

a2/ (52) e () )

and when o =2 the steady-state outcome involves

can( 5 (5

_(PP—1 F(h*)g
”"‘( p? ) I ndr(h) )

We can see that a policy change from o =1 to o =2 has two effects on vertical R&D n,,.
First, increased leading breadth leads to increased market profits, and, if firms are patient
enough, these increased profits lead to increased vertical R&D (as reflected by
(P> —1)/P* > (P — 1)/P). This effect is identical to that in our basic model. Second,
increased leading breadth decreases the reward to vertical R&D relative to the reward to
horizontal R&D, and therefore there is an increase in horizontal R&D (as reflected by a
decrease in /™), which leads to decreased vertical R&D. Because the second effect could
be larger than the first, our result that, if people are patient enough, leading breadth
stimulates vertical R&D does not necessarily survive in our non-scale growth model. In
particular, our result survives if and only if the impact of increased leading breadth on
horizontal R&D is sufficiently small.*!
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