Unemployment Insurance Takeup and the Business Cycle

WORK IN PROGRESS

Andreas Kettemann*

November 8, 2013

Abstract

While little attention has been paid to the stylized fact that the take-up rate of unemployment insurance is less than 100%, the question how a take-up rate that varies over the business cycle could affect the general equilibrium of an economy has not yet been asked. I propose a simple model to allow for an endogenous take-up decision in a search and matching model with stochastic shocks. Nash bargaining implies a positive ceteris-paribus effect of take-up on wages. Since take-up turns out to be countercyclical, this induces a form of endogenous wage rigidity, amplifying fluctuations in key aggregates of the labor market. Quasi-experimental estimates using Austrian social security data confirm the validity of the wage mechanism and are used as a basis for the calibration of the model. Simulations reveal that the volatility of the key variables increases by almost 30%, demonstrating that the mechanism is not only theoretically, but also economically relevant.

*University of Zurich, Department of Economics, Muehlebachstrasse 86, CH-8008 Zürich, E-Mail: andreas.kettemann@econ.uzh.ch. I would like to thank David Dorn, Pascal Michaillat, Gilles Saint-Paul, Josef Zweimüller as well as seminar participants in Zurich for valuable comments.
1 Introduction

It is a neglected stylized fact that the take-up rate of unemployment insurance (UI), i.e. the share of those eligible actually claiming it, is far from 100% in general. (Blank & Card, 1991) estimate the take-up rate to be 70.7% in a CPS data covering the years 1977 - 1987, while (Anderson & Meyer, 1997) arrive at estimates below 60% in CPS data covering the late 70's and early 80's. The same applies for Austrian Social Security Data (ASSD), as Figure 1 demonstrates, plotting the share of newly unemployed males between 20 and 50 filing for UI in samples with variable minimum unemployment duration.\footnote{Since ASSD only records registered unemployment spells, unregistered ones have to be inferred from a gap in the working history. While it is apparent that the take-up rate is below 100%, it also becomes evident that it is difficult to pin down an absolute level of the take-up rate, since short unemployment spells are likely to contain many that know their reemployment date in advance and hence do not file for UI. However, for the present analysis relative fluctuations of take-up over the business cycle will be more important than its absolute level.}

![Figure 1: Take-up rate and minimum duration of unemployment (Source: ASSD)](image)

Figure 2, plotting the take-up rate for males between 20 and 50 against the unemployment rate over time, sheds light on the cyclical properties of the take-up rate. It is apparent that the take-up rate is far from constant over time, with
values ranging from 35 to 50%. Also, the take-up rate seems to be countercyclical, meaning that a higher share of the unemployment file for UI in recessions than in booms – an observation that has been documented for US data as well e.g. Blank and Card (1991).

Figure 2: Take-up rate and unemployment rate in Austria over time (Source: ASSD, IMF)

Yet while there have been the cited studies that documented the determinants of the take-up decision, their insights have not entered into many macro models of the labor market. In particular, no attention has been paid to the question as to how a take-up rate that is variable over time could affect the general equilibrium of an economy. Proceeding from this observation, I introduce an endogenous take-up decision in a stochastic version of the Mortensen-Pissarides (MP) search and matching model (D. T. Mortensen & Pissarides, 1994; Pissarides, 1985, 2000). I assume that filing for UI entails a fixed administrative cost, while the length of benefit reception and hence the payoff is uncertain. This means that the unemployed will only be willing to incur the claiming costs if they expect a sufficiently long duration of unemployment. If the job-finding rate is procyclical, this setting will lead to a countercyclical take-up rate.
The figures represent population estimates of responses to the following question from a special CPS supplement administered in May, August, and November 1989, and February 1990: “What is the main reason … hasn’t applied for unemployment compensation since … last job?” The population estimates are obtained using the CPS weights.

Table 1: Reason for not applying for UI benefits in current unemployment spell, job losers and leavers eligible for UI (Vroman (1991), Table 4, cited in Anderson and Meyer (1997))

That take-up is associated with costs has been emphasized by a number of authors (see the survey by Currie (2004)). Table 1, taken from Anderson and Meyer (1997), demonstrates that the trade-off between fixed administrative costs and the expected length of unemployment duration is also empirically relevant. In the U. S. Current Population Survey (CPS) of 1989 and 1990, a sample of non-registered unemployed were asked why they did not file for UI despite being eligible. About 37% stated that they expected to find a new job soon, hence corroborating that the expected length of unemployment is an important determinant of the take-up decision. Moreover, insufficient knowledge about the system and too much work to apply was given as a reason by another 6 and 7%, respectively, suggesting that claiming costs are relevant as well.

If we assume that wages are set by generalized Nash bargaining – as is standard in the MP model – workers’ outside values and hence wages will be positively affected by the current take-up rate. Ceteris paribus this tends to push wages upward during recessions and downward during booms. Since this causes wages to be more rigid, profits will be more volatile. According to a zero-profit condition firms create vacancies until expected vacancy costs equal expected profits, and
hence this translates into larger fluctuations in vacancies, unemployment and labor market tightness as well.

While this effect can be shown to hold theoretically, it is another question whether it is also economically relevant. Using a policy discontinuity in the UI system in Austria, I can test the validity of the Nash bargaining assumption and discipline my calibration, which proceeds from Hagedorn and Manovskii (2008a). Simulations of the model with the baseline calibration then show that the volatility of labor market tightness, unemployment, and vacancies is increased by almost 30% compared to a model with exogenous take-up. Hence, though not primarily intended, the paper also adds to the literature initiated by Shimer (2005), who demonstrated that the stochastic version of the standard MP model failed to account for the empirical volatility in the aggregates of the labor market if standard parameter choices are made – a fact that had already been noted by Andolfatto (1996). While Hagedorn and Manovskii (2008a) succeeded in matching the empirical volatility using a different calibration, Shimer’s critique also triggered other attempts to reconcile the MP-model with the data.

While these include job destruction shocks and job-to-job worker flows (e.g. D. Mortensen & Nagypál, 2007), countercyclical vacancy costs (e.g. Shao & Silos, 2008), and fixed matching costs (e.g. Pissarides, 2009) as well as turnover costs (e.g. Braun, 2005; Silva & Toledo, 2009), among others, most attempts have been directed at wages. Shimer (2005) had already argued that the main reason that the tightness was not volatile enough was that wages set according to Nash bargaining fluctuated too much in response to productivity shocks, thereby leaving little movements in firm profits. Various forms of exogenous and endogenous wage rigidity have since been discussed (e.g. Shimer, 2004; Hall, 2005; Gertler & Trigari, 2009; Kennan, 2010; Menzio & Moen, 2010).

The way I introduce the take-up decision in the MP-model, I will end up with a form of endogenous wage rigidity which acts to amplify fluctuations. Clearly, while the literature mentioned in the previous paragraph is directly aimed at closing the gap between the textbook search and matching model, this aspect is only a byproduct of the present analysis. Hence, it is no problem that the simulations reveal that the take-up channel is unlikely to be the only answer to the Shimer critique.

I begin in the next section by discussing related literature. In Section 3, I describe the theoretical model, while Section 4 summarizes empirical evidence on the wage mechanism. Building on this, Section 5 describes the calibration and the computation of the model. Section 6 summarizes the results and Section 7 concludes.
2 Related Literature

As already mentioned, there have been some studies investigating the determinants of UI take-up. These are surveyed in Currie (2004), notable examples are Blank and Card (1991) and Anderson and Meyer (1997), both finding that replacement rates are significant determinants of take-up. Petrongolo (2009) empirically analyzes a mechanism similar to the one considered here, showing that a UK JSA reform increasing job search requirements significantly increased the share of non-claimants. Kroft (2008), on the other hand, investigates the implications of a variable take-up rate for optimal unemployment insurance in a static environment and finds that its level increases considerably (60% instead of 40% of pre-unemployment wages).

Only recently have there been attempts to come up with structural models to explain the take-up process in more detail. One of them is Blasco and Fontaine (2012), who incorporate a take-up decision in a detailed partial equilibrium job search model and then use structural estimation to identify the parameters (Petrongolo (2009) also applied a partial equilibrium search model to demonstrate the effect of higher job search requirements). Their results suggest that transaction costs in the claiming process are substantial. An early treatment of the take-up of welfare programs is Moffitt (1983), who emphasizes the role of stigma. However, recently authors have rejected stigma as an explanation for non-take-up in favor of transaction costs, since take-up of means-tested programs is not lower whereas they should be more stigmatic (see Currie (2004) for more on this).

The only model that introduces UI take-up in a general equilibrium setting I am aware of is Fuller, Auray, and Lkhagvasuren (2013). However, their setting is only relevant for the U.S., where firms are experience rated. This means that firms pay higher payroll taxes if more of their previous employees collected benefits. Since firms thus prefer workers not taking up UI, these will enjoy a higher job arrival rates and workers will select endogenously into registered and unregistered unemployment. While their model works well to predict long-term averages in the data, their mechanism is quite different from the one presented here. Indeed, until there has been no analysis of the general equilibrium implications of an endogenous take-up rate in a stochastic framework I am aware of.

3 The Model

3.1 Environment

The model is in discrete time. Productivity p is drawn from a first-order Markov process. Let $E_p X(p')$ denote the expectation of some future value $X(p')$ con-
I depart from the standard MP model by assuming that workers and firms are informed at the beginning of a period whether their match is dissolved, which occurs with probability λ. The match continues to exist until the end of the period and wage bargaining occurs at the beginning of the period before the separation shock materializes. Until the end of the period, workers and firms have the opportunity to find a new match for the subsequent period. The reason for this modification of the standard environment lies in the way the UI claiming decision is introduced. I will discuss its implications more thoroughly later on—including an argument why I deem this modification of the model close to reality. Figure 3 summarizes the assumptions.

Let u and v denote unemployment and vacancy rate, respectively. The different timing explained in the previous paragraph implies that the number of unemployed and the number of searchers no longer coincides as is the case in the standard MP model, since now upcoming layoffs add to the pool of job searchers. Hence, the number of job searchers is given by $u + \lambda (1-u)$. The number of matches is then given by $m = m(u + \lambda (1-u), v)$, increasing in both arguments and assumed to satisfy constant returns to scale. Labor market tightness, usually specified as $\theta = v/u$, now has to be redefined to be

$$\theta = \frac{v}{u + \lambda (1-u)}.$$

We can write for the probability that a vacancy is filled

$$\frac{m(u + \lambda (1-u), v)}{v} = m(\theta^{-1}, 1) \equiv q(\theta).$$

The probability that an unemployed person finds a job can be written as

$$\frac{m(u + \lambda (1-u), v)}{u} = m(1, \theta) = \theta m(\theta^{-1}, 1) = \theta q(\theta) \equiv f(\theta).$$

Figure 3: Sequence of events

<table>
<thead>
<tr>
<th>Beginning of period</th>
<th>End of period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wage bargaining</td>
<td>Jobs and workers match</td>
</tr>
<tr>
<td>Separation shock</td>
<td>Separation shock realizes</td>
</tr>
</tbody>
</table>

ditional on the current realization p. Throughout, primes will denote next-period values. Firms and workers discount the future at the exogenous discount rate r. Define $\delta \equiv \frac{1}{1+r}$.
3.2 Firms

Firms produce with a linear production technology. Hence the firm size is indeterminate and we can assume that one firm consists of one job, which is either occupied and produces p, or vacant and costs $c(p)$\(^2\). A separation occurs with exogenous probability λ. In these respects the labor demand side of the economy is standard and follows Pissarides (2000). As explained in the previous paragraph, however, firms are informed of the dissolution of their match at the beginning of the period and hence have the opportunity to search for a new match while the current match still persists.

The value of a vacancy given productivity p, $V(p)$, is unaffected by this modelling choice and reads (throughout this text, primes denote next period values)

\[
V(p) = -c(p) + \delta \left[q(\theta(p))E_p J(p') + (1 - q(\theta(p)))E_p V(p') \right].
\]

A vacancy costs $c(p)$ in the current period and is transformed into a job, yielding value $J(p')$, in the subsequent period with probability $q(\theta(p))$, while the vacancy remains open with opposite probability, yielding $V(p')$.

The value of a filled job given p, $J(p)$, however, changes compared to the standard MP case and is now given as

\[
J(p) = p - w(p) - \lambda c(p) + \delta \left[(1 - \lambda)E_p J(p') + \lambda (q(\theta))E_p J(p') + (1 - q(\theta))E_p V(p') \right].
\]

Firms earn productivity p minus wages $w(p)$ in the current period. With probability λ a firm learns in the beginning of the period that a match is dissolved at the end of the period, in which case a cost $c(p)$ is incurred to find a match for the next period. If search in the current period is not successful, which happens with probability $1 - q(\theta)$, the dissolved job cannot be refilled and is vacant in the next period, yielding $V(p')$. With opposite probability, search is successful and the job continues to exist without interruption, yielding $J(p')$. Eventually, with probability $1 - \lambda$, a job separation shock does not arrive, in which case the firm earns a payoff of $J(p')$ in the subsequent period.

Free entry implies that everyone can set up a vacancy and hence we must have $V(p) = 0$ in equilibrium. Using this in (1), we find

\[
c(p) = \delta q(\theta(p))E_p J(p').
\]

\(^2\)I follow Hagedorn and Manovskii (2008a) in assuming a variable hiring cost, which is motivated by adding capital to the model. In particular, hiring costs consist in labor and capital costs which both vary over the business cycle. Please refer to Hagedorn and Manovskii (2008a) for more detailed motivation.
Substituting (3) in (2) gives

\[J(p) = p - w(p) - \lambda c(p) + (1 - \lambda) \frac{c(p)}{q(\theta)} + \lambda c(p) \]

\[= p - w(p) + (1 - \lambda) \frac{c(p)}{q(\theta)}, \]

and hence the value of a filled job turns out to coincide with the standard MP case. The intuition is that by the free entry condition, any opportunity to refill the dissolved match must yield zero ex-ante profits.

3.3 Workers

I will explain the labor supply side of the economy in more detail, since this is where I depart from the standard model. The model wants to capture the idea that claiming entails sunk costs, while the length of the unemployment spell and hence the benefit of claiming unemployment insurance is uncertain a priori. This generates fluctuations in the take-up rate if unemployment durations are longer during recessions.

The way the unemployment insurance is system is set up in most cases suggests that the registered unemployed incur sizable administrative costs throughout their spell: At the beginning, they have to gather information about the system, show up at the caseworker's office, fill in many forms and so on. Later on UI recipients have to show up regularly for appointments, have to write applications for jobs they cannot possibly get or take part in training programs that are ill-suited for their special needs.\(^3\)

The unemployed are only willing to bear these costs to qualify for future benefit payments, as failure to do so would mean that benefits are (partially) sanctioned away. On the other hand, if they knew for certain that they would be matched soon, there would not be a reason to bear these costs. Consider, for instance, an unemployed who finds a job starting immediately but has an appointment with her caseworker the same day. It appears unlikely that she will show up at the appointment, given that there are no sanctions for not doing so.

Given the explained characteristics of benefits and costs, I model the time pattern of benefits and costs using a simple stationary setting (Figure 4). I assume that the unemployed have to claim unemployment benefits \(z \) one period in advance at a fixed claiming cost \(\psi < z \), while they only receive a payoff from claiming if they are not matched in the meantime. This reflects the fact that recipients always have the choice of not sticking to the rules and hence not qualifying for future

\(^3\)These can be qualified as costs as they do not increase the matching probability. I will abstract from the possibility that being registered raises the matching probability as explained later.
payments. Hence, a claiming decision can also be regarded as that of buying an asset which only pays off in one state of nature. I plot the payoff profile of the asset in Figure 5. While this setting is stylized, it accounts for two important aspects: The take-up decision is forward-looking and the current take-up-rate is (in part) influenced by past decisions.

One could argue that claiming costs are higher in the beginning of the spell. In this case, the take-up decision at the beginning of a spell would be different from those afterwards. This would complicate the analysis considerably since one additionally would have to keep track of the composition of different cohorts of the unemployed. However, while the specific dynamics of the model should change, the main mechanism would be the same.

The unemployed find a job with probability $f(\theta)$. I focus on the polar case where being registered does not raise the matching probability. This allows me to look at the effect of the forward-looking nature of the take-up decision. To get an interior solution for the take-up rate, I assume that there is heterogeneity in the job finding rate

$$f_i(\theta) = f(\theta) + \varepsilon_i,$$

where $\mathbb{E}(\varepsilon_i) = 0$ and ε_i is drawn anew every period for simplicity.
Unemployed individual \(i\) then solves

\[
U_i(p, s_i) = \max_{s'_i \in \{0, 1\}} \left\{ \ell + s_i z - \psi s'_i + \delta \left[f_i(\theta(p)) \mathbb{E}_p W(p') + (1 - f_i(\theta(p))) \mathbb{E}_p U_i(p, s'_i) \right] \right\},
\]

where \(\ell\) denotes the value of leisure which is exogenous and \(z\) denotes UI payments. \(s_i\) denotes the take-up indicator of person \(i\) for the current period, meaning that individual \(i\) currently receives benefits if \(s_i = 1\). This value has been determined by a decision in the previous period and is hence a state variable. On the other hand, \(s'_i\) represents the take-up decision for the subsequent period. If UI is claimed, costs \(\psi\) are borne, while benefits are only received if no match occurs, which happens with probability \(1 - f_i(\theta(p))\).

Define \(\varepsilon(\theta) \equiv -\psi/(\delta z) + (1 - f(\theta))\). The decision rule for person \(i\) is given by

\[
s'_i = 1 \left[\varepsilon_i \leq \varepsilon(\theta) \right],
\]

from which we can infer the aggregate probability of filing for unemployment among the unemployed (claiming rate), \(k(\theta)\):

\[
k(\theta) = \text{Prob}(\varepsilon_i \leq \varepsilon(\theta)).
\]

Hence, as expected, since \(\varepsilon(\theta)\) is decreasing in \(f(\theta)\), a lower of share of the unemployed claim UI if the job finding rate is higher, meaning that workers expect to be unemployed in the future with smaller probability. As \(f'(\theta) > 0\) and \(\theta\) turns out to be procyclical, we thus get a countercyclical claiming rate. Note that that the claiming rate generally differs from the share of the unemployed actually receiving UI, which is what is generally referred to as the take-up rate. This difference is due to a selection effect: Those with a lower job finding rate (low \(\varepsilon_i\)) are less likely to file for UI but are more likely to remain unemployed in the subsequent period. Hence, the take-up rate is higher than the claiming rate, which will be shown formally later on.

Aggregating over all individuals, the aggregate value of the unemployed reads

\[
U(p, s) = \ell + sz - k(\theta) \psi + \delta \left[f(\theta) \mathbb{E}_p W(p') + (1 - f(\theta)) \mathbb{E}_p U(p, s'(\theta)) \right].
\]

The future take-up rate \(s'(\theta)\), on the one hand, appears in the continuation values and depends on the current claiming rate \(k(\theta)\) in a way to be demonstrated. The state variable \(s\), on the other hand, is the current take-up rate, on which the currently unemployed had to decide in the previous period. However, the pool of the currently unemployed also comprises the group of those who were employed in the previous period. Hence, in order to determine \(s\), we also have to model their claiming behavior. In particular, given the way the claiming decision is modelled here, we have to assume that claiming has to occur while still on the job. This is
exactly the reason why I departed from MP in assuming that workers are informed of their subsequent layoff at the beginning of the period: Since this introduces a similar trade-off for the worker side, I can model their take-up behavior along the same lines as for the unemployed. Having been informed of their upcoming layoff, workers start to search for a new match while still on the job. At the same time, they can already register for UI, trading off claiming costs against the probability of being unemployed in the future.

While this departs from the standard MP assumption, it is in my opinion close to reality: People are often informed (or have to be informed) of their layoff well in advance, or they might consider a layoff likely (high \(\lambda \)). If this is the case, there is no reason to suppose that the still employed only start looking for a new job after their previous one has actually ended. Moreover, workers can also start to gather information about the system or register in advance for UI — which is, e.g., even explicitly allowed for in Austria ("Vorgemerkt Arbeitslosigkeit"). In all this, the same trade-off should be at work as with the unemployed.

Proceeding from these considerations, the value of worker \(i \) reads

\[
W_i(p) = \max_{s' \in \{0,1\}} \left\{ w(p) - \lambda s'_i \psi + \delta \left[(1 - \lambda)\mathbb{E}_p W(p') + \lambda (f_i(\theta)\mathbb{E}_p W(p') + (1 - f_i(\theta))\mathbb{E}_p U(p', s'_i)) \right] \right\}.
\]

Workers currently earn wage \(w(p) \). In case of a separation a worker can decide to register in advance for UI by choosing \(s'_i = 1 \), incurring cost \(\psi \). Moreover, the worker manages to find another job during the same period with probability \(f_i(\theta) \), earning \(W(p') \), while in the opposite case the worker becomes unemployed, earning \(U(p', s'_i) \). If no separation shock occurs, the worker continues to be employed, earning \(W(p') \).

It can easily be seen that this setting leads to the decision rule given in (4), and hence workers about to lose their job have the same claiming rate \(k(\theta) \) as the unemployed. After aggregating over \(i \), we obtain

\[
W(p) = w(p) - \lambda k(\theta) \psi + \delta \left[(1 - \lambda)\mathbb{E}_p W(p') + \lambda (f(\theta)\mathbb{E}_p W(p') + (1 - f(\theta))\mathbb{E}_p U(p', s(\theta))) \right] . \tag{6}
\]

While the modification of the model to allow for an advance notice of subsequent job separations on the one hand allows me to model claiming on the job

\(^4\)Many countries have regulations according to which employees have to be informed a certain period before their layoff.
and should – as argued above – reflect reality quite well, it extends the basic MP setting by allowing for a limited form of job-to-job flows. Even though a very simple model of search on the job, the model correctly predicts that job-to-job flows, given by \(\lambda (1 - f(\theta_t))(1 - u_t) \), are higher in booms than in recessions, which is consistent with empirical findings (e.g O. J. Blanchard & Diamond, 1989).

Eventually, having determined the claiming behavior on and off the job, I need to determine how the take-up rate in the subsequent period, \(s'(\theta) \), is determined. Since a take-up only occurs in the subsequent period if there is no match in between, we find, using \(\mathbb{E}(\varepsilon_i) = 0 \) and \(f_i(\theta) = f(\theta) + \varepsilon_i \),

\[
s'(\theta) = \frac{\int_{-\infty}^{\infty} (1 - f_i(\theta))s'_i(\theta)dF(\varepsilon)}{\int_{-\infty}^{\infty} (1 - f_i(\theta))dF(\varepsilon)}
= \frac{\int_{-\infty}^{\pi(\theta)} (1 - f_i(\theta)) \cdot 1 dF(\varepsilon) + \int_{\pi(\theta)}^{\infty} (1 - f_i(\theta)) \cdot 0 dF(\varepsilon)}{1 - f(\theta)}
= \frac{(1 - f(\theta)) \int_{-\infty}^{\pi(\theta)} dF(\varepsilon) - \int_{\pi(\theta)}^{\infty} \varepsilon dF(\varepsilon)}{1 - f(\theta)}
= k(\theta) - \frac{\int_{-\infty}^{\pi(\theta)} \varepsilon dF(\varepsilon)}{1 - f(\theta)}
= k(\theta) + \Delta(\theta),
\]

where \(\Delta(\theta) > 0 \) is a selection effect.

3.4 Wages

As is standard in the Mortensen-Pissarides model, wages are formed by generalized Nash bargaining. Bargaining at the micro level would entail different wages for those previously registered and those previously not registered. However, \(\theta \) will be determined by the free entry condition of firms where wages only enter in expectation and will turn out to be linear in take-up. Hence, it is sufficient to derive the average wage to derive the equilibrium of the economy. Put differently, the dynamics implied by bargaining at the micro and macro level are the same.

Defining the common surplus \(S(p, s) \equiv J(p) + W(p) - U(p, s) \), Nash bargaining implies

\[
W(p) - U(p, s) = \beta S(p, s) \quad \text{and} \quad J(p) = (1 - \beta)S(p, s),
\]

where \(\beta \) denotes the bargaining power of workers\(^5\).

\(^5\)Of course, due to the relationship implied by Nash bargaining, \(J \) and \(W \) will depend on \(s \) as well. I will suppress this argument for the subsequent analysis.
Substituting (2), (5) and (6) for the value functions and using the free entry condition (3) yields
\[
 w(p) = \beta(p + (1 - \lambda)c(p)\theta(p)) + (1 - \beta)(\ell + sz - (1 - \lambda)k(\theta)\psi),
\]
where, plugging in for s and $k(\theta)$, we can derive the wages for the respective subgroups at the micro level.

The terms following β and $1 - \beta$ represent the upper and lower margin of the bargaining range, respectively. The inherent assumption in Nash bargaining is that wages are always positioned at a fraction β of the way between the lower and the upper margin.

The upper margin depends positively on productivity and labor market tightness. Workers are rebated part of their productivity. Workers are rebated part of their productivity and compensated for their outside opportunities if unemployed. The only difference to the standard case here is that the factor $1 - \lambda$ enters, reflecting the fact that workers have the opportunity to find another job if laid off, for which employers are compensated. I depart farther from the standard model in the lower margin, standing for the flow utility if unemployed. sz is the current average benefit payment, while $(1 - \lambda)k(\theta)\psi$ are the savings in take-up costs while employed compared to being unemployed.

Thus, wages go up if many people have claimed benefits last period (high s) but tend to be pushed down if many people are claiming for the subsequent period. Since $z > \psi$ and $s'(\theta) > k(\theta)$, the former dominates the latter if the claiming rate is constant over time. Hence, on average this mechanism will work against the procyclical movements of the other components of the wage, leading to an endogenous wage stickiness.

3.5 Equilibrium

Equilibrium in this economy is defined by a policy function $\theta(p)$ that solves firms’ free entry condition (3) subject to the wage function given by (7). Recalling the free entry condition
\[
\frac{c}{\delta q(\theta)} = \mathbb{E}_\theta J(p') = \mathbb{E}_\theta \left\{ p' - w(p') + \frac{(1 - \lambda)c(p')}{q(\theta(p'))} \right\},
\]
we can see how the modified wage function will influence the equilibrium and hence cyclical properties of the economy. It says that firms increase vacancies until the expected cost of a vacancy equals its expected discounted payoff. Clearly, the more $w(p)$ moves in line with p, the less expected discounted profit will vary with p and the less incentive there is to vary θ. Wage stickiness in whatever form hence leads to larger fluctuations in θ and hence in aggregate unemployment and vacancies.
Plugging in for the wage using (7), we arrive at a rational expectations functional equation in \(\theta(p) \),

\[
\frac{c(p)}{\delta q(\theta(p))} = \mathbb{E}_p \left\{ (1 - \beta) \left[p' - \ell + (1 - \lambda) \psi k(\theta(p)) - s'(\theta(p))z \right] \\
- \beta(1 - \lambda)c(p')\theta(p') + \frac{(1 - \lambda)c(p')}{q(\theta(p'))} \right\}. \tag{8}
\]

This equation pins down a policy function \(\theta(p) \) of arbitrary form, yielding firms’ choice of the vacancies relative to unemployment for a given \(p \).

Given the policy function \(\theta(p) \), all other variables in the economy follow directly. In particular, given the assumptions on job-to-job transitions made here, the law of motion for unemployment is given by

\[
u_{t+1} = \lambda(1 - f(\theta_t))(1 - u_t) + (1 - f(\theta_t))u_t, \tag{9}\]

while vacancies follow from the definition of labor market tightness as

\[v_t = \theta_t(u_t + \lambda(1 - u_t)). \tag{10}\]

3.6 Analysis

To get an idea how a variable take-up rate affects equilibrium, I follow Hagedorn and Manovskii (2008b) in deriving the elasticity of labor market tightness with respect to productivity under certainty equivalence (i.e. assuming constant productivity) and constant hiring costs.

Lemma 1. Under certainty equivalence (i.e. \(p' = p \)) and assuming that \(c \) does not depend on \(p \), the elasticity of labor market tightness with respect to productivity, \(\varepsilon_{\theta,p} \), is given by

\[
\varepsilon_{\theta,p} = \frac{p}{p - \ell - s'(\theta)(z - (1 - \lambda)\psi)} \\
\times \frac{\beta(1 - \lambda)f(\theta) + \frac{1 - \delta(1 - \lambda)}{\delta} + \frac{1 - \alpha}{\alpha} q(\theta)(s'(\theta)z(-\eta_k) - (1 - \lambda)k(\theta)\psi(-\eta_k))}{\beta(1 - \lambda)f(\theta) + (1 - \eta_f) \frac{1 - \delta(1 - \lambda)}{\delta} + \frac{1 - \alpha}{\alpha} q(\theta)(s'(\theta)z(-\eta_k) - (1 - \lambda)k(\theta)\psi(-\eta_k))}. \tag{11}\]

where \(\eta_f \equiv \left| \frac{\partial f(\theta)}{\partial \theta} \frac{\theta}{f(\theta)} \right| \), \(\eta_s \equiv \left| \frac{\partial s'(\theta)}{\partial \theta} \frac{\theta}{s'(\theta)} \right| \) and \(\eta_k \equiv \left| \frac{\partial k(\theta)}{\partial \theta} \frac{\theta}{k(\theta)} \right| \) denote the elasticities of the job-finding rate, the take-up rate and the claiming rate with respect to the labor market tightness, respectively.

Proof. See appendix. \(\square \)
A direct consequence of this result is the following:

Proposition 1. \(\varepsilon_{\theta,p} \) increases in \(\eta_s \) and decreases in \(\eta_k \).

Proof. This result can be seen directly from (11).

Hence, a variable take-up rate increases volatility, while the variable claiming rate leading to fluctuations in claiming costs dampens it. The take-up rate and the claiming rate, on the other hand, are linked by the selection term \(\Delta(\theta) \). As long as this term is not strongly negative, the net effect will be positive:

Proposition 2. The take-up channel increases \(\varepsilon_{\theta,p} \) if

\[
1 + \frac{\partial \Delta(\theta)}{\partial \theta} > (1 - \lambda) \frac{\psi}{z}.
\]

Proof. The net effect of both mechanisms is positive if

\[
\frac{\eta_s}{\eta_k} > \frac{(1 - \lambda)k \psi}{sz}.
\]

Moreover,

\[
\eta_s = \left| \frac{\partial k}{\partial \theta} + \frac{\partial \Delta}{\partial \theta} \right| \frac{\theta}{k + \Delta}.
\]

Assuming \(\eta_k \) and \(\eta_k \) have the same sign,

\[
\frac{\eta_k}{\eta_k} = \frac{k}{k + \Delta} \left(1 + \frac{\partial \Delta(\theta)}{\partial \theta} \right).
\]

from which the result directly follows.

The preceding condition coincides with the condition that the wage becomes more rigid due to the take-up channel. This is what we need to generate higher volatility compared to full take-up. Setting \(\eta_s = \eta_k = z = \psi = 0 \) and \(\ell \) equal to average relative flow utility of workers relative to unemployed in (11), we obtain the elasticity in the MP model with full take-up, \(\varepsilon_{\theta,p} \),

\[
\varepsilon_{\theta,p} = \frac{\beta(1 - \lambda)f(\theta) + \frac{1 - \delta(1 - \lambda)}{\delta}}{\beta(1 - \lambda)f(\theta) + (1 - \eta f)\frac{1 - \delta(1 - \lambda)}{\delta}}.
\]

This result is similar to the elasticity derived in Hagedorn and Manovskii (2008b) for the standard MP case, the only difference being that \(1 - \lambda \) enters in front of \(f(\theta) \) in the numerator and denominator for the same reason as explained above.

To get an idea of the direction and the magnitude of the take-up effect, we need to calibrate and simulate the model. A caveat to Proposition 1 is that the
4 SOME EVIDENCE ON THE WAGE MECHANISM

It is evident from the presentation of the model that the crucial link is a positive association of take-up and wages. I motivated my results assuming Nash bargaining. In principle, however, any model guaranteeing that wages stay within the bargaining range can be argued to be a suitable wage setting mechanism in the present model. Other mechanisms have been considered, among others, by Hall (2005) and O. Blanchard and Galí (2010).

Hence, it is useful to look for direct evidence on the association between UI take-up and post-unemployment wages. I do so by exploiting a policy discontinuity in the Austrian unemployment insurance system, namely that job losers above 25 need to have been employed at least for 52 weeks during the preceding 24 months if it is their first unemployment spell. The mapping from employment during the previous two years and eligibility is not deterministic, however: On the one hand, the law lists several spells that can be counted toward the eligibility, that cannot be observed in the data, such as civil service or working spells abroad. This leads to a non-zero probability to be eligible and hence a non-zero take-up probability below the cutoff. On the other hand, the preceding analysis suggests that take-up will not be perfect even above the cutoff. Nevertheless, the take-up probability jumps at the cutoff and we can estimate its effect on post if we can justify the assumption that individuals are as good as randomly assigned around the cutoff.

I use Austrian Social Security Data (ASSD), focussing on job losses between 1977 and 2010 of males and females between 25 and 50. Moreover, I only consider first time unemployment occuring between employment spells. Unpaid unemployment spells are not recorded in the data. I take all gaps in the employment history to be unpaid unemployment. In order to limit the number of spells that are only due to job changes, I only consider spells above 10 days (paid and unpaid). The law is not precise in its statement regarding incomplete working weeks. It is not clear whether an individual who has worked for 51 weeks and 4 days will be credited 51 or 52 weeks. For the main specification, I thus exclude individuals who are less than ten days away from the cutoff. I exclude individuals that are recalled to their previous employers and potential quitters (more than 28 days between

6For the rest of this paper, I will refer to the case of an exogenous take-up rate as full take-up, even though it does not matter whether we consider take-up to be equal to 1 or to any other fraction.
previous job and entry into unemployment insurance). In order to not introduce sample selection between registered and non-registered unemployed and be able to exclude quitters, I have to eliminate all unemployment spells lasting less than 29 days.

In Figure 7 in Appendix B, I plot regression discontinuity estimates based on local linear regression with triangular weights and bootstrapped standard errors for different bandwidths. On the one hand, it is apparent that the eligibility mechanism works quite well, creating jumps of about 50% at the threshold across all bandwidths. On the other hand, a positive intention-to-treat effect on wages, ranging from about 6% to 9.3% is also consistently measured across all specifications. While estimates with the two larger bandwidth are very precise (p-values of 0.004 and 0.001, respectively), the most narrow bandwidth fails to be significant due to the reduced sample size\(^7\), while the magnitude of the point estimate still falls within the range of the other estimates. Importantly, all of the given estimates are consistent with a positive effect of outside values on wages as predicted by the model.

The significance of these results would not be clear if we could not be sure that variables influencing wages other than take-up are smooth around the threshold. In order to concisely address this question, I estimate a regression of log wages on a rich set of controls\(^8\) and generate fitted values. In Figure 8(a) in Appendix B, I plot regression discontinuity estimates using these fitted values as dependent variables. Apparently, other covariates are reasonably balanced around the cutoff. An insignificant difference is only visible with the narrowest bandwidth, but it goes into the opposite direction, hence tending to reduce my estimates. Clearly, this analysis does not directly address potential biases due to unobserved variables. However, given the rich set of controls I am confident that these variables would also be correlated with some of the observed variables, which would then tend to produce jumps at the cutoff.

For the rest of the paper, I will regard the estimates with bandwidth of 180 days as the baseline. These imply the smallest effect of take-up on wages among my estimates, since the measured jump in take-up is highest (by about 52% from 8.77% to 60.71%) and the effect on wages is smallest (about 6.05%), leading to an effect of about 11.63% of take-up on wages.

In a more complicated search model, the given increase in post-unemployment

\(^7\)The sample sizes corresponding to bandwidths of 60, 120 and 180 days are 3805, 9053 and 15213, respectively.

\(^8\)The variables used are gender, age, age squared, experience, experience squared, log duration of previous job, log duration of previous job squared, log wage of previous job, log wage of previous job squared, dummies for six different categories of family status, a dummy for being an Austrian citizen, a dummy for blue-collar workers, firm size of the previous employer, dummies for regions according to the NUTS classification, dummies for month of job loss and dummies for year of job loss.
wages could be seen as a combined effect of an increased outside value in bar-
gaining and an increased reservation wage when receiving UI. On the one hand,
using the same dataset, Card, Chetty, and Weber (2007) did not find any sig-
nificant effect of extended benefit duration on reemployment wages. This should
isolate the effect of increased reservation wages, while leaving the effect of take-up
constant. On the other hand, even if this effect were relevant, it would not pose
any problems for the mechanics of the model. In this case, the wage equation
(7) implied by bargaining could be seen as a reduced-form approximation of the
relationship between wages and take-up. Since the RDD estimates summarize this
reduced-form relationship and do not depend on the bargaining assumption and
the basic mechanism of the model works as long as firms expect take-up to have
an effect on wages for whatever reason, the basic story of this paper still goes
through.

5 Calibration and Computation

In calibrating the model, I proceed from Hagedorn and Manovskii (2008a), who
calibrated a stochastic version of the standard MP model without on-the-job search
and full take-up. Choosing a comparably high opportunity cost of labor \(\ell \) and low
bargaining power \(\beta \), they manage to match the observed volatility in labor market
tightness, while Shimer (2005) only managed to generate negligible volatility using
standard parameter values. On the other hand, Hagedorn and Manovskii’s setting
has been criticized for implying a too high labor supply elasticity (see, e.g., Hall
and Milgrom (2008)).

My main goal lies in understanding the potential quantitative impact of an
endogenous take-up rate. In order for the take-up rate to display sufficient variation
with a take-up function fitted to observed data, I need sufficient variation in the
labor market tightness. For this matter, the above mentioned concerns should
not be relevant as the direction and the extent of the effect should be the same
irrespective of how the volatility in the labor market tightness as an input to the
take-up decision is generated.

As Hagedorn and Manovskii (2008a), I follow den Haan, Ramey, and Watson
(2000) in specifying the matching function as

\[
m(u, v) = \frac{\tilde{u}v}{(\tilde{u}l + v)^{1/\ell}}, \quad l \geq 0,
\]

where here – as explained above – the number of job searchers \(\tilde{u} = u + \lambda(1 - u) \)
differs from the number of unemployed \(u \). While den Haan et al. (2000) also
provide a micro foundation for this functional form, the main advantage as opposed
to the standard Cobb-Douglas function lies in the fact that the implied matching
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ</td>
<td>Value of nonmarket activity</td>
<td>0.955</td>
</tr>
<tr>
<td>β</td>
<td>Workers’ bargaining power</td>
<td>0.052</td>
</tr>
<tr>
<td>l</td>
<td>Matching parameter</td>
<td>0.407</td>
</tr>
<tr>
<td>c</td>
<td>Cost of vacancy when $p = 1$</td>
<td>0.584</td>
</tr>
<tr>
<td>δ</td>
<td>Discount rate</td>
<td>0.99^{1/12}</td>
</tr>
<tr>
<td>λ</td>
<td>Separation rate</td>
<td>0.0081</td>
</tr>
<tr>
<td>ρ</td>
<td>Persistence of the productivity process</td>
<td>0.9895</td>
</tr>
<tr>
<td>σ_{ε}^2</td>
<td>Variance of innovations in productivity process</td>
<td>0.0034</td>
</tr>
</tbody>
</table>

Table 2: Calibration in Hagedorn and Manovskii (2008a)

probabilities are guaranteed to be between zero and one for all \tilde{u} and v. In addition, $m(\tilde{u}, v)$ is increasing in both arguments and satisfies constant returns to scale.

The productivity process $\{p_t\}$ is specified as

$$\log p_{t+1} = \rho \log p_t + \varepsilon_{t+1}, \quad \text{where} \quad \varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2).$$

and approximated by a 4-state Markov chain. Also, following the motivation given in Hagedorn and Manovskii (2008a), I specify vacancy costs as

$$c(p) = 0.474p + 0.110p^0.449.$$

I follow Hagedorn and Manovskii (2008a) in imposing an average job-finding rate of $f(\theta^*) = 0.14$. In order to on average match their separation rate, I set $\lambda = 0.0081/(1 - f(\theta^*)) = 0.0095$. I choose the same values for the parameters δ, ρ and σ_{ε}^2.

I need to make progress on the setting by Hagedorn and Manovskii (2008a) in finding the take-up function $s'(\theta)$. To determine $s'(\theta)$, I assume that

$$\varepsilon_i \sim \mathcal{N}(0, \sigma^2),$$

implying that the claiming rate is given by

$$k(\theta) = \Pr \left(\frac{\varepsilon}{\sigma} \leq -\frac{1}{\delta} \frac{1}{z} + \frac{1}{\sigma} (1 - f(\theta(p))) = \Phi \left(\beta_0 + \beta_1 (1 - f(\theta(p))) \right) \right).$$

To calculate the take-up rate in the subsequent period $s'(\theta)$, observe that with a
normal distribution
\[
\int_{-\infty}^{\bar{\varepsilon}(\theta)} \varepsilon dF(\varepsilon) = F(\bar{\varepsilon}(\theta)) \frac{\int_{-\infty}^{\bar{\varepsilon}(\theta)} \varepsilon dF(\varepsilon)}{F(\bar{\varepsilon}(\theta))}
\]
\[
= F(\bar{\varepsilon}(\theta)) \mathbb{E}(\varepsilon | \varepsilon \leq \bar{\varepsilon}(\theta))
\]
\[
= \Phi(\bar{\varepsilon}(\theta)/\sigma) \left(\frac{-\sigma \phi(\bar{\varepsilon}(\theta)/\sigma)}{\Phi(\bar{\varepsilon}(\theta)/\sigma)} \right)
\]
\[
= -\sigma \phi(\bar{\varepsilon}(\theta)/\sigma)
\]
\[
= -(1/\beta_1) \phi(\beta_0 + \beta_1(1 - f(\theta(p))))
\]

implying
\[
s'(\theta) = k(\theta) - \frac{\int_{-\infty}^{\bar{\varepsilon}(\theta)} \varepsilon dF(\varepsilon)}{1 - f(\theta)}
\]
\[
= \Phi(\beta_0 + \beta_1(1 - f(\theta(p)))) + \frac{1}{\beta_1(1 - f(\theta(p)))} \phi(\beta_0 + \beta_1(1 - f(\theta(p))))
\]

We still need to find values for the parameters \(\beta, I, s, z, \psi, \beta_1 \), while \(\beta_0 \) is implied by these variables using
\[
\beta_0 = -\frac{1}{\delta} \psi \beta_1
\]

These have to be chosen by simultaneously solving a number of restrictions to be explained in the following. First, we need to target the average job-finding rate by setting \(f(\theta^*) = 0.14 \), where \(\theta^* \) solves the certainty-equivalent version of the rational expectations functional equation given by (8).

Moreover, I impose that the take-up function matches observed take-up rates for the first and third quantiles of labor market tightness, \((\theta_1, \theta_3)\), and the take-up rate, \((s_1, s_3)\), respectively:
\[
s_1 = \Phi(\beta_0 + \beta_1(1 - f(\theta_1))) + \frac{1}{\beta_1(1 - f(\theta_1))} \phi(\beta_0 + \beta_1(1 - f(\theta_1)))
\]
\[
s_3 = \Phi(\beta_0 + \beta_1(1 - f(\theta_3))) + \frac{1}{\beta_1(1 - f(\theta_3))} \phi(\beta_0 + \beta_1(1 - f(\theta_3)))
\]

\((s_1, s_3)\) are found from weekly time-series data constructed using ASSD data and corrected for a share of job quitters (who are not able to claim UI before 28 days after quitting) estimated to be 20.6\%, yielding \(s_1 = 0.36/(1 - 0.206) = 0.46 \) and \(s_3 = 0.45/(1 - 0.206) = 0.56 \). \((\theta_1, \theta_3)\), on the other hand, are determined by simulating the model with exogenous take-up using the calibration in Table 2 and determining the quantiles of the resulting distribution of \(\theta \). This should be
appropriate since Hagedorn and Manovskii (2008a) can closely match empirical moments of the labor market tightness.

In the preceding section we estimated a jump in the take-up rate from $s_0 = 8.7\%$ to $s_1 = 60.1\%$ accompanied by an increase in wages by about 6.05%, so $w_1/w_0 = 1.065$. Using the take-up function, I deduce implied claiming rates k_0 and k_1. Plugging into the wage equation (7), assuming for simplicity that the take-up rate is constant over time, and setting productivity to its steady-state value $p = 1$, we get

$$\frac{w_1}{w_0} = \frac{\beta(p + (1 - \lambda)c) + (1 - \beta)(\ell + s_1z - (1 - \lambda)k_1\psi)}{\beta(p + (1 - \lambda)c) + (1 - \beta)(\ell + s_1z - (1 - \lambda)k_1\psi)}.$$

In addition, define ℓ to be the average value of nonmarket activity in the model with variable takeup, to be compared to ℓ in Table 2 for the model with full take-up. After dividing by z, it is given by

$$\frac{\ell}{z} + s - (1 - \lambda)\bar{k}\frac{\psi}{z} = \frac{\ell}{z},$$

where s is the average take-up rate chosen to be 0.5063 to match the data \bar{k} is the average claiming rate deduced from the claiming function. I choose ℓ so as to approximately match the standard deviation of θ obtained in the model with exogenous take-up calibrated as in Table 2.

Table 3 summarizes the calibration I obtain. Note that the additional structure of the model, i.e. the take-up channel and on-the-job search allow us to decrease the average value of nonmarket activity and increase the bargaining power of workers. Given these values, I solve equation (8) numerically for the policy function $\theta(p)$ using the Miranda and Fackler (2002) CompEcon Toolbox in MATLAB. I then simulate 1000 realizations of $\{p_t\}$ of 3600 weeks length. To eliminate the influence of initial conditions, I throw away the first 1200 entries of every trajectory, ending up with 2400 weeks. I then aggregate to the quarterly level, for simplicity taking 12 weeks to be equal to one quarter. This leaves me with 200 quarters, corresponding to 50 years of data.

Time paths for θ_t are found by evaluating the policy function $\theta(p)$. Given an initial value u_0^9, trajectories for the unemployment rates and vacancies are found using (9) and (10).

9I use the certainty equivalent steady-state $\frac{\lambda}{\lambda + \ell(\theta^*)}$. But this should be of negligible importance, given that we get rid of the first 1200 realizations.
Table 3: Baseline calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>Take-up parameter</td>
<td>-4.749</td>
</tr>
<tr>
<td>β_1</td>
<td>Take-up parameter</td>
<td>5.307</td>
</tr>
<tr>
<td>ℓ</td>
<td>Value of leisure</td>
<td>0.853</td>
</tr>
<tr>
<td>z</td>
<td>UI benefit</td>
<td>0.615</td>
</tr>
<tr>
<td>ψ</td>
<td>Take-up cost</td>
<td>0.550</td>
</tr>
<tr>
<td>\overline{L}</td>
<td>Average flow utility</td>
<td>0.934</td>
</tr>
<tr>
<td>β</td>
<td>Workers' bargaining power</td>
<td>0.109</td>
</tr>
<tr>
<td>l</td>
<td>Matching parameter</td>
<td>0.426</td>
</tr>
<tr>
<td>c</td>
<td>Cost of vacancy when $p = 1$</td>
<td>0.584</td>
</tr>
<tr>
<td>δ</td>
<td>Discount rate</td>
<td>0.999</td>
</tr>
<tr>
<td>λ</td>
<td>Separation rate</td>
<td>0.009</td>
</tr>
<tr>
<td>ρ</td>
<td>Persistence of the productivity process</td>
<td>0.990</td>
</tr>
<tr>
<td>σ_v^2</td>
<td>Variance of innovations in productivity process</td>
<td>0.003</td>
</tr>
</tbody>
</table>

6 **Results**

Section 3.6 analyzed the impact of the take-up channel theoretically and predicted that it will lead to an increase in volatility of the labor market tightness. However, in deriving the result I assumed a simplified setting with certainty equivalence and constant vacancy costs. Moreover, the result only holds locally, i.e. when the economy with endogenous take-up and the counterfactual with full take-up are shocked in the same state. A different question is how both economies compare over a longer horizon. Eventually, I also want to use the considerations of the previous section in order to assess whether the take-up channel is also economically significant.

The experiment I conduct in the simulation exercise is to choose $\bar{\ell}$ such that the model with endogenous take-up closely matches the volatility in v/u observed in US data as reported by Hagedorn and Manovskii (2008a) (0.259). Setting $\bar{\ell} = 0.933$ results in a standard deviation of v/u that is very close to this target. I will then simulate my baseline model and a model with full take-up and the value of nonmarket activity fixed to $\bar{\ell}$ to concentrate on the net effects of the take-up channel.

Figure 6 plots the policy functions $\theta(p)$ we obtain solving the model with full
and endogenous take-up. Clearly, the result that labor market tightness is more elastic in productivity with endogenous take-up carries over to the stochastic case (at least for my parameter constellation, but I tried many other constellations and never received the opposite result) and the difference is sizable.

![Policy Functions](image)

The higher-order moments resulting from a simulation of the models with endogenous and exogenous take-up are summarized in Tables 4 and 5. As expected, the volatilities of all endogenous variables in the model with endogenous take-up clearly exceed those in the model with exogenous take-up, with differences ranging from 26 to 28%. On the other hand, the autocorrelations and cross-sectional correlations are virtually unchanged.

While the former is a basic result of this paper, the latter is an encouraging finding given that the original model already matched autocorrelations and correlations reasonably well. Thus, we can be sure that the take-up mechanism, while increasing the volatility of θ, does not introduce any counterfactual implications elsewhere in the model.
Table 4: Results from the model with endogenous take-up

Moreover, while I defined the labor market tightness to be ratio of vacancies to job searchers $\nu/(u + \lambda(1 - u))$, all other studies I am aware of focus on the ratio of vacancies to unemployment ν/u. However, as Table 6 demonstrates, conclusions are the same for the “traditional” labor market tightness measure, with the difference amounting to about 26%.

The mechanics behind these results are best understood by looking at the impulse response graphs in Appendix C, depicting the dynamic reaction to a one standard deviation shock in productivity. In both variants of the model, labor market tightness increases on impact. Due to the increased job-finding rate, fewer unemployed find it worthwhile to file for unemployment insurance, leading to a decrease in the take-up rate.

Wages show a combination of different effects. Both wages with full and endogenous take-up are pushed upward due to increased labor market tightness. However, only wages with endogenous take-up are influenced by take-up behavior: Directly on impact, only the term $(1 - \lambda) k(\theta)\psi$ changes, since s is fixed by last period’s claiming behavior. The unemployed face smaller claiming costs on average, increasing workers’ outside value, for which workers are compensated. This upward jump in wages is corrected one period later, once s has decreased.

Leaving aside the first period, one can see that the net effect of these two components is negative and hence the wage reacts less strongly than with full take-up. This translates into higher expected discounted profits $\delta E_p J(p')$. Since in both cases wages rise less than one-to-one with productivity, expected discounted profits rise and firms have an incentive to increase vacancies until recruiting costs again
Table 5: Results from the model with exogenous take-up

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>0.115</td>
<td>0.110</td>
<td>0.196</td>
<td>0.013</td>
</tr>
<tr>
<td>Quarterly autocorrelation</td>
<td>0.822</td>
<td>0.602</td>
<td>0.758</td>
<td>0.759</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>1.000</td>
<td></td>
<td>-0.772</td>
<td>-0.934</td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>1.000</td>
<td>0.948</td>
<td>0.944</td>
</tr>
<tr>
<td>θ</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.996</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 6: Volatility of the vacancy-to-unemployment ratio

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation of v/u</td>
<td></td>
</tr>
<tr>
<td>Endogenous take-up</td>
<td>0.268</td>
</tr>
<tr>
<td>Full take-up</td>
<td>0.212</td>
</tr>
</tbody>
</table>

Table 6: Volatility of the vacancy-to-unemployment ratio
equal expected discounted profits, translating into higher tightness.

However, since wages react less strongly in the case of endogenous take-up, expected discounted profits increases more strongly, translating into a stronger increase in vacancies and the labor market tightness. Moreover, while the initial spike in wages is an unrealistic artifact of the special assumptions regarding the claiming process, we can see that it has no consequences for the rest of the model. The effect of wages on the rest of the economy works through expected discounted profits. But since firms only react to take-up expected for the subsequent periods, shocks to current take-up leading to spikes in contemporaneous wages are innocuous, which can be seen in the smooth trajectory of expected discounted profits.

7 Conclusion

The aim of this paper was to study in a parsimonious setting how a variable take-up rate can have an impact in general equilibrium. The main contributions of the paper are twofold: On a theoretical level, I came up with a simple and yet realistic way of introducing a take-up decision in a stochastic version of the DMP model. On a practical level, disciplining my calibration using quasi-experimental findings I could demonstrate that the effect can also be quantitatively relevant, with fluctuations increasing by almost 30%. This effect is due to a form of endogenous wage rigidity introduced by a varying take-up rate.

While the model is deliberately parsimonious, I argued that it should hold as an approximation under alternative assumptions. Although this observation is not true for the most important link within the model, the positive association of the take-up rate and wages hinging on the bargaining assumption, I was able to gain robust findings on this exploiting policy discontinuities in Austria.

Of course, this analysis does not claim to give a complete picture of the mechanics of take-up over the business cycle. It just isolated one channel and demonstrated that this channel can be quantitatively relevant, thus showing that take-up is far from a pure partial equilibrium phenomenon. Most importantly, I have assumed exogenous search effort, whereas the interaction of search effort and take-up should be important since take-up influences the search return. A thorough examination of this channel is subject of an ongoing project. However, preliminary results suggest that also through this channel endogenous take-up acts to amplify fluctuations of unemployment and vacancies, since take-up is countercyclical and search effort is higher if no take-up is made.

As a preliminary policy conclusion, fluctuations of aggregates in the labor market could be dampened if access to UI were simplified, making it less sensitive to business cycle fluctuations. However, one has to keep in mind that the setting
in this paper is too simple to conduct a thorough normative analysis of the UI system with an endogenous take-up rate. Whether the general conclusions regarding optimal UI would change given the setting adopted in this paper would be an interesting question for future research.
References

A Omitted Proofs

PROOF OF LEMMA 1:
Using the same strategy as Hagedorn and Manovskii (2008b), I can write for the surplus under certainty equivalence and a constant \(c \):

\[
S = \frac{p - \ell - (s'(\theta)z - (1 - \lambda)k(\theta)\psi)}{1 - \delta(1 - \lambda)(1 - f(\theta)\beta)}.
\]

Plugging this into the free entry condition \(c = \delta q(\theta)(1 - \beta)S \) and rewriting, we end up with

\[
\frac{1 - \delta(1 - \lambda)}{\delta q(\theta)} + \beta(1 - \lambda)\theta = (1 - \beta)\frac{p - \ell - (s'(\theta)z - (1 - \lambda)k(\theta)\psi)}{c}.
\]

Implicit differentiation yields

\[
\frac{\partial \theta}{\partial p} = \frac{(1 - \beta)/c}{\beta(1 - \lambda) - \frac{1 - \delta(1 - \lambda)}{\delta} \frac{\partial q(\theta)}{q'(\theta)} + \frac{1 - \beta}{c} \left(\frac{\partial s'(\theta)}{\partial \theta} z - \frac{\partial k(\theta)}{\partial \theta} (1 - \lambda)\psi \right)}{1}
\]

\[
= \frac{\beta(1 - \lambda)\theta \left(1 - \frac{1 - \delta(1 - \lambda)}{\delta} \frac{\partial q(\theta)}{q'(\theta)} + \frac{1 - \beta}{c} \left(\frac{\partial s'(\theta)}{\partial \theta} z - \frac{\partial k(\theta)}{\partial \theta} (1 - \lambda)\psi \right) \right)}{p - \ell - s'(\theta)(z - (1 - \lambda)\psi)}
\]

\[
= \frac{\beta(1 - \lambda)\theta q(\theta) \left(1 - \frac{1 - \delta(1 - \lambda)}{\delta} \frac{\partial q(\theta)}{q'(\theta)} + \frac{1 - \beta}{c} \left(\frac{\partial s'(\theta)}{\partial \theta} z - \frac{\partial k(\theta)}{\partial \theta} (1 - \lambda)\psi \right) \right)}{p - \ell - s'(\theta)(z - (1 - \lambda)\psi)}
\]

where I substitute from (12) in the second equality, expand by \(\theta q(\theta) \) in the third equality and use \(\eta = 1 - \frac{\partial q(\theta)}{\partial \theta} \frac{\partial}{\partial \theta} q(\theta) \) in the fourth equality. Hence

\[
\varepsilon_{\theta,p} = \frac{\partial \theta}{\partial p} \frac{p}{p - \ell - s'(\theta)(z - (1 - \lambda)\psi)}
\]

\[
= \frac{\beta(1 - \lambda)\theta q(\theta) \left(1 - \frac{1 - \delta(1 - \lambda)}{\delta} \frac{\partial q(\theta)}{q'(\theta)} + \frac{1 - \beta}{c} \left(\frac{\partial s'(\theta)}{\partial \theta} z - \frac{\partial k(\theta)}{\partial \theta} (1 - \lambda)\psi \right) \right)}{p - \ell - s'(\theta)(z - (1 - \lambda)\psi)}
\]
B Regression Discontinuity Estimates

Figure 7: Log wages, take-up and normalized days worked for different bandwidths
Figure 8: Fitted values from a wage regression for different bandwidths
One standard deviation shock in p. Initial values are set to their steady state values. Figures show percentage differences from initial value.

Figure 9: Impulse response graphs